JP2009218213A - Rf源とrfプラズマ・プロセッサの間に接続された整合ネットワークのリアクタンス性インピーダンスを制御する方法および装置 - Google Patents

Rf源とrfプラズマ・プロセッサの間に接続された整合ネットワークのリアクタンス性インピーダンスを制御する方法および装置 Download PDF

Info

Publication number
JP2009218213A
JP2009218213A JP2009107835A JP2009107835A JP2009218213A JP 2009218213 A JP2009218213 A JP 2009218213A JP 2009107835 A JP2009107835 A JP 2009107835A JP 2009107835 A JP2009107835 A JP 2009107835A JP 2009218213 A JP2009218213 A JP 2009218213A
Authority
JP
Japan
Prior art keywords
high frequency
flight path
frequency source
values
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107835A
Other languages
English (en)
Other versions
JP4435267B2 (ja
Inventor
Brett Richardson
リチャードソン・ブレット
Tuan Ngo
ゴ・テュアン
Michael S Barnes
バーンズ・マイケル・エス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2009218213A publication Critical patent/JP2009218213A/ja
Application granted granted Critical
Publication of JP4435267B2 publication Critical patent/JP4435267B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】最適な整合を迅速に達成できる整合ネットワークのリアクタンス性インピーダンスを制御する方法および装置の提供。
【解決手段】リアクタンス性インピーダンス要素12およびプラズマを含む負荷の高周波源14に対する同調とを制御する第1および第2の可変リアクタンス18,20を含んでいる整合ネットワークを介して接続される。第1および第2の可変リアクタンス18,20の値を変化させて、高周波源14の出力端子の内外に現れるインピーダンスの間の最良の整合を達成するために第1の可変リアクタンス18が第2の可変リアクタンス20の各単位変化に対して変化する量を決定する。次いで、高周波源14の出力端子の内外に現れるインピーダンスの間の考えられる最良のインピーダンス整合が達成されるまで、上記の決定に基づいて第1および第2のリアクタンス18,20の値を変動させる。
【選択図】図1

Description

本発明は概して真空プラズマ処理方法および装置に関し、詳細にいえば、高周波源と、プラズマとプラズマを励起するリアクタンス性インピーダンス要素を含む負荷との間に接続されたインピーダンス整合ネットワークの第1および第2の可変リアクタンスを、高周波源の出力端子の内外に現れるインピーダンスの間で最良な局部整合が達成されるまで第1および第2のリアクタンスを変動させることによって決定される飛翔経路に沿って同時に変動させる方法および装置に関する。
真空プラズマ処理装置は、通常半導体基板、誘電性基板および金属基板であるワークピースに材料を付着させたり、これをエッチングするために使用される。
ワークピースが配置されている真空プラズマ処理室へガスが導入される。ガスは高周波電界または電磁界に応じて励起されて、プラズマにされる。高周波フィールドは、通常磁気および静電両方の高周波フィールドをガスに結合する電極アレイまたはコイルのいずれかであるリアクタンス性要素によって与えられる。リアクタンス性インピーダンス要素は高周波と、ガスをプラズマに励起するのに十分な電力を有している高周波源に接続されている。高周波源とコイルの間の接続は通常、高周波源に直接接続された比較的長い同軸ケーブルと、ケーブルとリアクタンス性インピーダンス要素の間に接続された共振整合ネットワークとによって行われる。整合ネットワークは高周波源のインピーダンスをこれが駆動する負荷に整合させるように調節された一対の可変リアクタンスを含んでいる。
高周波源に現れる負荷はかなりの変動を受ける。負荷はプラズマ状態へガスを励起する前に比較的高いインピーダンスを有する。プラズマの励起に応じて、負荷のインピーダンスは励起されたプラズマに電荷キャリア、すなわち電子とイオンが存在しているためかなり低下する。励起したプラズマのインピーダンスもプラズマ・フラックスの変動、すなわちプラズマ密度とプラズマ電荷粒子速度の積によりかなり変化する。それ故、高周波源から負荷への電力の効率のよい輸送をもたらす、高周波源と負荷の整合が若干困難となる。
従来は、高周波源と負荷の間で整合したインピーダンス状態を維持するために、両方の可変リアクタンスを同時に変動させていた。通常、(1)高周波源がケーブルに供給する電圧と電流の間で実質的な位相差が検出されなくなり、(2)高周波源からケーブルに現れる実インピーダンスが高周波源の出力端子に現れる実インピーダンスと実質的に等しいと検出されるまで、2つのリアクタンス値を同時に変動させる。
状況によっては、整合に達しない態様でリアクタンスが変動するため、この従来技術の手法がまったく満足できないものであることが判明している。他の状況においては、整合状態に確実に達することがない態様でリアクタンス値が同時に変動するため、かなりの時間が経ってからだけ整合状態が達成される。
この問題を解決する試みが、本願と同一の出願人に譲渡されたMichael S.BarnesおよびJohn Pattrick Hollandの1995年12月29日出願のAPPARATUS FOR CONTROLLING MATCHING NETWORK OF A VACUUM PLASMA PROCESSOR AND MEMORY FOR SAMEなる名称の係属特許願第08/580706号に開示されている。この手法においては、考えられる最適な整合が達成されるまで、一方のリアクタンスの値を変動させるとともに、他方のリアクタンスの値を一定に維持する。次いで、考えられる最良な整合が達成されるまで、第2のリアクタンスの値を変動させるとともに、第1のリアクタンスの値を一定に維持する。考えられる最良な整合が達成されるまで、リアクタンスの値をこの態様で順次反復して変動させる。この従来技術の手法により、一時に一方のリアクタンスだけを順次変動させた結果として、整合状態を達成するのに必要な時間は実質的なものとなる。
本発明は改善された態様で変動させられ、かつ改善された装置によって変動させられる第1および第2の可変リアクタンスを含んでいる共振整合ネットワークを有していて、(a)高周波励起源のローディングおよび(b)プラズマ励起リアクタンス性インピーダンス要素および高周波プラズマを含む負荷の高周波源に対する同調を制御する高周波プラズマ処理装置に関する。本発明の一態様によれば、高周波源の出力端子の内外に現れるインピーダンスの間の最良の整合を達成するために、第2の可変リアクタンスの各単位変化に対して第1の可変リアクタンスが変化する量についての決定が行われる。この決定は最良の「局部」整合を達成するために確立されている規則にしたがって、第1および第2の可変リアクタンスの値を変化させることによって行われる。次いで、第1および第2の可変リアクタンスの値を、この決定に基づいて変動させる。第1および第2の可変リアクタンスは、高周波源の出力端子の内外に現れるインピーダンスの間の最良の整合が達成されるまで、変動させられる。決定の結果として、第1および第2の可変リアクタンスの値を同時に変動させるのが好ましい。
本発明の一態様によれば、第1の可変リアクタンスが変化させられるとともに、第2の可変リアクタンスを変化させず、また第2の可変リアクタンスを変化させるとともに、第1の可変リアクタンスを変化させないように、第1および第2の可変リアクタンスの値を順次変化させることによって、決定が行われる。他の態様によれば、第1および第2の可変リアクタンスの値を同時に変化させることによって、決定が行われる。
詳細にいえば、決定はまず次のようにして行われる。(1)高周波源の出力端子の内外に現れるインピーダンスの間の最良の局部インピーダンス整合が達成されるまで、可変リアクタンスの第1のものの値だけを変化させ、(2)次いで、高周波源の出力端子の内外に現れるインピーダンスの間の最良の局部インピーダンス整合が達成されるまで、可変リアクタンスの第2のものの値だけを変化させ、(3)次いで、高周波源の出力端子の内外に現れるインピーダンスの間の最良の局部インピーダンス整合が達成されるまで、可変リアクタンスの第1のものの値だけを変化させる。この場合、ステップ(1)および(3)の完了時の第1および第2の可変リアクタンスの値の指示により、決定を行う。この決定により、第1の可変リアクタンスと第2の可変リアクタンスの値のプロットにおいて第1の直線飛翔経路がもたらされる。
第1の飛翔経路にしたがうと、考えられる最良のインピーダンス整合が最低限の基準を満たすかどうかに関する他の決定が行われる。最低限の基準が満たされたことに応じて、第1および第2の可変リアクタンスの値が一定に維持される。
最低限の基準が満たされない場合、第1および第2の可変リアクタンスの値を再度変化させる。好ましい実施の形態において、第1の飛翔経路に沿った中間点に関して、変化値を決定するが、変化値が第1の飛翔経路の端部(最良のインピーダンス整合を有する第1の飛翔経路上の点)であってもよいことを理解すべきである。第1の飛翔経路に沿った中間点、または端部における変化値から、他の飛翔経路を選択的に計算して、最良の整合基準を満たすことを試みる。第1の飛翔経路に直角に第2の直線飛翔経路を確立することによって、他の飛翔経路を選択的に計算する。高周波源の出力端子の内外に現れるインピーダンスの間の新しい考えられる最良の局部整合が達成されるまで、第1および第2のリアクタンスの値を同時に変動させることによって、第2の飛翔経路に追随する。
他の飛翔経路が第1の飛翔経路に沿った中間点からのものである場合、他の飛翔経路は中間点と、新しい考えられる最良の局部整合の間の線として決定される。他の飛翔経路が第1の飛翔経路の端部からのものである場合、第1および第2の可変リアクタンスの値を同時に変動させて、第3の直線飛翔経路が第2の飛翔経路に直角になるようにする。高周波源の出力端子の内外に現れるインピーダンスの間の最良の整合が達成されるまで、第3の飛翔経路に追随する。最良の整合が最低限の基準に達していない場合、他の飛翔経路を第1および第3の飛翔経路の端部における第1および第2のリアクタンスの値から決定する。他の飛翔経路を、第3の飛翔経路の端部における第1および第2のリアクタンスの値で追随する。
他の飛翔経路を決定する方法に関わりなく、高周波源の出力端子の内外に現れるインピーダンスの間で考えられる最良の整合が達成されるまで、他の飛翔経路に追随する。通常、他の飛翔経路の端部における考えられる最良の整合は、負荷に送出される高周波源から導かれる電力の少なくとも96%となる。あるいは、最低限の最良の整合基準が第3の飛翔経路の端部で達成されたとしても、他の飛翔経路が確立される。
本発明の他の態様はワークピースを処理する真空プラズマ反応室内でプラズマに供給される高周波フィールドを制御するために、コンピュータとともに使用するメモリに関する。高周波フィールドは高周波源へ共振整合ネットワークを介して接続されたリアクタンス性インピーダンス要素によってプラズマへ供給される。高周波フィールドはガスをプラズマに励起し、プラズマを維持するのに十分な周波数と電力レベルを有している。整合ネットワークは高周波源のローディングおよびリアクタンス性インピーダンス要素およびプラズマを含む、高周波源への負荷の調整を制御する第1および第2の可変リアクタンスを含んでいる。メモリはコンピュータに次のことを行わせる信号を記憶している。(1)コンピュータにコマンドを与えて、第1および第2の可変リアクタンスの値を変動させることにより、高周波源の出力端子の内外に現れるインピーダンスの間で最良の整合を達成するために、可変リアクタンスの第2のものの各単位変化に合わせて可変リアクタンスの第1のものが変化する量を決定する(2)。次いで、高周波源の出力端子の内外に現れるインピーダンスの間で最良のインピーダンス整合が達成されたとコンピュータが判断するまで、(1)で行った決定に基づいて第1および第2の可変リアクタンスの値を変動させる。
本発明の上記およびその他の目的、特徴および利点は、特に添付図面に関して行う、本発明の特定の実施の形態についての以下の詳細な説明を考慮することにより明らかとなろう。
本発明の好ましい実施の形態のブロック図と配線図を組み合わせた図 第1図の装置がどのように動作するかを示すプロット 最終的な最高率の送出電力を達成するために、第1図の装置がどのように動作するかを示す詳細なプロット 最終的な最高率の送出電力を達成するために、第1図の装置が動作する他の態様の詳細なプロット
図面の第1図を参照すると、従来のプラズマ処理室10が共振整合ネットワーク16によって定周波数(典型的には、13.56MHz)の高周波源14に接続された励起コイル12を含むものとして示されている。コイル12は高周波電磁界を誘導するリアクタンス性インピーダンス要素であり、高周波電磁界は室10の外側から真空室の誘電性の窓(図示せず)を介して、室の内部へ結合される。真空プラズマ処理室10には適切な高周波源(図示せず)からガスが供給される。ガスはコイル12から誘導された高周波電磁界によりプラズマ状態(すなわち、プラズマ放電)に励起され、維持される。通常はガラス、半導体または金属の基板である室10内に配置されたワークピース(図示せず)は電荷粒子、すなわちプラズマ内の電子およびイオン、ならびに中性粒子によって処理されて、ワークピースがエッチングされたり、もしくは材料がその上に付着されたりする。
プラズマ放電およびコイル12は高周波源14および共振整合ネットワーク16に対する負荷を形成する。高周波源14は通常比較的長い、たとえば13フィートのケーブル15によってネットワーク16に接続されている。ケーブル15は高周波源14の周波数において、高周波源の出力インピーダンスに等しい特性インピーダンスを有している。
室10内のプラズマ放電は遷移および非線型変動を受け、この変動は整合ネットワーク16およびケーブル15によって高周波源14の出力端子へ反射される。整合ネットワーク16のインピーダンスは、これらの変動に関わりなく、高周波源14の出力端子へ戻される電力を最小限とするように制御される。
好ましい実施の形態において、整合ネットワーク16は、それぞれが直列コンデンサ18および20の形態の可変リアクタンスを含んでいる2つの直列アームを有する「T」として構成される。コンデンサ20を含んでいるアームはコイル12と直列であり、また固定接地コンデンサ22と直列に接続されている。整合ネットワーク16は固定分路コンデンサ24も含んでおり、このコンデンサはコンデンサ18および20の共通端子と接地の間に接続されている。コンデンサ18は高周波源14の出力端子からケーブル15へ現れる抵抗性インピーダンス構成要素の大きさを主に制御し、コンデンサ20は高周波源14の出力端子からケーブル15に現れる抵抗性インピーダンスの大きさを主に制御する。しばしば、コンデンサ18および20はそれぞれ当分野において負荷コンデンサおよび同調コンデンサと呼ばれる。
コンデンサ18および20の値は通常、高周波源14の出力インピーダンス、すなわち抵抗性が通常50オームであり、リアクタンス性がゼロ・オーム((50+j0)オーム)の高周波源14の出力端子に現れるインピーダンスが、高周波源の出力端子からケーブル15の入力端子に現れるインピーダンスと整合するように変動させられる。コンデンサ18および20の値はそれぞれ、マイクロコンピュータ32のマイクロプロセッサ30に含まれているディジタル・アナログ変換機によりDC制御電圧が供給されるDCモータ26および28によって変動させられる。マイクロコンピュータ32はEPROM34およびRAM36も含んでおり、これらはそれぞれマイクロプロセッサに対する制御プログラム信号、およびモータ26および28を制御するためにマイクロプロセッサによって操作されるデータ信号を格納する。
マイクロプロセッサ30は順方向電圧および電流変換器38からの信号および反射電圧および電流変換器40からの信号に応答するアナログ・ディジタル変換器、ならびに整合ネットワーク16からコイル12へ流れる高周波電流を監視する電流変換器42を含んでいる。変換器38は高周波源14からコイル15へ供給される高周波電圧および電流の複製であるアナログ信号を誘導する。変換器40はケーブル15から高周波源14へ反射された高周波電圧および電流の複製であるアナログ信号を誘導する。変換器38および40の各々は方向性結合器、電流の複製を誘導する変流器および電圧の複製を誘導する容量性分圧器を含んでいる。電流変換器42は整合ネットワーク16からコイル12へ流れる高周波電流の複製である信号を誘導する変流器を含んでいる。
マイクロプロセッサ30は変換器38、40および42から誘導されるアナログ信号に応答して、(1)高周波源14からケーブル15へ供給される高周波電圧および電流の大きさと総体位相角、ならびに(2)ネットワーク16からコイル12へ流れる高周波電流の大きさを示すディジタル信号を誘導する。これらのディジタル信号はRAM36に格納され、EPROM34に格納されているプログラム信号の制御のもとでマイクロプロセッサ30によって処理されて、モータ26および28に対する制御信号を誘導するために使用される他の信号を誘導する。
本発明によれば、コンデンサ18および20の値はマイクロプロセッサ30から誘導される信号に応答してモータ26および28によって変動させられて、チャンバ10内のガスを励起プラズマ状態に維持するための十分な電力をコイル12へ供給する。コンデンサ18および20の値は高周波源14からコイル12へ結合される電力の関数を最大化する方向で変動させられる。関数は次のいずれかである。(1)順方向高周波電力に対する送出高周波電力の比、(2)パーセント送出高周波電力、または(3)整合ネットワーク16がコイル12へ供給する高周波電流。これらの関数が最大化されると、高周波源とこれが駆動する負荷の間で、高周波源14の周波数において実質的なインピーダンスの整合が生じる。
すなわち、高周波源14の出力端子に現れる高周波源におけるインピーダンスが、高周波源からケーブル15に現れるインピーダンスとほぼ等しくなる。
マイクロプロセッサ30は変換器38および40の出力信号に応じて、順方向高周波電力、すなわち高周波源14がケーブル15に供給する高周波電力と、送出電力、すなわち整合ネットワーク16がコイル12へ実際に供給する電力を決定する。整合ネットワーク16がコイル12へ実際に供給する電力を決定する。
このため、マイクロプロセッサ30は変換器38の高周波電圧および電流出力を表す信号を次式にしたがって乗算することによって高周波順方向電力を決定する。
Figure 2009218213
ここで、 Voは高周波源14の高周波出力電圧の大きさであり、 Ioは高周波源14の高周波出力電流の大きさであり、 θ0は高周波源14から誘導された電圧および電流の間の位相角である。
送出高周波電力を決定するために、マイクロプロセッサ30は反射高周波電力を決定する。マイクロプロセッサ30は変換器40の高周波電圧および電流出力に応じて反射高周波電力を次式にしたがって決定する。
Figure 2009218213
ここで、 Vrはケーブル15から高周波源14へ反射される高周波電圧の大きさであり、 Irはケーブル15から高周波源14へ反射される高周波電流の大きさであり、 θrは反射電圧と電流の間の位相角である。
マイクロプロセッサ30は送出高周波電力(Pd)を(Pf−Pr)として決定する。パーセント送出電力(%Pd)は高周波順方向電力に対する高周波送出電力の比と類似しているが、マイクロプロセッサ30により(Pf−Pr)/Pf×100として計算される。整合が存在する場合、高周波反射電力がないため、(a)Pd=Pf、(b)順方向電力に対する送出高周波電力の比Pd/Pfは1、(c)%Pd=100である。マイクロプロセッサ30は電流変換器42の出力信号のみに応じて、整合ネットワーク16がコイル12へ供給する高周波電力(Io)を決定する。
本発明によれば、負荷コンデンサ18および同調コンデンサ20の値は、高周波源14の出力端子とこれが駆動する負荷との間できわめて近いインピーダンス整合を必ず得るような量だけ同時に変動させられる。コンデンサ18および20が変動する相対量は、適正な方向から必ず整合に達するように決定される。好ましい実施の形態において、インピーダンス整合の範囲は高周波源14によりこれが駆動する負荷へ供給されるパーセント送出電力を最大化することによって示される。パーセント送出電力を最大化した場合、反射電力は最小化される。ただし、高周波電源14とこれが駆動する負荷の間のインピーダンス整合に関連する他のパラメータを用いることができ、インピーダンス整合を示すために最大化できる他の例示的な好ましいパラメータは、コイル12へ供給される順方向電力と電流に対する送出電力の比であることを理解されたい。
さらに、マイクロプロセッサ30が(1)高周波源14がケーブル15へ供給する電圧と電流の間の位相角を比較し、(2)高周波源14からケーブル15に現れる実インピーダンスと高周波源14の出力端子に現れる既知の実インピーダンスを比較することにより、インピーダンス整合の度合いを決定することができる。整合状態において、マイクロプロセッサ30は位相角がゼロであり、実インピーダンスが等しいと判定する。しかしながら、比較(1)および(2)に依存することは、比較の結果を組み合わせなければならないため、他の関数に依存するよりも困難である。
第2図は上述の結果を達成するために、マイクロプロセッサ30がどのようにコンデンサ18および20の値を変動させるかを記述するのに役立つものである。第2図は複数のパーセント送出電力形状51−55に対する同調コンデンサ20の値(X軸方向に沿った)と負荷コンデンサ18の値(Y軸方向に沿った)のプロットである。形状51−55の各々はほぼ楕円形であり、形状51、52、53、54および55はそれぞれ10%、30%、50%、70%および90%の送出電力の形状を表している。10%形状51外のコンデンサ18および20のすべての値に対して、パーセント送出電力は10%未満であり、90%形状55内のコンデンサ18および20のすべての値に対して、パーセント送出電力の値は90%を超えている。第2図には5つの形状だけが示されているが、実際には、コンデンサ18および20の値の関数であるこのような形状が無数にある。
これらの形状は処理装置10内のプラズマのパラメータに応じて、ある程度動的なものである。
まず、マイクロプロセッサ30はコンデンサ18および20の相対変化速度を判定して、第2図の形状を通過する飛翔経路を計算する。この判定の第1のステップとして、マクロプロセッサ30はマイクロプロセッサが「局部」最大パーセント送出電力値を検出するまで同調コンデンサ20の値を変化させるとともに、負荷コンデンサ18の値を一定に維持する。次いで、この判定の第2のステップの間に、マクロプロセッサ30はマイクロプロセッサが他の局部最大パーセント送出電力値を検出するまで負荷コンデンサ18の値を変化させるとともに、同調コンデンサ20の値を一定に維持する。次いで、第3のステップの間に、マクロプロセッサ30はマイクロプロセッサが他の局部最大パーセント送出電力値を検出するまで同調コンデンサ20の値を変化させるとともに、負荷コンデンサ18の値を一定に維持する。
第1および第3のステップの終了時のコンデンサ18および20の値から、マイクロプロセッサ30はパーセント送出電力のほぼ最大化をもたらす第2図の第1の直線飛翔経路の傾斜を決定する。第1の直線の傾斜はマイクロプロセッサ30がコンデンサ18または20の一方を、他方のコンデンサの値の各単位変化に合わせて変化させなければならない量を示す。次いで、コンデンサ18および20の値は、マイクロプロセッサ30が最大パーセント送出電力を再度検出するまで、マイクロプロセッサ30により第1の飛翔経路に沿って同時に変動させられる。通常、第1の飛翔経路の端部において、最大パーセント送出電力は90%を超える値を有する。
パーセント送出電力を最大化するために、第1の直線飛翔経路に沿った最大パーセント送出電力が96%などの所定の目標値よりも小さいと検出された場合、マイクロプロセッサ30はコンデンサ18および20の値を同時に変化させて、第1の飛翔経路に対して直角に第2の直線飛翔経路があるようにする。第2の直線飛翔経路は局部最大パーセント送出電力をもたらす第1の飛翔経路に沿った点から始まる。このため、マイクロプロセッサ30はコンデンサ18および20の値を、第1の直線飛翔経路をもたらす比とは異なる比で同時に変化させる。換言すれば、第1の飛翔経路の傾きがΔy1/Δx1である場合、第2の飛翔経路の傾きはΔx1/Δy1である。第2の飛翔経路の端点はパーセント送出電力の極大値である。
好ましい実施の形態において、必要な場合には、第1の飛翔経路に沿った中間点から第2の飛翔経路の端点までの他の飛翔経路がマイクロプロセッサ30によって決定される。第1の飛翔経路に沿った中間点は、同調コンデンサ20を変動させるとともに、負荷コンデンサ18を一定に維持して2度目に検出された局部最大点であることが好ましい。他の飛翔経路に沿った始点は第2の飛翔経路の端部にあるが、第2の飛翔経路の投影は第1の飛翔経路の中間点を通っている。マイクロプロセッサ30は他の飛翔経路を決定した後、モータ26および28を制御して、マイクロプロセッサが新しい局部最大パーセント送出電力を検出するまで、他の飛翔経路に沿ってコンデンサ18および20の値を同時に変化させる。
通常、新しい局部最大値は最大パーセント送出電力の最小希望値を超えており、コンデンサ18および20の値は安定する。パーセント送出電力が目標値以下に低下したとマイクロプロセッサ30が検出すると、マイクロプロセッサはコンデンサ18および20の値を再度変動させる。
第2の飛翔経路の端点を求めた後、他の飛翔経路を何らかの他のステップを実行して決定することができる。このため、マイクロプロセッサ30は第2の直線飛翔経路に直角の、すなわち第1の直線飛翔経路に平行な第3の直線飛翔経路に沿ってコンデンサ18および20の値を同時に変化させる。第3の飛翔経路は第2の飛翔経路の端点から始まり、パーセント送出電力の局部最大値で終わる。第3の飛翔経路の端点におけるパーセント送出電力が所定の目標値よりもまだ低いとマイクロプロセッサ30が検出した場合、マイクロプロセッサは第1および第3の飛翔経路の端点におけるコンデンサ18および20の値を使用して、新しい他の飛翔経路の新しい傾きを計算する。
次いで、マイクロプロセッサ30はマイクロプロセッサが新しい局部最大値を検出するまで、コンデンサ18および20の値を他の飛翔経路に沿った第3の飛翔経路の端点における値から同時に変動させる。通常、新しい局部最大値は最大パーセント送出電力の最小希望値を超えており、コンデンサ18および20の値は安定する。パーセント送出電力が目標値以下に低下したとマイクロプロセッサ30が検出すると、マイクロプロセッサはコンデンサ18および20の値を再度変動させる。
第2図に示した特定の状況の場合、負荷コンデンサ18と同調コンデンサ20の値は当初、パーセント送出電力が10%未満であるようなものであり、これによりコンデンサ18および20の値の同時制御プロセスにおける始点60は10%送出電力形状51の外部のものとなる。まず、マイクロプロセッサ30はEPROM34内のコマンドに応答して、同調コンデンサ20の値を下げて、X軸に平行の第1の直線飛翔経路62をもたらす。このため、マイクロプロセッサ30はモータ28にコンデンサ20の値を下げる信号を供給する。コンデンサ20の値が下がると、マイクロプロセッサ30は変換器38および40の出力信号に応答して、パーセント送出電力を計算する。マイクロプロセッサ30が計算したパーセント送出電力値はマイクロプロセッサ内で継続的に比較される。コンデンサ20の値の変化の結果として、マイクロプロセッサ30は点64における局部最大パーセント送出電力を計算する。しかしながら、マイクロプロセッサ30はコンデンサ20を点64で停止させることができず、コンデンサ20の値は減少を続けるので、コンデンサ20の値が点66によって示される値まで下がるまで、パーセント送出電力の最大値は減少する。マイクロプロセッサ30はコンデンサ20の異なる値に対する局部最大パーセント送出電力の、RAM38に格納されている値およびEPROM34内の信号に応答して、コンデンサ20をこれが点64において有していた値に戻す。次いで、EPROM34はマイクロプロセッサ30にマイクロプロセッサにコマンドを送る信号を供給して、モータ26を負荷コンデンサ18の値を増加させる方向へ駆動するとともに、モータ28を静止状態に維持する。これにより、負荷コンデンサ18の値は直線飛翔経路68に沿って増加するとともに、マイクロプロセッサ30はパーセント送出電力を繰り返し計算する。それ故、EPROM34内のプログラムはコンデンサ18の値をまず増加させ、コンデンサ20の値をまず減少させる。コンデンサ20の値の最初の減少と、コンデンサ18の値の増加の後、マイクロプロセッサ30はパーセント送出電力が増加したのか、減少したのかを検出する。パーセント送出電力が増加したとマイクロプロセッサ30が判断した場合(第2図の例で想定したように)、コンデンサの値はEPROM34内の信号によって当初命令された方向で変化を継続する。しかしながら、パーセント送出電力が減少したとマイクロプロセッサ30が判断した場合には、マイクロプロセッサはモータ26または28の方向を逆転させて、コンデンサ18または20の変化の最初の方向を逆にする。
この手順により、コンデンサ18および20の値が常に、飛翔経路の判断において正しい方向へ変化することが可能となる。
点70において、変換器38および40の出力信号に応じてマイクロプロセッサ30が計算したパーセント送出電力は局部最大値を通過する。マイクロプロセッサ30は点70においてコンデンサ18を停止することができず、コンデンサ18の値が増加を続けるので、パーセント送出電力は点70における局部最大値未満に減少する。次いで、マイクロプロセッサ30はモータ26の駆動方向を逆転させて、コンデンサ18の値を点70における局部最大値が到達させられる値に戻す。
次いで、EPROM34およびRAM30はマイクロプロセッサ30に、DCモータ28に同調コンデンサ20の値を増加させ、DCモータ26が負荷コンデンサ18を一定値に維持する信号を供給する。これにより、飛翔経路74を横切る。飛翔経路74を横切って、パーセント送出電力の減少が再度検出されるまで、局部最大値76を通るようにする。次いで、マイクロプロセッサ30はモータ28の駆動方向を逆転させ、同調コンデンサ20の値を減少させて、点76における局部最大値に再度到達するようにする。
第1および第3の飛翔経路62および74の端点におけるコンデンサ18および20の値は、この時点で、RAM36に格納される。マイクロプロセッサ30はこれらの値をRAM36から取り出し、これらの点を接続する直線飛翔経路78の傾きを計算する。直線飛翔経路78の傾きは同調コンデンサ20の値の各単位変化に対して負荷コンデンサ18が変化すべき量を示す。これらの相対値はマイクロプロセッサ30によって、RAM36に格納される。
EPROM34は次いで、マイクロプロセッサ30にコマンドを送って、同調コンデンサ20の値の各単位変化に対して負荷コンデンサ18が変化すべき量に対する値を取り出す。マイクロプロセッサ30はDCモータ26および28が負荷コンデンサ18および同調コンデンサ20の値を飛翔経路78の整合延長部である直線飛翔経路82に沿って同時に変化させるような態様で、これらの値をDCモータ26および28に供給する。飛翔経路78および82が整合しており、したがって両者が点64および76を含んでいるため、点76は、飛翔経路78を横切ることがなくても、コンデンサ18および20の値に対する飛翔経路の中間点である。
マイクロプロセッサ30は局部最大パーセント送出電力を検出するまで、飛翔経路82を横切る場合のパーセント送出電力の値を継続的に計算する。第2図に示した例示的な状況において、パーセント送出電力は飛翔経路82を横切ったときに、50%よりも若干下の値から90%を超える値まで増加する。飛翔経路82に沿ったパーセント送出電力の最大値は90%を超えている。マイクロプロセッサ30が計算したパーセント送出電力の値が90%超に増加した場合、マイクロプロセッサはEPROM34内のサブルーチンに応答して、モータ26および28の速度を、したがってコンデンサ18および20の値の変化の絶対速度を減少させて、オーバシュートを最小限とする。コンデンサ18および20の値の変化の絶対速度が変化しても、これらの相対速度が変化しないので、飛翔経路82は継続する。
飛翔経路82がパーセント送出電力の最大値を通過した後、マイクロプロセッサ30はパーセント送出電力の最大値を再度検出するまで、モータ26および28の方向を逆にして、コンデンサ18および20の値を逆にする。マイクロプロセッサ30はパーセント送出電力の現時点で検出された値を、パーセント送出電力の目標値(典型的には、96%)を示すEPROM34に格納されている信号と比較する。パーセント送出電力の目標値に達したことをマイクロプロセッサ30が検出した場合、マイクロプロセッサはモータ26および28にそれ以上の信号を供給せず、コンデンサ18および20の値は最大送出電力が目標値未満に低下するまで、安定する。最大送出電力の検出された実際の値が目標値を超えられることを理解されたい。マイクロプロセッサ30は最大パーセント送出電力を、パーセント送出電力の目標値と比較して、パーセント送出電力の目標値を達成するために、これ以上の変化がコンデンサ18および20の値に必要か否かを判定する。
飛翔経路82が目標値内で最大パーセント送出電力をもたらさないとマイクロプロセッサ30が判定した場合、マイクロプロセッサは負荷コンデンサ18と同調コンデンサ20の値に対する新しい他の飛翔経路を決定する。通常、他の飛翔経路は90%の範囲内から少なくとも96%まで最大パーセント送出電力を増加させる。
他の飛翔経路を決定するために、マイクロプロセッサ30は飛翔経路82に沿って最大送出電力をもたらした負荷コンデンサ18と同調コンデンサ20の値をRAM36にロードする。すなわち、飛翔経路82の端点におけるコンデンサの値をRAMに供給する。次いで、マイクロプロセッサ30はこれらの値に応答して、飛翔経路82に直角な飛翔経路88(第3図)を計算する。飛翔経路88は飛翔経路82上の最大送出電力の端点86と交差する。
第3図は第2図の一部の拡大図であり、同調コンデンサ20と負荷コンデンサ18の値がそれぞれX軸およびY軸に沿って示されており、90%を超えるパーセント送出電力の形状と組み合わされている。第3図はマイクロプロセッサ30がどのようにコンデンサ18および20の値を制御して、目標パーセント送出電力ないし目標値を超えるパーセント送出電力を達成するかを記述するのに役立つものである。
飛翔経路82と直角な飛翔経路88は飛翔経路82に対するコンデンサ18および20の相対変化速度を逆転することによって決定される。それ故、マイクロプロセッサ30は信号をモータ26および28に供給して、飛翔経路88に沿ったモータの相対速度とコンデンサ18および20の相対変化速度が、飛翔経路82に沿ったものと正反対になるようにする。マイクロプロセッサ30が変換器38および40からの信号に応じて局部最大パーセント送出電力を検出するまで、飛翔経路88を横切る。マイクロプロセッサ30は飛翔経路88に沿った局部最大パーセント送出電力を検出した直後に、モータ26および28の方向を逆転して、コンデンサ18および20の値が飛翔経路88に沿った端点90にあるようにする。
端点90に達した後、マイクロプロセッサ30はコンデンサ18および20の相対変化速度を計算して、他の飛翔経路91を作り出す。飛翔経路91の始点は整合飛翔経路78および82に沿った中間点76であることが好ましく、飛翔経路88の端点90は飛翔経路91に沿った端点であることが好ましい。それ故、マイクロプロセッサ30は点76および90におけるコンデンサ18および20の値から飛翔経路91の傾きを計算する。異なるおそらくは若干正確でない他の飛翔経路を、点64および90におけるコンデンサ18および20の値に応じて、マイクロプロセッサ30が作成できることも理解されたい。
マイクロプロセッサ30は飛翔経路91に沿ったコンデンサ18および20の相対変化速度を計算した後、コンデンサ18および20の値を点90から始まる飛翔経路91に沿って変化させる信号をモータ26および28に供給する。マイクロプロセッサ30が検出したパーセント送出電力が点93において最大値を通過するまで、コンデンサ18および20の値が変動し、飛翔経路91を横切る。
点93に達した後、マイクロプロセッサ30はモータ26および28の方向を逆転させて、コンデンサ18および20の値が点93に関連付けられた値に戻るようにする。これらのコンデンサの値はマイクロプロセッサ30によってRAM36へ供給される。マイクロプロセッサ30は次いで、パーセント送出電力を計算し、この計算した値を目標パーセント送出電力と比較する。目標パーセント送出電力を計算したパーセント送出電力が超えている場合、マイクロプロセッサ30はコンデンサ18および20へ付加的な信号を供給せず、コンデンサの値は安定する。あるいは、もっと高い最大パーセント送出電力を望む場合、あるいは局部最大パーセント送出電力が閾値に達していない場合には、マイクロプロセッサ30をプログラムして、新しい直線飛翔経路(図示せず)を計算するようにする。
新しい直線飛翔経路はマイクロプロセッサ30により、飛翔経路91を計算したのと基本的に同じ態様であるが、始点を点90にして計算される。
パーセント送出電力を最大化する他の方法を、第4図に示す。第4図において、マイクロプロセッサ30は第3図に関連して上述したようにして、飛翔経路88と端点90を計算する。端点90に達した後、マイクロプロセッサ30はモータ26および28を制御して、コンデンサ18および20の値が飛翔経路92を横切るようにする。飛翔経路92は飛翔経路88に直角に、したがって飛翔経路82に平行に端点90において最大送出電力と交差する。それ故、飛翔経路92を横切る際に、コンデンサ18および20の値はこれらが飛翔経路82に沿って変動するのと同じ相対速度で変動する。マイクロプロセッサ30はEPROM34に格納されているコンデンサ18および20の値に対する当初の方向に応じて端点86および92から、また飛翔経路86および92を横切る際にマイクロプロセッサが計算するパーセント送出電力の連続した値を比較することによって、飛翔経路88および92の正しい方向を決定する。マイクロプロセッサ30がコンデンサ18および20の値を変化させる方向は、パーセント送出電力が減少したとマイクロプロセッサが検出した場合に逆転される。
マイクロプロセッサ30が検出したパーセント送出電力が点94において最大値を通過するまで、飛翔経路92を横切る。点94に達した後、マイクロプロセッサ30はモータ26および28の方向を逆転して、コンデンサ18および22の値を点94に関連付けられた値に戻す。これらのコンデンサの値はマイクロプロセッサ30によりRAM36へ与えられる。マイクロプロセッサ30は次いで、パーセント送出電力を計算し、この計算した値を目標パーセント送出電力と比較する。計算したパーセント送出電力が目標パーセント送出電力を超えている場合、マイクロプロセッサ30はコンデンサ18および20へ付加的な信号を供給せず、コンデンサの値が安定する。あるいは、もっと高い最大パーセント送出電力を望む場合、あるいは極大パーセント送出電力が閾値に達していない場合には、マイクロプロセッサ30をプログラムして、新しい直線飛翔経路96を計算するようにする。
このため、マイクロプロセッサ30は次いで、点86および94に対する負荷および同調コンデンサ18および20の値を示すRAM36に格納されている値に応答して、点86および94を一緒に接続する他の直線飛翔経路96の傾きを計算する。飛翔経路96の傾きの計算から、マイクロプロセッサ30はモータ26および28が変化して、飛翔経路96に沿ってコンデンサ18および20の値を変動させる相対速度を決定する。マイクロプロセッサ30は次いで信号を26および28へ供給して、コンデンサ18および22の値を線96の整合延長部である直線飛翔経路98に沿って点94から同時に変化させる。マイクロプロセッサ30は、コンデンサ18および20の値を変化させて、飛翔経路98を横切るようにする。最大パーセント送出電力が98%送出電力形状の内部にある点100に到達したとマイクロプロセッサ30が判断するまで、飛翔経路98を横切る。
本発明の特定の実施の形態の1つを図示説明してきたが、詳細に図示説明の実施の形態の詳細の変形を、添付の請求の範囲に規定する本発明の真の精神および範囲を逸脱することなく作成できることが明らかであろう。整合ネットワーク16をT型であると特に図示したが、整合ネットワークを、プラズマを励起するリアクタンス性インピーダンス要素に接続された分路可変負荷コンデンサおよび直列可変同調コンデンサを含む「L」型に構成することができる。このようなL型ネットワークは容量性タイプのインピーダンス・プラズマ励起リアクタンスとともにしばしば使用されるものであり、励起リアクタンスと直列に接続された固定インダクタを含んでいる。当分野で周知のとおり、「L」型整合ネットワークは通常整合状態に調整されているので、その負荷へ高周波源の周波数で最大電圧を送出する。これとは対照的に、「T」型整合ネットワークは通常整合状態に調節されているので、ネットワークの「スカート」部に沿って動作する。すなわち、T型ネットワークは整合状態において最大電圧を常に送出するとは限らない。

Claims (15)

  1. ワークピースを処理する真空プラズマ反応室内のプラズマに高周波フィールドを供給する方法であって、
    高周波フィールドが整合ネットワークを介して高周波源に接続されたリアクタンス性インピーダンス要素によってプラズマに供給され、高周波フィールドがガスをプラズマに励起し、プラズマを維持するのに十分な周波数および電力を有しており、整合ネットワークが高周波源のローディングと、リアクタンス性インピーダンス要素およびプラズマを含む負荷の高周波源に対する同調とを制御する第1および第2の可変リアクタンスを含んでいる方法において、
    (1)第1および第2の可変リアクタンスの値を変えることにより、高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間の最良の整合を得るために用いられる量であり、且つ、第2の可変リアクタンスの各単位変化に対して第1の可変リアクタンスが変化する量を決定し、
    (2)高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間の最良のインピーダンス整合が達成されるまで、ステップ(1)で行われた決定に基づいて第1および第2の可変リアクタンスの値を変動させる
    ことを特徴とする方法。
  2. 高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間の最良の整合が、高周波源とリアクタンス性インピーダンス要素およびプラズマを含む負荷との間の電力に関係づけられた電力の関数に従って決定される請求項1に記載の方法。
  3. 関数がリアクタンス性インピーダンス要素へ流れる最大高周波電流である請求項2に記載の方法。
  4. 関数が高周波源出力電力と負荷に送出される最大電力との比に基づいている請求の範囲第2項に記載の方法。
  5. 第1および第2の可変リアクタンスの値がステップ(2)の間に同時に変化する請求項1、2、3または4のいずれか一項に記載の方法。
  6. 第2の可変リアクタンスを変化させないで第1の可変リアクタンスを変化させ、また、第1の可変リアクタンスを変化させないで第2の可変リアクタンスを変化させることにより、第1および第2の可変リアクタンスの値をステップ(1)の間に順次変化させる請求項1、2、3、4または5のいずれか一項に記載の方法。
  7. 第1および第2の可変リアクタンスの値がステップ(1)の間に同時に変化する請求項1、2、3、4または5のいずれか一項に記載の方法。
  8. 前記各四辺形模様が配置されているタイヤ周方向の角度範囲のタイヤ全周に対する割合が30%以上となるように構成した
    ことを特徴とする請求項1、2、3、4、5、6または7の何れかに記載の空気入りタイヤ。
  9. ステップ(2)の間に達成される最良の整合が局部最良整合である請求項1、2、3、4、5、6、7または8のいずれか一項に記載の方法。
  10. (a)高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間の最良の整合が達成されるまで、前記第1の可変リアクタンスの値だけを変化させ、(b)次いで、高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間の最良の整合が達成されるまで、前記第2の可変リアクタンスの値だけを変化させ、(c)次いで、高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間の最良の整合が達成されるまで、前記第2の可変リアクタンスの値だけを変化させ、(d)ステップ(a)および(c)の完了時の第1および第2の可変リアクタンスの値から、第1の可変リアクタンスが第2の可変リアクタンスの値の各単位変化に対して変化する量を決定することによって、ステップ(1)が行われる請求項1、2、3、4、5、6、8または9のいずれか一項に記載の方法。
  11. ステップ(2)における値の変動が第1及び第2の可変リアクタンスの値のX−Y座標表示に第1の直線飛翔経路(82)をもたらす請求項1、2、3、4、5、6、7、8、9または10のいずれか一項に記載の方法であって、
    (a’)ステップ(2)の完了時における可能な限り最良のインピーダンス整合が最低基準を満たしているかどうかを判定し、
    (B’)最低基準を満たしているとステップ(a’)で判定された場合は、第1および第2の可変リアクタンスの値を一定に維持し、
    (c’)最低基準を満たしていないとステップ(a’)で判定された場合は、高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間に可能な限り最良の整合が達成されるまで、第1の直線飛翔経路(82)に対して直角の第2の直線飛翔経路(88)上に第1及び第2の可変リアクタンスの値が存在するように、第1及び第2の可変リアクタンスの値を変化させ、
    (d’)第1の直線飛翔経路(82)上の点(76)と、高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間に可能な限り最良の整合が達成される第2の直線飛翔経路(88)上の他の点(90)とを含む他の直線飛翔経路(91)に沿って、第1および第2の可変リアクタンスの値を同時に変化させることを含んでいる方法。
  12. 第1の直線飛翔経路(82)および他の直線飛翔経路(91)上の点が第1の直線飛翔経路(82)に沿った中間点(76)である請求項11に記載の方法。
  13. 他の直線飛翔経路(91)上の前記他の点(90)は、高周波源の出力端子に対して出力及び入力の方向にそれぞれ現れるインピーダンスの間に可能な限り最良の整合が達成される第2の直線飛翔経路(88)上の点である請求項11または12に記載の方法。
  14. 前記各請求項のステップを自動的に実行するコントローラを有する
    ことを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12または13のいずれか一項に記載の方法を実行する装置。
  15. コントローラが前記各請求項に記載されたステップの実行を命令する信号を格納するコンピュータ・メモリを有する
    ことを特徴とする請求項14に記載の装置。
JP2009107835A 1996-05-23 2009-04-27 Rf源とrfプラズマ・プロセッサの間に接続された整合ネットワークのリアクタンス性インピーダンスを制御する方法 Expired - Fee Related JP4435267B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/652,037 US5689215A (en) 1996-05-23 1996-05-23 Method of and apparatus for controlling reactive impedances of a matching network connected between an RF source and an RF plasma processor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54268797A Division JP4531133B2 (ja) 1996-05-23 1997-05-23 整合ネットワークのリアクタンス性インピーダンス制御を用いた高周波フィールド供給方法および装置

Publications (2)

Publication Number Publication Date
JP2009218213A true JP2009218213A (ja) 2009-09-24
JP4435267B2 JP4435267B2 (ja) 2010-03-17

Family

ID=24615265

Family Applications (2)

Application Number Title Priority Date Filing Date
JP54268797A Expired - Fee Related JP4531133B2 (ja) 1996-05-23 1997-05-23 整合ネットワークのリアクタンス性インピーダンス制御を用いた高周波フィールド供給方法および装置
JP2009107835A Expired - Fee Related JP4435267B2 (ja) 1996-05-23 2009-04-27 Rf源とrfプラズマ・プロセッサの間に接続された整合ネットワークのリアクタンス性インピーダンスを制御する方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP54268797A Expired - Fee Related JP4531133B2 (ja) 1996-05-23 1997-05-23 整合ネットワークのリアクタンス性インピーダンス制御を用いた高周波フィールド供給方法および装置

Country Status (7)

Country Link
US (1) US5689215A (ja)
EP (1) EP0840941B1 (ja)
JP (2) JP4531133B2 (ja)
KR (1) KR100513614B1 (ja)
DE (1) DE69723649T2 (ja)
ES (1) ES2202623T3 (ja)
WO (1) WO1997044812A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161715A (ja) * 2012-02-07 2013-08-19 Japan Steel Works Ltd:The プラズマ発生装置

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982099A (en) * 1996-03-29 1999-11-09 Lam Research Corporation Method of and apparatus for igniting a plasma in an r.f. plasma processor
DE19644339C1 (de) * 1996-10-25 1998-06-10 Bosch Gmbh Robert Vorrichtung zur Transformation einer Antennenimpedanz
US6017414A (en) * 1997-03-31 2000-01-25 Lam Research Corporation Method of and apparatus for detecting and controlling in situ cleaning time of vacuum processing chambers
US6579426B1 (en) 1997-05-16 2003-06-17 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
US6652717B1 (en) * 1997-05-16 2003-11-25 Applied Materials, Inc. Use of variable impedance to control coil sputter distribution
KR100257155B1 (ko) 1997-06-27 2000-05-15 김영환 반도체 공정장치의 매칭 네트워크의 최적화방법
US6345588B1 (en) 1997-08-07 2002-02-12 Applied Materials, Inc. Use of variable RF generator to control coil voltage distribution
US6235169B1 (en) 1997-08-07 2001-05-22 Applied Materials, Inc. Modulated power for ionized metal plasma deposition
US6375810B2 (en) 1997-08-07 2002-04-23 Applied Materials, Inc. Plasma vapor deposition with coil sputtering
JP2929284B2 (ja) * 1997-09-10 1999-08-03 株式会社アドテック 高周波プラズマ処理装置のためのインピーダンス整合及び電力制御システム
US6023038A (en) * 1997-09-16 2000-02-08 Applied Materials, Inc. Resistive heating of powered coil to reduce transient heating/start up effects multiple loadlock system
US5929717A (en) * 1998-01-09 1999-07-27 Lam Research Corporation Method of and apparatus for minimizing plasma instability in an RF processor
US6516742B1 (en) * 1998-02-26 2003-02-11 Micron Technology, Inc. Apparatus for improved low pressure inductively coupled high density plasma reactor
US6254738B1 (en) 1998-03-31 2001-07-03 Applied Materials, Inc. Use of variable impedance having rotating core to control coil sputter distribution
TW434636B (en) 1998-07-13 2001-05-16 Applied Komatsu Technology Inc RF matching network with distributed outputs
US6313584B1 (en) * 1998-09-17 2001-11-06 Tokyo Electron Limited Electrical impedance matching system and method
US6361645B1 (en) 1998-10-08 2002-03-26 Lam Research Corporation Method and device for compensating wafer bias in a plasma processing chamber
US6259334B1 (en) 1998-12-22 2001-07-10 Lam Research Corporation Methods for controlling an RF matching network
US6188564B1 (en) 1999-03-31 2001-02-13 Lam Research Corporation Method and apparatus for compensating non-uniform wafer processing in plasma processing chamber
US6265831B1 (en) 1999-03-31 2001-07-24 Lam Research Corporation Plasma processing method and apparatus with control of rf bias
US6242360B1 (en) 1999-06-29 2001-06-05 Lam Research Corporation Plasma processing system apparatus, and method for delivering RF power to a plasma processing
US6424232B1 (en) * 1999-11-30 2002-07-23 Advanced Energy's Voorhees Operations Method and apparatus for matching a variable load impedance with an RF power generator impedance
TW492040B (en) 2000-02-14 2002-06-21 Tokyo Electron Ltd Device and method for coupling two circuit components which have different impedances
US6677711B2 (en) 2001-06-07 2004-01-13 Lam Research Corporation Plasma processor method and apparatus
US6933801B2 (en) 2001-10-26 2005-08-23 Applied Materials, Inc. Distributed load transmission line matching network
US20030116447A1 (en) * 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
US6946847B2 (en) * 2002-02-08 2005-09-20 Daihen Corporation Impedance matching device provided with reactance-impedance table
US20040027209A1 (en) * 2002-08-09 2004-02-12 Applied Materials, Inc. Fixed matching network with increased match range capabilities
US7879185B2 (en) * 2003-12-18 2011-02-01 Applied Materials, Inc. Dual frequency RF match
US7091460B2 (en) * 2004-03-15 2006-08-15 Dwight Eric Kinzer In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating
JP4344886B2 (ja) * 2004-09-06 2009-10-14 東京エレクトロン株式会社 プラズマ処理装置
US7829471B2 (en) * 2005-07-29 2010-11-09 Applied Materials, Inc. Cluster tool and method for process integration in manufacturing of a photomask
US20070031609A1 (en) * 2005-07-29 2007-02-08 Ajay Kumar Chemical vapor deposition chamber with dual frequency bias and method for manufacturing a photomask using the same
US7375038B2 (en) * 2005-09-28 2008-05-20 Applied Materials, Inc. Method for plasma etching a chromium layer through a carbon hard mask suitable for photomask fabrication
US20080061901A1 (en) * 2006-09-13 2008-03-13 Jack Arthur Gilmore Apparatus and Method for Switching Between Matching Impedances
TW200830941A (en) * 2007-01-15 2008-07-16 Jehara Corp Plasma generating apparatus
KR100895689B1 (ko) 2007-11-14 2009-04-30 주식회사 플라즈마트 임피던스 매칭 방법 및 이 방법을 위한 전기 장치
US8120259B2 (en) * 2007-04-19 2012-02-21 Plasmart Co., Ltd. Impedance matching methods and systems performing the same
KR100870121B1 (ko) * 2007-04-19 2008-11-25 주식회사 플라즈마트 임피던스 매칭 방법 및 이 방법을 위한 매칭 시스템
EP2097920B1 (de) * 2007-07-23 2017-08-09 TRUMPF Hüttinger GmbH + Co. KG Plasmaversorgungseinrichtung
US8501631B2 (en) 2009-11-19 2013-08-06 Lam Research Corporation Plasma processing system control based on RF voltage
JP5582823B2 (ja) * 2010-02-26 2014-09-03 東京エレクトロン株式会社 自動整合装置及びプラズマ処理装置
JP5632626B2 (ja) * 2010-03-04 2014-11-26 東京エレクトロン株式会社 自動整合装置及びプラズマ処理装置
JP5730521B2 (ja) * 2010-09-08 2015-06-10 株式会社日立ハイテクノロジーズ 熱処理装置
SI23611A (sl) 2011-01-20 2012-07-31 Institut@@quot@JoĹľef@Stefan@quot Metoda in naprava za vzbujanje visokofrekvenčne plinske plazme
KR101294380B1 (ko) * 2011-07-28 2013-08-08 엘지이노텍 주식회사 임피던스 정합장치 및 임피던스 정합방법
US10586686B2 (en) 2011-11-22 2020-03-10 Law Research Corporation Peripheral RF feed and symmetric RF return for symmetric RF delivery
US9263240B2 (en) 2011-11-22 2016-02-16 Lam Research Corporation Dual zone temperature control of upper electrodes
US9396908B2 (en) 2011-11-22 2016-07-19 Lam Research Corporation Systems and methods for controlling a plasma edge region
SG11201402447TA (en) 2011-11-24 2014-06-27 Lam Res Corp Plasma processing chamber with flexible symmetric rf return strap
JP5867701B2 (ja) * 2011-12-15 2016-02-24 東京エレクトロン株式会社 プラズマ処理装置
DE102012200702B3 (de) * 2012-01-19 2013-06-27 Hüttinger Elektronik Gmbh + Co. Kg Verfahren zum Phasenabgleich mehrerer HF-Leistungserzeugungseinheiten eines HF-Leistungsversorgungssystems und HF-Leistungsversorgungssystem
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
US9842725B2 (en) 2013-01-31 2017-12-12 Lam Research Corporation Using modeling to determine ion energy associated with a plasma system
US9368329B2 (en) 2012-02-22 2016-06-14 Lam Research Corporation Methods and apparatus for synchronizing RF pulses in a plasma processing system
US9320126B2 (en) 2012-12-17 2016-04-19 Lam Research Corporation Determining a value of a variable on an RF transmission model
US9197196B2 (en) 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
US9390893B2 (en) 2012-02-22 2016-07-12 Lam Research Corporation Sub-pulsing during a state
US9462672B2 (en) 2012-02-22 2016-10-04 Lam Research Corporation Adjustment of power and frequency based on three or more states
US10325759B2 (en) 2012-02-22 2019-06-18 Lam Research Corporation Multiple control modes
US9502216B2 (en) 2013-01-31 2016-11-22 Lam Research Corporation Using modeling to determine wafer bias associated with a plasma system
US9114666B2 (en) 2012-02-22 2015-08-25 Lam Research Corporation Methods and apparatus for controlling plasma in a plasma processing system
US9171699B2 (en) 2012-02-22 2015-10-27 Lam Research Corporation Impedance-based adjustment of power and frequency
US10128090B2 (en) 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US9295148B2 (en) 2012-12-14 2016-03-22 Lam Research Corporation Computation of statistics for statistical data decimation
US9408288B2 (en) 2012-09-14 2016-08-02 Lam Research Corporation Edge ramping
US9043525B2 (en) 2012-12-14 2015-05-26 Lam Research Corporation Optimizing a rate of transfer of data between an RF generator and a host system within a plasma tool
US9155182B2 (en) 2013-01-11 2015-10-06 Lam Research Corporation Tuning a parameter associated with plasma impedance
US9779196B2 (en) 2013-01-31 2017-10-03 Lam Research Corporation Segmenting a model within a plasma system
US9620337B2 (en) 2013-01-31 2017-04-11 Lam Research Corporation Determining a malfunctioning device in a plasma system
US9107284B2 (en) 2013-03-13 2015-08-11 Lam Research Corporation Chamber matching using voltage control mode
US9119283B2 (en) 2013-03-14 2015-08-25 Lam Research Corporation Chamber matching for power control mode
US9041480B2 (en) * 2013-03-15 2015-05-26 Mks Instruments, Inc. Virtual RF sensor
US9720022B2 (en) 2015-05-19 2017-08-01 Lam Research Corporation Systems and methods for providing characteristics of an impedance matching model for use with matching networks
US9502221B2 (en) 2013-07-26 2016-11-22 Lam Research Corporation Etch rate modeling and use thereof with multiple parameters for in-chamber and chamber-to-chamber matching
US9594105B2 (en) 2014-01-10 2017-03-14 Lam Research Corporation Cable power loss determination for virtual metrology
US10224184B2 (en) 2014-03-24 2019-03-05 Aes Global Holdings, Pte. Ltd System and method for control of high efficiency generator source impedance
KR101907375B1 (ko) * 2014-03-24 2018-10-12 어드밴스드 에너지 인더스트리즈 인코포레이티드 고효율 제너레이터 소스 임피던스의 제어를 위한 시스템 및 방법
US10950421B2 (en) 2014-04-21 2021-03-16 Lam Research Corporation Using modeling for identifying a location of a fault in an RF transmission system for a plasma system
JP6877333B2 (ja) * 2014-08-15 2021-05-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ処理システム用のコンパクトな構成可能なモジュール式高周波整合ネットワークアセンブリ及び同アセンブリの構成方法
US9536749B2 (en) 2014-12-15 2017-01-03 Lam Research Corporation Ion energy control by RF pulse shape
US9736920B2 (en) * 2015-02-06 2017-08-15 Mks Instruments, Inc. Apparatus and method for plasma ignition with a self-resonating device
JP6378234B2 (ja) * 2016-03-22 2018-08-22 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP6392266B2 (ja) * 2016-03-22 2018-09-19 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
WO2018051447A1 (ja) * 2016-09-15 2018-03-22 株式会社日立国際電気 整合器
US10420505B2 (en) 2017-07-18 2019-09-24 Forest Devices, Inc. Electrode array apparatus, neurological condition detection apparatus, and method of using the same
JP7257918B2 (ja) * 2019-08-29 2023-04-14 東京エレクトロン株式会社 プラズマ処理システムおよびプラズマ着火支援方法
CN113098425A (zh) * 2021-03-30 2021-07-09 徐显坤 一种阻抗匹配网络、自适应阻抗匹配装置及其方法
USD970019S1 (en) 2021-04-07 2022-11-15 Forest Devices, Inc. Gel distribution module
US11241182B1 (en) 2021-04-07 2022-02-08 Forest Devices, Inc. Gel distribution apparatus and method
USD1018861S1 (en) 2021-04-07 2024-03-19 Forest Devices, Inc. Headgear
US11266476B1 (en) 2021-04-07 2022-03-08 Forest Devices, Inc. Headgear storage device and method of distribution
CN117500138B (zh) * 2023-10-19 2024-04-26 国电投核力同创(北京)科技有限公司 一种用于低频、高能、强流加速器束流负载动态匹配方法
CN117517785B (zh) * 2024-01-08 2024-04-23 深圳市瀚强科技股份有限公司 阻抗检测电路、阻抗检测设备及阻抗检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375051A (en) * 1981-02-19 1983-02-22 The Perkin-Elmer Corporation Automatic impedance matching between source and load
JPS59221020A (ja) * 1983-05-30 1984-12-12 Ulvac Corp プラズマ利用装置におけるインピ−ダンス整合回路
US4629940A (en) * 1984-03-02 1986-12-16 The Perkin-Elmer Corporation Plasma emission source
JPS61139111A (ja) * 1984-12-11 1986-06-26 Nippon Koshuha Kk 高周波スパツタリング装置等の自動負荷整合回路
US4965607A (en) * 1987-04-30 1990-10-23 Br Communications, Inc. Antenna coupler
JPH01201244A (ja) * 1988-02-08 1989-08-14 Toshiba Corp Mri装置のインピーダンス自動調整装置
US5225847A (en) * 1989-01-18 1993-07-06 Antenna Research Associates, Inc. Automatic antenna tuning system
US4951009A (en) * 1989-08-11 1990-08-21 Applied Materials, Inc. Tuning method and control system for automatic matching network
JP2950889B2 (ja) * 1990-03-07 1999-09-20 国際電気株式会社 プラズマ装置の高周波電力整合方法及びその装置
JP2770573B2 (ja) * 1991-01-18 1998-07-02 三菱電機株式会社 プラズマ発生装置
JP2551449Y2 (ja) * 1991-01-29 1997-10-22 新電元工業株式会社 Rf発生装置のインピーダンスマッチング制御回路
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
US5187454A (en) * 1992-01-23 1993-02-16 Applied Materials, Inc. Electronically tuned matching network using predictor-corrector control system
JPH0888097A (ja) * 1994-09-16 1996-04-02 Fujitsu Ltd プラズマ装置用マッチング回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161715A (ja) * 2012-02-07 2013-08-19 Japan Steel Works Ltd:The プラズマ発生装置

Also Published As

Publication number Publication date
DE69723649D1 (de) 2003-08-28
WO1997044812A1 (en) 1997-11-27
US5689215A (en) 1997-11-18
ES2202623T3 (es) 2004-04-01
JPH11509976A (ja) 1999-08-31
EP0840941A2 (en) 1998-05-13
KR100513614B1 (ko) 2005-12-09
EP0840941B1 (en) 2003-07-23
JP4531133B2 (ja) 2010-08-25
JP4435267B2 (ja) 2010-03-17
KR19990035781A (ko) 1999-05-25
DE69723649T2 (de) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4435267B2 (ja) Rf源とrfプラズマ・プロセッサの間に接続された整合ネットワークのリアクタンス性インピーダンスを制御する方法
US5892198A (en) Method of and apparatus for electronically controlling r.f. energy supplied to a vacuum plasma processor and memory for same
US5982099A (en) Method of and apparatus for igniting a plasma in an r.f. plasma processor
KR100690223B1 (ko) Rf 프로세서에서 플라즈마 불안정성을 최소화하기 위한방법 및 장치
US6974550B2 (en) Apparatus and method for controlling the voltage applied to an electrostatic shield used in a plasma generator
US5793162A (en) Apparatus for controlling matching network of a vacuum plasma processor and memory for same
US6677711B2 (en) Plasma processor method and apparatus
US8454794B2 (en) Antenna for plasma processor and apparatus
US5889252A (en) Method of and apparatus for independently controlling electric parameters of an impedance matching network
US6252354B1 (en) RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
EP0976141B1 (en) Apparatus and method for controlling ion energy and plasma density in a plasma processing system
WO1997044812B1 (en) Method of and apparatus for controlling reactive impedances of a matching network connected between an rf source and an rf plasma processor
WO2002080221A1 (en) Inductive plasma processor having coil with plural windings and method of controlling plasma density
US20230253185A1 (en) Systems and Methods for Radiofrequency Signal Generator-Based Control of Impedance Matching System

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090930

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091001

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees