WO2012118204A1 - 偏光素子 - Google Patents

偏光素子 Download PDF

Info

Publication number
WO2012118204A1
WO2012118204A1 PCT/JP2012/055457 JP2012055457W WO2012118204A1 WO 2012118204 A1 WO2012118204 A1 WO 2012118204A1 JP 2012055457 W JP2012055457 W JP 2012055457W WO 2012118204 A1 WO2012118204 A1 WO 2012118204A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing element
transparent substrate
absorption layer
layer
absorption
Prior art date
Application number
PCT/JP2012/055457
Other languages
English (en)
French (fr)
Inventor
高橋 英司
昭夫 高田
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to US13/979,957 priority Critical patent/US9360608B2/en
Publication of WO2012118204A1 publication Critical patent/WO2012118204A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the present invention relates to a polarizing element that absorbs one of orthogonal polarization components (so-called P-polarized wave and S-polarized wave) and transmits the other.
  • P-polarized wave and S-polarized wave orthogonal polarization components
  • a polarizing element In a liquid crystal display device, it is indispensable to dispose a polarizing element on the surface of the liquid crystal panel because of its image forming principle.
  • the function of the polarizing element is to absorb one of orthogonally polarized components (so-called P-polarized wave and S-polarized wave) and transmit the other.
  • a dichroic polarizing plate containing an iodine-based or dye-based polymeric organic substance in a film is often used.
  • a method is used in which a polyvinyl alcohol film and a dichroic material such as iodine are dyed, followed by crosslinking using a crosslinking agent and uniaxial stretching.
  • the dichroic polarizing plate is produced by stretching, it generally tends to shrink.
  • the polyvinyl alcohol film uses a hydrophilic polymer, it is very easily deformed particularly under humidified conditions.
  • the mechanical strength as a device is weak, and it may be necessary to adhere a transparent protective film.
  • liquid crystal display devices In recent years, the use of liquid crystal display devices has expanded and their functions have been enhanced. Accordingly, high reliability and durability are required for each device constituting the liquid crystal display device. For example, in the case of a liquid crystal display device that uses a light source with a large amount of light, such as a transmissive liquid crystal projector, the polarizing plate receives strong radiation. Therefore, excellent heat resistance is required for the polarizing plate used in these.
  • the film-based polarizing plate as described above is an organic substance, there are naturally limitations in improving these characteristics.
  • This polarizing plate has a structure in which silver fine particles are diffused in glass, and does not use organic substances such as a film.
  • the principle uses plasma resonance of island-shaped fine particles. That is, light absorption by surface plasma resonance when light is incident on noble metal or transition metal island-like particles is used, and the absorption wavelength is affected by the particle shape and the surrounding dielectric constant.
  • the shape of the island-shaped fine particles is elliptical, the resonance wavelengths in the major axis direction and the minor axis direction are different, and thereby deflection characteristics are obtained. Specifically, a polarization component parallel to the major axis on the long wavelength side is obtained.
  • a polarization characteristic of absorbing and transmitting a polarization component parallel to the minor axis is obtained.
  • the wavelength range in which the polarization characteristics can be obtained is a region close to the infrared region, and does not cover the visible light range required for a liquid crystal display device. This is due to the physical properties of silver used in the island-shaped fine particles.
  • Patent Document 1 discloses a UV polarizing plate by applying the above principle to deposit fine particles in glass by thermal reduction, and proposes to use silver as metal fine particles. In this case, it is considered that absorption in the minor axis direction is used contrary to the previous Polarcor. As shown in Figure 1, although it functions as a polarizing plate even at around 400 nm, the extinction ratio is small and the band that can be absorbed is very narrow, so even if Polarcor and the technique of Patent Document 1 are combined, the entire visible light range It will not be a polarizing plate that can cover.
  • Non-Patent Document 1 describes theoretical analysis of an inorganic polarizing plate using plasma resonance of metal island-shaped fine particles. According to this document, it is described that aluminum fine particles have a resonance wavelength shorter than that of silver fine particles by about 200 nm, and therefore it is possible to produce a polarizing plate that covers the visible light region by using aluminum fine particles.
  • Patent Document 2 discloses several methods for producing a polarizing plate using aluminum fine particles. Among them, it is described that a glass based on silicate is not desirable as a substrate because aluminum and glass react with each other, and calcium aluminoborate glass is suitable (paragraphs 0018 and 0019). However, glass using silicate is widely distributed as optical glass, and it is economically undesirable that a highly reliable product can be obtained at a low cost and this is not suitable. In addition, a method for forming island-shaped particles by etching a resist pattern is described (paragraphs 0037 and 0038). Usually, a polarizing plate used in a projector needs to have a size of several centimeters and a high extinction ratio.
  • the resist pattern size is sufficiently shorter than the visible light wavelength, that is, a size of several tens of nanometers is necessary, and in order to obtain a high extinction ratio, It is necessary to form a pattern with high density. Moreover, when using it for projectors, a large area is required.
  • Electron beam drawing is a method of drawing individual patterns from an electron beam, and is not practical because of poor productivity.
  • Patent Document 2 describes that aluminum is removed by chlorine plasma, but when such etching is usually performed, chloride adheres to the sidewall of the aluminum pattern. Although it can be removed with a commercially available wet etching solution (for example, SST-A2 from Tokyo Ohka Kogyo Co., Ltd.), such a chemical solution that reacts with aluminum chloride reacts with aluminum even though the etching rate is slow. It is difficult to realize a desired pattern shape by such a method.
  • a commercially available wet etching solution for example, SST-A2 from Tokyo Ohka Kogyo Co., Ltd.
  • Patent Document 2 describes another method of depositing aluminum on a patterned photoresist by oblique film formation and removing the photoresist (paragraphs 0045 and 0047).
  • a method it is considered that it is necessary to deposit aluminum on the substrate surface to some extent in order to obtain adhesion between the substrate and aluminum.
  • this means that the shape of the deposited aluminum film is different from prolate spheres including prolate ellipsoids, which are suitable shapes described in paragraph 0015.
  • paragraph 0047 describes that the overprecipitation integral is removed by anisotropic etching perpendicular to the surface. In order to function as a polarizing plate, the shape anisotropy of aluminum is extremely important.
  • the submicron is 0.05 ⁇ m or less. It is considered very difficult to control these by size, and it is doubtful whether it is suitable as a production method with high productivity.
  • a high transmittance is required in the direction of the transmission axis as a characteristic of the polarizing plate. Usually, when glass is used for the substrate, reflection of several percent from the glass interface is inevitable, and it is difficult to obtain a high transmittance. .
  • Patent Document 3 describes a polarizing plate by oblique vapor deposition. This method obtains polarization characteristics by manufacturing a micro-columnar structure by oblique deposition of a transparent and opaque material with respect to the wavelength of the used band. Unlike Patent Document 1, a fine pattern is obtained by a simple method. Therefore, it is considered a highly productive method. However, the aspect ratio of the micro-columnar structure of the material that is opaque to the band used, the interval between the individual micro-columnar structures, and the linearity are important factors for obtaining good polarization characteristics. However, this method uses the phenomenon that the columnar structure is obtained by the fact that the next flying vapor particles do not deposit in the shadowed part of the initial deposition layer of vapor deposition particles.
  • Non-Patent Document 2 describes a polarizing plate for infrared communication called Lamipol. This has a laminated structure of Al and SiO 2 and shows a very high extinction ratio according to this document. Further, Non-Patent Document 3 describes that a high extinction ratio can be realized at a wavelength of 1 ⁇ m or less by using Ge instead of Al that is responsible for Lamipol's light absorption. In addition, it is expected that a high extinction ratio can be obtained from FIG. 3 to Te (tellurium) in the same document. As described above, Lamipol is an absorptive polarizing plate that provides a high extinction ratio. However, since the thickness of the light-absorbing material and the transparent material is the size of the light-receiving surface, Lamipol is used for projector applications that require a size of several cm square Not suitable for polarizing plates.
  • Patent Document 4 describes the structure and characteristics of an inorganic polarizing plate having a structure in which a dielectric layer and an inorganic fine particle layer are deposited on a metal lattice, and shows that this structure provides high contrast. If there is an inorganic polarizing plate that can be manufactured with a simple manufacturing process by developing this structure, increasing the contrast, reducing the reflectance, and the like, it is more useful in the industry.
  • the present invention has been proposed in view of such a situation, and an object thereof is to provide a polarizing element having excellent optical characteristics and high light resistance against strong light.
  • a polarizing element includes a transparent substrate, and an absorption layer that configures a grid-like convex portion arranged on the transparent substrate at a pitch smaller than the wavelength of light in a use band. And a dielectric layer constituting the lattice-like convex portion formed on the absorbing layer, and a reflective layer constituting the lattice-like convex portion formed on the dielectric layer.
  • a liquid crystal projector includes the polarizing element described above, a light source, and an image display panel, and the polarizing element allows light in a use band from the light source to be incident from the transparent substrate side and pass therethrough. It is characterized by.
  • the heat dissipation can be further improved and the heat resistance of the polarizing element can be improved. Further, excellent optical characteristics can be obtained by the selective light absorption action of the polarized wave of the absorption layer.
  • FIG. 1 is a schematic sectional view showing a polarizing element according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing the configuration of the optical engine portion of the liquid crystal projector according to the embodiment of the invention.
  • 3A to 3D are diagrams for explaining a method of manufacturing a polarizing element.
  • FIG. 4 is a schematic cross-sectional view showing a polarizing element having an absorption layer of Ta.
  • FIG. 5 is a graph showing optical characteristics of a polarizing element having an absorption layer of Ta.
  • FIG. 6 is an SEM image (part 1) of a cross section of a polarizing element having an absorption layer of Ta.
  • FIG. 7 is an SEM image (No.
  • FIG. 8 is a schematic cross-sectional view showing a polarizing element in which the absorption layer is Si.
  • FIG. 9 is a graph showing optical characteristics of a polarizing element having an absorption layer of Si.
  • FIG. 10 is a schematic cross-sectional view showing a polarizing element having an absorption layer of Ta / Si.
  • FIG. 11 is a graph showing optical characteristics of a polarizing element having an absorption layer of Ta / Si.
  • FIG. 12 is a graph showing the relationship of the absorption axis transmittance with respect to the grid width.
  • FIG. 13 is a schematic cross-sectional view showing a polarizing element in which Ta and Si are laminated in this order (lamination order A) on a quartz substrate.
  • FIG. 14 is a schematic cross-sectional view showing a polarizing element in which Si and Ta are laminated in this order (lamination order B) on a quartz substrate.
  • FIG. 15 is an SEM image of a cross section of the polarizing element in the stacking order A.
  • FIG. 16 is an SEM image of a cross section of the polarizing element in the stacking order B.
  • FIG. 17 is a graph showing optical characteristics of polarizing elements in the stacking order A.
  • FIG. 18 is a graph showing optical characteristics of polarizing elements in the stacking order B.
  • FIG. 19 is a graph showing the transmittance at the transmission axis and the absorption axis in the green area.
  • FIG. 20 is a graph showing the reflectance at the transmission and absorption axes in the green area.
  • FIG. 21 is a schematic cross-sectional view showing a polarizing element in which the width W of the absorption layer is reduced.
  • FIG. 22 is a graph showing a simulation result of the transmission axis transmittance Tp with respect to the width W of the absorption layer.
  • FIG. 23 is a graph showing a simulation result of the transmission axis reflectance Rp with respect to the width W of the absorption layer.
  • FIG. 24 is a graph showing a simulation result of the absorption axis transmittance Ts with respect to the width W of the absorption layer.
  • FIG. 25 is a graph showing a simulation result of the absorption axis reflectance Rs with respect to the width W of the absorption layer.
  • FIG. 26 is an SEM image of a cross section of the polarizing element in which the width W of the absorption layer is reduced.
  • FIG. 27 is a graph showing the measurement results of the transmission axis transmittance Tp of samples A and B having different widths W of the absorption layer.
  • FIG. 28 is a graph showing the measurement results of the transmission axis reflectance Rp of samples A and B having different widths W of the absorption layer.
  • FIG. 29 is a graph showing the measurement results of the absorption axis transmittance Ts of samples A and B having different widths W of the absorption layer.
  • FIG. 30 is a graph showing the measurement results of the absorption axis reflectivity Rs of samples A and B having different widths W of the absorption layer.
  • FIG. 31 is a schematic cross-sectional view showing a polarizing element having a protective film formed thereon.
  • FIG. 32 is an SEM image of a cross section of a polarizing element on which a protective film is formed.
  • FIG. 33 is a graph showing the transmittance of a polarizing element on which a protective film is formed.
  • FIG. 34 is a graph showing the reflectance of a polarizing element on which a protective film is formed.
  • FIG. 1 is a schematic sectional view showing a polarizing element according to an embodiment of the present invention.
  • the polarizing element 1 includes a transparent substrate 11, an absorption layer 12 that forms lattice-shaped convex portions arranged on the transparent substrate 11 at a pitch smaller than the wavelength of light in the use band, and an absorption layer.
  • 12 includes a dielectric layer 13 formed on the dielectric layer 12 and a reflective layer 14 formed on the dielectric layer 13.
  • the polarizing element 1 has a one-dimensional lattice-like structure in which convex portions in which the absorption layer 12, the dielectric layer 13, and the reflective layer 14 are laminated in this order from the transparent substrate 11 side are arranged on the transparent substrate 11 at regular intervals. It has a wire grid structure.
  • the transparent substrate 11 is transparent with respect to light in the use band and is made of a material having a refractive index of 1.1 to 2.2, such as glass, sapphire, and quartz.
  • a crystal or sapphire substrate with high thermal conductivity as a constituent material of the transparent substrate 11. Thereby, it has high light resistance with respect to intense light, and is useful as a polarizing element for an optical engine of a projector that generates a large amount of heat.
  • the transparent substrate 11 is made of an optically active crystal such as quartz
  • excellent optical characteristics can be obtained by arranging lattice-like convex portions in a direction parallel or perpendicular to the optical axis of the crystal.
  • the optical axis is a direction axis that minimizes the difference in refractive index between O (ordinary ray) and E (extraordinary ray) of light traveling in that direction.
  • glass particularly quartz (refractive index 1.46) or soda lime glass (refractive index 1.51) may be used.
  • the component composition of the glass material is not particularly limited.
  • an inexpensive glass material such as silicate glass widely distributed as optical glass can be used, and the manufacturing cost can be reduced.
  • the absorption layer 12 is composed of one or more kinds of substances having a light absorption action, such as metals and semiconductors, whose optical constants are not zero, and the material is selected according to the wavelength range of light to be applied.
  • the metal material include Ta, Al, Ag, Cu, Au, Mo, Cr, Ti, W, Ni, Fe, Sn alone, or an alloy containing these.
  • the semiconductor material include Si, Ge, Te, ZnO, and silicide materials ( ⁇ -FeSi 2 , MgSi 2 , NiSi 2 , BaSi 2 , CrSi 2 , COSi 2 , TaSi, etc.
  • the band gap energy of the semiconductor is involved in the absorption action, it is necessary that the band gap energy is less than or equal to the use band, for example, when used in visible light, the absorption at a wavelength of 400 nm or more, that is, the band gap is 3 It is necessary to use a material of less than 1 eV.
  • the absorbing layer 12 preferably has a higher refractive index than the transparent substrate 11 among the metal materials and semiconductor materials described above.
  • the absorbing layer 12 is preferably two or more layers of different materials, and any one of them preferably has a higher refractive index than the transparent substrate 11.
  • the specific material combination is selected based on optical constants such as refractive index n and extinction constant k.
  • optical constants such as refractive index n and extinction constant k.
  • the width of the absorption layer 12 in the transmission axis direction (X-axis direction) smaller than other layers (reflection layer, dielectric layer), the wavelength at which the reflectance is minimized can be shifted to the short wavelength side. it can. Therefore, it is possible to reduce the reflectance in a desired wavelength band by optimally designing the pitch and grid width.
  • the specific width in the transmission axis direction of the absorption layer 12 is preferably 50% or more of the grid (reflection layer, dielectric layer) width, and more preferably 80% or more of the grid width.
  • the absorption layer 12 is preferably formed with a high density film by vapor deposition or sputtering. Since the density of the film is high, thermal conductivity can be improved and heat dissipation can be improved.
  • inorganic fine particles may be deposited by using an evaporation method utilizing a shadowing effect or an oblique film formation method by sputtering.
  • the inorganic fine particles have a size equal to or smaller than the wavelength of the use band, and the individual particles are completely isolated.
  • the inorganic fine particles have an elliptical shape, the major axis direction of the ellipse is arranged in parallel to the Y axis direction that is the absorption axis, and the minor axis direction of the ellipse is arranged in parallel to the X axis direction that is the transmission axis. .
  • the thus formed absorption layer 12 has an optical anisotropy in which the optical constant in the Y-axis direction, which is the absorption axis, is larger than the optical constant in the transmission axis X direction.
  • the refractive index in the absorption axis Y direction is larger than the refractive index in the transmission axis X direction
  • the extinction coefficient in the absorption axis Y direction is larger than the extinction coefficient in the transmission axis X direction.
  • the dielectric layer 13 is formed with a film thickness so that the polarized light reflected by the absorbing layer 12 is transmitted through the absorbing layer 12 and reflected by the reflecting layer 14 so that the phase of the polarized light is shifted by a half wavelength.
  • the specific film thickness is appropriately set within a range of 1 to 500 nm that can adjust the phase of polarized light and enhance the interference effect.
  • an improvement in contrast can be realized even if the film thickness is not optimized.
  • the desired polarization characteristics are balanced with the actual manufacturing process. You can decide on
  • a general material such as SiO 2 , Al 2 O 3 , or MgF 2 can be used as the material constituting the dielectric layer 13.
  • the refractive index of the dielectric layer 13 is preferably greater than 1.0 and 2.5 or less.
  • the polarizing element characteristics may be controlled by the material of the dielectric layer 13.
  • the reflective layer 14 is formed by arranging a metal thin film extending in a band shape in the Y direction as an absorption axis on the dielectric layer 13. That is, the reflective layer 14 has a function as a wire grid polarizer, and has polarized light having an electric field component in a direction parallel to the longitudinal direction of the wire grid (Y-axis direction) out of light incident from the transparent substrate 11 side.
  • a wave TE wave (S wave)
  • TM wave polarized wave
  • the constituent material of the reflective layer 14 is not particularly limited as long as it is a material having reflectivity with respect to light in the use band.
  • a material having reflectivity with respect to light in the use band For example, Al, Ag, Cu, Mo, Cr, Ti, Ni, W, Fe, Si, A single metal such as Ge or Te, an alloy containing these, or a semiconductor material can be used.
  • the metal material for example, it may be composed of an inorganic film or a resin film other than a metal formed with high surface reflectance by coloring or the like.
  • the pitch, line width / pitch, thin film height (thickness, lattice depth), and thin film length (lattice length) of the reflective layer 22 are preferably in the following ranges, respectively.
  • covers the surface of the transparent substrate 11 and a grid
  • SiO 2 or the like reliability such as moisture resistance can be improved.
  • plasma CVD Chemical Vapor Deposition
  • a protective film can be deposited also in the gaps between the lattice-shaped convex portions.
  • a polarized wave (TE) having an electric field component parallel to the grating of the reflective layer is obtained by utilizing four actions of transmission, reflection, interference, and selective light absorption of the polarized wave.
  • Wave (S wave)) can be attenuated, and a polarized wave (TM wave (P wave)) having an electric field component perpendicular to the grating can be transmitted. That is, the TE wave is attenuated by the selective light absorption action of the polarized wave of the absorption layer 12, and the TE wave transmitted through the absorption layer 12 and the dielectric layer 13 is reflected by the grid-like reflection layer 14 functioning as a wire grid. Is done.
  • the TE wave reflected by the reflective layer 14 is partially reflected when passing through the absorbing layer 12 and returned to the reflective layer 14.
  • the light that has passed through the absorption layer 12 can be attenuated by interference.
  • a desired polarization characteristic can be obtained by selectively attenuating the TE wave as described above.
  • the polarizing element 1 since the absorption layer 12 that interferes and absorbs light is in contact with the transparent substrate 11, heat dissipation can be further improved, and heat resistance of the polarizing plate can be improved. it can.
  • the polarizing element 1 in the present embodiment is made of an inorganic material that is more durable than an organic material, the polarizing element 1 exhibits high light resistance against strong light used in a liquid crystal projector and obtains high reliability. be able to.
  • quartz about 10 W / (m ⁇ K) at 300 K
  • sapphire about 40 W / (m ⁇ K) having high thermal conductivity as the transparent substrate 11. It is preferable to use at 300 K).
  • the thermal conductivity of the material constituting the absorption layer 12 is higher than the thermal conductivity of the material constituting the transparent substrate 11. More specifically, Ta (about 60 W / (m ⁇ K) at 300 K), Al (about 235 W / (m ⁇ K) at 300) having a thermal conductivity of 50 W / (m ⁇ K) at 300K or more.
  • the absorption layer 12 is composed of two layers of Ta and Si
  • Si having a higher thermal conductivity than Ta be on the transparent substrate 11 side.
  • the contact thermal resistance can be reduced at the interface between the transparent substrate 11 and the absorption layer 12, and excellent heat resistance can be obtained.
  • the absorption layer 12 is formed by vapor deposition or sputtering. Specifically, the transparent substrate 11 is arranged to face the target during film formation, the argon gas particles are collided with the target, the target component blown off by the impact is attached on the substrate, and the absorption layer 12 is formed. obtain. Further, the absorption layer 12 may be formed by depositing inorganic fine particles by using an oblique film formation method by vapor deposition or sputtering utilizing the shadowing effect.
  • the dielectric layer 13 and the reflective layer 14 are formed by a general vacuum film forming method such as a sputtering method, a vapor phase growth method, or a vapor deposition method, or a sol-gel method (for example, a method in which a sol is coated by spin coating and gelled by thermal curing. ).
  • a general vacuum film forming method such as a sputtering method, a vapor phase growth method, or a vapor deposition method, or a sol-gel method (for example, a method in which a sol is coated by spin coating and gelled by thermal curing. ).
  • a lattice-like mask pattern is formed by nanoimprinting, photolithography, or the like, and then a lattice-like convex portion is formed by dry etching.
  • the dry etching gas include Ar / O 2 for the antireflection film (BARC), Cl 2 / BCl 3 for AlSi, SiO 2 , Si, and Ta for CF 4 / Ar.
  • the etching conditions gas flow rate, gas pressure, power, substrate cooling temperature
  • the width (X-axis direction) of the absorption layer 12 can be adjusted depending on the etching conditions.
  • the reflective layer 14 When Al or AlSi is used for the reflective layer 14, it is desirable to select materials that can be etched with fluorine for the absorbing layer 12 and the dielectric layer 13. By doing so, a high etching selection ratio can be obtained, the width of the designed film thickness of the absorption layer 12 and the dielectric layer 13 can be widened, which is advantageous in process construction.
  • a protective film such as SiO 2 can be deposited on the uppermost portion for the purpose of improving reliability such as moisture resistance, as long as the change in optical characteristics does not affect the application.
  • the liquid crystal projector 100 includes a lamp serving as a light source, a liquid crystal panel, and the polarizing element 1 described above.
  • FIG. 2 shows a configuration example of the optical engine portion of the liquid crystal projector according to the present invention.
  • the optical engine portion of the liquid crystal projector 100 includes an incident side polarizing element 10A for the red light LR, a liquid crystal panel 50, an outgoing pre-polarizing element 10B, an outgoing main polarizing element 10C, and an incident side polarizing element 10A for the green light LG, the liquid crystal panel 50, Outgoing pre-polarizing element 10B, outgoing main polarizing element 10C, incident side polarizing element 10A for blue light LB, liquid crystal panel 50, outgoing pre-polarizing element 10B, outgoing main polarizing element 10C, and outgoing main polarizing element 10C And a cross dichroic prism 60 for synthesizing the incoming light and emitting it to the projection lens.
  • a cross dichroic prism 60 for synthesizing the incoming light and emitting it to the projection lens.
  • the polarizing element 1 described above is applied to each of the incident side polarizing element 10A, the outgoing pre-polarizing element 10B, and the outgoing main polarizing element 10C, and the light in the use band from the light source is incident from the transparent substrate 11 side and allowed to pass therethrough. .
  • liquid crystal projector 100 In the liquid crystal projector 100, light emitted from a light source lamp (not shown) is separated into red light LR, green light LG, and blue light LB by a dichroic mirror (not shown), and incident side polarization elements corresponding to the respective lights.
  • the light LR, LG, and LB incident on 10A and then polarized by the respective incident-side polarizing elements 10A are spatially modulated by the liquid crystal panel 50 and emitted, and pass through the outgoing pre-polarizing element 10B and the outgoing main polarizing element 10C. Thereafter, the image is synthesized by the cross dichroic prism 60 and projected from a projection lens (not shown). Even if the light source lamp has a high output, since the polarizing element 1 having excellent light resistance against strong light is used, a highly reliable liquid crystal projector can be realized.
  • the polarizing element of the present invention is not limited to application to the liquid crystal projector, but is suitable as a polarizing element that receives heat as a use environment.
  • it can be applied as a polarizing element of a liquid crystal display of a car navigation system or an instrument panel of an automobile.
  • Example> Examples of the present invention will be described below. Here, samples of a single layer structure (Ta, Si) and a two layer structure (Ta / Si) were prepared for the absorption layer 12 and evaluated for optical characteristics. The present invention is not limited to these examples.
  • Example 1 Absorbing layer Ta
  • Ta as an absorption layer
  • SiO 2 as a dielectric layer
  • AlSi as a reflection layer
  • BARC antireflection film
  • a lattice-like mask pattern was formed with a resist.
  • an absorption layer, a dielectric layer, and a reflection layer were laminated in a direction parallel to the optical axis of the quartz crystal.
  • the antireflection film was removed by scum treatment with Ar / O 2 gas, and AlSi was etched with Cl 2 / BCl 3 .
  • the corrosive layer (chlorinated compound) was removed by H 2 O plasma, and the resist and the reflection protective film were removed by O 2 ashing.
  • SiO 2 , Ta, and quartz were etched with CF 4 / Ar gas to form lattice-shaped convex portions, and the polarizing element of Example 1 was manufactured.
  • FIG. 4 is a schematic cross-sectional view showing the polarizing element of Example 1.
  • This polarizing element has a contrast (extinction ratio: transmission axis transmittance / absorption axis transmittance) of about 2 to 10 and the lowest reflectance in the green region (near 550 nm), which is practically important for liquid crystal display devices.
  • the pitch is 150 nm
  • the grid width is 45 nm
  • the thickness of Ta is 20 nm
  • the thickness of SiO 2 is 50 nm
  • the thickness of AlSi is 45 nm.
  • FIG. 5 shows the optical characteristics of the polarizing element of Example 1. From the results shown in FIG. 5, it was found that the polarizing element using Ta as the absorption layer has a good contrast on the long wavelength side.
  • FIG. 6 shows an SEM (Scanning Electron Microscope) image of the cross section of the polarizing element of Example 1. From this cross-sectional photograph, it can be seen that the width of the absorption layer in the transmission axis direction is smaller than other layers (reflection layer, dielectric layer). This is due to the etching with CF 4 / Ar gas, but the wavelength at which the absorption axis reflectivity Rs is minimum is set to the short wavelength side as will be described later because the width of the absorption layer is smaller than the other layers. Can be shifted.
  • SEM Sccanning Electron Microscope
  • the quartz substrate is dug by over-etching in order to expose the quartz substrate, but the etching conditions may be changed so that the quartz substrate is not dug.
  • FIG. 7 the SEM image of the cross section of the polarizing element in which the quartz substrate is not dug is shown. There was no significant change in the optical characteristics of the polarizing element depending on whether or not the quartz substrate was dug by overetching.
  • FIG. 8 is a schematic cross-sectional view showing the polarizing element of Example 2.
  • This polarizing element has a contrast (extinction ratio: transmission axis transmittance / absorption axis transmittance) of about 2 to 10 and the lowest reflectance in the green region (near 550 nm), which is practically important for liquid crystal display devices.
  • the pitch was 150 nm
  • the grid width was 45 nm
  • the thickness of Si was 20 nm
  • the thickness of SiO 2 was 30 nm
  • the thickness of AlSi was 45 nm.
  • the polarizing element of Example 2 was produced like Example 1 except having made the absorption layer into Si.
  • FIG. 9 shows the optical characteristics of the polarizing element of Example 2. From the results shown in FIG. 9, it was found that the polarizing element using Si as the absorption layer has a good contrast on the short wavelength side.
  • FIG. 10 is a schematic cross-sectional view showing the polarizing element of Example 3.
  • This polarizing element has a contrast (extinction ratio: transmission axis transmittance / absorption axis transmittance) of about 2 to 10 and the lowest reflectance in the green region (near 550 nm), which is practically important for liquid crystal display devices.
  • the pitch is 150 nm
  • the grid width is 45 nm
  • the thickness of Ta is 10 nm
  • the thickness of Si is 10 nm
  • the thickness of SiO 2 is 30 nm
  • the thickness of AlSi is 45 nm.
  • the polarizing element of Example 3 was produced like Example 1 except having made the absorption layer into 2 layer structure of Ta and Si.
  • FIG. 11 shows the optical characteristics of the polarizing element of Example 3. From the results shown in FIG. 11, it was found that the polarizing element in which Ta and Si were laminated as the absorption layer had both the good contrast on the long wavelength side of Example 1 and the good contrast on the short wavelength side of Example 2. .
  • Table 1 shows the average values of transmittance and reflectance when the measurement wavelength is 520 to 590 nm in the green region for the polarizing elements of Examples 1 to 3.
  • Example 1 With respect to a polarizing element capable of obtaining an equivalent contrast, ideal characteristics are high transmission axis transmittance and low reflectance, but when looking at the characteristics of Examples 1 and 2, Example 1 is advantageous. As a disadvantage, the transmittance was low. On the other hand, Example 2 had high transmittance as an advantage but high reflectance as a disadvantage. On the other hand, in Example 3, an ideal characteristic that the transmission axis transmittance is high and the reflectance is low was obtained. In Example 3, the wavelength selectivity of the absorption axis reflectivity is strong, but it is possible to control the wavelength band of low reflection by adjusting the Si film thickness or the SiO 2 film thickness.
  • Example 4 Absorption axis transmittance with respect to grid width
  • the grid width in the polarizing element was changed, and the absorption axis transmittance was measured.
  • FIG. 12 shows the relationship of the absorption axis transmittance with respect to the grid width.
  • the absorptivity transmittance is an average value when a green wavelength of 520 to 590 nm is used as a measurement wavelength.
  • the pitch of the convex portions of the polarizing element was 150 nm
  • the thickness of the absorption layer (Ta, Si, Ta / Si) was 20 nm
  • the thickness of SiO 2 was 30 nm
  • the thickness of AlSi was 45 nm.
  • the polarizing element in which Ta and Si are laminated as the absorbing layer can reduce the absorption axis transmittance to the same extent as the polarizing element having the Si single layer absorbing layer. It was also found that the absorption axis transmittance can be controlled by the grid width.
  • Example 5 Optical characteristics with respect to stacking order of absorbing layers
  • a polarizing element in which Ta and Si are laminated in this order laminated in this order (lamination order A) on a quartz substrate, and Si and Ta are laminated in this order on a quartz substrate (lamination order B) as shown in FIG. ) was produced.
  • 15 and 16 show SEM images of cross sections of polarizing elements in the stacking order A and the stacking order B, respectively.
  • These polarizing elements have a contrast (extinction ratio: transmission axis transmittance / absorption axis transmittance) of about 2 to 10 and the lowest reflectance in the green region (near 550 nm), which is practically important for liquid crystal display devices.
  • the pitch is 150 nm
  • the grid width is 45 nm
  • the thickness of Ta is 5 nm
  • the thickness of Si is 20 nm
  • the thickness of SiO 2 is 30 nm
  • the thickness of AlSi is 35 nm.
  • a polarizing element having a stacking order of A and B was produced in the same manner as in Example 1 except that the absorption layer had a two-layer structure of Ta and Si.
  • Table 2 also shows the transmittance and reflection of polarizing elements of stacking order A and stacking order B when the measurement wavelengths are 430 to 510 nm in the blue region, 520 to 590 nm in the green region, and 600 to 680 nm in the red region. The average value of the rate is shown.
  • 19 and 20 are graphs plotting the transmittance and the reflectance on the transmission axis and the absorption axis when the measurement wavelength is 520 to 590 nm in the green region. In these results, although there was no difference in reflectance in both the stacking order A and the stacking order B, it was found that the stacking order B was better than the stacking order A in terms of transmittance.
  • Example 6 Optical characteristics with respect to width of absorbing layer
  • the width W of the absorption layer was changed, and the influence on the optical characteristics was evaluated.
  • the optical characteristics of a polarizing element having a width W of 40.0 nm, 37.5 nm, 30.0 nm, and 22.5 nm were calculated using simulation software (manufactured by GSD, Gsolver).
  • the model of the polarizing element is that the pitch is 150 nm, the grid width is 45 nm, the thickness of Ta is 5 nm, the thickness of Si is 20 nm, the thickness of SiO 2 is 30 nm, and the thickness of AlSi is 35 nm.
  • stacked was used.
  • polarizing elements having different absorption layer widths W were produced, and the above-described simulation results were verified.
  • the width W (side etching amount) of the absorption layer was adjusted by the etching time in etching with CF 4 / Ar gas.
  • the polarizing element (width W 46.6 nm) in the stacking order B shown in FIG.
  • FIG. 26 shows an SEM image of a cross section of the polarizing element in which the width W of the absorption layer is smaller than the grid width.
  • the width W of the absorption layer was 41.0 nm. This was designated as Sample B.
  • this polarizing element has a contrast (extinction ratio: transmission axis transmittance / absorption axis transmittance) of about 2 to 10 and a minimum reflectance in the green region (near 550 nm) which is practically important for liquid crystal display devices.
  • the pitch is 150 nm
  • the grid width is 45 nm
  • the thickness of Ta is 5 nm
  • the thickness of Si is 20 nm
  • the thickness of SiO 2 is 30 nm
  • the thickness of AlSi is 35 nm.
  • a polarizing element having a stacking order B was produced in the same manner as in Example 1 except that the absorption layer had a two-layer structure of Ta and Si.
  • FIGS. 27 to 30 show the measurement results of the transmission axis transmittance Tp, the transmission axis reflectance Rp, the absorption axis transmittance Ts, and the absorption axis reflectance Rs.
  • the transmission axis shown in FIGS. 27 and 28 as in the simulation, a large difference due to the difference in the width W of the absorption layer was not observed.
  • the absorption axis shown in FIGS. 29 and 30, as in the simulation the transmittance Ts increases as the width W becomes smaller, and the wavelength at which the reflectance Rs becomes the minimum shifts to the short wavelength side. Compared to that, it turned out to be a big shift. Therefore, it was found that a polarizing element having a low reflectance in the blue region (430 to 510 nm) can be obtained by reducing the width W of the absorption layer.
  • Table 3 shows the transmittance and reflectance of the polarizing elements of Sample A and Sample B when the measurement wavelength is 430 to 510 nm in the blue region, 520 to 590 nm in the green region, and 600 to 680 nm in the red region. Average values are shown.
  • Example 7 Formation of protective film
  • a protective film made of SiO 2 was formed so as to cover the lattice shape.
  • the thickness of the protective film was 7.5 nm, and it was confirmed that the protective film was also formed in the gaps between the lattice-shaped convex portions.
  • This polarizing element has a contrast (extinction ratio: transmission axis transmittance / absorption axis transmittance) of about 2 to 10 and the lowest reflectance in the green region (near 550 nm), which is practically important for liquid crystal display devices.
  • the pitch is 150 nm
  • the grid width including the protective film is 65 nm
  • the thickness of Ta is 5 nm
  • the thickness of Si is 20 nm
  • the thickness of SiO 2 is 30 nm
  • the thickness of AlSi is 35 nm.
  • the width of the Ta / Si layer was narrowed by etching with CF 4 / Ar gas as compared with other layers, and the quartz substrate was also dug by 5 nm. That is, this polarizing element is manufactured in the same manner as the polarizing element in the stacking order A shown in FIG. 13, and a protective film is further formed.
  • plasma CVD Chemical Vapor Deposition
  • TEOS Tetra Ethyl Ortho Silicate
  • FIG. 32 is an SEM image of a cross section of the polarizing element on which the protective film is formed. From this cross-sectional photograph, it was confirmed that the width of the absorption layer in the transmission axis direction was smaller than the other layers (reflection layer, dielectric layer). In this cross-sectional photograph, the boundary between the laminated convex part and the protective film is not clear, but the length from the AlSi / SiO 2 interface to the convex vertex (the thickness obtained by adding AlSi and the protective film) was measured. 42 nm. From this, 7 nm obtained by subtracting 35 nm of the AlSi film thickness design value can be estimated as the protective film thickness.
  • FIG. 33 and FIG. 34 are graphs showing the transmittance and the reflectance of the polarizing element on which the protective film is formed, respectively.
  • the absorption axis transmittance was + 3.4%
  • the transmission axis reflectance was ⁇ 0.0%
  • the absorption axis reflectance was + 0.5%.
  • the polarizing element according to the present embodiment since light is incident from the quartz substrate side, there is almost no change in reflectance and the change in transmittance is small. The same result was obtained when a protective film was formed on the polarizing element in the stacking order B shown in FIG.
  • Polarizing element 11 Transparent substrate 12 Absorbing layer 13 Dielectric layer 14 Reflecting layer 50 Liquid crystal panel 60

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

 優れた光学特性を有するとともに強い光に対して高い耐光性を有する偏光素子を提供する。透明基板(11)と、透明基板(11)上に使用帯域の光の波長よりも小さいピッチで配列された格子状凸部を構成する吸収層(12)と、吸収層(12)上に形成された誘電体層(13)と、誘電体層(13)上に形成された反射層(14)とを備える。光を干渉・吸収させる吸収層(12)が透明基板(11)に接しているため、より放熱性を高めることができ、偏光板の耐熱性を向上させることができる。

Description

偏光素子
 本発明は、直交する偏光成分(いわゆるP偏光波、S偏光波)の一方を吸収し、他方を透過させる偏光素子に関するものである。本出願は、日本国において2011年3月2日に出願された日本特許出願番号特願2011-045092を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 液晶表示装置は、その画像形成原理から液晶パネル表面に偏光素子を配置することが必要不可欠である。偏光素子の機能は、直交する偏光成分(いわゆるP偏光波、S偏光波)の一方を吸収し、他方を透過させることである。
 従来、このような偏光素子として、フィルム内にヨウ素系や染料系の高分子有機物を含有させた二色性の偏光板が多く用いられている。これらの一般的な製法として、ポリビニルアルコール系フィルムとヨウ素などの二色性材料で染色を行った後、架橋剤を用いて架橋を行い、一軸延伸する方法が用いられる。このように二色性の偏光板は、延伸により作製されるため、一般に収縮し易い。また、ポリビニルアルコール系フィルムは、親水性ポリマーを使用していることから、特に加湿条件下においては非常に変形し易い。また、根本的にフィルムを用いるため、デバイスとしての機械的強度が弱く、透明保護フィルムを接着する必要がある場合がある。
 近年、液晶表示装置は、その用途が拡大し、高機能化している。それに伴い、液晶表示装置を構成する個々のデバイスに対して、高い信頼性、耐久性が求められる。例えば、透過型液晶プロジェクターのような光量の大きな光源を使用する液晶表示装置の場合には、偏光板は強い輻射線を受ける。よって、これらに使用される偏光板には、優れた耐熱性が必要となる。しかしながら、上記のようなフィルムベースの偏光板は、有機物であることから、これらの特性を上げることにはおのずと限界がある。
 米国では、コーニング社よりPolarcorという商品名で耐熱性の高い無機偏光板が販売されている。この偏光板は、銀微粒子をガラス内に拡散させた構造をしておりフィルム等の有機物を使用していない。原理は、島状微粒子のプラズマ共鳴を利用するものである。すなわち、貴金属や遷移金属の島状粒子に光が入射した時の表面プラズマ共鳴による光吸収を利用するものであり、吸収波長は、粒子形状、周囲の誘電率の影響を受ける。ここで島状微粒子の形状を楕円形にすると長軸方向と短軸方向の共鳴波長が異なり、これにより偏向特性が得られ、具体的には長波長側での長軸に平行な偏光成分を吸収し、短軸と平行な偏光成分を透過させるという偏光特性が得られる。しかしながら、Polarcorの場合、偏光特性が得られる波長域は赤外部に近い領域であり、液晶表示装置で求められるような可視光域をカバーしていない。これは島状微粒子に用いられている銀の物理的性質によるものである。
 特許文献1には、上記の原理を応用し熱還元によりガラス中に微粒子を析出させることによるUV偏光板が示されており、金属微粒子として銀を用いることが提示されている。
この場合、先のPolarcorとは逆に短軸方向での吸収を用いるものと考えられる。Figure1に示されているように400nm付近でも偏光板として機能はしているが消光比が小さくかつ吸収できる帯域が非常に狭いので、仮にPolarcorと特許文献1の技術を組み合わせたとしても可視光全域をカバーできる偏光板にはならない。
 また、非特許文献1には、金属島状微粒子のプラズマ共鳴を使った無機偏光板の理論解析が述べられている。この文献によればアルミニウム微粒子は銀微粒子より共鳴波長が200nm程度短く、このためアルミニウム微粒子を用いることで可視光域をカバーする偏光板を製作できる可能性があることが記述されている。
 また、特許文献2には、アルミニウム微粒子を使った偏光板の幾つかの作成方法が示されている。その中で、ケイ酸塩をベースとしたガラスでは、アルミニウムとガラスが反応するので基板としては望ましくなく、カルシウム・アルミノ硼酸塩ガラスが適していると記述されている(段落0018,0019)。しかし、ケイ酸塩を使用したガラスは、光学ガラスとして広く流通しており、信頼性の高い製品を安価に入手でき、これが適さないということは経済的に好ましくない。また、レジストパターンをエッチングすることで島状粒子を形成する方法が述べられている(段落0037,0038)。通常、プロジェクターで使用する偏光板は、数cm程度の大きさが必要でかつ高い消光比が要求される。従って、可視光用偏光板を目的とした場合、レジストパターンサイズは可視光波長より充分に短い、すなわち、数十ナノメートルの大きさが必要であり、また、高い消光比を得るためには、パターンを高密度に形成する必要がある。また、プロジェクター用として使用する場合には、大面積が必要である。しかしながら、記述されているようなリソグラフィにより高密度微細パターン形成を応用する方法では、そのようなパターンを得るために電子ビーム描画などを用いる必要がある。電子ビーム描画は、個々のパターンを電子ビームより描く方法であり生産性が悪く実用的でない。
 また、特許文献2には、アルミニウムを塩素プラズマにより除去すると記述されているが、通常そのようにエッチングした場合には、アルミニウムパターンの側壁に塩化物が付着する。市販のウエットエッチング液(例えば東京応化工業のSST-A2)により除去可能であるが、アルミ塩化物に反応するこのような薬液はアルミニウムにもエッチング速度は遅いながらも反応はするので、述べられているような方法で所望のパターン形状を実現することは難しい。
 さらに、特許文献2には、別な方法として、パターン化されたフォトレジスト上に斜め成膜によりアルミニウムを堆積し、フォトレジストを除去する方法が記述されている(段落0045,0047)。しかし、このような方法では、基板とアルミニウムの密着性を得るために、ある程度基板面にもアルミニウムを堆積する必要があるものと考えられる。
しかし、これは堆積したアルミニウム膜の形状が段落0015に記述されている適当な形状である扁長の楕円体を含む扁長の球体とは異なることを意味する。また、段落0047には表面に垂直な異方性エッチングにより過沈積分を除去すると記述されている。偏光板として機能させるには、アルミニウムの形状異方性は極めて重要である。従ってレジスト部と基板面に堆積するアルミニウムの量をエッチングにより所望の形状が得られるように調整する必要があると考えられるが、段落0047に記述されているような0.05μmというサブミクロン以下のサイズでこれらを制御することは非常に困難と考えられ、生産性の高い製作方法として適しているか疑問である。また、偏光板の特性として透過軸方向については高い透過率が求められるが、通常、基板にガラスを用いた場合、ガラス界面から数%の反射は避けられず、高い透過率を得ることが難しい。
 また、特許文献3には、斜め蒸着による偏光板について記述されている。この方法は、使用帯域の波長に対して透明及び不透明な物質を斜め蒸着により微小柱状構造を製作することで偏光特性を得るものであり、特許文献1と異なり、簡便な方法で微細パターンを得られるため生産性の高い方法と考えられる。しかしながら、使用帯域に対して不透明な物質の微小柱状構造のアスペクト比、個々の微小柱状構造の間隔、直線性は、良好な偏光特性を得るために重要な要素であり、特性の再現性の観点からも意図的に制御されるべきものであるが、この方法では蒸着粒子の初期堆積層の影となる部分に次に飛来する蒸着粒子が堆積しないことにより柱状構造が得られるという現象を利用しているため、上記の項目を意図的に制御することが難しい。これを改善する方法として、蒸着前にラビング処理により基板に研磨痕を設ける方法が記述されているが、一般的には蒸着膜の粒子径は最大でも数十nm程度の大きさであり、このような粒子の異方性を制御するにはサブミクロン以下のピッチを研磨により意図的に製作する必要がある。しかし、一般の研磨シート等では、サブミクロン程度が限界であり、そのような微細な研磨痕を製作することは容易でない。また、前記のようにAl微粒子の共鳴波長は周りの屈折率に大きく依存し、この場合、透明及び不透明な物質の組み合わせが重要であるが、特許文献3には、可視光域で良好な偏光特性を得るための組み合わせについて記述がされていない。また、特許文献1と同様に、基板としてガラスを用いた場合、ガラス界面から数%の反射は避けられない。
 また、非特許文献2には、Lamipolと称する赤外通信用の偏光板について記述されている。これは、AlとSiOの積層構造をしており、この文献によれば非常に高い消光比を示す。また、非特許文献3には、Lamipolの光吸収を担うAlの代わりにGeを使うことで、波長1μm以下で高い消光比を実現できることが述べられている。また、同資料中のFig3からTe(テルル)も高い消光比が得られることが期待できる。このようにLamipolは、高い消光比が得られる吸収型偏光板であるが、吸光物質と透過性物質の積層厚が受光面の大きさとなるために数cm角の大きさが必要なプロジェクター用途の偏光板には向かない。
 また、特許文献4には、金属格子上に誘電層と無機微粒子層が堆積した構造の無機偏光板の構造及び特性が述べられ、この構造によって高いコントラストが得られることが示されている。この構造を発展させ、コントラストを増大し、反射率を軽減し、簡単な製作工程で製造することができる無機偏光板があれば、産業上さらに有用である。
 しかしながら、特許文献4の技術は、光を吸収する無機微粒子層が空気界面に存在するため、光の吸収により変換された熱が放熱され難く、熱吸収により偏光板の温度が上昇し易い。このため、強い光に対する耐光性が低い。また、[0083]には、反射層直下に反射防止層を付加した構造が記載されているが、この場合、使用方法によっては、上部の無機微粒子層は必ずしも必要でない。
米国特許第6772608号明細書 特開2000-147253号公報 特開2002-372620号公報 特開2008-216957号公報
J.Opt.Soc.Am.A Vol.8,No.4 619-624 Applied Optics Vol.25 No.2 1986 311-314 J. Lightwave Tec. Vol.15 No.6 1997 1042-1050
 本発明は、このような実情に鑑みて提案されたものであり、優れた光学特性を有するとともに強い光に対して高い耐光性を有する偏光素子を提供することを目的とする。
 前述した課題を解決するために、本発明に係る偏光素子は、透明基板と、前記透明基板上に使用帯域の光の波長よりも小さいピッチで配列された格子状凸部を構成する吸収層と、前記吸収層上に形成された前記格子状凸部を構成する誘電体層と、前記誘電体層上の形成された前記格子状凸部を構成する反射層とを備えることを特徴とする。
 また、本発明に係る液晶プロジェクターは、前述した偏光素子と、光源と、画像表示パネルとを備え、前記偏光素子は、前記光源からの使用帯域の光を透明基板側から入射し、通過させることを特徴とする。
 本発明によれば、光を干渉・吸収させる吸収層が透明基板に接しているため、より放熱性を高めることができ、偏光素子の耐熱性を向上させることができる。また、吸収層の偏光波の選択的光吸収作用によって優れた光学特性を得ることができる。
図1は、本発明の一実施の形態に係る偏光素子を示す概略断面図である。 図2は、本発明の一実施の形態に係る液晶プロジェクターの光学エンジン部分の構成を示す概略断面図である。 図3A~図3Dは、偏光素子の製造方法を説明するための図である。 図4は、吸収層がTaの偏光素子を示す概略断面図である。 図5は、吸収層がTaの偏光素子の光学特性を示すグラフである。 図6は、吸収層がTaの偏光素子の断面のSEM画像(その1)である。 図7は、吸収層がTaの偏光素子の断面のSEM画像(その2)である。 図8は、吸収層がSiの偏光素子を示す概略断面図である。 図9は、吸収層がSiの偏光素子の光学特性を示すグラフである。 図10は、吸収層がTa/Siの偏光素子を示す概略断面図である。 図11は、吸収層がTa/Siの偏光素子の光学特性を示すグラフである。 図12は、グリッド幅に対する吸収軸透過率の関係を示すグラフである。 図13は、水晶基板上にTa、Siをこの順番に積層(積層順A)した偏光素子を示す概略断面図である。 図14は、水晶基板上にSi、Taをこの順番に積層(積層順B)した偏光素子を示す概略断面図である。 図15は、積層順Aの偏光素子の断面のSEM画像である。 図16は、積層順Bの偏光素子の断面のSEM画像である。 図17は、積層順Aの偏光素子の光学特性を示すグラフである。 図18は、積層順Bの偏光素子の光学特性を示すグラフである。 図19は、緑域の透過軸及び吸収軸における透過率を示すグラフである。 図20は、緑域の透過軸及び吸収軸における反射率を示すグラフである。 図21は、吸収層の幅Wを小さくした偏光素子を示す概略断面図である。 図22は、吸収層の幅Wに対する透過軸透過率Tpのシミュレーション結果を示すグラフである。 図23は、吸収層の幅Wに対する透過軸反射率Rpのシミュレーション結果を示すグラフである。 図24は、吸収層の幅Wに対する吸収軸透過率Tsのシミュレーション結果を示すグラフである。 図25は、吸収層の幅Wに対する吸収軸反射率Rsのシミュレーション結果を示すグラフである。 図26は、吸収層の幅Wを小さくした偏光素子の断面のSEM画像である。 図27は、吸収層の幅Wが異なるサンプルA、Bの透過軸透過率Tpの測定結果を示すグラフである。 図28は、吸収層の幅Wが異なるサンプルA、Bの透過軸反射率Rpの測定結果を示すグラフである。 図29は、吸収層の幅Wが異なるサンプルA、Bの吸収軸透過率Tsの測定結果を示すグラフである。 図30は、吸収層の幅Wが異なるサンプルA、Bの吸収軸反射率Rsの測定結果を示すグラフである。 図31は、保護膜が成膜された偏光素子を示す概略断面図である。 図32は、保護膜が成膜された偏光素子の断面のSEM画像である。 図33は、保護膜が成膜された偏光素子の透過率を示すグラフである。 図34は、保護膜が成膜された偏光素子の反射率を示すグラフである。
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.偏光素子の構成
2.偏光素子の製造方法
3.液晶プロジェクターの構成例
4.実施例
 <1.偏光素子の構成>
 図1は、本発明の一実施の形態に係る偏光素子を示す概略断面図である。図1に示すように、偏光素子1は、透明基板11と、透明基板11上に使用帯域の光の波長よりも小さいピッチで配列された格子状凸部を構成する吸収層12と、吸収層12上に形成された誘電体層13と、誘電体層13上に形成された反射層14とを備える。すなわち、偏光素子1は、透明基板11側から吸収層12と誘電体層13と反射層14とがこの順に積層された凸部が、透明基板11上に一定間隔に並んだ一次元格子状のワイヤグリッド構造を有する。
 透明基板11は、使用帯域の光に対して透明で、屈折率が1.1~2.2の材料、例えば、ガラス、サファイア、水晶などで構成されている。本実施の形態では、透明基板11の構成材料として、熱伝導性の高い水晶やサファイア基板を用いることが好ましい。これにより、強い光に対して高い耐光性を有することとなり、発熱量の多いプロジェクターの光学エンジン用の偏光素子として有用となる。
 また、透明基板11が水晶のような光学活性の結晶からなる場合、結晶の光学軸に対して平行方向又は垂直方向に格子状凸部を配置することにより、優れた光学特性を得ることができる。ここで、光学軸とは、その方向に進む光のO(常光線)とE(異常光線)の屈折率の差が最小となる方向軸である。
 なお、偏光素子の用途によっては、ガラス、特に、石英(屈折率1.46)やソーダ石灰ガラス(屈折率1.51)を用いてもよい。ガラス材料の成分組成は特に制限されず、例えば光学ガラスとして広く流通しているケイ酸塩ガラスなどの安価なガラス材料を用いることができ、製造コストの低減を図ることができる。
 吸収層12は、金属、半導体など光学定数の消衰定数が零でない、光吸収作用を持つ物質の1種以上から構成され、その材料は、適用される光の波長範囲によって選択される。金属材料としては、Ta、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Sn単体もしくはこれらを含む合金が挙げられる。半導体材料としては、Si、Ge、Te、ZnO、シリサイド材料(β-FeSi、MgSi、NiSi、BaSi、CrSi、COSi、TaSiなどが挙げられる。なお、半導体材料を用いる場合、吸収作用に半導体のバンドギャップエネルギーが関与するため、バンドギャップエネルギーが使用帯域以下であることが必要である。例えば、可視光で使用する場合、波長400nm以上での吸収、すなわちバンドギャップとしては3.1eV以下の材料を使用する必要がある。
 吸収層12は、前述した金属材料、半導体材料のうち、透明基板11よりも高い屈折率を有することが好ましい。また、吸収層12は、材料の異なる2層以上となっていることが好ましく、そのうちいずれか1層が透明基板11よりも高い屈折率を有することが好ましい。前述した金属材料及び/又は半導体材料を組み合わせることにより、使用帯域の光に対して干渉効果を高めて所望の波長での透過軸方向のコントラストを増大させるとともに、透過型液晶表示装置において好ましくない偏光板からの反射成分を低下させることができる。
 具体的な材料の組み合わせは、屈折率n、消衰定数kなどの光学定数に基づいて選択される。例えば、屈折率が高いSi(n=4.08(550nm)、k=0.04)を用いる場合、屈折率差が大きく、消衰定数kがSiよりも大きいTa(n=2.48(550nm)、k=1.83)を用いることにより、吸収効果や干渉効果を高めてコントラストを増大させることができる。また、透明基板11に水晶(n=1.54(550nm)、k=0.00)を用いた場合、基板上に屈折率差が小さいTa層を形成し、Ta層上にSi層を形成することにより、反射を抑制し、透過率を向上させることができる。
 また、吸収層12の透過軸方向の幅(X軸方向)を他の層(反射層、誘電体層)より小さくすることにより、反射率が最小となる波長を短波長側にシフトさせることができる。したがって、ピッチ及びグリッド幅を最適に設計することにより、所望の波長帯域の反射率を低くすることが可能となる。また、具体的な吸収層12の透過軸方向の幅は、グリッド(反射層、誘電体層)幅の50%以上であることが好ましく、より好ましくは、グリッド幅の80%以上である。吸収層12の幅(X軸方向)をグリッド幅の50%未満とした場合、熱伝導性が悪化し、物理的強度が低下してしまう。
 吸収層12は、蒸着法やスパッタ法により、膜が高い密度で形成されていることが好ましい。膜の密度が高いことにより、熱伝導性が向上し、放熱性を向上させることができる。
 また、吸収層12の膜を得る方法として、シャドーイング効果を利用した蒸着やスパッタによる斜め成膜方法を用いて無機微粒子を堆積させてもよい。この場合、無機微粒子は、使用帯域の波長以下のサイズであって、個々の粒子が完全に孤立していることが望ましい。無機微粒子は、長楕円形状であり、吸収軸であるY軸方向に長楕円の長軸方向が平行に配列され、透過軸であるX軸方向に長楕円の短軸方向が平行に配列される。このようにして形成された吸収層12は、吸収軸であるY軸方向の光学定数が透過軸X方向の光学定数よりも大であり、光学異方性を有する。具体的には、吸収軸Y方向の屈折率が透過軸X方向の屈折率よりも大であり、吸収軸Y方向の消衰係数が透過軸X方向の消衰係数よりも大である。
 誘電体層13は、吸収層12で反射した偏光に対して、吸収層12を透過し、反射層14で反射した当該偏光の位相が半波長ずれる膜厚で形成されている。具体的な膜厚は、偏光の位相を調整し、干渉効果を高めることが可能な1~500nmの範囲で適宜設定される。本実施の形態では、吸収層12が反射した光を吸収するため、膜厚が最適化されていなくてもコントラストの向上が実現でき、実用上は、所望の偏光特性と実際の作製工程の兼ね合いで決定して構わない。
 誘電体層13を構成する材料は、SiO、Al、MgFなどの一般的な材料を用いることができる。また、誘電体層13の屈折率は、1.0より大きく2.5以下とすることが好ましい。なお、吸収層12の光学特性は、周囲の屈折率によっても影響を受けるため、誘電層13の材料により偏光素子特性を制御してもよい。
 反射層14は、誘電体層13上に吸収軸であるY方向に帯状に延びた金属薄膜が配列されてなるものである。すなわち、反射層14は、ワイヤグリッド型偏光子としての機能を有し、透明基板11側から入射した光のうち、ワイヤグリッドの長手方向に平行な方向(Y軸方向)に電界成分をもつ偏光波(TE波(S波))を減衰させ、ワイヤグリッドの長手方向と直交する方向(X軸方向)に電界成分をもつ偏光波(TM波(P波))を透過させる。
 反射層14の構成材料には、使用帯域の光に対して反射性を有する材料であれば特に制限されず、例えばAl、Ag、Cu、Mo、Cr、Ti、Ni、W、Fe、Si、Ge、Teなどの金属単体もしくはこれらを含む合金あるいは半導体材料を用いることができる。なお、金属材料以外にも、例えば着色等により表面の反射率が高く形成された金属以外の無機膜や樹脂膜で構成されていてもよい。
 なお、反射層22のピッチ、ライン幅/ピッチ、薄膜高さ(厚さ、格子深さ)、薄膜長さ(格子長さ)は、それぞれ以下の範囲とするのが好ましい。
 0.05μm<ピッチ<0.8μm
 0.1<(ライン幅/ピッチ)<0.9
 0.01μm<薄膜高さ<1μm
 0.05μm<薄膜長さ
 また、光学特性の変化が実用上影響を与えない範囲で、透明基板11及び格子状凸部の表面を被覆する保護膜を備えることが好ましい。例えばSiOなどを堆積させることにより、耐湿性などの信頼性を改善することができる。保護膜の形成方法としては、プラズマCVD(Chemical Vapor Deposition)を用いることが好ましい。プラズマCVDを用いることにより、格子状凸部の隙間にも保護膜を堆積させることができる。
 このような構成の偏光素子1によれば、透過、反射、干渉、偏光波の選択的光吸収の4つの作用を利用することで、反射層の格子に平行な電界成分をもつ偏光波(TE波(S波))を減衰させ、格子に垂直な電界成分をもつ偏光波(TM波(P波))を透過させることができる。すなわち、TE波は、吸収層12の偏光波の選択的光吸収作用によって減衰され、吸収層12及び誘電体層13を透過したTE波は、ワイヤグリッドとして機能する格子状の反射層14によって反射される。ここで、誘電体層13の厚さ、屈折率を適宜調整することによって、反射層14で反射したTE波について、吸収層12を透過する際に一部を反射し、反射層14に戻すことができ、また、吸収層12を通過した光を干渉により減衰させることができる。以上のようにしてTE波の選択的減衰を行うことにより、所望の偏光特性を得ることができる。
 また、本実施の形態における偏光素子1は、光を干渉・吸収させる吸収層12が透明基板11に接しているため、より放熱性を高めることができ、偏光板の耐熱性を向上させることができる。また、本実施の形態における偏光素子1は、有機物よりも耐久性の高い無機物で構成されているため、液晶プロジェクターに使われるような強い光に対して高い耐光特性を示し、高い信頼性を得ることができる。
 高い耐光特性を得るための具体的な偏光素子1の構成として、透明基板11として熱伝導率が高い水晶(約10W/(m・K) at 300 K)又はサファイア(約40W/(m・K) at 300 K)を用いることが好ましい。また、吸収層12は、透明基板11と接するため、吸収層12を構成する材料の熱伝導率が、透明基板11を構成する材料の熱伝導率よりも高いことが好ましい。より具体的には、50W/(m・K)at 300K以上の熱伝導率を有する、Ta(約60W/(m・K) at 300 K)、Al(約235W/(m・K) at 300 K)、Ag(約430W/(m・K) at 300 K)、Cu(約400W/(m・K) at 300 K)、Au(約315W/(m・K) at 300 K)、Mo(約140W/(m・K) at 300 K)、Cr(約95W/(m・K) at 300 K)、W(約175W/(m・K) at 300 K)、Ni(約90W/(m・K) at 300 K)、Fe(約80W/(m・K) at 300 K)、Sn(約65W/(m・K) at 300 K)などの金属材料、又はSi(約150W/(m・K) at 300 K)、Ge(約60W/(m・K) at 300 K)、ZnO(約55W/(m・K) at 300 K)などの半導体材料で構成することが好ましい。また、例えば吸収層12をTa及びSiの2層から構成する場合、Taよりも熱伝導率の高いSiを透明基板11側とすることが好ましい。このような構成の偏光素子によれば、透明基板11と吸収層12との界面において、接触熱抵抗を減少させることができ、優れた耐熱性が得られる。
 <2.偏光素子の製造方法>
 次に、本実施の形態における偏光素子の製作方法について説明する。先ず、透明基板11上に、吸収層12、誘電層13、反射層14をこの順に成膜する。
 吸収層12は、蒸着法やスパッタ法により成膜する。具体的には、成膜時に透明基板11をターゲットに対して対向させて配置し、アルゴンガス粒子をターゲットに衝突させ、その衝撃ではじき飛ばされたターゲット成分を基板上に付着させ、吸収層12を得る。また、シャドーイング効果を利用した蒸着やスパッタによる斜め成膜方法を用いて無機微粒子を堆積させ吸収層12を成膜してもよい。
 また、誘電層13及び反射層14は、スパッタ法、気相成長法、蒸着法などの一般的な真空成膜法あるいはゾルゲル法(例えばスピンコート法によりゾルをコートし熱硬化によりゲル化させる方法)により成膜することができる。
 このようにして成膜された反射層14上に、ナノインプリント、フォトリソグラフィなどにより格子状のマスクパターンを形成、その後、ドライエッチングにより格子状凸部を形成する。ドライエッチング用のガスとしては、反射防止膜(BARC)にはAr/O、AlSiにはCl/BCl、SiO、Si、Taには、CF/Arを挙げることができる。また、エッチング条件(ガス流量、ガス圧、パワー、基板の冷却温度)を最適化することによって、垂直性の高い格子形状を実現する。また、エッチング条件により、吸収層12の幅(X軸方向)を調整することができる。
 なお、反射層14にAlやAlSiを用いる場合には、吸収層12及び誘電体層13には、フッ素でエッチング可能な材料を選択することが望ましい。そうすることで、高いエッチング選択比が得られ、吸収層12及び誘電体層13の膜厚設計値の幅を広くすることができ、プロセス構築上有利となる。
 また、光学特性の変化が応用上影響を与えない範囲で、最上部に耐湿性などの信頼性改善の目的でSiOなどの保護膜を堆積することも可能である。
 <3.液晶プロジェクターの構成例>
 次に、本発明の一実施の形態に係る液晶プロジェクターについて説明する。液晶プロジェクター100は、光源となるランプと、液晶パネルと、前述した偏光素子1とを備える。
 図2に、本発明に係る液晶プロジェクターの光学エンジン部分の構成例を示す。液晶プロジェクター100の光学エンジン部分は、赤色光LRに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、緑色光LGに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、青色光LBに対する入射側偏光素子10A、液晶パネル50、出射プリ偏光素子10B、出射メイン偏光素子10Cと、それぞれの出射メイン偏光素子10Cから出てくる光を合成し投射レンズに出射するクロスダイクロプリズム60とを備えている。ここで、前述した偏光素子1は、入射側偏光素子10A、出射プリ偏光素子10B、出射メイン偏光素子10Cそれぞれに適用され、光源からの使用帯域の光を透明基板11側から入射し、通過させる。
 この液晶プロジェクター100では、光源ランプ(不図示)から出射される光をダイクロイックミラー(不図示)により赤色光LR、緑色光LG、青色光LBに分離し、それぞれの光に対応する入射側偏光素子10Aに入射させ、ついでそれぞれの入射側偏光素子10Aで偏光された光LR、LG、LBは液晶パネル50にて空間変調されて出射され、出射プリ偏光素子10B、出射メイン偏光素子10Cを通過した後、クロスダイクロプリズム60にて合成されて投射レンズ(不図示)から投射される構成となっている。光源ランプは高出力のものであっても、強い光に対して優れた耐光特性をもつ偏光素子1を用いているため、信頼性の高い液晶プロジェクターを実現することができる。
 なお、本発明の偏光素子は、前記液晶プロジェクターへの適用に限定されるわけではなく、使用環境として熱を受ける偏光素子として好適である。例えば、自動車のカーナビやインパネの液晶ディスプレイの偏光素子として適用することができる。
 <4.実施例>
 以下、本発明の実施例について説明する。ここでは、吸収層12について、単層構造(Ta、Si)と、2層構造(Ta/Si)のサンプルを作製し、光学特性について評価した。なお、本発明はこれらの実施例に限定されるものではない。
 [実施例1:吸収層Ta]
 図3Aに示すように、先ず、水晶基板上に吸収層としてTa、誘電体層としてSiO、反射層としてAlSiを成膜した。また、反射層上に反射防止膜(BARC)を成膜し、レジストにより格子状のマスクパターンを形成した。なお、水晶結晶の光学軸に対して平行方向に吸収層、誘電体層、及び反射層を積層させた。
 次に、図3Bに示すように、Ar/Oガスによるスカム処理により反射防止膜を除去し、Cl/BClによりAlSiをエッチングした。その後、図3Cに示すように、HOプラズマにより腐食層(塩化化合物)を除去し、Oアッシングにより、レジスト、反射保護膜を除去した。そして、図3Dに示すように、CF/ArガスによりSiO、Ta、及び水晶をエッチングし、格子状凸部を形成し、実施例1の偏光素子を作製した。
 図4に、実施例1の偏光素子を示す概略断面図を示す。この偏光素子は、液晶表示装置で実用上重要である緑域(550nm近辺)において、コントラスト(消光比:透過軸透過率/吸収軸透過率)が2~10程度で、反射率が最低になるように構造設計され、ピッチを150nm、グリッド幅を45nm、Taの厚さを20nm、SiOの厚さを50nm、AlSiの厚さを45nmとした。
 図5に、実施例1の偏光素子の光学特性を示す。図5に示す結果から、吸収層としてTaを用いた偏光素子は、長波長側において良好なコントラストを持つことが分かった。
 また、図6に、実施例1の偏光素子の断面のSEM(Scanning Electron Microscope)画像を示す。この断面写真より、吸収層の透過軸方向の幅が他の層(反射層、誘電体層)よりも小さいことが分かる。これは、CF/Arガスによるエッチングによるものであるが、吸収層の幅が他の層よりも小さいことにより、後述するように、吸収軸反射率Rsが最小となる波長を短波長側にシフトさせることができる。
 なお、実施例1の偏光素子は、水晶基板を露出させるため、オーバーエッチングにより水晶基板が掘り込まれているが、エッチング条件を変更し、水晶基板を掘り込まないようにしても構わない。図7に、水晶基板が掘り込まれていない偏光素子の断面のSEM画像を示す。オーバーエッチングによる水晶基板の掘り込みの有無によっては、偏光素子の光学特性に大きな変化は見られなかった。
 [実施例2:吸収層Si]
 図8に、実施例2の偏光素子を示す概略断面図を示す。この偏光素子は、液晶表示装置で実用上重要である緑域(550nm近辺)において、コントラスト(消光比:透過軸透過率/吸収軸透過率)が2~10程度で、反射率が最低になるように構造設計され、ピッチを150nm、グリッド幅を45nm、Siの厚さを20nm、SiOの厚さを30nm、AlSiの厚さを45nmとした。なお、吸収層をSiとした以外は、実施例1と同様にして、実施例2の偏光素子を作製した。
 図9に、実施例2の偏光素子の光学特性を示す。図9に示す結果から、吸収層としてSiを用いた偏光素子は、短波長側において良好なコントラストを持つことが分かった。
 [実施例3:吸収層Ta/Si]
 図10に、実施例3の偏光素子を示す概略断面図を示す。この偏光素子は、液晶表示装置で実用上重要である緑域(550nm近辺)において、コントラスト(消光比:透過軸透過率/吸収軸透過率)が2~10程度で、反射率が最低になるように構造設計され、ピッチを150nm、グリッド幅を45nm、Taの厚さを10nm、Siの厚さを10nm、SiOの厚さを30nm、AlSiの厚さを45nmとした。なお、吸収層をTa、Siの2層構造とした以外は、実施例1と同様にして、実施例3の偏光素子を作製した。
 図11に、実施例3の偏光素子の光学特性を示す。図11に示す結果から、吸収層としてTa、Siを積層した偏光素子は、実施例1の長波長側の良好なコントラストと実施例2の短波長側の良好なコントラストとを併せ持つことが分かった。
 [実施例1~3の偏光素子の緑域の特性]
 表1に、実施例1~3の偏光素子について、測定波長を緑域の520~590nmとしたときの透過率と反射率の平均値を示す。
Figure JPOXMLDOC01-appb-T000001
 同等のコントラストが得られる偏光素子について、理想的な特性とは、透過軸透過率が高く、反射率が低いことであるが、実施例1、2の特性を見ると、実施例1は、長所として反射率が低いものの、短所として透過率が低かった。一方、実施例2は、長所として透過率が高いものの、短所として反射率が高かった。これに対し、実施例3は、透過軸透過率が高く、反射率が低いという理想的な特性が得られた。なお、実施例3は、吸収軸反射率の波長選択性が強くなっているが、Si膜厚もしくはSiO膜厚を調整することで、低反射の波長帯域をコントロールすることが可能である。
 [実施例4:グリッド幅に対する吸収軸透過率]
 次に、偏光素子におけるグリッド幅を変化させ、吸収軸透過率を測定した。図12にグリッド幅に対する吸収軸透過率の関係を示す。なお、吸収率透過率は、520~590nmnの緑域を測定波長としたときの平均値である。また、偏光素子の凸部のピッチを150nmとし、吸収層(Ta、Si、Ta/Si)の厚さを20nm、SiOの厚さを30nm、AlSiの厚さを45nmとした。
 図12に示す結果より、吸収層としてTa、Siを積層した偏光素子は、吸収層がSi単層の偏光素子と同程度にまで、吸収軸透過率を低下させることができることが分かった。また、グリッド幅により吸収軸透過率をコントロール可能であることが分かった。
 [実施例5:吸収層の積層順に対する光学特性]
 図13に示すように水晶基板上にTa、Siをこの順番に積層(積層順A)した偏光素子と、図14に示すように水晶基板上にSi、Taをこの順番に積層(積層順B)した偏光素子を作製した。図15及び図16に、それぞれ積層順A及び積層順Bの偏光素子の断面のSEM画像を示す。
 これらの偏光素子は、液晶表示装置で実用上重要である緑域(550nm近辺)において、コントラスト(消光比:透過軸透過率/吸収軸透過率)が2~10程度で、反射率が最低になるように構造設計され、ピッチを150nm、グリッド幅を45nm、Taの厚さを5nm、Siの厚さを20nm、SiOの厚さを30nm、AlSiの厚さを35nmとした。なお、吸収層をTa、Siの2層構造とした以外は、実施例1と同様にして、積層順A、Bの偏光素子を作製した。
 図17及び図18に、それぞれ積層順A及び積層順Bの偏光素子の光学特性を示す。また、表2に、積層順A及び積層順Bの偏光素子について、測定波長を青域の430~510nm、緑域の520~590nm、及び赤域の600~680nmとしたときの透過率と反射率の平均値を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、吸収層としてTa、Siを積層した偏光素子は、積層順A、Bともに緑域(520~590nm)において反射率が低く、良好なコントラストが得られることが分かった。
 また、図19及び図20に、測定波長を緑域の520~590nmとしたときの透過軸及び吸収軸における透過率及び反射率をプロットしたグラフを示す。これらの結果において、積層順A及び積層順B共に反射率に差は見られないものの、透過率については積層順Aよりも積層順Bの方が良好であることが分かった。
 [実施例6:吸収層の幅に対する光学特性]
 次に、図21に示すように吸収層の幅Wを変え、光学特性に及ぼす影響について評価した。先ず、シミュレーションソフト(GSD社製、Gsolver)を用いて、幅Wが40.0nm、37.5nm、30.0nm、及び22.5nmである偏光素子の光学特性を計算した。偏光素子のモデルは、ピッチを150nm、グリッド幅を45nm、Taの厚さを5nm、Siの厚さを20nm、SiOの厚さを30nm、AlSiの厚さを35nmとし、水晶基板上にSiを積層させた積層順Bのものを用いた。
 図22~図25に、透過軸透過率Tp、透過軸反射率Rp、吸収軸透過率Ts、及び吸収軸反射率Rsのシミュレーション結果を示す。図22及び図23に示す透過軸においては、吸収層の幅Wの違いによる大きな差は見られなかった。一方、図24及び図25に示す吸収軸においては、幅Wが小さくなるにしたがって透過率Tsが上がり、反射率Rsの最小となる波長が短波長側にシフトすることが分かった。
 また、吸収層の幅Wが異なる偏光素子を作製し、前述したシミュレーション結果を検証した。吸収層の幅W(サイドエッチング量)は、CF/Arガスによるエッチングにおけるエッチング時間により調整した。なお、前述した図16に示す積層順Bの偏光素子(幅W=46.6nm)をサンプルAとした。
 図26に、吸収層の幅Wをグリッド幅よりも小さくした偏光素子の断面のSEM画像を示す。この偏光素子は、吸収層の幅Wが41.0nmであった。これを、サンプルBとした。また、この偏光素子は、液晶表示装置で実用上重要である緑域(550nm近辺)において、コントラスト(消光比:透過軸透過率/吸収軸透過率)が2~10程度で、反射率が最低になるように構造設計され、ピッチを150nm、グリッド幅を45nm、Taの厚さを5nm、Siの厚さを20nm、SiOの厚さを30nm、AlSiの厚さを35nmとした。なお、吸収層をTa、Siの2層構造とした以外は、実施例1と同様にして、積層順Bの偏光素子を作製した。
 図27~図30に、透過軸透過率Tp、透過軸反射率Rp、吸収軸透過率Ts、及び吸収軸反射率Rsの測定結果を示す。図27及び図28に示す透過軸においては、シミュレーション同様、吸収層の幅Wの違いによる大きな差は見られなかった。一方、図29及び図30に示す吸収軸においても、シミュレーションと同様、幅Wが小さくなるにしたがって透過率Tsが上がり、反射率Rsの最小となる波長が短波長側にシフトしたが、シミュレーションに比べ、大きくシフトすることが分かった。よって、吸収層の幅Wを小さくすることにより、青域(430~510nm)において反射率が低い偏光素子を得ることができることが分かった。
 また、表3に、サンプルA及びサンプルBの偏光素子について、測定波長を青域の430~510nm、緑域の520~590nm、及び赤域の600~680nmとしたときの透過率と反射率の平均値を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、吸収層の幅が小さいサンプルBは、高い透過率を有することが分かった。また、サンプルBは、短波長の青域(430~510nm)において、良好な吸収軸反射率Rsを示すことが分かった。
 [実施例7:保護膜の成膜]
 図31に示すように、耐湿性など信頼性改善を目的として、格子形状を被覆するようにSiOからなる保護膜を成膜した。保護膜の厚さは7.5nmであり、格子状凸部の隙間にも保護膜が成膜されていることが確認された。この偏光素子は、液晶表示装置で実用上重要である緑域(550nm近辺)において、コントラスト(消光比:透過軸透過率/吸収軸透過率)が2~10程度で、反射率が最低になるように構造設計され、ピッチを150nm、保護膜を含むグリッド幅を65nm、Taの厚さを5nm、Siの厚さを20nm、SiOの厚さを30nm、AlSiの厚さを35nmとした。また、凸部の形状は、CF/Arガスによるエッチングにより、他の層と比較してTa/Si層の幅が細くなっており、水晶基板も5nm掘り込まれていた。すなわち、この偏光素子は、図13に示す積層順Aの偏光素子と同様にして作製され、さらに保護膜が成膜されたものである。保護膜の成膜方法は、被覆性を良くするため、プラズマCVD(Chemical Vapor Deposition)を用い、原料ガスにTEOS(Tetra Ethyl Ortho Silicate)及びOを用いた。
 図32は、保護膜が形成された偏光素子の断面のSEM画像である。この断面写真より、吸収層の透過軸方向の幅が他の層(反射層、誘電体層)よりも小さいことが確認された。なお、この断面写真では積層された凸部と保護膜との境界が明確ではないが、AlSiとSiO界面から凸部頂点までの長さ(AlSiと保護膜を足した厚み)を実測したところ42nmであった。これからAlSi膜厚設計値の35nmを差し引いた分の7nmが保護膜厚と推定できる。
 また、図33及び図34は、それぞれ保護膜が成膜された偏光素子の透過率及び反射率を示すグラフである。CF/Arガスによるエッチング後の偏光素子と、プラズマCVDによる保護膜の成膜後の偏光素子とについて、それぞれ透過軸透過率、吸収軸透過率、透過軸反射率、及び吸収軸反射率を測定した(n=36)。
 CF/Arガスによるエッチング後の偏光素子と、プラズマCVDによる保護膜の成膜後の偏光素子との変化量の平均値(n=36)は、それぞれ透過軸透過率が-0.1%、吸収軸透過率が+3.4%、透過軸反射率が±0.0%、及び吸収軸反射率が+0.5%であった。本実施の形態にける偏光素子は、水晶基板側から光が入射されるため、反射率の変化量はほとんどなく、また、透過率の変化量も小さかった。また、図14に示す積層順Bの偏光素子に保護膜を成膜した場合も同様な結果が得られた。
 1 偏光素子、11 透明基板、 12 吸収層、 13 誘電体層、 14 反射層、 50 液晶パネル、 60 クロスダイクロプリズム、 100 液晶プロジェクター

Claims (13)

  1.  透明基板と、
     前記透明基板上に使用帯域の光の波長よりも小さいピッチで配列された格子状凸部を構成する吸収層と、
     前記吸収層上に形成され、前記格子状凸部を構成する誘電体層と、
     前記誘電体層上に形成され、前記格子状凸部を構成する反射層と
     を備える偏光素子。
  2.  前記透明基板及び前記格子状凸部の表面を被覆する保護膜を備える請求項1記載の偏光素子。
  3.  前記保護膜が、プラズマCVD(Chemical Vapor Deposition)から形成されてなる請求項2記載の偏光素子。
  4.  前記吸収層は、前記透明基板よりも高い屈折率を有する請求項1乃至3のいずれか1項に記載の偏光素子。
  5.  前記吸収層は、2層以上からなり、そのうちいずれか1層が透明基板よりも高い屈折率を有する請求項1乃至3のいずれか1項に記載の偏光素子。
  6.  前記吸収層が、金属及び半導体材料のうち1種以上からなる請求項1乃至5のいずれか1項に記載の偏光素子
  7.  前記吸収層を構成する材料の熱伝導率が、前記透明基板を構成する材料の熱伝導率よりも高い請求項1乃至6記載のいずれか1項に記載の偏光素子。
  8.  前記吸収層が、Ta及びSiの2層からなる請求項1乃至7のいずれか1項に記載の偏光素子。
  9.  前記透明基板上にSiが形成されている請求項8記載の偏光素子。
  10.  前記吸収層の透過軸方向の幅が、前記誘電体層の幅の50%以上である請求項1乃至9のいずれか1項に記載の偏光素子。
  11.  前記透明基板が、水晶又はサファイアからなる請求項1乃至10のいずれか1項に記載の偏光素子。
  12.  前記透明基板が水晶からなり、当該水晶の光学軸に対して平行方向又は垂直方向に格子状凸部が配置されている請求項1乃至11のいずれか1項に記載の偏光素子。
  13.  請求項1乃至12のいずれか1項に記載の偏光素子と、光源と、画像表示パネルとを備え、
     前記偏光素子は、前記光源からの使用帯域の光を透明基板側から入射し、通過させるプロジェクター。
PCT/JP2012/055457 2011-03-02 2012-03-02 偏光素子 WO2012118204A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/979,957 US9360608B2 (en) 2011-03-02 2012-03-02 Polarizing element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-045092 2011-03-02
JP2011045092A JP2012181420A (ja) 2011-03-02 2011-03-02 偏光素子

Publications (1)

Publication Number Publication Date
WO2012118204A1 true WO2012118204A1 (ja) 2012-09-07

Family

ID=46758128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055457 WO2012118204A1 (ja) 2011-03-02 2012-03-02 偏光素子

Country Status (3)

Country Link
US (1) US9360608B2 (ja)
JP (1) JP2012181420A (ja)
WO (1) WO2012118204A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005480A1 (ja) * 2013-07-11 2015-01-15 デクセリアルズ株式会社 偏光板、及び偏光板の製造方法、バンドル構造の製造方法
US20150015948A1 (en) * 2013-07-10 2015-01-15 Dexerials Corporation Polarizing plate and method of manufacturing the same
CN109581570A (zh) * 2018-11-23 2019-04-05 京东方科技集团股份有限公司 金属线栅及其制造方法、显示面板、显示装置
WO2022196409A1 (ja) * 2021-03-15 2022-09-22 デクセリアルズ株式会社 光学機器

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117600B1 (ko) * 2013-05-28 2020-06-02 삼성디스플레이 주식회사 편광판 및 이를 포함하는 액정 표시 장치
TW201447377A (zh) * 2013-06-07 2014-12-16 Hon Hai Prec Ind Co Ltd 雷射合光裝置
JP6136675B2 (ja) * 2013-07-10 2017-05-31 大日本印刷株式会社 偏光子
JP6527211B2 (ja) * 2013-07-10 2019-06-05 デクセリアルズ株式会社 偏光板、及び偏光板の製造方法
KR102116308B1 (ko) 2013-09-04 2020-06-01 삼성디스플레이 주식회사 표시 장치
WO2015199948A1 (en) 2014-06-25 2015-12-30 Moxtek, Inc. Wire grid polarizer with dual absorptive regions
US9632224B2 (en) * 2014-06-25 2017-04-25 Moxtek, Inc. Broadband, selectively-absorptive wire grid polarizer
CN106662687A (zh) * 2014-06-25 2017-05-10 莫克斯泰克公司 具有双吸收区域的线栅偏振器
KR102215134B1 (ko) * 2014-07-28 2021-02-15 삼성디스플레이 주식회사 편광자 및 이를 포함하는 표시 패널
US10088616B2 (en) * 2014-09-19 2018-10-02 Toyota Motor Engineering & Manufacturing North America, Inc. Panel with reduced glare
JP6117828B2 (ja) * 2015-01-08 2017-04-19 デクセリアルズ株式会社 無機偏光板
JP6634727B2 (ja) * 2015-08-10 2020-01-22 セイコーエプソン株式会社 光学素子、光学素子の製造方法、及び電子機器
KR20170022047A (ko) * 2015-08-19 2017-03-02 삼성전자주식회사 자체발광 디스플레이 패널 및 이를 가지는 디스플레이 장치
JP6377285B2 (ja) 2015-10-28 2018-08-22 デクセリアルズ株式会社 偏光素子およびその製造方法
KR20180034847A (ko) * 2016-09-28 2018-04-05 삼성전자주식회사 디스플레이 장치
CN109804280B (zh) * 2016-11-22 2022-03-04 莫克斯泰克公司 线栅偏振器散热片
JP6230689B1 (ja) * 2016-12-28 2017-11-15 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
JP6302040B1 (ja) * 2016-12-28 2018-03-28 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
JP6312917B1 (ja) * 2017-02-07 2018-04-18 デクセリアルズ株式会社 無機偏光板及びその製造方法、並びに光学機器
JPWO2019009151A1 (ja) * 2017-07-03 2020-06-18 Scivax株式会社 光学部材およびこれを用いた光学系装置
JP6410906B1 (ja) 2017-09-26 2018-10-24 デクセリアルズ株式会社 偏光素子及び光学機器
JP2019061125A (ja) * 2017-09-27 2019-04-18 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
CN109581568B (zh) * 2017-09-28 2022-05-24 迪睿合株式会社 偏振光板及具备该偏振光板的光学设备
JP2019144334A (ja) * 2018-02-19 2019-08-29 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
JP7101028B2 (ja) * 2018-04-12 2022-07-14 デクセリアルズ株式会社 偏光素子及びその製造方法、並びに光学機器
JP6825610B2 (ja) * 2018-10-02 2021-02-03 セイコーエプソン株式会社 偏光素子、液晶装置、および電子機器
JP7240357B2 (ja) 2019-06-28 2023-03-15 デクセリアルズ株式会社 偏光素子、偏光素子の製造方法及びヘッドアップディスプレイ装置
PH12020050192A1 (en) * 2019-07-17 2021-05-17 Moxtek Inc Reflective wire grid polarizer with transparent cap
US11249234B2 (en) 2019-07-29 2022-02-15 Moxtek, Inc. Polarizer with composite materials
JP2023050595A (ja) * 2021-09-30 2023-04-11 デクセリアルズ株式会社 偏光板、光学機器及び偏光板の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066571A (ja) * 2008-09-11 2010-03-25 Sony Corp 偏光素子及びその製造方法、並びに液晶プロジェクタ
JP2010530994A (ja) * 2007-06-22 2010-09-16 モックステック・インコーポレーテッド 選択吸収性ワイヤーグリッド偏光素子
JP2010530995A (ja) * 2007-06-22 2010-09-16 モックステック・インコーポレーテッド 反射抑制ワイヤーグリッド偏光素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829970C2 (de) 1998-07-04 2000-07-13 F O B Gmbh Verfahren zur Herstellung von UV-Polarisatoren
EP0999459A3 (en) 1998-11-03 2001-12-05 Corning Incorporated UV-visible light polarizer and methods
JP2002372620A (ja) 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc 偏光制御素子及びその製造方法
US7670758B2 (en) * 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
US7570424B2 (en) * 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
US8687274B2 (en) * 2005-10-31 2014-04-01 Kabushiki Kaisha Toshiba Short-wavelength polarizing elements and the manufacture and use thereof
JP4778873B2 (ja) * 2006-10-20 2011-09-21 株式会社 日立ディスプレイズ 液晶表示装置
JP4488033B2 (ja) 2007-02-06 2010-06-23 ソニー株式会社 偏光素子及び液晶プロジェクター
US7722194B2 (en) * 2007-06-07 2010-05-25 Seiko Epson Corporation Optical element having a reflected light diffusing function and a polarization separation function and a projection display device
US8506827B2 (en) * 2008-09-22 2013-08-13 Polarization Solutions, Llc Short pitch metal gratings and methods for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530994A (ja) * 2007-06-22 2010-09-16 モックステック・インコーポレーテッド 選択吸収性ワイヤーグリッド偏光素子
JP2010530995A (ja) * 2007-06-22 2010-09-16 モックステック・インコーポレーテッド 反射抑制ワイヤーグリッド偏光素子
JP2010066571A (ja) * 2008-09-11 2010-03-25 Sony Corp 偏光素子及びその製造方法、並びに液晶プロジェクタ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9703026B2 (en) * 2013-07-10 2017-07-11 Dexerials Corporation Polarizing plate having a transparent substrate, an absorbing layer and a reflective layer and method of manufacturing the same
US20150015948A1 (en) * 2013-07-10 2015-01-15 Dexerials Corporation Polarizing plate and method of manufacturing the same
US10185067B2 (en) 2013-07-10 2019-01-22 Dexerials Corporation Method of manufacturing polarizing plate
CN105378520A (zh) * 2013-07-11 2016-03-02 迪睿合株式会社 偏光板、和偏光板的制造方法、束结构的制造方法
JP2017078868A (ja) * 2013-07-11 2017-04-27 デクセリアルズ株式会社 偏光板
WO2015005480A1 (ja) * 2013-07-11 2015-01-15 デクセリアルズ株式会社 偏光板、及び偏光板の製造方法、バンドル構造の製造方法
JP2015034985A (ja) * 2013-07-11 2015-02-19 デクセリアルズ株式会社 偏光板、及び偏光板の製造方法、バンドル構造の製造方法
US10732335B2 (en) 2013-07-11 2020-08-04 Dexerials Coporation Polarizing plate having absorption layer comprising only tantalum and niobium
CN111929760A (zh) * 2013-07-11 2020-11-13 迪睿合株式会社 偏光板、和偏光板的制造方法、束结构的制造方法
CN105378520B (zh) * 2013-07-11 2021-04-06 迪睿合株式会社 偏光板、和偏光板的制造方法、束结构的制造方法
CN111929760B (zh) * 2013-07-11 2023-03-24 迪睿合株式会社 偏光板、和偏光板的制造方法、束结构的制造方法
CN109581570A (zh) * 2018-11-23 2019-04-05 京东方科技集团股份有限公司 金属线栅及其制造方法、显示面板、显示装置
US11022736B2 (en) 2018-11-23 2021-06-01 Boe Technology Group Co., Ltd. Metal wire grid and its manufacturing method, and display panel
WO2022196409A1 (ja) * 2021-03-15 2022-09-22 デクセリアルズ株式会社 光学機器

Also Published As

Publication number Publication date
US9360608B2 (en) 2016-06-07
JP2012181420A (ja) 2012-09-20
US20130286358A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
WO2012118204A1 (ja) 偏光素子
JP7237057B2 (ja) 偏光素子
JP6100492B2 (ja) 偏光素子、プロジェクター及び偏光素子の製造方法
JP6402799B2 (ja) 光吸収型偏光素子、透過型プロジェクター、及び液晶表示装置
JP6285131B2 (ja) 偏光板、及び偏光板の製造方法
JP6373335B2 (ja) 偏光板の製造方法
JP5936727B2 (ja) 偏光素子
JP2010066571A (ja) 偏光素子及びその製造方法、並びに液晶プロジェクタ
JP6527211B2 (ja) 偏光板、及び偏光板の製造方法
JP5359128B2 (ja) 偏光素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752810

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13979957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752810

Country of ref document: EP

Kind code of ref document: A1