WO2019102902A1 - 光学素子及び投射型画像表示装置 - Google Patents

光学素子及び投射型画像表示装置 Download PDF

Info

Publication number
WO2019102902A1
WO2019102902A1 PCT/JP2018/041957 JP2018041957W WO2019102902A1 WO 2019102902 A1 WO2019102902 A1 WO 2019102902A1 JP 2018041957 W JP2018041957 W JP 2018041957W WO 2019102902 A1 WO2019102902 A1 WO 2019102902A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
layer
film
oblique
light
Prior art date
Application number
PCT/JP2018/041957
Other languages
English (en)
French (fr)
Inventor
淳一 菅原
芳 金賀
利明 菅原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US16/766,174 priority Critical patent/US11294114B2/en
Priority to CN201880071695.9A priority patent/CN111316143A/zh
Publication of WO2019102902A1 publication Critical patent/WO2019102902A1/ja
Priority to US17/586,440 priority patent/US11573362B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present technology relates to an optical element having an oblique deposition film and a projection type image display device.
  • an optical element in which an oblique deposition film of a dielectric material is formed on the surface of a transparent substrate.
  • the oblique deposition is a method of forming a film by inclining the substrate surface with respect to the direction in which the vapor deposition material is coming, and the structure of the vapor deposition film is such that a collection of fine columns is inclined at a certain angle to the substrate surface It is observed as a columnar structure.
  • the density of this column is anisotropic in the plane, and as a result of the refractive index having in-plane anisotropy, birefringence occurs in the oblique deposition film.
  • the oblique vapor deposition film is used for an optical element such as a 1 ⁇ 4 wavelength retardation plate or a 1 ⁇ 2 wavelength plate due to the birefringence phenomenon.
  • Patent Document 1 describes a retardation element having an oblique deposition film containing tantalum pentoxide (Ta 2 O 5 ) as a main component.
  • the present technology has been proposed in view of such circumstances, and an object thereof is to provide an optical element and a projection type image display device capable of obtaining excellent resistance to light of high brightness and high output. I assume.
  • an optical element includes a substrate that is transparent to light in the use wavelength band, and a birefringent layer that is an oblique deposition film containing hafnium oxide as a main component.
  • the birefringence layer is formed by alternately forming a first oblique vapor deposition film having a first inclination direction with respect to a normal to the substrate and a second oblique deposition film having a second inclination direction. It is characterized by being.
  • a projection type image display apparatus includes the above-described optical element, a light modulation device, a light source for emitting light, and a projection optical system for projecting modulated light, and the light modulation device
  • the optical element may be disposed on an optical path between the light source and the projection optical system.
  • a deposition material mainly composed of hafnium oxide is deposited in a first direction inclined to the normal to the deposition target surface, and the first oblique deposition film is formed.
  • a process of forming a film, and a process of depositing a vapor deposition material mainly composed of hafnium oxide in a second direction inclined with respect to the normal to the surface to be vapor deposited, and forming a second oblique vapor deposition film are repeated. , Forming a birefringent layer.
  • the oblique deposition film is formed with hafnium oxide as the main component, it is possible to obtain excellent resistance to light of high brightness and high output.
  • FIG. 1 is a cross-sectional view showing a configuration example of the phase difference element.
  • FIG. 2 is a schematic perspective view of the oblique deposition film.
  • FIG. 3 is a schematic view for explaining an oblique deposition method for forming an oblique deposition film.
  • FIG. 4 is a schematic view showing the direction in which the deposition direction from the deposition source is projected onto the deposition target surface.
  • FIG. 5 is a schematic cross-sectional view of the antireflective layer.
  • FIG. 6 is a flowchart showing a method of manufacturing the phase difference element.
  • the optical element according to the present embodiment includes a substrate that is transparent to light in the use wavelength band, and a birefringent layer made of an oblique deposition film containing hafnium oxide as a main component. This makes it possible to obtain excellent resistance to light of high brightness and high output from a laser light source or the like. It is considered that this is because hafnium oxide having a high melting point prevents thermal collapse of the columnar structure of the oblique deposition film.
  • the birefringent layer is formed by alternately forming a first oblique vapor deposition film having a first inclination direction with respect to the normal to the substrate and a second oblique evaporation film having a second inclination direction. It is also good.
  • the birefringent layer is a film formed by alternately forming the first oblique vapor deposition film and the second oblique vapor deposition film, the filling factor of the columnar structure becomes large, and therefore, the light with high brightness and high output is obtained. The effect of resistance becomes remarkable.
  • the optical element includes at least one antireflection layer formed by laminating two or more types of dielectric films having different refractive indexes. This can reduce the reflection and increase the transmittance.
  • phase difference element which gives a phase difference to incident light
  • phase difference compensation polarizing element etc.
  • a phase difference element will be described as an example of the optical element.
  • FIG. 1 is a cross-sectional view showing a configuration example of the phase difference element.
  • a transparent substrate 11 and a high refractive index film and a low refractive index film are alternately stacked on the transparent substrate 11, and matching is performed such that the thickness of each layer is equal to or less than the use wavelength
  • a layer 12 a birefringent layer 13 formed of an oblique deposition film formed on the matching layer 12, and a protective layer 14 formed of a dielectric film formed on the birefringent layer 13 are provided.
  • a first antireflection layer 15A is provided on the transparent substrate 11 side
  • a second antireflection layer 15B is provided on the protective layer 14 side.
  • the transparent substrate 11 is transparent to light in the use wavelength band and has high transmittance to light in the use wavelength band.
  • Examples of the material of the transparent substrate 11 include glass, quartz, quartz, and sapphire.
  • the shape of the transparent substrate 11 is generally a quadrangle, but a shape according to the purpose is appropriately selected.
  • the thickness of the transparent substrate 11 is preferably, for example, 0.1 to 3.0 mm.
  • the matching layer 12 is a multilayer film in which dielectric films are stacked, and is provided between the transparent substrate 11 and the birefringent layer 13 as necessary.
  • the matching layer 12 is designed to reverse and cancel the phase of surface reflection light and interface reflection light, and prevents reflection at the interface between the transparent substrate 11 and the birefringent layer 14.
  • Matching layer 12 is constituted by TiO 2, SiO 2, Ta 2 O 5, Al 2 0 3, CeO 2, ZrO 2, ZrO, 2 or more types of dielectric films selected from Nb 2 O 5, HfO 2 be able to.
  • the dielectric film in contact with the birefringent layer 13 of the matching layer 12 is preferably SiO 2 which is excellent in adhesion to hafnium oxide. Thereby, light resistance to a laser light source or the like can be further improved.
  • the birefringent layer 13 is formed of an oblique deposition film containing hafnium oxide (HfO 2 ) as a main component.
  • the main component means a component having the largest proportion in the columnar structure of the oblique deposition film.
  • the birefringent layer 13 may be a single layer film of an oblique vapor deposition film or a film in which oblique vapor deposition films are alternately formed. Moreover, it is preferable that the thickness of each diagonal vapor deposition film is below a use wavelength.
  • FIG. 2 is a schematic perspective view of the oblique deposition film.
  • the obliquely vapor deposited film is formed by depositing a vapor deposition material in a direction inclined with respect to the normal S of the vapor deposition target surface 21.
  • the inclination angle with respect to the normal S of the deposition target surface 21 is preferably 60 ° or more and 80 ° or less.
  • the obliquely vapor-deposited film has an oblique columnar structure in which a columnar bundle mainly composed of hafnium oxide is obliquely formed with respect to the normal to the surface to be evaporated.
  • This oblique columnar structure has a columnar portion on which fine particles mainly composed of hafnium oxide are deposited, and a void which is an air layer between the columnar portions.
  • FIG. 3 is a schematic view for explaining an oblique deposition method for forming an oblique deposition film
  • FIG. 4 is a direction in which the flying direction of the deposition material from the deposition source is projected onto the deposition target surface (deposition direction)
  • the film in which the oblique vapor deposition films are alternately formed is a film formed by vapor deposition from the first vapor deposition direction 31 and a film formed by vapor deposition from the second vapor deposition direction 32 And are alternately formed.
  • the second surface is rotated by 180 ° around the center line perpendicular to the vapor deposition target surface and passing through the center of the vapor deposition target surface.
  • a film formation by vapor deposition from the vapor deposition direction 32 is performed.
  • the first oblique vapor deposition film having the first inclination direction and the second oblique vapor deposition film having the second inclination direction alternate with respect to the normal line of the deposition target surface.
  • a film formed is obtained.
  • the protective layer 14 is made of a dielectric film, and is disposed in contact with the obliquely evaporated film of the birefringent layer 13. Thereby, the warpage of the retardation element 10 can be prevented, and the moisture resistance of the oblique deposition film can be improved.
  • the dielectric material of the protective layer 14 is not particularly limited as long as it can adjust the stress applied to the phase difference element 10 and is effective in improving the moisture resistance, and can be appropriately selected according to the purpose.
  • dielectric materials include SiO 2 , Ta 2 O 5 , TiO 2 , Al 2 O 3 , Nb 2 O 5 , LaO, MgF 2 and the like, and in particular, they are excellent in adhesion to hafnium oxide. it is preferable that the SiO 2. Thereby, the moisture resistance can be further improved.
  • the first antireflection layer 15A is provided in contact with the surface of the transparent substrate 11 facing the birefringent layer 13 side, and the second antireflection layer 15B is opposed to the birefringent layer 13 side of the protective layer 14 It is provided as needed in contact with the surface to be
  • the first antireflection layer 15A and the second antireflection layer 15B have an antireflection function in a desired use wavelength band.
  • FIG. 5 is a schematic cross-sectional view of the first antireflection layer.
  • the first antireflection layer 15A is an optical multilayer film in which two or more types of dielectric films having different refractive indexes are stacked, and for example, the first dielectric film 151 having different refractive indexes.
  • the second dielectric film 152 are formed in a multilayer film alternately stacked.
  • the number of antireflective layers is appropriately determined as necessary, and about 5 to 40 layers are preferable in terms of productivity.
  • the second antireflection layer 15B is also configured in the same manner as the first antireflection layer 15A.
  • the first antireflective layer 15A and the second antireflective layer 15B are formed of TiO 2 , SiO 2 , Ta 2 O 5 , Al 2 O 3 , CeO 2 , ZrO 2 , ZrO, Nb 2 O 5 , HfO 2 respectively. It is composed of two or more types of dielectric films to be selected.
  • the anti-reflection layer includes a first dielectric film 151 made of Nb 2 0 5 having a relatively high refractive index, and a second dielectric film 152 made of SiO 2 having a relatively low refractive index. Can be a multilayer film laminated alternately.
  • phase difference element having such a configuration, it is possible to obtain excellent resistance to light of high brightness and high output from a laser light source or the like.
  • a method of manufacturing the optical element according to the present embodiment will be described.
  • a deposition material containing hafnium oxide as a main component is deposited in a direction inclined with respect to the normal to the deposition target surface, and from an oblique deposition film containing hafnium oxide as a main component Form a birefringent layer.
  • a vapor deposition material containing hafnium oxide as a main component is deposited in a first direction inclined with respect to the normal to the surface to be vapor deposited.
  • a second oblique vapor deposited film by depositing a vapor deposition material mainly composed of hafnium oxide in a second direction inclined with respect to the normal to the surface to be vapor deposited; Repeatedly, a birefringent layer is formed which is a film in which oblique vapor deposition films are alternately formed. As a result, it is possible to obtain an optical element having excellent resistance to light of high brightness and high output from a laser light source or the like.
  • FIG. 6 is a flowchart showing a method of manufacturing the phase difference element.
  • step S1 the transparent substrate 11 is prepared.
  • step S2 in order to prevent reflection at the interface between the birefringent layer 13 and the transparent substrate 11, a matching layer 12 formed by laminating a dielectric film on the transparent substrate 11 is formed.
  • step S3 the first antireflection layer 15A (rear surface AR layer) is formed on the opposite surface of the substrate 21 on which the matching layer 12 is not formed.
  • step S4 the birefringent layer 13 is formed on the matching layer 12 by the oblique deposition method.
  • the vapor deposition target surface is rotated 180 ° around the center line perpendicular to the vapor deposition target surface and passing through the center of the vapor deposition target surface.
  • deposition by deposition from the second deposition direction 32 is performed.
  • the first oblique vapor deposition film having the first inclination direction and the second oblique vapor deposition film having the second inclination direction alternate with respect to the normal line of the deposition target surface. A film formed is obtained.
  • the birefringent layer 13 is annealed at a temperature of 200 ° C. or more and 600 ° C. or less. More preferably, the birefringent layer 13 is annealed at a temperature of 300 ° C. to 500 ° C., more preferably at a temperature of 400 ° C. to 500 ° C. Thereby, the characteristics of the birefringent layer 13 can be stabilized.
  • step S6 the protective layer 14 is formed on the birefringent layer 13.
  • the protective layer 14 is formed on the birefringent layer 13.
  • TEOS tetraethoxysilane
  • the SiO 2 CVD film formed by the plasma CVD apparatus is characterized by using a vaporized material gas unlike the physical vapor deposition represented by the sputtering method, so the TEOS gas can be relatively easily formed into a columnar structure. Can be made to intrude into the void portion, and the adhesion to the birefringent layer 13 can be further improved.
  • step S7 the second antireflection layer 15B (surface AR layer) is deposited on the protective layer 14.
  • step S8 scribing cutting is performed to a size according to the specifications.
  • a projection type image display apparatus includes the above-described optical element, a light modulation device, a light source for emitting light, and a projection optical system for projecting modulated light, And the optical element is disposed on the light path between the light source and the projection optical system.
  • a liquid crystal display device having a transmissive liquid crystal panel or the like As a light modulation device, a liquid crystal display device having a transmissive liquid crystal panel or the like, a micro mirror display device having a DMD (Digital Micro-mirror Device) or the like, a reflective liquid crystal display device having a reflective liquid crystal panel or the like, one-dimensional diffraction -Dimensional diffraction display device having a light modulation element (GLV) and the like.
  • DMD Digital Micro-mirror Device
  • a reflective liquid crystal display device having a reflective liquid crystal panel or the like As a light modulation device, a liquid crystal display device having a transmissive liquid crystal panel or the like, a micro mirror display device having a DMD (Digital Micro-mirror Device) or the like, a reflective liquid crystal display device having a reflective liquid crystal panel or the like, one-dimensional diffraction -Dimensional diffraction display device having a light modulation element (GLV) and the
  • the liquid crystal display device includes at least a liquid crystal panel, a first polarizing plate, and a second polarizing plate, and further, if necessary, Of the
  • the liquid crystal panel is not particularly limited, and includes, for example, a substrate and a VA mode liquid crystal layer containing liquid crystal molecules having a pretilt in the direction perpendicular to the main surface of the substrate, and modulates an incident light beam.
  • VA mode Vertical alignment mode
  • the VA mode means a mode in which liquid crystal molecules arranged vertically (or with pretilt) to the substrate are moved using a vertical electric field in the vertical direction.
  • the first polarizing plate is disposed on the incident side of the liquid crystal panel, and the second polarizing plate is disposed on the outgoing side of the liquid crystal panel.
  • the first polarizing plate and the second polarizing plate are preferably inorganic polarizing plates in terms of durability.
  • the phase difference element includes, for example, the oblique deposition film having hafnium oxide of the configuration example shown in FIG. 1 as the main component, and is provided at a required position on the optical path constituting the projection type image display device. Be placed.
  • phase difference element is provided on the same optical path in combination with a diffusion plate, a polarization beam splitter, or the like.
  • the liquid crystal display device includes an optical element having an oblique deposition film containing hafnium oxide as a main component, a laser light source or the like that emits light with high brightness and high output can be used.
  • a projection optical system if it is a member which projects modulated light, According to the objective, it can select suitably, For example, the projection lens etc. which project modulated light on a screen are mentioned.
  • the projection type image display apparatus having such a configuration, it is possible to display an image of high brightness and high output using light of high brightness and high output from a laser light source or the like.
  • Example> Hereinafter, examples of the present technology will be described. Here, a phase difference element having an oblique deposition film was produced, and a laser irradiation test was performed. The present technology is not limited to these examples.
  • Example 1 First, a matching layer was formed by laminating three layers of SiO 2 / Nb 2 O 5 / SiO 2 by sputtering on one surface of a glass substrate (average thickness 0.7 mm).
  • an antireflective layer was formed by alternately laminating 11 layers by sputtering using Nb 2 O 5 and SiO 2 .
  • HfO 2 is used as a deposition material on the matching layer, and a deposition source is disposed at a position inclined 70 degrees with respect to the normal direction of the substrate.
  • the first deposition direction is 0 degree and the second deposition direction is 180 degrees.
  • oblique deposition was performed alternately.
  • annealing was performed at 450 ° C. to stabilize the characteristics.
  • a SiO 2 film was formed by plasma CVD using TEOS (tetraethoxysilane) gas and O 2 to form a protective layer.
  • an antireflective layer was formed by alternately laminating seven layers by sputtering using Nb 2 0 5 and SiO 2 . Then, scribing cutting was performed to a size according to the specifications, and a retardation element was manufactured.
  • Comparative Example 1 A retardation element was produced in the same manner as in Example 1 except that the evaporation material was changed to Ta 2 O 5 .
  • An optical element comprising: a birefringent layer composed of an oblique deposition film containing hafnium oxide as a main component.
  • a first oblique vapor deposition film having a first inclination direction and a second oblique evaporation film having a second inclination direction with respect to the normal to the substrate are alternately formed.
  • the optical element of [4], wherein the dielectric film of the protective layer is SiO 2 .
  • the optical element of [5], wherein the dielectric film in contact with the birefringence layer of the matching layer is SiO 2 .
  • the antireflection layer TiO 2, SiO 2, Ta 2 O 5, Al 2 0 3, CeO 2, ZrO 2, ZrO, 2 or more types of dielectric films selected from Nb 2 O 5, HfO 2 is laminated
  • the projection type image display apparatus by which the said light modulation apparatus and the said optical element are arrange
  • a method of manufacturing an optical element comprising depositing a deposition material containing hafnium oxide as a main component in a direction inclined with respect to a normal to a deposition target surface to form a birefringent layer composed of an oblique deposition film.
  • annealing is performed at a temperature of 200 ° C. or more and 600 ° C. or less. [11] or [12].

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

高輝度かつ高出力の光に対して優れた耐性を得ることができる光学素子及び投射型画像表示装置を提供する。光学素子は、使用波長帯域の光に対して透明である基板と、酸化ハフニウムを主成分とする斜方蒸着膜からなる複屈折層とを備える。投射型画像表示装置は、前述した光学素子を有する液晶表示装置と、光を出射する光源と、変調された光を投射する投射光学系とを備え、液晶表示装置が、光源と投射光学系との間の光路上に配置されてなる。

Description

光学素子及び投射型画像表示装置
 本技術は、斜方蒸着膜を有する光学素子及び投射型画像表示装置に関する。本出願は、日本国において2017年11月21日に出願された日本特許出願番号特願2017-223769を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、透明基板表面に誘電体材料の斜方蒸着膜を形成した光学素子が知られている。斜方蒸着は、蒸着材料の飛来方向に対して基板表面を傾斜させて成膜する方法であり、その蒸着膜の構造は、微細なコラムの集合体が基板表面に対して一定の角度で傾斜した柱状組織として観察される。このコラムの密度は、面内で異方性があり、屈折率が面内異方性を有する結果、斜方蒸着膜に複屈折現象が生じる。斜方蒸着膜は、その複屈折現象により、1/4波長位相差板、1/2波長板などの光学素子に用いられている。例えば、特許文献1には、五酸化タンタル(Ta)を主成分とした斜方蒸着膜を有する位相差素子が記載されている。
特開2012-256024号公報
 近年、プロジェクタに用いられる光源として、高輝度かつ高出力の光が得られるレーザー光源が注目されている。しかしながら、前述の五酸化タンタルを主成分とした斜方蒸着膜では、レーザー光源からの高輝度かつ高出力の光によって損傷を受けることがあった。
 本技術は、このような実情に鑑みて提案されたものであり、高輝度かつ高出力の光に対して優れた耐性を得ることができる光学素子及び投射型画像表示装置を提供することを目的とする。
 前述した課題を解決するために、本技術に係る光学素子は、使用波長帯域の光に対して透明である基板と、酸化ハフニウムを主成分とする斜方蒸着膜からなる複屈折層とを備え、前記複屈折層が、前記基板の法線に対して第1の傾斜方向を有する第1の斜方蒸着膜と第2の傾斜方向を有する第2の斜方蒸着膜とが交互に成膜されてなることを特徴とする。
 また、本技術に係る投射型画像表示装置は、前述した光学素子と、光変調装置と、光を出射する光源と、変調された光を投射する投射光学系とを備え、前記光変調装置と前記光学素子が、前記光源と前記投射光学系との間の光路上に配置されてなることを特徴とする。
 また、本技術に係る光学素子の製造方法は、蒸着対象面の法線に対して傾斜する第1の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第1の斜方蒸着膜を成膜する工程と、蒸着対象面の法線に対して傾斜する第2の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第2の斜方蒸着膜を成膜する工程とを繰り返し、複屈折層を形成することを特徴とする。
 本技術によれば、斜方蒸着膜が酸化ハフニウムを主成分として形成されているため、高輝度かつ高出力の光に対して優れた耐性を得ることができる。
図1は、位相差素子の構成例を示す断面図である。 図2は、斜方蒸着膜の斜視模式図である。 図3は、斜方蒸着膜を成膜する斜方蒸着法を説明するための模式図である。 図4は、蒸着源からの蒸着方向を蒸着対象面に投影した向きを示す模式図である。 図5は、反射防止層の断面模式図である。 図6は、位相差素子の製造方法を示すフローチャートである。
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.光学素子
2.光学素子の製造方法
3.投射型画像表示装置
4.実施例
 <1.光学素子>
 本実施の形態に係る光学素子は、使用波長帯域の光に対して透明である基板と、酸化ハフニウムを主成分とする斜方蒸着膜からなる複屈折層とを備える。これにより、レーザー光源などからの高輝度かつ高出力の光に対して優れた耐性を得ることができる。これは、高い融点を有する酸化ハフニウムが、斜方蒸着膜の柱状組織の熱崩壊を防ぐためであると考えられる。
 複屈折層は、基板の法線に対して第1の傾斜方向を有する第1の斜方蒸着膜と第2の傾斜方向を有する第2の斜方蒸着膜とが交互に成膜されていてもよい。複屈折層が第1の斜方蒸着膜と第2の斜方蒸着膜とが交互に成膜された膜である場合、柱状組織の充填率が大きくなるため、高輝度かつ高出力の光に対する耐性の効果が顕著になる。
 また、光学素子は、屈折率の異なる2種類以上の誘電体膜が積層されてなる反射防止層を少なくとも1層備えることが好ましい。これにより、反射を軽減し、透過率を増加させることができる。
 このような構成を有する光学素子としては、入射光に位相差を与える位相差素子、位相差補償偏光素子などを挙げることができる。以下、光学素子の一例として位相差素子について説明する。
 図1は、位相差素子の構成例を示す断面図である。図1に示すように、位相差素子10は、透明基板11と、透明基板11上に高屈折率膜と低屈折率膜とが交互に積層され、各層の厚さが使用波長以下であるマッチング層12と、マッチング層12上に形成された斜方蒸着膜からなる複屈折層13と、複屈折層13上に形成された誘電体膜からなる保護層14とを備える。また、透明基板11側に第1の反射防止層15A、保護層14側に第2の反射防止層15Bを備える。
 透明基板11は、使用波長帯域の光に対して透明であり、使用波長帯域の光に対して高い透過率を有する。透明基板11の材料としては、例えば、ガラス、石英、水晶、サファイアなどが挙げられる。透明基板11の形状は、四角形が一般的であるが、目的に応じた形状が適宜選択される。透明基板11の厚みは、例えば0.1~3.0mmであることが好ましい。
 マッチング層12は、誘電体膜が積層された多層膜であり、透明基板11と複屈折層13との間に、必要に応じて設けられる。マッチング層12は、表面反射光と界面反射光の位相を逆転させ打ち消し合うように設計され、透明基板11と複屈折層14の界面における反射を防止する。
 マッチング層12は、TiO、SiO、Ta、Al、CeO、ZrO、ZrO、Nb、HfOから選択される2種類以上の誘電体膜により構成することができる。また、マッチング層12の複屈折層13に接する誘電体膜は、酸化ハフニウムとの密着性に優れるSiOであることが好ましい。これにより、レーザー光源などに対する耐光性をさらに向上させることができる。
 複屈折層13は、酸化ハフニウム(HfO)を主成分とする斜方蒸着膜からなる。ここで、主成分とは、斜方蒸着膜の柱状組織中で占める割合が最も大きい成分を意味する。また、複屈折層13は、斜方蒸着膜の単層膜であっても、斜方蒸着膜が交互に成膜された膜であってもよい。また、各斜方蒸着膜の厚さは、使用波長以下であることが好ましい。
 図2は、斜方蒸着膜の斜視模式図である。図2に示すように、斜方蒸着膜は、蒸着対象面21の法線Sに対して傾斜する方向に蒸着材料を堆積して形成される。蒸着対象面21の法線Sに対する傾斜角度は、60°以上80°以下であることが好ましい。
 斜方蒸着膜は、酸化ハフニウムを主成分とする柱状の束が蒸着対象面の法線に対して斜めに構成された斜め柱状構造からなる。この斜め柱状構造は、酸化ハフニウムを主成分とする微粒子が堆積された柱状部と、柱状部間の空気層である空隙部とを有する。
 図3は、斜方蒸着膜を成膜する斜方蒸着法を説明するための模式図であり、図4は、蒸着源からの蒸着材料の飛来方向を蒸着対象面に投影した向き(蒸着方向)を示す模式図である。図3及び図4に示すように、斜方蒸着膜が交互に成膜された膜は、第1の蒸着方向31からの蒸着による成膜と、第2の蒸着方向32からの蒸着による成膜とを交互に繰り返して形成される。具体的には、第1の蒸着方向31からの蒸着による成膜後に、蒸着対象面を蒸着対象面に垂直で蒸着対象面の中心を通る中心線回りに180°回転させることにより、第2の蒸着方向32からの蒸着による成膜を行う。そして、これを繰り返すことにより、蒸着対象面の法線に対して第1の傾斜方向を有する第1の斜方蒸着膜と第2の傾斜方向を有する第2の斜方蒸着膜とが交互に成膜された膜が得られる。
 保護層14は、誘電体膜からなり、複屈折層13の斜方蒸着膜に接して配置される。これにより、位相差素子10の反りを防止することができ、斜方蒸着膜の耐湿性を向上させることができる。
 保護層14の誘電体材料としては、位相差素子10にかかる応力を調整可能であり、且つ耐湿性向上に効果のあるものであれば特に制限はなく、目的に応じて適宜選択することができる。このような誘電体材料としては、例えば、SiO、Ta、TiO、Al、Nb、LaO、MgFなどが挙げられ、特に酸化ハフニウムとの密着性に優れるSiOであることが好ましい。これにより、耐湿性をさらに向上させることができる。
 第1の反射防止層15Aは、透明基板11の複屈折層13側とは対向する面に接して設けられ、第2の反射防止層15Bは、保護層14の複屈折層13側とは対向する面に接して必要に応じて設けられる。第1の反射防止層15A及び第2の反射防止層15Bは、所望の使用波長帯域において反射防止の機能を有する。
 図5は、第1の反射防止層の断面模式図である。図5に示すように第1の反射防止層15Aは、屈折率の異なる2種類以上の誘電体膜が積層された光学多層膜であり、例えば、屈折率が各々異なる第1の誘電体膜151と、第2の誘電体膜152とが交互に積層された多層膜で形成される。反射防止層の層数は、必要に応じて適宜決定され、5~40層程度が生産性の点から好ましい。なお、第2の反射防止層15Bも、第1の反射防止層15Aと同様に構成される。
 第1の反射防止層15A及び第2の反射防止層15Bは、それぞれTiO、SiO、Ta、Al、CeO、ZrO、ZrO、Nb、HfOから選択される2種類以上の誘電体膜により構成される。例えば、反射防止層は、相対的に高屈折率であるNbからなる第1の誘電体膜151と、相対的に低屈折率であるSiOからなる第2の誘電体膜152とが交互に積層された多層膜とすることできる。
 このような構成の位相差素子によれば、レーザー光源などからの高輝度かつ高出力の光に対して優れた耐性を得ることができる。
 <2.光学素子の製造方法>
 次に、本実施形態に係る光学素子の製造方法について説明する。本実施形態に係る光学素子の製造方法は、蒸着対象面の法線に対して傾斜する方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、酸化ハフニウムを主成分とする斜方蒸着膜からなる複屈折層を形成する。また、本実施形態に係る光学素子の製造方法は、蒸着対象面の法線に対して傾斜する第1の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第1の斜方蒸着膜を成膜する工程と、蒸着対象面の法線に対して傾斜する第2の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第2の斜方蒸着膜を成膜する工程とを繰り返し、斜方蒸着膜が交互に成膜された膜からなる複屈折層を形成する。これにより、レーザー光源などからの高輝度かつ高出力の光に対して優れた耐性を有する光学素子を得ることができる。
 以下、光学素子の製造方法の具体例として、図1に示す構成例の位相差素子の製造方法について説明する。図6は、位相差素子の製造方法を示すフローチャートである。
 先ず、ステップS1において、透明基板11を準備する。次に、ステップS2において、複屈折層13と透明基板11の界面における反射を防止するため、透明基板11上に誘電体膜が積層されてなるマッチング層12を形成する。次に、ステップS3において、マッチング層12が形成されていない基板21の反対面に対して、第1の反射防止層15A(裏面AR層)を形成する。
 次に、ステップS4において、マッチング層12上に複屈折層13を斜方蒸着法により形成する。例えば、図3及び図4に示すように、第1の蒸着方向31からの蒸着による成膜後に、蒸着対象面を蒸着対象面に垂直で蒸着対象面の中心を通る中心線回りに180°回転させることにより、第2の蒸着方向32からの蒸着による成膜を行う。そして、これを繰り返すことにより、蒸着対象面の法線に対して第1の傾斜方向を有する第1の斜方蒸着膜と第2の傾斜方向を有する第2の斜方蒸着膜とが交互に成膜された膜が得られる。
 次に、ステップS5において、複屈折層13を200℃以上600℃以下の温度でアニール処理する。より好ましくは300℃以上500℃以下の温度で、さらに好ましくは400℃以上500℃以下の温度で、複屈折層13をアニール処理する。これにより、複屈折層13の特性を安定化させることができる。
 次に、ステップS6において、複屈折層13上に保護層14を成膜する。例えば、保護層14としてSiOを成膜する場合、SiOの材料として、TEOS(テトラエトキシシラン)ガスとOを用い、プラズマCVD装置を使用することが好ましい。
 プラズマCVD装置によって形成されるSiOCVD膜は、スパッタ法を代表とする物理的気相成長と異なり、気化された材料ガスを用いることを特徴とするため、TEOSガスを比較的容易に柱状構造の空隙部に侵入させることができ、複屈折層13との密着性をさらに向上させることができる。
 次に、ステップS7において、保護層14の上に第2の反射防止層15B(表面AR層)を成膜する。最後に、ステップS8において、仕様に合せたサイズにスクライブ切断を実施する。
 以上の製造方法により、レーザー光源などからの高輝度かつ高出力の光に対して優れた耐性を有する位相差素子を得ることができる。
 <3.投射型画像表示装置>
 前述した光学素子は、高輝度かつ高出力の光に対して優れた耐性を有するため、液晶プロジェクタ、DLP(登録商標)(Digital Light Processing)プロジェクタ、LCOS(Liquid Crystal On Silicon)プロジェクタ、GLV(登録商標)(Grating Light Valve)プロジェクタなどのプロジェクタ用途として好適に用いられる。すなわち、本実施の形態に係る投射型画像表示装置は、前述した光学素子と、光変調装置と、光を出射する光源と、変調された光を投射する投射光学系とを備え、光変調装置及び光学素子が、光源と投射光学系との間の光路上に配置されてなるものである。光変調装置としては、透過型液晶パネルなどを有する液晶表示装置、DMD(Digital Micro-mirror Device)などを有するマイクロミラー表示装置、反射型液晶パネルなどを有する反射型液晶表示装置、1次元回析型光変調素子(GLV)などを有する1次元回析型表示装置などが挙げられる。
 例えば液晶表示装置を用いた投射型画像表示装置に於いて、液晶表示装置は、液晶パネルと、第1の偏光板と、第2の偏光板とを少なくとも有し、更に必要に応じて、その他の部材を有する。
 液晶パネルは、特に制限はなく、例えば、基板と、基板の主面の直交方向に対してプレチルトを有する液晶分子を含有するVAモード液晶層とを有し、入射された光束を変調する。VAモード(Vertical alignment mode)とは、基板に垂直に(又はプレチルトを有して)配置した液晶分子を、垂直方向の縦電界を使って動かす方式を意味する。
 第1の偏光板は、液晶パネルの入射側に配置されるものであり、第2の偏光板は、液晶パネルの出射側に配置されるものである。第1の偏光板及び第2の偏光板は、耐久性の点から、無機偏光板であることが好ましい。
 位相差素子は、例えば図1に示す構成例の酸化ハフニウムを主成分とする斜方蒸着膜を備えるものであり、投射型画像表示装置を構成する光路上に於いて、必要とされる位置に配置される。
 また、マイクロミラー表示装置を用いた投射型画像表示装置に於いても、位相差素子は拡散板や偏光ビームスプリッタなどと組み合わせ、同一光路上に設けられる。
 光源としては、光を出射する部材であれば、特に制限はなく、目的に応じて適宜選択することができる。本実施の形態では、液晶表示装置が酸化ハフニウムを主成分とする斜方蒸着膜を有する光学素子を備えるため、高輝度かつ高出力の光を出射するレーザー光源などを使用することができる。
 投射光学系としては、変調された光を投射する部材であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、変調された光をスクリーンに投射する投射レンズなどが挙げられる。
 このような構成の投射型画像表示装置によれば、レーザー光源などからの高輝度かつ高出力の光を用いて、高輝度かつ高出力の画像を表示することができる。
 <4.実施例>
 以下、本技術の実施例について説明する。ここでは、斜方蒸着膜を有する位相差素子を作製し、レーザー照射試験を行った。なお、本技術はこれらの実施例に限定されるものではない。
 [実施例1]
 先ず、ガラス基板(平均厚み0.7mm)の一方の面上に、SiO/Nb/SiOの3層をスパッタ法により積層することによって、マッチング層を形成した。
 次いで、ガラス基板の他方の面上に、NbとSiOとを用いて、11層をスパッタ法により交互積層することによって反射防止層を形成した。
 続けて、マッチング層上にHfOを蒸着材料として、基板法線方向に対して70度傾斜した位置に蒸着源を配置し、第1の蒸着方向を0度、第2の蒸着方向を180度とし、交互に斜方蒸着を行った。蒸着後、特性を安定化させるため、450℃でアニール処理を行った。アニール処理後、TEOS(テトラエトキシシラン)ガスとOを用い、プラズマCVD法により、SiO膜を成膜して保護層を形成した。
 次いで、NbとSiOとを用いて、7層をスパッタ法により交互積層することによって反射防止層を形成した。そして、仕様に合せたサイズにスクライブ切断を実施し、位相差素子を作製した。
 [比較例1]
 蒸着材料をTaとした以外は、実施例1と同様のプ口セスで位相差素子を作製した。
 [レーザー照射試験]
 実施例及び比較例の方法で作成した各30個の位相差素子に対して、以下の条件にてレーザー照射を行ない、損傷の個数をカウントした。損傷の基準は、透明な位相差素子のレーザーが照射された部位が白濁することとし、これを目視にて確認した。表1に、レーザー照射による位相差素子の損傷個数の結果を示す。
 波長:455nm CW(連続波)半導体レーザー
 レーザー出力:61W
 パワー密度:10.2W/mm
 照射時間:3分間
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、斜方蒸着膜をTaとした比較例では、レーザー照射によって半数以上の破損が生じた。一方、斜方蒸着膜をHfOとした実施例では損傷は生じず、高輝度かつ高出力の光に対して優れた耐久性を示すことが分かった。
 以上説明したように、本明細書には、下記技術が記載されている。
[1]
 使用波長帯域の光に対して透明である基板と、
 酸化ハフニウムを主成分とする斜方蒸着膜からなる複屈折層と
 を備える光学素子。
[2]
 前記複屈折層が、前記基板の法線に対して第1の傾斜方向を有する第1の斜方蒸着膜と第2の傾斜方向を有する第2の斜方蒸着膜とが交互に成膜されてなる[1]記載の光学素子。
[3]
 屈折率の異なる2種類以上の誘電体膜が積層されてなる反射防止層を少なくとも1層備える[1]又は[2]記載の光学素子。
[4]
 前記複屈折層上に誘電体膜からなる保護層をさらに備える[1]乃至[3]のいずれか1項に記載の光学素子。
[5]
 屈折率の異なる2種類以上の誘電体膜が積層されてなるマッチング層をさらに備え、
 前記基板と前記マッチング層と前記複屈折層とが、この順に積層されてなる[1]乃至[3]のいずれか1項に記載の光学素子。
[6]
 前記保護層の誘電体膜が、SiOである[4]の光学素子。
[7]
 前記マッチング層の前記複屈折層に接する誘電体膜が、SiOである[5]の光学素子。
[8]
 前記反射防止層が、TiO、SiO、Ta、Al、CeO、ZrO、ZrO、Nb、HfOから選択される2種類以上の誘電体膜が積層されてなる[3]に記載の光学素子。
[9]
 前記基板が、ガラス、石英、水晶、サファイアから選択されるいずれか1種である[1]乃至[8]のいずれか1項に記載の光学素子。
[10]
 [1]乃至[9]のいずれか1項に記載の光学素子と、光変調装置と、光を出射する光源と、変調された光を投射する投射光学系とを備え、
 前記光変調装置及び前記光学素子が、前記光源と前記投射光学系との間の光路上に配置されてなる投射型画像表示装置。
[11]
 蒸着対象面の法線に対して傾斜する方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、斜方蒸着膜からなる複屈折層を形成する光学素子の製造方法。
[12]
 蒸着対象面の法線に対して傾斜する第1の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第1の斜方蒸着膜を成膜する工程と、蒸着対象面の法線に対して傾斜する第2の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第2の斜方蒸着膜を成膜する工程とを繰り返し、複屈折層を形成する光学素子の製造方法。
[13]
 前記複屈折層を形成後に200℃以上600℃以下の温度でアニール処理を行うことを特徴とする[11]又は[12]記載の光学素子の製造方法。
 10 位相差素子、11 透明基板、 12 マッチング層、 13 複屈折層、 14 保護層、 15A,15B 反射防止層、21 蒸着対象面、31 第1の蒸着方向、32 第2の蒸着方向、151 第1の誘電体膜、152 第2の誘電体膜
 

Claims (13)

  1.  使用波長帯域の光に対して透明である基板と、
     酸化ハフニウムを主成分とする斜方蒸着膜からなる複屈折層とを備え、
     前記複屈折層が、前記基板の法線に対して第1の傾斜方向を有する第1の斜方蒸着膜と第2の傾斜方向を有する第2の斜方蒸着膜とが交互に成膜されてなる光学素子。
  2.  前記第1の斜方蒸着膜及び前記第2の斜方蒸着膜の厚さが、使用波長以下である請求項1記載の光学素子。
  3.  屈折率の異なる2種類以上の誘電体膜が積層されてなる反射防止層を少なくとも1層備える請求項1又は2記載の光学素子。
  4.  前記複屈折層上に誘電体膜からなる保護層をさらに備える請求項1乃至3のいずれか1項に記載の光学素子。
  5.  屈折率の異なる2種類以上の誘電体膜が積層されてなるマッチング層をさらに備え、
     前記基板と前記マッチング層と前記複屈折層とが、この順に積層されてなる請求項1乃至3のいずれか1項に記載の光学素子。
  6.  前記保護層の誘電体膜が、SiOである請求項4記載の光学素子。
  7.  前記マッチング層の前記複屈折層に接する誘電体膜が、SiOである請求項5記載の光学素子。
  8.  前記反射防止層が、TiO、SiO、Ta、Al、CeO、ZrO、ZrO、Nb、HfOから選択される2種類以上の誘電体膜が積層されてなる請求項3に記載の光学素子
  9.  前記基板が、ガラス、石英、水晶、サファイアから選択されるいずれか1種である請求項1乃至8のいずれか1項に記載の光学素子。
  10.  請求項1乃至9のいずれか1項に記載の光学素子と、光変調装置と、光を出射する光源と、変調された光を投射する投射光学系とを備え、
     前記光変調装置及び前記光学素子が、前記光源と前記投射光学系との間の光路上に配置されてなる投射型画像表示装置。
  11.  蒸着対象面の法線に対して傾斜する第1の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第1の斜方蒸着膜を成膜する工程と、蒸着対象面の法線に対して傾斜する第2の方向に酸化ハフニウムを主成分とする蒸着材料を堆積し、第2の斜方蒸着膜を成膜する工程とを繰り返し、複屈折層を形成する光学素子の製造方法。
  12.  前記第1の斜方蒸着膜及び前記第2の斜方蒸着膜の厚さが、使用波長以下である請求項11記載の光学素子の製造方法。
  13.  前記複屈折層を形成後に200℃以上600℃以下の温度でアニール処理を行うことを特徴とする請求項11又は12記載の光学素子の製造方法。
     
PCT/JP2018/041957 2017-11-21 2018-11-13 光学素子及び投射型画像表示装置 WO2019102902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/766,174 US11294114B2 (en) 2017-11-21 2018-11-13 Optical element and projection image display apparatus
CN201880071695.9A CN111316143A (zh) 2017-11-21 2018-11-13 光学元件和投射型图像显示装置
US17/586,440 US11573362B2 (en) 2017-11-21 2022-01-27 Optical element and projection image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017223769A JP2019095554A (ja) 2017-11-21 2017-11-21 光学素子及び投射型画像表示装置
JP2017-223769 2017-11-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/766,174 A-371-Of-International US11294114B2 (en) 2017-11-21 2018-11-13 Optical element and projection image display apparatus
US17/586,440 Continuation US11573362B2 (en) 2017-11-21 2022-01-27 Optical element and projection image display apparatus

Publications (1)

Publication Number Publication Date
WO2019102902A1 true WO2019102902A1 (ja) 2019-05-31

Family

ID=66631871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041957 WO2019102902A1 (ja) 2017-11-21 2018-11-13 光学素子及び投射型画像表示装置

Country Status (4)

Country Link
US (2) US11294114B2 (ja)
JP (1) JP2019095554A (ja)
CN (1) CN111316143A (ja)
WO (1) WO2019102902A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012876A (ja) * 2018-07-13 2020-01-23 デクセリアルズ株式会社 位相差素子の製造方法、位相差素子、および投射型画像表示装置
US11747639B2 (en) * 2019-07-22 2023-09-05 Lawrence Livermore National Security, Llc Birefringent waveplate and method for forming a waveplate having a birefringent metasurface

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270636A (ja) * 2002-03-18 2003-09-25 Seiko Epson Corp 液晶パネル、液晶デバイス、および、液晶デバイスを用いたプロジェクタ
JP2008152007A (ja) * 2006-12-18 2008-07-03 Seiko Epson Corp 液晶装置及びその製造方法、並びにこれを備えた電子機器
JP2008216644A (ja) * 2007-03-05 2008-09-18 Asahi Glass Co Ltd 複屈折板および光ヘッド装置
JP2008268466A (ja) * 2007-04-19 2008-11-06 Fujinon Corp 位相差補償素子及びその製造方法
JP2012242449A (ja) * 2011-05-16 2012-12-10 Sony Chemical & Information Device Corp 位相差素子及びその製造方法
JP2012256024A (ja) * 2011-05-16 2012-12-27 Dexerials Corp 位相差素子
JP2013228574A (ja) * 2012-04-26 2013-11-07 Seiko Epson Corp 位相差板、及び電子機器
JP2014122984A (ja) * 2012-12-20 2014-07-03 Dainippon Printing Co Ltd 光学フィルムの製造方法、光学フィルム、画像表示装置
JP2015082010A (ja) * 2013-10-22 2015-04-27 デクセリアルズ株式会社 無機光学素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241776B2 (ja) * 2006-07-21 2009-03-18 セイコーエプソン株式会社 画像表示装置
JP5402101B2 (ja) * 2009-03-06 2014-01-29 セイコーエプソン株式会社 偏光素子、投射型表示装置、液晶装置、電子機器
JP6512919B2 (ja) * 2014-04-30 2019-05-15 キヤノン株式会社 画像表示装置
CN110095833B (zh) * 2018-01-31 2022-05-10 迪睿合株式会社 相位差补偿元件、液晶显示装置及投射型图像显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270636A (ja) * 2002-03-18 2003-09-25 Seiko Epson Corp 液晶パネル、液晶デバイス、および、液晶デバイスを用いたプロジェクタ
JP2008152007A (ja) * 2006-12-18 2008-07-03 Seiko Epson Corp 液晶装置及びその製造方法、並びにこれを備えた電子機器
JP2008216644A (ja) * 2007-03-05 2008-09-18 Asahi Glass Co Ltd 複屈折板および光ヘッド装置
JP2008268466A (ja) * 2007-04-19 2008-11-06 Fujinon Corp 位相差補償素子及びその製造方法
JP2012242449A (ja) * 2011-05-16 2012-12-10 Sony Chemical & Information Device Corp 位相差素子及びその製造方法
JP2012256024A (ja) * 2011-05-16 2012-12-27 Dexerials Corp 位相差素子
JP2013228574A (ja) * 2012-04-26 2013-11-07 Seiko Epson Corp 位相差板、及び電子機器
JP2014122984A (ja) * 2012-12-20 2014-07-03 Dainippon Printing Co Ltd 光学フィルムの製造方法、光学フィルム、画像表示装置
JP2015082010A (ja) * 2013-10-22 2015-04-27 デクセリアルズ株式会社 無機光学素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. B. TOKAS ET AL.: "Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films", AIP CONFERENCE PROCEEDINGS, vol. 1731, no. 1, May 2016 (2016-05-01), pages 60007 - 1 - 60007-3, XP055617348 *
R.B. TOKAS ET AL.: "Effect of angle of deposition on micro-roughness parameters and optical properties of Hf02 thin films deposited by reactive electron beam evaporation", THIN SOLID FILMS, vol. 609, 27 April 2016 (2016-04-27), pages 42 - 48, XP029551152, ISSN: 0040-6090, doi:10.1016/j.tsf.2016.04.034 *

Also Published As

Publication number Publication date
JP2019095554A (ja) 2019-06-20
CN111316143A (zh) 2020-06-19
US11573362B2 (en) 2023-02-07
US20200284964A1 (en) 2020-09-10
US11294114B2 (en) 2022-04-05
US20220155510A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP6502021B2 (ja) 位相差補償素子及び投射型画像投影装置
JP2012242449A (ja) 位相差素子及びその製造方法
CN108227061B (zh) 相位差补偿元件、液晶显示装置和投射型图像显示装置
US11573362B2 (en) Optical element and projection image display apparatus
JP5984771B2 (ja) 位相差素子及びその製造方法、液晶表示装置及びその製造方法、並びに投射型画像表示装置
JP2015082035A (ja) 位相差素子及びその製造方法、液晶表示装置、並びに投射型画像表示装置
CN110095833B (zh) 相位差补偿元件、液晶显示装置及投射型图像显示装置
JP6226902B2 (ja) 波長板、及び光学機器
JP7092630B2 (ja) 光学素子及び投射型画像表示装置
US10996388B2 (en) Manufacturing method of phase difference element, phase difference element, and projection image display device
CN106033158B (zh) 相位差元件、液晶显示装置以及投影型图像显示装置
CN112859228A (zh) 光学元件及其制造方法以及投射型图像显示装置
JP6027199B2 (ja) 位相差素子及びその製造方法
JP7236225B2 (ja) 位相差補償素子、液晶表示装置および投射型画像表示装置
US11550091B2 (en) Phase difference compensation element, liquid crystal display device, and projection image display device
JP7141353B2 (ja) 位相差補償素子の製造方法
US20210165262A1 (en) Phase difference compensation element, liquid crystal display device, and projection image display device
JP2017049594A (ja) 位相差素子及びその製造方法、液晶表示装置、並びに投射型画像表示装置
JP2018060089A (ja) 光学系および画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880795

Country of ref document: EP

Kind code of ref document: A1