JP2009210750A - 光学素子及び液晶表示装置 - Google Patents

光学素子及び液晶表示装置 Download PDF

Info

Publication number
JP2009210750A
JP2009210750A JP2008052819A JP2008052819A JP2009210750A JP 2009210750 A JP2009210750 A JP 2009210750A JP 2008052819 A JP2008052819 A JP 2008052819A JP 2008052819 A JP2008052819 A JP 2008052819A JP 2009210750 A JP2009210750 A JP 2009210750A
Authority
JP
Japan
Prior art keywords
optical element
liquid crystal
crystal display
layer
retardation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008052819A
Other languages
English (en)
Other versions
JP5206029B2 (ja
Inventor
Akio Takada
昭夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008052819A priority Critical patent/JP5206029B2/ja
Publication of JP2009210750A publication Critical patent/JP2009210750A/ja
Application granted granted Critical
Publication of JP5206029B2 publication Critical patent/JP5206029B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】位相差調整機能と偏光機能とを兼ね備えた光学素子及び液晶表示装置を提供する
【解決手段】本発明に係る光学素子10は、無機材料でなる偏光層11と、複屈折効果を有する無機材料でなり、光学軸12axが偏光層11の偏光軸11axと交差するように積層されたリターデーション層12とを具備する。本発明の光学素子12は、従前の偏光板と位相差板とを一体にした構成を有することにより、液晶表示素子に組み付けられる部品数の低減、これによる部品の取扱い性の改善、更には組み付け性の向上を図ることが可能となる。
【選択図】図1

Description

本発明は、偏光機能と位相差調整機能とを兼ね備えた光学素子及び液晶表示装置に関する。
液晶表示装置(特に透過型液晶表示装置)は、その画像形成原理から液晶パネル表面に偏光板を配置することが必須不可欠である。偏光板は、直交する偏光成分(いわゆるP偏光波、S偏光波)の一方を吸収し他方を透過させる機能を有する。このような偏光板として、従来、フィルム内にヨウ素系や染料系の高分子有機物を含有させた二色性の偏光板が多く用いられている。
二色性の偏光板の一般的な製法としては、ポリビニルアルコール系フィルムとヨウ素などの二色性材料で染色した後、架橋させ、一軸延伸する方法が用いられる。このように延伸により作製されるため、一般にこの種の偏光板は収縮し易い。また、ポリビニルアルコール系フィルムは親水性ポリマーを使用していることから、特に加湿条件下においては非常に変形し易い。そして、根本的にフィルムを用いるため、デバイスとしての機械的強度が弱い。
近年、液晶表示装置はその用途が拡大し高機能化してきている。それに伴い、液晶表示装置を構成する個々のデバイスに対して高い信頼性、耐久性が求められる。例えば、透過型液晶プロジェクタのような光量の大きな光源を使用する液晶表示装置の場合には、偏光板は強い輻射線を受ける。よって、これらに使用される偏光板には優れた耐熱性が必要となる。しかしながら、上記のようなフィルムベースの偏光板は有機物で構成されていることから、これらの特性を上げることには自ずと限界がある。
そこで、耐熱性の高い偏光板として無機偏光板がある。例えば特許文献1には、可視光に対し透明な基板上に形成された格子状の凹凸部と、当該凹凸部の頂部又はその少なくとも一側面部に形成されたアルミニウム又はその合金からなる金属微粒子層とを備えた無機偏光素子が開示されている。このような無機偏光素子を液晶表示素子の光入射側偏光板及び光出射側偏光板として用いることにより、信頼性、耐久性の高い液晶プロジェクタ用の偏光板を得ることができる。
一方、液晶表示素子は、液晶層の複屈折に起因する残留位相差を有している。従って、垂直方向から入射した光の偏光面が微小ながら回転してしまい、その結果、偏光板からの光漏れが生じてコントラストが低下する。そこで、高コントラスト比を維持するために、液晶表示素子とその両側に配置される偏光板との間に、位相差板を配置する構成が知られている(特許文献2参照)。また、出射側偏光板の後段に、一の直線偏光から他の直線偏光へ変換する1/2波長板等の位相差板(リターデーションプレート又はリターダ)を配置する例も知られている。
特開2007−148344号公報 特開2007−147931号公報
しかしながら、上述した偏光板や位相差板はそれぞれ単独の部品として構成されているため、液晶プロジェクタの小型化や部品点数の増大、製造コストの上昇などを招いているという問題がある。
また、偏光板、位相差板が単独の部品として構成されていることから、液晶プロジェクタの製造に際して、これらの取扱い性が悪く、液晶表示素子に対する位置合わせ作業も煩雑である。さらに、製品間において部品の組み付け精度にばらつきが生じ易いという問題もある。
以上のような事情に鑑み、本発明の目的は、位相差調整機能と偏光機能とを兼ね備えた光学素子及び液晶表示装置を提供することにある。
上記目的を達成するため、本発明に係る光学素子は、無機材料でなる偏光層と、複屈折効果を有する無機材料でなり、光学軸が前記偏光層の偏光軸と交差するように積層されたリターデーション層とを具備する。
また、本発明に係る液晶表示装置は、液晶表示素子と、
無機材料でなる偏光層と、複屈折効果を有する無機材料でなり光学軸が前記偏光層の偏光軸と交差するように積層されたリターデーション層とを有し、前記液晶表示素子の光入射側及び光出射側の少なくとも一方に配置された光学素子とを具備する。
本発明に係る光学素子は、透過光に対して所定の位相差調整(リターデーション)機能と偏光機能とを兼ね備えている。偏光層の偏光軸(具体的には透過軸)に対するリターデーション層の光学軸の設定角度は、光の波長、調整するべき位相差の大きさ、基板の複屈折の大きさ、リターデーション層の厚さなどに応じて適宜設定することができる。
本発明の光学素子は、従前の偏光板と位相差板とを一体にした構成を有する。これにより、液晶表示素子に組み付けられる部品数の低減、これによる部品の取扱い性の改善、更には組み付け性の向上を図ることが可能となる。光の入射面は偏光層側でもよいし、リターデーション層側でもよい。さらに、本発明の光学素子の全体は無機材料で構成することが可能となることから、耐熱性、耐久性、信頼性を高めることができる。
本発明に係る光学素子おいて、前記偏光層は、誘電膜と、長手方向及び短手方向を有する島状の無機微粒子パターンとを含み、前記無機微粒子パターンは、前記誘電膜の上に前記長手方向に沿って格子状に配列されている。
島状の無機微粒子パターンは、長手方向及び短手方向を有し、誘電膜の上に当該長手方向に沿って格子状に配列される。無機微粒子パターンの長手方向は、当該偏光層の偏光軸に一致する。この構成により、偏光層は、無機微粒子パターンの長手方向に電磁進行方向をもつ偏光成分を吸収し、短手方向に電磁進行方向をもつ偏光成分を透過させる機能を有する。
無機微粒子パターンの構成材料として、金属材料又は半導体材料を用いることができる。金属材料には、例えば、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Te、Sn等の単体元素またはこれを主要成分とする合金材料が含まれる。半導体材料には、Si、Ge、β−FeSi、MgSi、BaSi、CrSi、CoSi等が含まれる。
偏光層は、上述の無機吸収型偏光子に限られず、ワイヤグリッド偏光子のような無機反射型偏光子で構成することも可能である。
リターデーション層の構成材料としては、例えば、光学異方性結晶が挙げられる。光学異方性結晶としては、水晶、サファイアなどの一軸結晶やKTP(KTiOPO)などの二軸結晶が挙げられる。これらの光学異方性結晶は、偏光層の支持基板として用いることができる。
あるいは、前記リターデーション層は、一方向に周期構造を有する構造複屈折層で構成することができる。この場合、リターデーション層は、偏光層を支持する支持基板として構成し、構造複屈折層は、当該支持基板の表面に形成されることができる。
構造複屈折層としては、光の波長よりも短いピッチで形成された周期構造体や周期構造膜などが挙げられる。構造複屈折は、周期性のある方向とない方向とで異なる有効屈折率をもち、あたかも複屈折材料であるかのように振舞う。この有効屈折率差により各偏波方向の光の伝播速度に差ができるため、通過する光が位相差を生じる。こうして波長板あるいは位相差板としての機能を発現する。
以上のように構成される光学素子を液晶表示素子の光入射側及び光出射側の少なくとも何れか一方に配置されることで、耐熱性、耐久性、信頼性に優れた液晶表示装置を構成することができる。
本発明によれば、位相差調整機能と偏光機能とを兼ね備えた光学素子を得ることができる。これにより、部品点数の低減と取扱い性の改善、光学設計の最適化、更には組み付け作業性の向上を図ることができる。
以下、本発明の各実施形態を図面に基づき説明する。
(第1の実施形態)
図1は本発明の第1の実施形態による光学素子10の概略構成を示しており、(A)は縦断面図、(B)は平面図である。
本発明に係る光学素子10は、無機材料でなる偏光層11と、複屈折効果を有する無機材料でなり、光学軸が偏光層11の偏光軸と交差するように積層されたリターデーション層12とを具備する。
リターデーション層12は、単一の複屈折性基板15で構成されている。本実施形態では、基板15は、光学異方性結晶、例えば水晶で構成されている。水晶以外にも、サファイアなどの他の一軸結晶、KTPなどの二軸結晶を用いることも可能である。基板15は、1/2波長板や1/4波長板、微小位相差を補償するための位相差補償板などのようなリターデーション層12として機能するとともに、偏光層11の支持基板を構成する。
偏光層11は、誘電膜13と、長手方向及び短手方向を有する島状の無機微粒子パターン14とを含む。誘電膜13は表面に格子状の凹凸部13aを有し、この凹凸部13aの頂部(上面)に無機微粒子パターン14が形成されている。凹凸部13aは、基板15の上に形成された誘電膜13に形状加工を施して形成される。
誘電膜13は、基板15の表面にスパッタ法、蒸着法、ゾルゲル法などの一般的薄膜作成法により成膜されたSiOなどの可視光に対して透明な誘電性光学材料で構成されている。凹凸部13aは、無機微粒子パターン14の下地層を形成するもので、凹凸部13aの加工サイズや形状によって無機微粒子パターン14の形状に依存する光学的特性が決定される。本実施形態では、無機微粒子パターン14は、凹凸部13aの上面に形成されることで、無機微粒子パターン14に形状異方性が付与されている。
もしくは、誘電層を形成せずに、リターデーション層12に直接凹凸部を形成してもよい。例えば、リターデーション層12に水晶基板を用いた場合、フッ素系ガス(CFなど)によるドライエッチングにより水晶は容易にエッチング可能なので、フォトリソグラフィやナノインプリントによる転写により、レジスト材で水晶上に凹凸部を形成し、上記のエッチングによって、リターデーション層12に直接凹凸部を形成することも可能である。
凹凸部13aは、基板15の面内一方向(例えば図1(B)においてX方向)とこれに直交する他の方向(図1(B)においてY方向)にそれぞれ周期的に形成された断面矩形状の複数の凸状部で形成されている。この凸状部の上面に無機微粒子パターン14を形成することで、基板15上に無機微粒子が島状に分布するように形成される。各微粒子の大きさは、対象とする光の波長以下とすることができる。本実施形態では、無機微粒子パターン14はその長手方向がY軸方向に、その短手方向がX軸方向にそれぞれ向けられて格子状に形成されている。
無機微粒子パターン14は、金属材料又は半導体材料の微粒子によって形成されている。無機微粒子パターン14を構成する金属材料としては、例えば、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Te、Sn等の単体元素またはこれを主要成分とする合金材料を用いることができる。また、無機微粒子パターン14を構成する半導体材料としては、Si、Geのほか、β−FeSi、MgSi、BaSi、CrSi、CoSi等のシリサイド系半導体材料を用いることができる。本実施形態では、無機微粒子パターン14の構成材料にゲルマニウム(Ge)が用いられる。
誘電膜13(凹凸部13a)及び無機微粒子パターン14により、本発明に係る偏光層11が構成される。偏光層11は、無機微粒子パターン14の面内軸方向での光学異方性による光吸収率の違いを利用して所期の偏光特性を出現させる無機偏光子として機能する。すなわち、偏光層11は、無機微粒子パターン14の長手方向(Y軸方向)に電磁進行方向をもつ偏光成分を吸収し、短手方向(X軸方向)に電磁進行方向をもつ偏光成分を透過させる機能を有する。
光学素子10において、リターデーション層12(基板15)の光学軸は、偏光層11の偏光軸と交差する方向に配向されている。この例において、偏光層11の偏光軸は、無機微粒子パターン14の長手方向(Y軸方向)に相当する透過軸に相当する。また、リターデーション層12の光学軸は、結晶の主軸(進相軸又は遅相軸)に相当する。
図2は、偏光層11の偏光軸11axとリターデーション層12の光学軸12axの関係を模式的に示す斜視図である。図2に示すように、偏光層11の偏光軸11axは、Y軸方向と平行に配向されているのに対して、リターデーション層12の光学軸12axは、偏光層11の偏光軸11axに対してθ(−180°<θ<180°)の方向に配向されている。
偏光軸11axに対する光学軸12axの交差角θは、光の波長、調整するべき光の位相差、リターデーション層12の面内屈折率差(Δn:進相軸と遅相軸の屈折率の差)、リターデーション層12の厚さ(d)の大きさなどに応じて設定される。図3(A)、(B)は、水晶の複屈折特性を示している。水晶のΔnは、可視光の波長範囲において約0.009である。
図2の例は、偏光層11側から光が入射し、リターデーション層12側から光が出射する光学素子10の構成例を示している。この場合、偏光層11は、Y軸方向に電磁進行方向をもつ入射光のみを透過し、他の方向に電磁進行方向をもつ入射光を吸収する機能を有する。一方、リターデーション層12は、偏光層11を透過する光の位相差を調整する機能を有する。具体的に、リターデーション層12が1/2波長板として構成される場合、リターデーション層12は、偏光層11を透過した光の偏光面を90度回転させて、X軸方向に電磁進行方向をもつ光に変換する。
上述の例では、光学素子10を液晶表示素子と組み合わせて使用する場合、光学素子10を液晶表示素子の光出射側偏光板として機能させることができる。この場合、光学素子10は、例えば、偏光層11を液晶表示素子側に向けて液晶表示素子と対向配置される。これにより、特に液晶プロジェクタに当該光学素子10が適用される場合、光学素子10は、光出射側偏光板としての機能だけでなく、一の直線偏光(例えばP波)である液晶表示素子からの出射光を他の直線偏光(例えばS波)に変換するための1/2波長板としての機能をも果たす。
一方、光学素子10は、図4に示すように、リターデーション層12側を光入射面として用いることも可能である。この場合、リターデーション層12は、楕円偏光又は円偏光の入射光をY軸方向に電磁進行方向をもつ直線偏光に変換することが可能な位相差調整量に設定される。この構成により、偏光層11における光の透過ロスを低減でき、光学素子10の透過率特性を向上させることが可能となる。
図4の例においても、光学素子10は、液晶表示素子の光出射側偏光板として用いることができる。この場合、光学素子10は、例えば、リターデーション層12を液晶表示素子側に向けて液晶表示素子と対向配置される。これにより、特に液晶プロジェクタに当該光学素子10が適用される場合、光学素子10は、光出射側偏光板としての機能だけでなく、液晶表示素子が有する微小な残留位相差を補償するための位相差補償板としての機能をも果たす。
図5は、以上のように構成される本実施形態の光学素子10の一製造方法を説明する工程図である。
まず、リターデーション層12を構成する基板15を準備する。基板15は、結晶の光学軸と平行にカットした所定厚みの一軸結晶(本例では水晶)の平板である。そして、図5(A)に示すように、基板15の表面に、誘電膜13として例えばSiO膜をスパッタリング法、蒸着法、ゾルゲル法などにより形成する。
次に、図5(B)に示すように、誘電膜13に凹凸部13aを形成する。凹凸部13aは、研磨シートによるラッピングあるいはラビングによって形成することができる。凹凸部13aは、金型転写技術(ナノインプリント技術)を用いて形成することも可能である。このとき、凹凸部13aは、その長手方向が基板15の光学軸に対して所定角度(θ)で交差するように形成される。
続いて、図5(C)に示すように、誘電膜13の上に金属微粒子パターン14を形成する。金属微粒子パターン14の形成には、図6に模式的に示す斜め方向からのイオンビームスパッタ法が適用可能である。
図6において、1は、基板15を支持するステージ、2はターゲット、3はビームソース(イオン源)である。ステージ1は、ターゲット2の法線方向に対して所定角度δ傾斜しており、基板15は凹凸部13の格子方向(長手方向)がGe粒子の入射方向に対して直交する向きに配置されている。角度δは、例えば0°から10°である。ビームソース3から引き出されたイオンは、ターゲット2へ照射される。イオンビームの照射によりターゲット2から叩き出されたGe微粒子は、基板15の表面に斜め方向から入射して凹凸部13aの上面に付着する。
成膜時に基板15をターゲット2に対して傾斜させてGe微粒子の入射方向を制限することにより、Ge微粒子からなる無機微粒子パターン14を凹凸部13aの上面に選択的に形成することができる。その結果、形状異方性を有する無機微粒子パターン14を所望の微細形状で誘電膜13の表面に島状に分布させることができる。以上のようにして、基板15の表面に偏光層11が形成される。
本実施形態の光学素子10によれば、当該光学素子10を透過する光に対して所定の偏光機能と位相差調整(リターデーション)機能とを兼ね備えているので、液晶表示素子に組み付けられる部品数の低減、これによる部品の取り扱い性の改善、更には組み付け性の向上を図ることが可能となる。また、光学素子10の全体は無機材料で構成されるので、耐熱性、耐久性、信頼性を高めることができる。さらに、偏光層11の偏光軸とリターデーション層12の光学軸の設定角度のバラツキをなくすことができる。
(第2の実施形態)
図7は本発明の第2の実施形態による光学素子20の概略構成を示しており、(A)は縦断面図、(B)はリターデーション層22の要部の拡大斜視図、(C)はリターデーション層22の平面図である。
本実施形態の光学素子20は、無機材料でなる偏光層21と、複屈折効果を有する無機材料でなり、光学軸が偏光層21の偏光軸21axと交差するように積層されたリターデーション層22とを具備する。偏光層21は、上述の第1の実施形態と同様の構成を有し、誘電膜13と、この誘電膜13の凹凸部13aの上面に形成された、Y軸方向に長手方向(偏光軸)を有する無機微粒子パターン14とを備えている。
リターデーション層22は、偏光層21を支持する基板部23と、この基板部23の表面に形成された構造複屈折層24とで構成されている。基板部23は、透明な光学等方性材料で構成され、本実施形態ではガラス材料で構成されている。
構造複屈折層24は、図7(B)に示すように、凸部25と凹部26とが一方向に交互に配列された格子状の周期構造体で構成されている。凸部25と凹部26とは、可視光の波長よりも短いピッチで形成されている。構造複屈折層24は、周期性のある方向とない方向とで異なる有効屈折率をもち、あたかも複屈折材料であるかのように振舞う。したがって、この構造複屈折層24を透過する光は、一定のリターデーション作用を受けることになる。
リターデーション層22の光学軸22axは、図7(C)に示すように、偏光層21の偏光軸21axに対して交差している。リターデーション層22の光学軸22axは、構造複屈折層24の凸部25(あるいは凹部26)の延在方向とされる。これら偏光軸21axと光学軸22axの交差角θ、凸部25の高さ(凹部26の深さ)、凸部25(凹部26)の形成幅は、調整するべき光の位相差に応じて適宜設定することができる。
構造複屈折層24の形成には、ドライエッチング法、ウェットエッチング法、ブラスト処理法、ナノインプリント法、レーザ加工法などの公知の微細加工技術を用いることができる。
なお、構造複屈折層24は、周期的凹凸構造体で構成する例に限られず、異種材料膜を交互に積層した構造複屈折膜で構成することも可能である。
以上のように構成される本実施形態の光学素子20は、上述の第1の実施形態と同様の作用及び効果を得ることができる。特に本実施形態によれば、リターデーション層22における基板部23の領域部分の厚みを任意に設定できるので、光学素子20の設計自由度を高めることができる。
本実施形態の光学素子20は、構造複屈折層24の上に偏光層21が積層される構成を有している。この場合、構造複屈折層24の凹部26にMgFやSiOなどの低屈折率透明材料を埋め込んで構造複屈折層24の表面を平坦化することにより、偏光層21をより安定して形成することが可能となる。なお、偏光層21は、上述の第1の実施形態と同様な方法で作製することができる。
(第3の実施形態)
図8は本発明に係る光学素子を備えた液晶表示装置の要部の概略構成図である。本発明に係る光学素子30R、30G及び30Bは、3板式液晶プロジェクタにおける赤色光LR用、緑色光LG用及び青色光LB用の各液晶表示素子(図示略)の出射側偏光板として用いられる。光学素子30R、30G及び30Bは、それぞれの偏光層31が上記液晶表示素子側に向けて対向配置されている。光学素子30R、30Bのリターデーション層32は、それぞれ、1/2波長板として構成されており、P波で入射した光を反射率の高いS波に変換して合成プリズム33へ出射する。
なお、光学素子30Gの基材32−1は、光学異方性材料で構成される場合に限られない。つまり、光学素子30Gを透過する光は合成プリズム33を透過すればよいので、基材32−1は、可視光を透過するガラスなどの光学等方性材料で構成されていてもかまわない。
合成プリズム33は、光学素子30Rを透過した赤色光LRを選択的に反射する赤色用ダイクロイック膜34Rと、光学素子30Bを透過した青色光LBを選択的に反射する青色用ダイクロイック膜34Bとを有している。光学素子30Gを透過した緑色光LGは、ダイクロイック膜34R,34Bを透過する。各色光LR,LG,LBは、合成プリズム33によって画像光Lが合成され、投影レンズ(図示略)を介して投影用スクリーン(図示略)に照射される。
本実施形態によれば、各色光用の偏光板及び位相差板がそれぞれ単一の光学素子30R,30G,30Bで構成されているので、部品点数の削減と組み付け作業性の向上を図ることができる。また、各色用の液晶表示素子と合成プリズム33との間の限られた空間部を有効に利用することができる。
(第4の実施形態)
図9は本発明の第4の実施形態を示している。
図9(A)に示す光学素子40は、偏光層41と、リターデーション層42と、これら偏光層41及びリターデーション層42を支持する支持基板43とを備えている。偏光層41は、上述の第1の実施形態と同様、島状の無機微粒子パターンが格子状に配列された無機吸収型の偏光素子である。リターデーション層42は、水晶などの光学異方性結晶基板である。支持基板43は、ガラスなどの光学等方性基板である。本例では、支持基板43の表面に偏光層41及びリターデーション層42が順に積層されているが、偏光層41及びリターデーション層42の積層順序は特に制限されない。
一方、図9(B)に示す光学素子50も同様に、偏光層51と、リターデーション層52と、これら偏光層51及びリターデーション層52を支持する支持基板53とを備えている。偏光層51は、上述の第1の実施形態と同様、島状の無機微粒子パターンが格子状に配列された無機吸収型の偏光素子である。リターデーション層52は、水晶などの光学異方性結晶基板である。支持基板53は、ガラスなどの光学等方性基板である。本例では、支持基板53の一方の表面に偏光層51が積層され、支持基板53の他方の表面にリターデーション層52が積層されている。
本実施形態によれば、支持基板43,53は、偏光層41,51及びリターデーション層42,52とは別部材として構成されているので、支持基板43,53の厚みを任意に設定することができ、光学素子20の設計自由度を高めることができる。また、図9(B)に示した光学素子50の例では、偏光層51とリターデーション層52の間隔を支持基板53の厚みで調整できるため、所望とする光学特性を容易に得ることが可能となる。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば以上の実施形態では、光学素子の偏光層を無機吸収型の偏光素子で構成したが、これに限らず、偏光層をワイヤグリッド偏光子のように無機反射型の偏光素子で構成することも可能である。
光学素子のリターデーション層は、1/2波長板として構成される場合に限らず、1/4波長板や1/8波長板などで構成することも可能である。また、リターデーション層は単層である場合に限られず、複数層で構成することも可能である。例えば、支持基板の両面に1/4波長板をそれぞれ積層すれば、全体として1/2波長板を構成することができる。
リターデーション層を1/2波長板で構成する場合、リターデーション層は偏光層の光出射側に配置される例に限られず、偏光層の光入射側に配置されてもよい。
本発明に係る光学素子は、液晶表示素子の光出射側に配置される例に限られず、液晶表示素子の光入射側に配置してもよい。また、液晶表示素子の光出射側に配置される偏光板が複数毎で構成される場合には、その何れか一方又は両方を本発明に係る光学素子で構成することが可能である。
本発明の第1の実施形態による光学素子の構成を説明する図であり、(A)は概略側断面図、(B)は概略平面図である。 図1の光学素子の作用の一例を説明する斜視図である。 水晶の複屈折特性を説明する図である。 図1の光学素子の作用の他の例を説明する斜視図である。 図1の光学素子の製造方法を説明する工程図である。 図1の光学素子の一製造工程を説明する図である。 本発明の第2の実施形態による光学素子の構成を説明する図であり、(A)は概略側断面図、(B)はリターデーション層の要部の概略斜視図、(C)はリターデーション層の概略平面図である。 本発明の第3の実施形態を説明する液晶表示装置の要部の概略構成図である。 本発明の第4の実施形態による光学素子の概略側断面図である。
符号の説明
10、20、30R、30G、30B、40、50・・・光学素子
11、21、31、41、51・・・偏光層
11ax、21ax・・・偏光軸
12、22、32、42、52・・・リターデーション層
12ax、22ax・・・光学軸
23・・・基板部
24・・・構造複屈折層
25・・・凸部
26・・・凹部
43、53・・・支持基板

Claims (15)

  1. 無機材料でなる偏光層と、
    複屈折効果を有する無機材料でなり、光学軸が前記偏光層の偏光軸と交差するように積層されたリターデーション層と
    を具備する光学素子。
  2. 請求項1に記載の光学素子であって、
    前記偏光層は、
    誘電膜と、
    長手方向及び短手方向を有する島状の無機微粒子パターンとを含み、
    前記無機微粒子パターンは、前記誘電膜の上に前記長手方向に沿って格子状に配列されている
    光学素子
  3. 請求項2に記載の光学素子であって、
    前記リターデーション層は、光学異方性結晶でなる
    光学素子。
  4. 請求項3に記載の光学素子であって、
    前記リターデーション層は、前記偏光層を支持する支持基板である
    光学素子。
  5. 請求項4に記載の光学素子であって、
    前記リターデーション層は、1/2波長板である
    光学素子。
  6. 請求項4に記載の光学素子であって、
    前記リターデーション層は、位相差補償板である
    光学素子。
  7. 請求項1に記載の光学素子であって、
    前記リターデーション層は、一方向に周期構造を有する構造複屈折層である
    光学素子。
  8. 請求項7に記載の光学素子であって、
    前記リターデーション層は、前記偏光層を支持する支持基板であり、
    前記構造複屈折層は、前記支持基板の表面に形成されている
    光学素子。
  9. 請求項8に記載の光学素子であって、
    前記支持基板は、光学等方性材料でなる
    光学素子。
  10. 請求項2に記載の光学素子であって、
    前記無機微粒子パターンは、金属材料又は半導体材料でなる
    光学素子。
  11. 液晶表示素子と、
    無機材料でなる偏光層と、
    複屈折効果を有する無機材料でなり光学軸が前記偏光層の偏光軸と交差するように積層されたリターデーション層とを有し、前記液晶表示素子の光入射側及び光出射側の少なくとも一方に配置された光学素子と
    を具備する液晶表示装置。
  12. 請求項11に記載の液晶表示素子であって、
    前記光学素子は、前記偏光層を前記液晶表示素子側に向けて、前記液晶表示素子と対向配置されている
    光学素子。
  13. 請求項12に記載の液晶表示素子であって、
    前記リターデーション層は、1/2波長板である
    液晶表示素子。
  14. 請求項11に記載の液晶表示素子であって、
    前記光学素子は、前記リターデーション層を前記液晶表示素子側に向けて、前記液晶表示素子と対向配置されている
    光学素子。
  15. 請求項14に記載の液晶表示素子であって、
    前記リターデーション層は、位相差補償板である
    液晶表示素子。
JP2008052819A 2008-03-04 2008-03-04 液晶表示装置 Expired - Fee Related JP5206029B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052819A JP5206029B2 (ja) 2008-03-04 2008-03-04 液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052819A JP5206029B2 (ja) 2008-03-04 2008-03-04 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2009210750A true JP2009210750A (ja) 2009-09-17
JP5206029B2 JP5206029B2 (ja) 2013-06-12

Family

ID=41183985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052819A Expired - Fee Related JP5206029B2 (ja) 2008-03-04 2008-03-04 液晶表示装置

Country Status (1)

Country Link
JP (1) JP5206029B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171738A (ja) * 2010-02-18 2011-09-01 Lg Innotek Co Ltd 発光素子、発光素子の製造方法、発光素子パッケージ及び照明システム
KR20110113968A (ko) * 2010-04-12 2011-10-19 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 포함하는 액정 표시 장치, 3차원 입체영상 디스플레이장치 및 와이어 그리드 편광자의 제조 방법
US8159624B2 (en) 2010-05-13 2012-04-17 Seiko Epson Corporation Projector
KR101279468B1 (ko) * 2011-06-30 2013-06-27 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 이용한 액정표시장치 및 그 제조방법
WO2014020901A1 (ja) * 2012-08-01 2014-02-06 パナソニック株式会社 光学シート、発光装置、光学シートの製造方法及び発光装置の製造方法
US9203054B2 (en) 2013-12-16 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Optical sheet and light emitting apparatus
US9599762B2 (en) 2009-04-10 2017-03-21 Lg Innotek Co., Ltd. Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer
CN110831747A (zh) * 2017-06-01 2020-02-21 卡尔蔡司医疗技术股份公司 具有激光产生的双折射结构的人造眼睛晶状体以及生产人造眼睛晶状体的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029168A (ja) * 2002-06-21 2004-01-29 Seiko Epson Corp 偏光変換素子、照明装置及びプロジェクタ
JP2004163680A (ja) * 2002-11-13 2004-06-10 Fuji Photo Film Co Ltd 偏光変換素子及び液晶プロジェクター用投光装置
JP2004246178A (ja) * 2003-02-14 2004-09-02 Hitachi Ltd 光学ユニット、投射型映像表示装置及びそれに用いる偏光板
JP2005077659A (ja) * 2003-08-29 2005-03-24 Enplas Corp 光学素子およびこれを用いた光ピックアップ装置
JP2007148344A (ja) * 2005-10-27 2007-06-14 Sony Corp 偏光素子及びその製造方法
JP2007272113A (ja) * 2006-03-31 2007-10-18 Fujinon Corp 絞り機構、投映型画像表示装置
JP2007328128A (ja) * 2006-06-08 2007-12-20 Ricoh Opt Ind Co Ltd 光学素子及びその製造方法
JP2008004146A (ja) * 2006-06-21 2008-01-10 Epson Toyocom Corp 光学素子および光学素子を備えた光ヘッド装置
JP2008047673A (ja) * 2006-08-14 2008-02-28 Canon Inc 露光装置及びデバイス製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029168A (ja) * 2002-06-21 2004-01-29 Seiko Epson Corp 偏光変換素子、照明装置及びプロジェクタ
JP2004163680A (ja) * 2002-11-13 2004-06-10 Fuji Photo Film Co Ltd 偏光変換素子及び液晶プロジェクター用投光装置
JP2004246178A (ja) * 2003-02-14 2004-09-02 Hitachi Ltd 光学ユニット、投射型映像表示装置及びそれに用いる偏光板
JP2005077659A (ja) * 2003-08-29 2005-03-24 Enplas Corp 光学素子およびこれを用いた光ピックアップ装置
JP2007148344A (ja) * 2005-10-27 2007-06-14 Sony Corp 偏光素子及びその製造方法
JP2007272113A (ja) * 2006-03-31 2007-10-18 Fujinon Corp 絞り機構、投映型画像表示装置
JP2007328128A (ja) * 2006-06-08 2007-12-20 Ricoh Opt Ind Co Ltd 光学素子及びその製造方法
JP2008004146A (ja) * 2006-06-21 2008-01-10 Epson Toyocom Corp 光学素子および光学素子を備えた光ヘッド装置
JP2008047673A (ja) * 2006-08-14 2008-02-28 Canon Inc 露光装置及びデバイス製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599762B2 (en) 2009-04-10 2017-03-21 Lg Innotek Co., Ltd. Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer
JP2011171738A (ja) * 2010-02-18 2011-09-01 Lg Innotek Co Ltd 発光素子、発光素子の製造方法、発光素子パッケージ及び照明システム
KR20110113968A (ko) * 2010-04-12 2011-10-19 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 포함하는 액정 표시 장치, 3차원 입체영상 디스플레이장치 및 와이어 그리드 편광자의 제조 방법
KR101714035B1 (ko) * 2010-04-12 2017-03-22 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 포함하는 액정 표시 장치, 3차원 입체영상 디스플레이장치 및 와이어 그리드 편광자의 제조 방법
US8159624B2 (en) 2010-05-13 2012-04-17 Seiko Epson Corporation Projector
KR101279468B1 (ko) * 2011-06-30 2013-06-27 엘지이노텍 주식회사 와이어 그리드 편광자, 이를 이용한 액정표시장치 및 그 제조방법
WO2014020901A1 (ja) * 2012-08-01 2014-02-06 パナソニック株式会社 光学シート、発光装置、光学シートの製造方法及び発光装置の製造方法
US9851579B2 (en) 2012-08-01 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Optical sheet, light-emitting device, method for manufacturing optical sheet, and method for manufacturing light-emitting device
US9203054B2 (en) 2013-12-16 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Optical sheet and light emitting apparatus
CN110831747A (zh) * 2017-06-01 2020-02-21 卡尔蔡司医疗技术股份公司 具有激光产生的双折射结构的人造眼睛晶状体以及生产人造眼睛晶状体的方法
JP2020522293A (ja) * 2017-06-01 2020-07-30 カール・ツアイス・メディテック・アーゲー レーザ生成複屈折構造を有する人工水晶体及び人工水晶体を製造する方法
US20210169640A1 (en) * 2017-06-01 2021-06-10 Carl Zeiss Meditec Ag Artificial eye lens with laser-generated birefringent structure and method for producing an artificial eye lens
US11583391B2 (en) 2017-06-01 2023-02-21 Carl Zeiss Meditec Ag Artificial eye lens with laser-generated birefringent structure and method for producing an artificial eye lens
JP7356355B2 (ja) 2017-06-01 2023-10-04 カール・ツアイス・メディテック・アーゲー レーザ生成複屈折構造を有する人工水晶体及び人工水晶体を製造する方法
CN110831747B (zh) * 2017-06-01 2023-12-22 卡尔蔡司医疗技术股份公司 具有激光产生的双折射结构的人造眼睛晶状体以及生产人造眼睛晶状体的方法

Also Published As

Publication number Publication date
JP5206029B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5206029B2 (ja) 液晶表示装置
JP6770037B2 (ja) 液晶プロジェクター
JP6164339B2 (ja) 偏光素子、及び透過型液晶プロジェクター
JP6100492B2 (ja) 偏光素子、プロジェクター及び偏光素子の製造方法
US9988724B2 (en) Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
WO2012118204A1 (ja) 偏光素子
US20080252799A1 (en) Wire grid polarizer having dual layer structure and method of fabricating the same
JP2007148344A (ja) 偏光素子及びその製造方法
JP2010066571A (ja) 偏光素子及びその製造方法、並びに液晶プロジェクタ
JP2013167823A (ja) 無機偏光板
JP5936727B2 (ja) 偏光素子
JP2007219340A (ja) 複合ワイヤーグリッド偏光子、複合光学素子及び偏光光源
JP2009223074A (ja) 偏光変換素子
JP5359128B2 (ja) 偏光素子及びその製造方法
US10527768B2 (en) Inorganic polarizing plate and method for manufacturing same
JP4427026B2 (ja) 偏光子および偏光分離素子
JP6527211B2 (ja) 偏光板、及び偏光板の製造方法
WO2019102902A1 (ja) 光学素子及び投射型画像表示装置
JP2010060621A (ja) 偏光素子及びその製造方法
JP2008158460A (ja) 偏光素子の製造方法
JP6440172B2 (ja) 無機偏光板
JP2019095776A (ja) 光学素子及び投射型画像表示装置
JP2006030461A (ja) 波長板、立体画像表示装置、及び波長板の製造方法
JP4449833B2 (ja) ワイヤーグリッド偏光子の製造方法、液晶装置、プロジェクタ
JP2019095817A (ja) 偏光素子、偏光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees