WO2022196409A1 - 光学機器 - Google Patents

光学機器 Download PDF

Info

Publication number
WO2022196409A1
WO2022196409A1 PCT/JP2022/009686 JP2022009686W WO2022196409A1 WO 2022196409 A1 WO2022196409 A1 WO 2022196409A1 JP 2022009686 W JP2022009686 W JP 2022009686W WO 2022196409 A1 WO2022196409 A1 WO 2022196409A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing element
output
transparent substrate
light
band
Prior art date
Application number
PCT/JP2022/009686
Other languages
English (en)
French (fr)
Inventor
吐夢 武田
秀人 佐川
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US18/270,124 priority Critical patent/US20240069378A1/en
Priority to CN202280020303.2A priority patent/CN117083545A/zh
Publication of WO2022196409A1 publication Critical patent/WO2022196409A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • This technology relates to an optical device equipped with a polarizing element.
  • This application claims priority based on Japanese Patent Application No. 2021-041786 filed on March 15, 2021 in Japan, and this application is hereby incorporated by reference. Incorporated.
  • a polarizing element is an optical element that absorbs polarized light in one direction and transmits polarized light in a direction orthogonal to this direction.
  • a liquid crystal display device requires a polarizing element.
  • the polarizing element receives strong radiation, so excellent heat resistance and light resistance are required.
  • high extinction ratio and control of reflectance properties are required.
  • a wire grid type inorganic polarizing element has been proposed to meet these demands.
  • a wire grid type polarizing element has a structure in which a large number of conductive wires extending in one direction are arranged on a substrate at a pitch narrower than the wavelength band of the light used (several tens of nanometers to several hundreds of nanometers). .
  • polarized light TE wave (S wave)
  • TM wave polarized light
  • the wire grid type polarizing element has excellent heat resistance and light resistance, can be made into a relatively large element, and has a high extinction ratio.
  • the multi-layered structure makes it possible to control the reflectance characteristics, and it is possible to reduce the deterioration of image quality due to ghosts, etc., which are caused by the return light reflected on the surface of the polarizing element being reflected again in the liquid crystal projector device. Therefore, it is suitable for applications such as liquid crystal projectors.
  • Patent Document 1 a wire grid layer consisting of an array of elongated metal elements having a length longer than the wavelength of the incident light and a period shorter than half the wavelength of the incident light is provided on the substrate.
  • a polarizing element is disclosed.
  • Patent Document 2 discloses a polarizing element having a diffraction grating-shaped concavo-convex portion and an inorganic fine particle layer on a part of the convex portion on a substrate transparent to visible light.
  • the polarizing element is required to have high transmittance characteristics while enduring even in an environment of high intensity and strong light. For that purpose, it is necessary to reduce the burden on the polarizing element on the output side, and it is essential to use two polarizing elements, a pre-polarizing element and a main polarizing element, and it is necessary to use them in a manner that fully demonstrates their performance. become.
  • This technology has been proposed in view of such conventional circumstances, and provides an optical device capable of obtaining desired polarization characteristics.
  • the present technology is an optical device including a light source, an incident-side polarizing element, an optical modulation element, an output-side first polarizing element, and an output-side second polarizing element, wherein the output-side first polarizing element is , a wire grid structure, and a plurality of projections arranged on one surface of a transparent substrate at a pitch shorter than the wavelength of light in the operating band of the light source, the projections comprising: A lattice-shaped projection extending in a predetermined direction, and the lattice-shaped projection is a base-shaped portion formed so that the width of a cross section perpendicular to the predetermined direction becomes narrower toward the tip side in order from the transparent substrate side.
  • the output-side second polarizing element having a wire grid structure, and a transparent substrate provided with a plurality of projections arranged at intervals shorter than the wavelength of light in the operating band of the light source on one surface of the light source, wherein the projections are lattice-shaped projections extending in a predetermined direction , the grid-shaped convex portion has a reflective layer, a dielectric layer, and an absorbing layer in order from the transparent substrate side, and the orthogonal axis of the first polarizing element on the output side with respect to the orthogonal axis of the polarizing element on the incident side; is within ⁇ 8.5°, and the rotation angle of the orthogonal axis of the output-side second polarizing element with respect to the orthogonal axis of the incident-side polarizing element is within ⁇ 0.7°.
  • the present technology is a method for manufacturing an optical device including a light source, an incident-side polarizing element, an optical modulation element, an output-side first polarizing element, and an output-side second polarizing element, wherein the output-side
  • the first polarizing element has a wire grid structure, and has a plurality of protrusions arranged on one surface of the transparent substrate at a pitch shorter than the wavelength of light in the operating band of the light source, and is spaced apart from each other.
  • the projections are lattice-shaped projections extending in a predetermined direction, and the lattice-shaped projections are formed so that the width of the cross section perpendicular to the predetermined direction becomes narrower toward the tip side in order from the transparent substrate side.
  • the output-side second polarizing element has a wire grid structure. and a plurality of projections arranged on one surface of the transparent substrate at intervals shorter than the wavelength of light in the operating band of the light source, the projections being gratings extending in a predetermined direction.
  • the grid-like convex portion has a reflective layer, a dielectric layer, and an absorbing layer in this order from the transparent substrate side, and has the first arranging the output-side first polarizing element so that the rotation angle of the orthogonal axis of the polarizing element is within ⁇ 8.5°; arranging the output side second polarizing element so that the rotation angle of the orthogonal axis is within ⁇ 0.7°.
  • FIG. 1 is a perspective view schematically showing a configuration example of an optical device according to this embodiment.
  • FIG. 2 is a diagram for explaining the rotation angle of the incident-side polarizing element with respect to the orthogonal axis.
  • FIG. 3 is a cross-sectional view schematically showing a first configuration example of the first exit-side polarizing element.
  • FIG. 4 is a cross-sectional view schematically showing a second configuration example of the output-side first polarizing element.
  • FIG. 5 is a cross-sectional view schematically showing a configuration example of the output-side second polarizing element.
  • FIG. 6 is a cross-sectional view schematically showing a configuration example of an antireflection film.
  • FIG. 1 is a perspective view schematically showing a configuration example of an optical device according to this embodiment.
  • FIG. 2 is a diagram for explaining the rotation angle of the incident-side polarizing element with respect to the orthogonal axis.
  • FIG. 3 is a cross-sectional view
  • FIG. 7 is a top view schematically showing part of the optical unit of the liquid crystal projector.
  • FIG. 8 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the output pre-polarizer.
  • FIG. 9 is a graph showing the amount of change in S-polarized light transmittance (Ts) in the green band of the output pre-polarizer.
  • FIG. 10 is a graph showing the amount of contrast ratio (CR) change in the green band of the output pre-polarizer.
  • FIG. 11 is a graph showing the range of the orthogonal shift angle ⁇ 10° of the amount of change in the P-polarized light transmittance (Tp) shown in FIG.
  • FIG. 12 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the output main polarizer.
  • FIG. 13 is a graph showing the amount of change in S-polarized light transmittance (Ts) in the green band of the output main polarizer.
  • FIG. 14 is a graph showing the amount of change in contrast ratio (CR) in the green band of the output main polarizer.
  • FIG. 15 is a graph showing the range of orthogonal deviation angle ⁇ 1° of the amount of change in the contrast ratio (CR) shown in FIG.
  • FIG. 16 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the exit pre-polarizer (0-30°) and the exit main polarizer (0-30°).
  • FIG. 17 is a graph showing the range of the orthogonal shift angle ⁇ 10° of the amount of change in the P-polarized light transmittance (Tp) shown in FIG.
  • FIG. 18 is a graph showing the amount of change in contrast ratio (CR) in the green band of the exit-side pre-polarizer (0-30°) and the exit-side main polarizer (0-30°).
  • FIG. 19 is a graph showing the range of orthogonal deviation angle ⁇ 1° of the amount of change in the contrast ratio (CR) shown in FIG.
  • FIG. 20 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the exit pre-polarizer (0°) and the exit main polarizer (0-30°).
  • FIG. 21 is a graph showing the range of the orthogonal shift angle ⁇ 10° of the amount of change in the P-polarized light transmittance (Tp) shown in FIG.
  • FIG. 22 is a graph showing the amount of change in contrast ratio (CR) in the green band for the output pre-polarizer (0°) and the output main polarizer (0-30°).
  • FIG. 23 is a graph showing the range of orthogonal deviation angle ⁇ 1° of the amount of change in the contrast ratio (CR) shown in FIG.
  • FIG. 24 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band for the output pre-polarizer (8.5°) and the output main polarizer (0-30°).
  • FIG. 25 is a graph showing the range of the orthogonal shift angle ⁇ 10° of the amount of change in the P-polarized light transmittance (Tp) shown in FIG.
  • FIG. 26 is a graph showing changes in contrast ratio (CR) in the green band for the output pre-polarizer (8.5°) and the output main polarizer (0-30°).
  • FIG. 27 is a graph showing the range of orthogonal shift angle ⁇ 1° of the amount of change in the contrast ratio (CR) shown in FIG. 28 is a schematic cross-sectional view of a polarizing plate of Comparative Experimental Example 1.
  • FIG. FIG. 29 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 1-1 to 1-4 and Comparative Experimental Example 1.
  • FIG. 30 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 2-1 to 2-5.
  • FIG. 31 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 3-1 to 3-5.
  • FIG. 32 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 4-1 to 4-5.
  • FIG. 33 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 5-1 to 5-5.
  • FIG. 34 is a graph showing the transmission axis transmittance in the optical properties calculated by simulation for the polarizing plate.
  • FIG. 5 is a graph showing the results of actual measurement of transmission axis transmittance for Experimental Examples 1 to 3.
  • FIG. FIG. 36 is a graph showing the average transmission axis transmittance for each wavelength band of the transmission axis transmittance calculated by simulation for the polarizing plate.
  • FIG. 37 is a graph showing the results of actually measuring the average transmission axis transmittance for each wavelength band in Experimental Examples 1 to 3.
  • FIG. 38 is a graph comparing the contrast in the optical characteristics of the polarizing plates actually produced by heat resistance evaluation.
  • FIG. 1 is a perspective view schematically showing a configuration example of an optical device according to this embodiment.
  • an optical device 10 according to the present embodiment includes a light source 11, an incident-side polarizing element 12, an optical modulation element 13, an output-side first polarizing element 14, and an output-side second polarizing element. 15.
  • the output-side first polarizing element 14 has a wire grid structure, and is arranged on one surface of the transparent substrate at a pitch shorter than the wavelength of light in the operating band of the light source.
  • the projections are grid-shaped projections extending in a predetermined direction, and the grid-shaped projections have a cross-sectional width perpendicular to the predetermined direction that narrows toward the tip side in order from the transparent substrate side. and a protruding portion protruding from the base shape portion and having absorptivity with respect to the wavelength of light in the working band.
  • the output-side second polarizing element 15 has a wire grid structure, and is arranged on one side of the transparent substrate at a pitch shorter than the wavelength of light in the operating band of the light source.
  • the projections are lattice-shaped projections extending in a predetermined direction, and the lattice-shaped projections include, in order from the transparent substrate side, a reflective layer, a dielectric layer, and an absorption layer have
  • the first output-side polarizing element 14 is arranged in front of the second output-side polarizing element 15, and the first output-side polarizing element 14 absorbs a part of the high-intensity light.
  • the durability of the output-side second polarizing element 15 can be improved, and desired polarization characteristics can be obtained.
  • FIG. 2 is a diagram for explaining the rotation angle of the incident-side polarizing element with respect to the orthogonal axis.
  • the incident-side polarizing element 12 and the output-side first polarizing element 14 are such that the rotation angle ⁇ 1 of the orthogonal axis of the output-side first polarizing element 14 with respect to the orthogonal axis of the incident-side polarizing element 12 is ⁇ 8.
  • the incident side polarizing element 12 and the output side second polarizing element 15 are arranged so as to be within 0.5°, and the rotation angle ⁇ 2 are arranged within ⁇ 0.7°.
  • the output-side first polarizing element 14 has a P-polarized light transmittance ( Tp) is preferably 95% or more, and the amount of change from the position of 0° (rotation angle ⁇ 1 ) in the P-polarized light transmittance (Tp) of the entire band in the visible light region is -1% or less (the amount of decrease is 1% or less).
  • the output-side first polarizing element 14 has a contrast ratio ( CR) is preferably 2.0 or less, and the amount of change from the position of 0° (rotation angle ⁇ 1 ) in the contrast ratio (CR) of the entire band in the visible light region is ⁇ 5% or less (decrease amount of 5 % or less).
  • the output-side second polarizing element 15 has a P-polarized light transmittance ( Tp) is preferably 90% or more, and the amount of change from the position of 0° (rotation angle ⁇ 2 ) in the P-polarized light transmittance (Tp) of the entire band in the visible light region is -1% or less (the amount of decrease is 1% or less).
  • the output-side second polarizing element 15 has a contrast ratio ( CR) is preferably 1000 or more, and the amount of change from the position of 0° (rotation angle ⁇ 1 ) in the contrast ratio (CR) of the entire band in the visible light region is ⁇ 20% or less (the amount of decrease is 20% or less ) is preferred.
  • the P-polarized light transmittance (Tp) of the entire band in the visible light region is at 0° (rotation angles ⁇ 1 , ⁇ 2 ).
  • the amount of change from the position of 0° (rotation angle ⁇ 1 , ⁇ 2 ) of the contrast ratio (CR) of the entire band in the visible light region can be within -20%. It becomes possible to
  • the orthogonal axis of the polarizing element is, for example, using a spectrophotometer, while rotating the sample, the angle position at which the S-polarized light transmittance (Ts) is the minimum value is the absorption axis (0 °), and the absorption axis An angular position of 90° can be set as the transmission axis.
  • the P-polarized light transmittance (Tp) means the transmittance of polarized light (TM wave) incident on the polarizing plate in the transmission axis direction (X-axis direction).
  • the S-polarized light transmittance (Ts) means the transmittance of polarized light (TE wave) incident on the polarizing plate in the absorption axis direction (Y-axis direction).
  • a laser (LD), an LED, a mercury lamp (UHE), or the like can be used as the light source 11 .
  • a semiconductor laser that can achieve high luminous flux and high brightness by using a plurality of semiconductor lasers.
  • a two-dimensional laser array light source corresponding to each color of RGB can be used. .
  • the incident-side polarizing element 12 is not particularly limited, but has a wire grid structure, and is arranged on one side of the transparent substrate at a pitch shorter than the wavelength of light in the operating band of the light source, spaced apart from each other. It is preferable that the inorganic polarizing plate is provided with a plurality of projected portions that are formed on the substrate.
  • the light modulation element 13 is not particularly limited, it can be configured using a transmissive liquid crystal element, a reflective liquid crystal display element, or the like.
  • FIG. 3 is a cross-sectional view schematically showing a first configuration example of the first exit-side polarizing element.
  • a polarizing plate 20 shown as a first configuration example of the output-side first polarizing element 14 has a wire grid structure, a transparent substrate 21, and a first direction (y direction) on the transparent substrate 21. ) and are periodically arranged with a pitch P shorter than the wavelength of light in the working band, the projections 22 each having a first direction (y-direction).
  • a base shape portion 23 formed so that the width of the cross section perpendicular to the tip becomes narrower toward the tip side, and a protrusion 24 protruding from the base shape portion 23 and having absorptivity with respect to the wavelength of light in the use band consists of
  • the polarizing plate 20 is arranged so that the rotation angle ⁇ 1 of the orthogonal axis of the polarizing plate 20 with respect to the orthogonal axis of the incident - side polarizing element 12 is within ⁇ 8.5°.
  • the P-polarized light transmittance (Tp) of the entire band of the visible light region can be made 95% or more, and the P-polarized light transmittance (Tp) of the entire band of the visible light region is 0° (rotation angle ⁇ 1 ) can be kept within -1%.
  • the plane on which the main surface 21a of the transparent substrate 21 spreads is the xy plane, the direction in which the protrusions 22 extend (first direction) is the y direction, and the protrusions are perpendicular to the y direction.
  • the direction of arrangement is the x direction.
  • a direction perpendicular to the xy plane is defined as a z direction.
  • FIG. 3 shows an example in which the light incident on the polarizing plate 20 is incident from the z-direction on the side of the transparent substrate 21 where the projections 22 are formed (grid surface side). The light may be incident from the transparent substrate 21 side.
  • the polarizing plate 20 utilizes the four effects of transmission, reflection, interference, and selective light absorption of polarized waves due to optical anisotropy to generate polarized waves (TE waves (S wave))) and transmits a polarized wave (TM wave (P wave)) having an electric field component parallel to the x-direction. Therefore, in FIG. 3, the y direction is the direction of the absorption axis of the polarizer and the x direction is the direction of the transmission axis of the polarizer.
  • the polarizing plate 20 on which the projections 22 are formed is partially absorbed and attenuated when passing through the protrusions 24 .
  • the TM wave P wave
  • the TE wave S wave
  • the polarizing plate 20 can obtain desired polarization characteristics.
  • the transparent substrate 21 is not particularly limited as long as it is transparent to light in the wavelength band used by the polarizing plate 20, and can be appropriately selected according to the purpose.
  • the term "transparent” does not need to transmit 100% of the light in the wavelength band used, but only to the extent that the function of the polarizing plate can be maintained.
  • the average thickness of the transparent substrate 20 is preferably 0.3 mm or more and 1 mm or less.
  • the light in the usable band includes, for example, visible light with a wavelength of about 380 nm to 810 nm.
  • a material having a refractive index of 1.1 to 2.2 is preferable, and examples thereof include glass, crystal, and sapphire. From the viewpoint of cost and light transmittance, it is preferable to use glass, particularly quartz glass (refractive index 1.46) or soda lime glass (refractive index 1.51).
  • the composition of the glass material is not particularly limited, and an inexpensive glass material such as silicate glass, which is widely distributed as optical glass, can be used. From the viewpoint of thermal conductivity, it is preferable to use crystal or sapphire, which have high thermal conductivity. As a result, high light resistance against strong light is obtained, and it is preferably used as a polarizing plate for an optical engine of a projector that generates a large amount of heat.
  • the convex portion when using a transparent substrate made of an optically active crystal such as quartz crystal, it is preferable to arrange the convex portion in a direction parallel or perpendicular to the optical axis of the crystal.
  • the optical axis is a direction axis that minimizes the difference in refractive index between O (ordinary ray) and E (extraordinary ray) of light traveling in that direction.
  • the protrusions 22 extend in the y-direction on the transparent substrate 21 and are periodically arranged apart from each other in the x-direction at a pitch P shorter than the wavelength of light in the working band.
  • the convex portion 22 has a base shape portion 23 formed so that the width of the xz cross section perpendicular to the y direction becomes narrower toward the tip side, and a base shape portion 23 protruding from the base shape portion 23. and a protrusion 24 having absorbency.
  • the pitch (repeating interval in the x direction) of the convex portions 22 indicated by symbol P in FIG. 3 is not particularly limited as long as it is shorter than the wavelength of light in the working band.
  • the pitch of the projections is preferably 100 nm to 200 nm, for example.
  • the pitch of the projections can be measured by observing with a scanning electron microscope or a transmission electron microscope. For example, using a scanning electron microscope or a transmission electron microscope, the pitch can be measured at arbitrary four points, and the arithmetic mean value can be taken as the pitch of the convex portion. This measuring method is hereinafter referred to as electron microscopy.
  • the base shape portion 23 is formed such that the width of the xz cross section perpendicular to the y direction becomes narrower toward the tip side. There are various ways in which the width of the xz cross section becomes narrower toward the tip side.
  • the base shape portion 23 may have a substantially triangular shape in the xz cross section perpendicular to the y direction.
  • the substantially triangular shape is substantially an isosceles triangle.
  • the substantially triangular shape does not have to be a strict triangular shape, but may be a substantially triangular shape as long as it is effective. For example, it may have a trapezoidal shape with a chipped tip.
  • the tapered shape may be rounded to some extent in manufacturing, and this case is also included in the substantially triangular shape.
  • the substantially triangular inclined surface (reference numeral 23a in FIG. 3) of the convex portion has a slight curvature, and this case is also included in the substantially triangular shape.
  • the height of the base shape portion 23 is the dimension in the z direction from the bottom surface 23b (main surface 21a of the transparent substrate 21) to the tip 23c of the base shape portion 23, and is the dimension indicated by symbol a in FIG.
  • the width of the base shape portion 23 is the dimension in the x direction of the bottom surface 23b of the base shape portion 23 in the xz cross section, which is indicated by symbol b in FIG.
  • the height a of the base shape portion 23 is appropriately set within a range of several tens of nanometers to several hundreds of nanometers.
  • the height of this base-shaped portion 23 can be measured, for example, by the electron microscopy method described above.
  • the height a of the base shape portion 23 is preferably in the range of 50 to 130 nm, for example.
  • (a/b)>1/2 from the viewpoint of improving the transmittance it is preferable that (a/b)>1/2 from the viewpoint of improving the transmittance, and 13/10 ⁇ (a/b). ⁇ 7/10 is more preferred, and 13/10 ⁇ (a/b) ⁇ 9/10 is even more preferred.
  • the width b of the base shape portion 23 is appropriately set within the range of several tens of nanometers to several hundreds of nanometers.
  • the width of the base shape portion 21 can be measured, for example, by the electron microscopy method described above.
  • the width b of the base shape portion 23 is preferably in the range of 80 to 120 nm, for example.
  • (a/b)>1/2 from the viewpoint of improving the transmittance it is preferable that (a/b)>1/2 from the viewpoint of improving the transmittance, and 13/10 ⁇ (a/b). ⁇ 7/10 is more preferred, and 13/10 ⁇ (a/b) ⁇ 9/10 is even more preferred.
  • the ratio between the width b of the base shape portion 23 and the region "Pb" where the base shape portion 23 is not formed is, for example, 6/1 ⁇ (b/Pb) ⁇ 4/3. preferable.
  • the base shape portion 23 may be made of the same material as the transparent substrate 21 .
  • the base shape portion 23 and the transparent substrate 21 may be integrally formed, or the base shape portion 23 made of the same material as the transparent substrate 21 may be formed on the transparent substrate 21 .
  • the base shape portion 23 is formed by processing (for example, selective etching) the main surface of a transparent original plate (a substrate before being processed into the transparent substrate 21 is referred to as a transparent original plate).
  • the base shape portion 23 is formed on the main surface 21a of the .
  • the base shape portion 23 may be made of a dielectric different from that of the transparent substrate 21 .
  • the film thickness of the dielectric (the height a of the base shape portion 23) is appropriately set within the range of several tens of nm to several hundred nm. The thickness of this dielectric can be measured, for example, by electron microscopy as described above.
  • (a/b)>1/2 from the viewpoint of improving the transmittance More preferably, 10 ⁇ (a/b) ⁇ 7/10, and even more preferably 13/10 ⁇ (a/b) ⁇ 9/10.
  • Materials constituting the dielectric include Si oxides such as SiO 2 , metal oxides such as Al 2 O 3 , beryllium oxide and bismuth oxide, MgF 2 , cryolite, germanium (Ge), titanium dioxide, silicon, and fluorine. common materials such as magnesium oxide, boron nitride, boron oxide, tantalum oxide, carbon, or combinations thereof.
  • the dielectric is preferably composed of Si oxide.
  • the refractive index of the dielectric is greater than 1.0 and less than or equal to 2.5. Since the optical properties of the protrusions are also affected by the refractive index of the surroundings, the properties of the polarizing plate can be controlled by selecting the dielectric material.
  • the base shape portion 23 made of a dielectric can be formed as a high-density film by using a vapor deposition method, a sputtering method, a CVD (Chemical Vapor Deposition) method, or an ALD (Atomic Layer Deposition) method.
  • the protruding portion 24 protrudes from the base shape portion 23 and has an absorptive property with respect to the wavelength of light in the working band. Protruding from the base shape portion 21 means that it is formed so as to protrude from the inclined surface 23a or the tip (apex) 23c of the base shape portion 23, as explained with reference to FIG.
  • the protrusions 24 may be in the form of fine particles in the xz cross section, and may be arranged so as to extend in the y direction, which is the absorption axis.
  • the projecting portion 24 has a wire grid structure and functions as a wire grid polarizer, and a polarized wave (TE wave (S wave)) having an electric field component in a direction parallel to the longitudinal direction of the projecting portion 24 ) and transmit a polarized wave (TM wave (P wave)) having an electric field component in a direction orthogonal to the longitudinal direction of the protrusion 22 .
  • TE wave S wave
  • TM wave polarized wave
  • one or more kinds of substances having a light absorption action whose optical extinction constant is not zero such as a metal material and a semiconductor material, can be mentioned, and can be appropriately selected according to the wavelength range of light to be applied.
  • Metal materials include single elements such as Ta, Al, Ag, Cu, Au, Mo, Cr, Ti, W, Ni, Fe, and Sn, or alloys containing one or more of these elements.
  • Semiconductor materials include Si, Ge, Te, ZnO, and silicide materials ( ⁇ -FeSi 2 , MgSi 2 , NiSi 2 , BaSi 2 , CrSi 2 , CoSi 2 , TaSi, etc.). By using these materials, the polarizing plate can obtain a high extinction ratio for the visible light range.
  • the bandgap energy of the semiconductor is involved in the absorption action, so it is necessary that the bandgap energy is equal to or less than the usage band.
  • the bandgap energy is equal to or less than the usage band.
  • the protrusion 24 has a substantially circular shape in the xz cross section, its radius is appropriately set within a range of several nanometers to several hundreds of nanometers.
  • the radius of this projection 24 can be measured, for example, by the electron microscopy method described above.
  • the radius of the substantially circular projection 24 is preferably in the range of 5 nm to 100 nm, for example.
  • the film thickness of the protruding portion 24 (the thickness protruding from the base shape portion 21) is not particularly limited, and is preferably 5 nm to 100 nm, for example.
  • the film thickness of the protrusion 24 can be measured, for example, by the electron microscope method described above.
  • the position of the protrusion 24 on the base shape portion 23 is not particularly limited, and it can be on the inclined surface of the base shape portion 23 or at the tip.
  • the position of the protrusion 24 on the base shape portion 23 is preferably within 3/4 of the tip to the bottom of the base shape portion 23, and within 1/2 of the tip. It is more preferable to have This is because if they are arranged near the bottom surface of the base-shaped portion 23, they may be arranged on the main surface of the transparent substrate during the manufacturing process.
  • the protrusions 24 can be formed by known dry methods such as vapor deposition and sputtering.
  • the projecting portion 24 can also be formed on one inclined surface of the base shape portion 23 by obliquely performing vapor deposition or sputtering. After forming the projecting portion 24 on one inclined surface of the base shape portion 23, the projecting portion 24 can be further formed on the other inclined surface.
  • the projecting portion 24 is formed at an asymmetrical position with respect to the base shape portion 23 when viewed from above in the z direction. In the latter case, they can be formed at symmetrical positions with respect to the base shape portion 23 when viewed from the z direction.
  • the protrusion 23 may be formed by a known wet method.
  • the projecting portion 23 may be composed of two or more layers of different constituent materials.
  • the polarizing plate of the present embodiment may be covered with a protective film made of a dielectric on the surface on the light incident side within a range that does not affect changes in optical characteristics.
  • the polarizing plate of the present embodiment may be covered with an organic water-repellent film on the light incident side surface.
  • the organic water-repellent film is composed of, for example, a fluorine-based silane compound such as perfluorodecyltriethoxysilane (FDTS), and can be formed by using the above-described CVD method or ALD method, for example. Thereby, reliability such as moisture resistance of the polarizing plate can be improved.
  • FDTS perfluorodecyltriethoxysilane
  • FIG. 4 is a cross-sectional view schematically showing a second configuration example of the output-side first polarizing element.
  • a polarizing plate 30 shown as a second configuration example of the output-side first polarizing element 14 has a wire grid structure, a transparent substrate 31, and a first direction (y direction) on the transparent substrate 31. ) and are periodically arranged with a pitch P shorter than the wavelength of light in the working band, and the projections 32 are arranged in the first direction (y direction).
  • a base shape portion 33 formed so that the width of the cross section perpendicular to the tip becomes narrower toward the tip side, and a protrusion 34 protruding from the base shape portion 33 and having absorptivity with respect to the wavelength of light in the use band consists of
  • the polarizing plate 30 is arranged so that the rotation angle ⁇ 1 of the orthogonal axis of the polarizing plate 30 with respect to the orthogonal axis of the incident - side polarizing element 12 is within ⁇ 8.5°.
  • the P-polarized light transmittance (Tp) of the entire band of the visible light region can be made 95% or more, and the P-polarized light transmittance (Tp) of the entire band of the visible light region is 0° (rotation angle ⁇ 1 ) It is possible to keep the amount of change from the position within -1%.
  • the plane on which the main surface 31a of the transparent substrate 31 spreads is defined as the xy plane, the direction in which the protrusions 32 extend (first direction) is the y direction, and the protrusions 32 are perpendicular to the y direction. is arranged in the x direction.
  • a direction perpendicular to the xy plane is defined as a z direction.
  • FIG. 4 shows an example in which the light incident on the polarizing plate is incident from the z-direction on the side of the transparent substrate 31 where the projections 32 are formed (grid surface side). Light may be incident from the transparent substrate 31 side.
  • the polarizing plate 30 shown as the second configuration example differs in the shape of the base shape portion from that of the first configuration example.
  • the base shape portion 21 of the first configuration example has a triangular xz cross section
  • the base shape portion 33 of the second configuration example has a trapezoidal xz cross section.
  • the transparent substrate 31 and the protrusions 34 are the same as the transparent substrate 21 and the protrusions 24 of the first configuration example, respectively, and thus description thereof is omitted here.
  • the base shape portion 33 may be substantially trapezoidal in the xz cross section perpendicular to the y direction.
  • the substantially trapezoidal shape is a shape in which the two inclined surfaces 33a connecting the upper surface 33c and the lower surface (bottom surface) 33b have the same length, and the angles ⁇ formed by the inclined surfaces 33a and the lower surface 33b are equal. is preferred.
  • the shape is a trapezoid symmetrical about an axis parallel to the z-axis.
  • the substantially trapezoidal shape does not have to be a strict trapezoidal shape, but may be substantially trapezoidal as long as it is effective.
  • the tapered shape may be rounded to some extent in terms of manufacturing, and this case is also included in the substantially trapezoidal shape.
  • the substantially trapezoidal inclined surface (reference numeral 33a in FIG. 4) of the projection has a slight curvature, and in this case also, it can be said that the shape is substantially trapezoidal.
  • the dimensions of the base shape portion 33 will be explained using FIG.
  • the height of the base shape portion 33 is the dimension in the z direction from the bottom surface 33b (main surface 31a of the transparent substrate 31) to the top surface 33c of the base shape portion 33, and is the dimension indicated by symbol a in FIG.
  • the width of the base shape portion 33 is the dimension in the x direction of the bottom surface 33b of the base shape portion 33 in the xz cross section, and is the dimension indicated by symbol b in FIG.
  • the shape and material of the base shape portion 33 can be the same as those described for the base shape portion 23 of the first configuration example.
  • the transparent substrate may be a laminate of a first substrate made of a first material and a second substrate made of a second material.
  • the first substrate is arranged on the side of the base shape portion, and the first material is the same as the material of the base shape portion.
  • the material of the second substrate the same materials as those described as the material of the transparent substrate can be used.
  • a retardation compensation layer may be formed on the surface on the light incident side.
  • the retardation compensation layer is composed of, for example, a multilayer film using an inorganic material having optical anisotropy, and can be formed by using, for example, an oblique vapor deposition method or a sputtering method. This makes it possible to correct the polarization disturbance after passing through the liquid crystal panel.
  • FIG. 5 is a cross-sectional view schematically showing a configuration example of the output-side second polarizing element.
  • a polarizing plate 40 shown as a first configuration example of the output-side second polarizing element 15 has a wire grid structure, and is formed on a transparent substrate 41 and a first surface 41a of the transparent substrate 41. and a plurality of convex portions 42 extending in the first direction and periodically arranged with a pitch shorter than the wavelength of light in the operating band, and a plurality of convex portions 42 on the opposite side of the first surface 41 a of the transparent substrate 41 .
  • An antireflection layer 43 is formed on the second surface 41b, and the plurality of projections 42 are composed of, in order from the transparent substrate 41 side, a reflective layer 42A, a dielectric layer 42B made of a first dielectric, and an absorbing layer 42B.
  • the surface 42a of each of the projections 42 and the surface 43a of the antireflection layer 43 are covered with protective films 44A and 44B made of a second dielectric, respectively.
  • the polarizing plate 40 is arranged so that the rotation angle ⁇ 2 of the orthogonal axis of the polarizing plate 40 with respect to the orthogonal axis of the incident side polarizing element 12 is within ⁇ 0.7°.
  • the P-polarized light transmittance (Tp) of the entire band of the visible light region can be made 90% or more, and the contrast ratio (CR) of the entire band of the visible light region is 0 ° (rotation angle ⁇ 2 ) position It is possible to keep the amount of change from -20% or less.
  • the plane on which the main surface 41a of the transparent substrate 41 spreads is defined as the xy plane, and the direction (first direction) in which the plurality of protrusions 42 extend is referred to as the Y-axis direction.
  • the direction perpendicular to the Y-axis direction and in which the plurality of protrusions 42 are arranged along the main surface of the transparent substrate 41 is defined as the X-axis direction.
  • a direction perpendicular to the Y-axis direction and the X-axis direction and perpendicular to the main surface of the transparent substrate is defined as the Z-axis direction.
  • FIG. 5 shows an example in which the light incident on the polarizing plate 40 is incident from the Z direction on the side of the transparent substrate 41 on which the projections 42 are formed (grid surface side). The light may be incident from the transparent substrate 41 side.
  • the light incident from the side of the polarizing plate 40 on which the plurality of protrusions 42 are formed is partially absorbed and attenuated when passing through the absorption layer 42C and the dielectric layer 42B.
  • the polarized wave (TM wave (P wave)) passes through the reflection layer 42A with high transmittance.
  • the polarized wave (TE wave (S wave)) is reflected by the reflective layer 42A.
  • the TE wave reflected by the reflective layer 42A is partly absorbed while passing through the absorbing layer 42C and the dielectric layer 42B, and is partly reflected back to the reflective layer 42A. Also, the TE wave reflected by the reflective layer 42A interferes and attenuates when passing through the absorbing layer 42C and the dielectric layer 42B. By selectively attenuating the TE wave as described above, the polarizing plate 40 can obtain desired polarization characteristics.
  • the height h of the grid is the dimension in the Z-axis direction perpendicular to the main surface of the transparent substrate 41. It means the height of the convex portion 42 .
  • the width w means the dimension in the X-axis direction orthogonal to the height h direction when viewed from the Y-axis direction along the extending direction of the plurality of protrusions 42 having the protective films 44A. Also, when the polarizing plate 40 is viewed from the Y-axis direction along the direction in which the plurality of protrusions 42 extend, the repetition interval of the plurality of protrusions 42 in the X-axis direction is referred to as a pitch p.
  • the pitch p of the plurality of protrusions 42 is not particularly limited as long as it is shorter than the wavelength of light in the working band. From the standpoint of ease of fabrication and stability, the pitch p of the plurality of projections 42 is preferably 100 nm to 200 nm, for example.
  • the pitch p of the plurality of protrusions 42 can be measured by observing with a scanning electron microscope or a transmission electron microscope. For example, using a scanning electron microscope or a transmission electron microscope, the pitch p can be measured at any four locations, and the arithmetic mean value can be used as the pitch p of the plurality of convex portions 42 .
  • the polarizing plate 40 maintains durability while improving light transmission characteristics in the transmission axis direction. It is possible to do better.
  • Transparent substrate Since it is the same as the transparent substrate 21 of the configuration example of the output-side first polarizing element, the description is omitted here.
  • the reflective layer 42A is formed on the transparent substrate 41, and is formed by arranging a strip-shaped metal film in the Y-axis direction, which is the absorption axis.
  • the reflective layer 42A functions as a wire grid polarizer, attenuates a polarized wave (TE wave (S wave)) having an electric field component in a direction parallel to the longitudinal direction of the reflective layer 42A.
  • a polarized wave (TM wave (P wave)) having an electric field component in a direction orthogonal to the longitudinal direction is transmitted.
  • the film thickness of the reflective layer 42A is not particularly limited, and is preferably 100 nm to 300 nm, for example.
  • the film thickness of the reflective layer 42A can be measured, for example, by the electron microscope method described above.
  • the constituent material of the reflective layer 42A is not particularly limited as long as it is a material that reflects light in the used band. , Ge, Te, etc., or alloys containing one or more of these elements. Above all, the reflective layer 42A is preferably made of aluminum (Al) or an aluminum alloy from the viewpoint of minimizing the absorption loss in the wire grid in the visible light region and from the viewpoint of cost. In addition to these metal materials, for example, an inorganic film other than a metal or a resin film formed with a high surface reflectance by coloring or the like may be used.
  • the reflective layer 42A can be formed as a high-density film by using vapor deposition or sputtering, for example. Also, the reflective layer may be composed of two or more layers with different constituent materials.
  • the dielectric layer 42B is formed on the reflective layer 42A, and is formed by arranging dielectric films extending in a strip shape in the Y-axis direction, which is the absorption axis.
  • the thickness of the dielectric layer 42B is such that the phase of the polarized light transmitted through the absorption layer 42C and reflected by the reflection layer 42A shifts by half a wavelength from the polarized light reflected by the absorption layer 42C.
  • the film thickness of the dielectric layer 42B is appropriately set within a range of 1 nm to 500 nm in which the phase of polarized light can be adjusted to enhance the interference effect.
  • the film thickness of the dielectric layer 42B can be measured, for example, by the electron microscopy method described above.
  • the dielectric layer 42B is also formed as a barrier layer that suppresses interdiffusion of constituent elements between the reflective layer 42A and an absorption layer 42C, which will be described later.
  • the first dielectric constituting the dielectric layer 42B includes Si oxides such as SiO2 , metal oxides such as Al2O3 , beryllium oxide and bismuth oxide, MgF2 , cryolite, germanium, titanium dioxide, Typical materials include silicon, magnesium fluoride, boron nitride, boron oxide, tantalum oxide, carbon, or combinations thereof.
  • the dielectric layer 42B is selected from the group consisting of Si oxide, Ti oxide, Zr oxide, Al oxide, Nb oxide and Ta oxide from the viewpoint of transmittance and barrier layer function. It is preferably composed of one or more oxides.
  • the refractive index of the dielectric layer 42B is preferably greater than 1.0 and 2.5 or less. Since the optical properties of the reflective layer 42A are also affected by the surrounding refractive index, the optical properties of the polarizing plate can be controlled by selecting the material of the dielectric layer 42B. Further, by appropriately adjusting the film thickness and refractive index of the dielectric layer 42B, the TE wave reflected by the reflective layer 42A can be partly reflected and returned to the reflective layer 42A when passing through the absorbing layer 42C. It is possible to attenuate the light passing through the absorption layer 42C by interference. By selectively attenuating the TE wave in this way, the desired polarization characteristics can be obtained.
  • the dielectric layer 42B can be formed as a high-density film by using vapor deposition, sputtering, CVD, or ALD. Also, the dielectric layer may be composed of two or more layers having different constituent materials.
  • the absorption layer 42C has an absorption effect on the wavelength of light in the use band, is formed on the dielectric layer 42B, and is arranged in a strip extending in the Y-axis direction, which is the absorption axis.
  • the film thickness of the absorption layer 42C is not particularly limited, and is preferably 5 nm to 50 nm, for example.
  • the film thickness of this absorption layer 42C can be measured, for example, by the above-described electron microscopy method.
  • the absorption layer 42C is preferably made of one or more materials selected from the group consisting of metals, alloy materials, and semiconductor materials.
  • the constituent material of the absorption layer 42C is appropriately selected according to the wavelength range of the applied light.
  • Metal materials include single elements such as Ta, Al, Ag, Cu, Au, Mo, Cr, Ti, W, Ni, Fe, and Sn, or alloys containing one or more of these elements.
  • Semiconductor materials include Si, Ge, Te, ZnO, and silicide materials ( ⁇ -FeSi 2 , MgSi 2 , NiSi 2 , BaSi 2 , CrSi 2 , CoSi 2 , TaSi, etc.). By using these materials, the polarizing plate can obtain a high extinction ratio for the visible light range. Above all, it is preferable that the absorption layer 42C contains Si while containing Fe or Ta.
  • the bandgap energy of the semiconductor is involved in the absorption action, so the bandgap energy must be less than or equal to the usage band.
  • the bandgap energy must be less than or equal to the usage band.
  • the absorption layer 42C can be formed as a high-density film by using vapor deposition or sputtering, for example. Also, the absorption layer 42C may be composed of two or more layers of different constituent materials.
  • the antireflection layer 43 is formed on the second surface 41 b of the transparent substrate 41 .
  • the antireflection layer 43 can be made of a known antireflection material.
  • the antireflection layer 43 can be made of a multi-layered film including at least two layers of materials that can form the dielectric layer 42B.
  • FIG. 6 is a cross-sectional view schematically showing a configuration example of an antireflection film.
  • the antireflection film 43 can attenuate the light reflected at the interface through interference by alternately laminating low refractive index layers 43A and high refractive index layers 43B having different refractive indexes.
  • the film thickness of the antireflection layer 43 is not particularly limited, and is appropriately set within a range of 1 nm to 500 nm per dielectric layer constituting the dielectric layer 42B.
  • the film thickness of the antireflection layer 43 can be measured, for example, by the electron microscope method described above.
  • the low refractive index layer 43A is a layer mainly composed of SiO 2 (Si oxide) or the like.
  • the refractive index of the low refractive index layer is preferably 1.20 to 1.60, more preferably 1.30 to 1.50.
  • the refractive index of the high refractive index layer 43B is preferably 2.00 to 2.60, more preferably 2.10 to 2.45.
  • Such high refractive index dielectrics include niobium pentoxide (Nb 2 O 5 , refractive index 2.33), titanium oxide (TiO 2 , refractive index 2.33-2.55), tungsten oxide (WO 3 , refractive index 2.2), cerium oxide (CeO2, refractive index 2.2 ), tantalum pentoxide ( Ta2O5, refractive index 2.16 ), zinc oxide (ZnO, refractive index 2.1), oxide Indium tin (ITO, refractive index 2.06) and the like are included.
  • the antireflection layer 43 can be formed as a high-density film by using the same film formation method as the dielectric layer 42B described above. It is preferable to use an ion-beam assisted deposition (IAD) method or an ion beam sputtering (IBS) method, which enables formation of a higher density film.
  • IAD ion-beam assisted deposition
  • IBS ion beam sputtering
  • the surfaces of the plurality of projections 42 and the surface 43a of the antireflection layer 43 are covered with protective films 44A and 44B made of a dielectric, respectively.
  • the protective film 44A covers the top surfaces of the projections 42 and the side surfaces of the projections 42, and may cover the surface of the transparent substrate 41 between the projections 42, if necessary. By covering with the protective film 44A and the protective film 44B, the durability of the polarizing plate can be improved.
  • the protective films 44A and 44B it is preferable to use the ALD method, which is dense, uniform, and excellent in film thickness controllability. Also, like the dielectric layer 42B described above, it may be composed of two or more layers of different constituent materials.
  • the protective film 40A may completely fill between the convex portions 42 .
  • an SOG (Spin on Glass) method can be used in addition to the method of forming the dielectric layer 42B described above. SOG enables planarization without including an air layer.
  • the same dielectric as the first dielectric constituting the dielectric film 22 can be used.
  • Al 2 O 3 is particularly preferred from the viewpoint of heat resistance.
  • At least one of the protective film 44A and the protective film 44B can have a film thickness of 2.5 nm or less, preferably 1 nm or more, more preferably 1.5 nm or more, from the viewpoint of maintaining durability. , 2.0 nm or more.
  • the film thickness of at least one of the protective film 44A and the protective film 44B can be 2.5 nm or more, preferably 10 nm or less, and 7.5 nm or less from the viewpoint of improving light transmission characteristics. is more preferable, and 5.0 nm or less is even more preferable. In this case, while maintaining the durability of the polarizing plate, it is possible to obtain an improvement in light transmission characteristics, and in particular, to maintain high heat resistance.
  • the organic water-repellent film is composed of, for example, a fluorine-based silane compound such as perfluorodecyltriethoxysilane (FDTS), and can be formed by using the above-described CVD method or ALD method, for example. Thereby, reliability such as moisture resistance of the polarizing plate can be improved.
  • FDTS perfluorodecyltriethoxysilane
  • LCD projector The above-described optical device 10 can be suitably used for applications that require heat resistance, such as liquid crystal projectors and head-up displays.
  • a liquid crystal projector will be described below as a specific example.
  • FIG. 7 is a top view schematically showing part of an optical unit of a transmissive 3LCD type liquid crystal projector.
  • the optical engine portion of the liquid crystal projector 50 includes an incident side polarizing element 51R, a liquid crystal panel 52R, an output pre-polarizing element 53R, and an output main polarizing element 54R for red light LR, an incident side polarizing element 51G for green light LG, and a liquid crystal panel.
  • a cross dichroic prism 55 is provided for synthesizing the lights emitted from the polarizing elements 54R, 54G, and 54B and emitting them to the projection lens.
  • the incident-side polarization elements 51R, 51G, and 51B, the liquid crystal panels 52R, 53G, and 52B, the output pre-polarization elements 53R, 53G, and 53B, and the output main polarization elements 54R, 54G, and 54B are the components of the optical device 10 described above. They correspond to the incident side polarizing element 12 , the light modulation element 13 , the output side first polarizing element 14 , and the output side second polarizing element 15 .
  • the lights of the red light L R , the green light L G , and the blue light L B are made incident on the incident side polarization elements 51R, 51G, and 51B, and the incident side polarization elements 51R, 51G, Lights L R , L G , and L B polarized by 51B are spatially modulated by liquid crystal panels 52R, 53G, and 52B and emitted, and output pre-polarization elements 53R, 53G, and 53B, and output main polarization elements 54R, 54G. , 54B, they are synthesized by the cross dichroic prism 55 and projected from a projection lens (not shown).
  • the red light L R , the green light L G , and the blue light L B may be obtained by separating the light emitted from the light source with a dichroic mirror, but the present technology exhibits excellent light resistance against strong light. Therefore, high-power two-dimensional laser array light sources corresponding to the respective colors can be used.
  • the rotation angle (orthogonal deviation angle) of the orthogonal axis of the output side first polarizing element 14 with respect to the orthogonal axis of the incident side polarizing element 12 and the output side with respect to the orthogonal axis of the incident side polarizing element 12 By optimizing the rotation angle (orthogonal deviation angle) of the orthogonal axis of the second polarizing element 15, high P-polarized light transmittance (Tp) and contrast ratio (CR) can be obtained in the entire visible light region. . Therefore, when projected by a projector, it is possible to obtain a bright image with clear contrast.
  • Example pre-polarizer A polarizing plate having a configuration similar to that of the first configuration example shown in FIG. 3 was produced.
  • the transparent substrate 21 is made of sapphire
  • the base shape portion 23 is made of SiO 2
  • the protrusions 24 are made of Ge.
  • the shape of the base shape portion 23 is substantially triangular in the xz cross section
  • the shape of the projecting portion 24 is substantially circular in cross section, and the projecting portion 24 is in contact with the inclined surface 23a.
  • the transparent substrate 41 is made of glass
  • the reflection layer 42A of the projection 42 is made of Al
  • the dielectric layer 42B is made of SiO 2
  • the absorption layer 42C is made of FeSi.
  • the antireflection layer 43 is composed of a first layer (SiO 2 ), a second layer (TiO 2 ), a third layer (SiO 2 ), a fourth layer (TiO 2 ), a fifth layer ( SiO 2 ), a sixth layer (TiO 2 ), a seventh layer (SiO 2 ), an eighth layer (TiO 2 ), and a ninth layer (SiO 2 ) were alternately laminated.
  • the protective films 44A and 44B are made of Al 2 O 3 .
  • Table 1 shows the optical properties of the output pre-polarizing plate and changes in the optical properties.
  • FIG. 8 is a graph showing the amount of change in P-polarized transmittance (Tp) in the green band of the output pre-polarizer
  • FIG. 9 is the amount of change in S-polarized transmittance (Ts) in the green band of the output pre-polarizer
  • 10 is a graph showing the amount of change in the contrast ratio (CR) in the green band of the output pre-polarizer
  • FIG. 11 is the amount of change in the P-polarized transmittance (Tp) shown in FIG. is a graph showing the range of orthogonal deviation angles of ⁇ 10°.
  • the output pre-polarizer has a P-polarized light transmittance (Tp) of 90% or more for the entire visible light region within a range of ⁇ 20° orthogonal deviation angle. It was something. Further, when the orthogonal deviation angle of the output pre-polarizer is ⁇ 8.5°, the P-polarized light transmittance (Tp) of the blue, green, and red bands is 95.1%, 96.7%, and 97%, respectively. 7%, and the amount of change from the 0° position of the P-polarized light transmittance (Tp) of the blue band, green band, and red band is -1.1%, -1.1%, and -0.8%, respectively. %Met.
  • the output pre-polarizer has a contrast ratio (CR) of 2.0 or less, and when the orthogonal deviation angle of the output pre-polarizer is ⁇ 8.5°, the contrast ratio (CR) changes from the 0° position.
  • the amount is -5% or less in the entire band of the visible light region. It was -20% or less in the entire band of the region.
  • Table 2 shows the optical properties of the output main polarizing plate and changes in the optical properties.
  • FIG. 12 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the output main polarizer
  • FIG. 13 is the amount of change in S-polarized light transmittance (Ts) in the green band of the output main polarizer
  • 14 is a graph showing the amount of change in contrast ratio (CR) in the green band of the output main polarizer
  • FIG. 15 is a graph showing the amount of change in contrast ratio (CR) shown in FIG. It is a graph which shows the range of a deviation angle of ⁇ 1°.
  • the output main polarizing plate has a P-polarized light transmittance (Tp) of 90% or more for the entire visible light region in the range of ⁇ 0.7° of orthogonal deviation angle. It had. Further, when the orthogonal deviation angle of the output main polarizing plate is ⁇ 0.7°, the amount of change in the P-polarized light transmittance (Tp) from the position of 0° is ⁇ 1% or less in the entire visible light region. rice field. Moreover, the output main polarizing plate had a contrast ratio (CR) of 1000 or more for the entire visible light region within the range of ⁇ 0.7° of the orthogonal deviation angle. Further, when the orthogonal deviation angle of the output main polarizing plate was ⁇ 0.7°, the amount of change in the contrast ratio (CR) from the 0° position was -20% or less in the entire visible light region.
  • Tp P-polarized light transmittance
  • Table 3 shows the optical properties and changes in the optical properties when the orthogonal axes of the exit pre-polarizer and the exit main polarizer are simultaneously rotated.
  • the amount of change (%) from the S-polarized light transmittance (Ts), P-polarized light transmittance (Tp), and contrast ratio (CR) at the 0° position of the orthogonal axes of the outgoing pre-polarizer and the outgoing main polarizer are respectively Calculated.
  • FIG. 16 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the exit pre-polarizer (0-30°) and the exit main polarizer (0-30°), and FIG. 16 is a graph showing the range of orthogonal shift angles of ⁇ 10° in the amount of change in the P-polarized light transmittance (Tp) shown in FIG. 16.
  • FIG. -30 °) is a graph showing the amount of change in the contrast ratio (CR) in the green band
  • FIG. 19 is a graph showing the range of the orthogonal deviation angle ⁇ 1 ° is.
  • the P-polarized transmittance (Tp) of the blue, green, and red bands is They were 87.9%, 91.7% and 92.0% respectively. Further, when the orthogonal deviation angle was ⁇ 0.7°, the amount of change in the contrast ratio (CR) from the 0° position was about -20% in the entire visible light region.
  • Table 4 shows the optical characteristics and changes in the optical characteristics when the orthogonal axis of the output pre-polarizer is positioned at 0° and the orthogonal axis of the output main polarizer is rotated.
  • the amount of change (%) from the S-polarized light transmittance (Ts), P-polarized light transmittance (Tp), and contrast ratio (CR) at the 0° position of the orthogonal axes of the outgoing pre-polarizer and the outgoing main polarizer are respectively Calculated.
  • FIG. 20 is a graph showing the amount of change in the P-polarized light transmittance (Tp) in the green band of the exit pre-polarizer (0°) and the exit main polarizer (0-30°), and FIG. FIG. 22 is a graph showing the range of orthogonal shift angles of ⁇ 10° in the amount of change in P-polarized light transmittance (Tp), and FIG. FIG. 23 is a graph showing the amount of change in contrast ratio (CR) in the green band, and FIG. 23 is a graph showing the range of orthogonal shift angles of ⁇ 1° of the amount of change in contrast ratio (CR) shown in FIG.
  • the amount of change in P-polarized light transmittance (Tp) from the position where the deviation angle is 0° is within -1% in the entire band of the visible light region, and the amount of change in the contrast ratio (CR) is within the entire band of the visible light region. , was about -20%.
  • Table 5 shows the optical characteristics and changes in the optical characteristics when the orthogonal axis of the output pre-polarizing plate is arranged at the position of 8.5° and the orthogonal axis of the output main polarizing plate is rotated.
  • FIG. 24 is a graph showing the amount of change in P-polarized light transmittance (Tp) in the green band of the output pre-polarizer (8.5°) and the output main polarizer (0-30°), and FIG. FIG. 26 is a graph showing the range of the orthogonal deviation angle ⁇ 10° of the amount of change in the P-polarized light transmittance (Tp) shown in 24, and FIG. 27 is a graph showing the amount of change in the contrast ratio (CR) in the green band of 30°), and FIG. be.
  • the blue band, green band, and red band P-polarized transmittance (Tp) was 86.9%, 90.7% and 91.2%, respectively.
  • the orthogonal deviation angle of the output main polarizing plate is from the position of 0°.
  • the amount of change in P-polarized light transmittance (Tp) was within ⁇ 1% in the entire visible light region, and the amount of change in contrast ratio (CR) was about ⁇ 20% in the entire visible light region. .
  • the orthogonal deviation angle of the output pre-polarizer at a position within 8.5° and arranging the orthogonal deviation angle of the output main polarizer at a position within ⁇ 0.7°, High P-polarized light transmittance (Tp) and contrast ratio (CR) could be obtained in the entire visible light region. Therefore, when projected by a projector, it is possible to obtain a bright image with clear contrast.
  • Example 1-1 to 1-4 The shape of the polarizing plate of Experimental Example 1-1 is as shown in FIG. 3, and the shape of the polarizing plates of Experimental Examples 1-2 to 1-4 is as shown in FIG.
  • the transparent substrates 21, 31 and the base shape portions 23, 33 are both made of crystal, and the protrusions 24, 34 are made of Ge. be.
  • the shapes of the base shape portions 23 and 33 in Experimental Examples 1-1 to 1-4 all have a height a of 70 nm, a width b of 100 nm, a pitch P of 141 nm, and inclination angles ⁇ of 54° and 63°, respectively. °, 72°, and 81°.
  • all the projections 24 in Experimental Examples 1-1 to 1-4 had a circular cross section with a radius of 15 nm.
  • the positions of the protrusions 24 and 34 on the base shape portions 23 and 33 are such that the outermost periphery of the circle is the same as the height a and is in contact with the inclined surface 21a.
  • the shape of the base shape portion 103 of Comparative Experimental Example 1 has a height a of 70 nm, a width b of 100 nm, a pitch P of 141 nm, and an inclination angle ⁇ of 90°.
  • the shape of the protrusion 104 of Comparative Experimental Example 1 has a circular cross section and a radius of 15 nm.
  • the outermost circumference of the circle is the same as the height a and is in contact with the inclined surface 103a.
  • FIG. 29 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 1-1 to 1-4 and Comparative Experimental Example 1.
  • FIG. The horizontal axis indicates the wavelength ⁇ (nm), and the vertical axis indicates the transmission axis transmittance Tp (%).
  • the transmission axis transmittance Tp means the transmittance of a polarized wave (TM wave) incident on the polarizing plate in the transmission axis direction (X direction).
  • the tapered shape of the base portion 121 has better optical characteristics than the rectangular shape. It was also found that, when the height a and the width b are the same, the optical characteristics are better when the xz cross section is triangular rather than trapezoidal. It was also found that when the height a and width b are the same and the xz cross section is trapezoidal, the smaller the tilt angle ⁇ , the better the optical characteristics.
  • the shape of the polarizing plates in Experimental Examples 2-1 to 2-5 are all the same, with a width b of 100 nm and a pitch P of 141 nm. (resulting in the tilt angles ⁇ being 54°, 45°, 61°, 66° and 69° in order). Further, all the projections 24 in Experimental Examples 1-1 to 1-4 had a circular cross section with a radius of 15 nm. As for the position of the protrusion 24 on the base shape portion 23, as shown in FIG. 3, the outermost circumference of the circle is the same as the height a and is in contact with the inclined surface 23a.
  • FIG. 30 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 2-1 to 2-5.
  • the horizontal axis indicates the wavelength ⁇ (nm), and the vertical axis indicates the transmission axis transmittance Tp (%).
  • the ratio of height a to width b (a/b) is preferably more than 1/2, more preferably 7/10 or more, 9/10, 11/10. , and 13/10 is preferable to 7/10.
  • the shapes of the polarizing plates of Experimental Examples 3-1 to 3-5 are all the same, with a width b of 100 nm and a pitch P of 141 nm. (resulting in the tilt angles ⁇ being 54°, 45°, 61°, 66° and 69° in order). Further, all the projections 24 in Experimental Examples 3-1 to 3-5 have a circular cross section with a radius of 15 nm. As for the position of the protrusion 24 on the base shape portion 23, as shown in FIG. 3, the outermost circumference of the circle is the same as the height a and is in contact with the inclined surface 23a.
  • FIG. 31 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 3-1 to 3-5.
  • the horizontal axis indicates the wavelength ⁇ (nm), and the vertical axis indicates the transmission axis transmittance Tp (%).
  • the ratio of height a to width b (a/b) is preferably more than 1/2, more preferably 7/10 or more, 9/10, 11/10. , and 13/10 is preferable to 7/10. This point is the same as that of the polarizing plates of Experimental Examples 2-1 to 2-5, and it was found that even if the materials of the transparent substrate and the base-shaped portion were changed from quartz to sapphire, these characteristics did not change.
  • the shape of the polarizing plates in Experimental Examples 4-1 to 4-5 are all the same, with a width b of 100 nm and a pitch P of 141 nm. (resulting in the tilt angles ⁇ being 54°, 45°, 61°, 66° and 69° in order).
  • all the projections 24 in Experimental Examples 4-1 to 4-5 have a circular cross section with a radius of 15 nm.
  • the outermost circumference of the circle is the same as the height a and is in contact with the inclined surface 23a.
  • FIG. 32 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 4-1 to 4-5.
  • the horizontal axis indicates the wavelength ⁇ (nm), and the vertical axis indicates the transmission axis transmittance Tp (%).
  • height a with respect to width b A ratio (a/b) of more than 1/2 is preferable because the transmission axis transmittance is improved.
  • a/b it is more preferable to set a/b to 7/10 or more for the entire visible light region, because the transmission axis transmittance is improved.
  • configurations in which a/b is 9/10 and 11/10 for the entire visible light region are preferable to configurations in which a/b is 7/10.
  • a configuration in which a/b is 13/10 is preferable to a configuration in which a/b is 7/10.
  • the shape of the polarizing plates in Experimental Examples 5-1 to 5-3 was a laminate of a first substrate made of SiO 2 and a second substrate made of sapphire instead of the transparent substrate 21 shown in FIG.
  • the base shape portion 23 is made of SiO 2 and the protruding portion 24 is made of Ge.
  • the thickness d1 of the first substrate is 35 nm, 70 nm and 105 nm, and the thickness d2 of the second substrate is 0.7 mm.
  • the shape of the polarizing plate of Experimental Example 5-4 is as shown in FIG .
  • the portion 24 is made of Ge.
  • the thickness of the transparent substrate 21 is 0.7 mm.
  • the thickness of the transparent substrate 21 is 0.7 mm.
  • the incident light was incident from the substrate side.
  • FIG. 33 is a graph showing average values of transmission axis transmittance in each wavelength band in the polarizing plates of Experimental Examples 5-1 to 5-5.
  • the horizontal axis indicates the wavelength ⁇ (nm), and the vertical axis indicates the transmission axis transmittance Tp (%).
  • the polarizing plates of Experimental Examples 5-1 and 5-2 in which the transparent substrate is a two-layer laminate and the first substrate on the side of the base shape portion is made of the same material as the base shape portion, are visible.
  • a simulation was performed using the polarizing plate shown in FIG. 5 as a model. More specifically, the optical properties of these polarizing plates were verified by electromagnetic field simulation by RCWA (Rigorous Coupled Wave Analysis) method.
  • the horizontal axis indicates the wavelength ⁇ (nm), and the vertical axis indicates the transmission axis transmittance (%).
  • the transmission axis transmittance means the transmittance of polarized light (TM wave) incident on the polarizing plate in the transmission axis direction (X-axis direction).
  • Transparent substrate material (non-alkali glass), thickness (0.7 mm), Reflective layer: material (Al), thickness (250 nm), width (35 nm), Dielectric layer: material ( SiO2 ), thickness (5 nm), width (35 nm), Absorption layer: material (FeSi), thickness (25 nm), width (35 nm), Antireflection layer: material (alternate laminate of TiO 2 layers/SiO 2 layers), thickness (641.15 nm), width (35 nm), Table 6 shows the specific layer structure. The first to ninth layers were arranged in order from the side closer to the transparent substrate to the farther side. Grid: height h (280+protective film thickness) nm, width w (35+protective film thickness ⁇ 2) nm, pitch p (141 nm).
  • the protective films (reference numerals 44A and 44B in FIG. 5) were made of Al 2 O 3 and had film thicknesses of 1 nm, 2.5 nm, 5 nm, 7.5 nm and 10 nm. Also, as a comparative experiment example, a simulation was also performed in the case where no protective film was provided, and the results are shown in FIG. 34 .
  • the protective film can improve the durability of the polarizing plate, but from FIG. 34, as the film thickness increases, the transmission axis transmittance decreases in the entire visible light region, and the drop on the short wavelength side in particular increases. I understood it.
  • the film thickness of the protective film should be 5 nm or less. Further, when the transmission axis transmittance is required to be 80% or more at all wavelengths of 430 nm to 700 nm, the film thickness of the protective film is set to 10 nm or less.
  • FIG. 36 is a graph showing the average value of the transmission axis transmittance for each wavelength band obtained by performing a simulation
  • FIG. 3 is a graph showing average values of transmission axis transmittances in wavelength bands. It can be seen from the graph shown in FIG. 37 that the simulation results shown in FIG. 36 well reflect the actual optical characteristics of the polarizing plate.
  • the film thickness of the protective film is set to 5 nm or less. do. Further, when the average transmission axis transmittance is required to be 90% or more in all the red, green and blue bands, the film thickness of the protective film is set to 2.5 nm or less.
  • the heat resistance of the actually manufactured polarizing plate was evaluated at 300° C. in a clean oven, and the contrast, which is an optical characteristic of the polarizing plate, was evaluated based on the initial characteristic, that is, the rate of change from before placing in the clean oven. Contrast can be calculated as transmission axis transmittance/absorption axis transmittance, and the absorption axis transmittance means the transmittance of polarized light (TE wave) in the absorption axis direction (Y-axis direction) incident on the polarizing plate.
  • the contrast change rate is suitable for capturing the influence on the heat resistance of the polarizing plate.
  • FIG. 38 is a graph comparing the contrast in the optical characteristics of the actually produced samples by heat resistance evaluation.
  • the horizontal axis shows the test time (time placed in the clean oven), and the vertical axis shows the rate of change in contrast. did.
  • FIG. 38 also shows the results when no protective film is provided.
  • the thicker the protective film the smaller the rate of change in contrast and the more durable the polarizing plate.
  • the incident light is light in the green band
  • the contrast change rate A similar effect was obtained by slightly changing the value of . From the results of FIG. 38, it was found that high heat resistance can be maintained when the film thickness of the protective film is 2.5 nm or more.
  • the polarizing plate of the present technology which has a protective film on the surface of the projections and the surface of the antireflection layer, can improve the light transmission characteristics while maintaining the durability. It was found that a film thickness of 2.5 nm or less is desirable as a film thickness that does not cause a significant reduction, and a film thickness of 2.5 nm or more is desirable as a film thickness that maintains high heat resistance.
  • the protective film it is preferable to design the protective film and the antireflection layer taking into consideration not only the influence of the plurality of projections but also the influence on the antireflection layer.
  • optical device 11 light source 12 incident side polarizing element 13 light modulation element 14 output side first polarizing element 15 output side second polarizing element 20 polarizing plate 21 transparent substrate 21a main surface 22 convex portion 23 base shape part 24 projection part 30 polarizing plate 31 transparent substrate 31a main surface 32 convex part 33 base shape part 34 projection part 40 polarizing plate 41 transparent substrate 41a first surface 41b second surface 2 42 convex portion 42A reflective layer 42B dielectric layer 42C absorption layer 43 antireflection layer 44A, 44B protective film; 50 liquid crystal projector, 51R, 51G, 51B incident side polarization element, 52R, 52G, 52B liquid crystal panel, 53R, 53G, 53B output pre-polarization element, 54R, 54G, 54B output main polarization element, 100 polarizing plate, 101 transparent substrate, 102 convex portion, 103 base shape portion, 104 projection portion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)

Abstract

所望の偏光特性を得ることができる光学機器を提供する。光源と、入射側偏光素子と、光変調素子と、出射側第1偏光素子と、出射側第2偏光素子とを備えた光学機器であって、出射側第1偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、入射側偏光素子の透過軸に対する出射側第1偏光素子の透過軸の回転角が、±8.5°以内であり、出射側第2偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、凸部は、所定方向に延在する格子状凸部であり、格子状凸部は、透明基板側から順に、反射層と、誘電体層と、吸収層とを有し、入射側偏光素子の吸収軸に対する出射側第2偏光素子の吸収軸の回転角が、±0.7°以内である。

Description

光学機器
 本技術は、偏光素子を備える光学機器に関する。本出願は、日本国において2021年3月15日に出願された日本特許出願番号特願2021-041786を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 偏光素子は、一方向の偏光を吸収し、これと直交する方向の偏光を透過させる光学素子である。液晶表示装置では、原理上、偏光素子が必要となる。特に、透過型液晶プロジェクターのような、光量の大きな光源を使用する液晶表示装置では、偏光素子は強い輻射線を受けるため、優れた耐熱性や耐光性が必要となるとともに、数cm程度の大きさと、高い消光比および反射率特性の制御が要求される。これらの要求に応えるための、ワイヤグリッド型の無機偏光素子が提案されている。
 ワイヤグリッド型の偏光素子は、一方向に延在する導体のワイヤを基板上に、使用する光の波長の帯域よりも狭いピッチ(数十nm~数百nm)で多数並べて配置した構造を有する。この偏光素子に光が入射すると、ワイヤの延在方向に平行な偏光(TE波(S波))は透過することができず、ワイヤの延在方向に垂直な偏光(TM波(P波))は、そのまま透過する。
 ワイヤグリッド型の偏光素子は、耐熱性や耐光性に優れ、比較的大きな素子が作製でき、高い消光比を有している。また、多層構造とすることで反射率特性の制御も可能となり、偏光素子の表面で反射された戻り光が液晶プロジェクターの装置内で再度反射されて生じる、ゴースト等による画質の劣化を低減させることから、液晶プロジェクター等の用途に適している。
 これに対して、ワイヤグリッド型の偏光板として、種々の偏光板が提案されている。
特許第5184624号公報 特許第5359128号公報
 例えば、特許文献1には、基体上に、入射光の波長よりも長い長さと、入射光の波長の半分よりも短い周期とを有する、延設金属素子の配列からなるワイヤグリッド層を備えている、偏光素子が開示されている。
 また、特許文献2には、可視光に対して透明な基板上に、回折格子形状の凹凸部と、その凸部の一部に無機微粒子層を有する、偏光素子が開示されている。
 しかしながら、これらの特許文献には、偏光素子のグリッド構造について記載されているものの、具体的な光学特性については述べられておらず、また、その性能が十分に発揮できる使われ方についても記載されていない。
 近年、照明・ディスプレイ光源は、水銀ランプからLED、そしてレーザーへと進化しており、液晶プロジェクターにおいても、半導体レーザー(LD)を複数用いることで高光束とし、高輝度化を図っている。それにより、偏光素子は、高光度な強い光の環境下においても耐えつつ、高い透過率特性が求められている。そのためには、出射側の偏光素子にかかる負担軽減が必要であり、プリ偏光素子とメイン偏光素子との2枚の使用が必須となり、その性能が十分に発揮される使われ方が求められることになる。
 本技術は、このような従来の実情に鑑みて提案されたものであり、所望の偏光特性を得ることができる光学機器を提供する。
 本技術は、光源と、入射側偏光素子と、光変調素子と、出射側第1偏光素子と、出射側第2偏光素子とを備えた光学機器であって、前記出射側第1偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、前記所定方向に直交する断面の幅が先端側ほど細くなるように形成されたベース形状部と、前記ベース形状部から突出し、前記使用帯域の光の波長に対して吸収性を有する突起部とを有し、前記出射側第2偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、反射層と、誘電体層と、吸収層とを有し、前記入射側偏光素子の直交軸に対する前記出射側第1偏光素子の直交軸の回転角が、±8.5°以内であり、前記入射側偏光素子の直交軸に対する前記出射側第2偏光素子の直交軸の回転角が、±0.7°以内である。
 また、本技術は、光源と、入射側偏光素子と、光変調素子と、出射側第1偏光素子と、出射側第2偏光素子とを備えた光学機器の製造方法であって、前記出射側第1偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、前記所定方向に直交する断面の幅が先端側ほど細くなるように形成されたベース形状部と、前記ベース形状部から突出し、前記使用帯域の光の波長に対して吸収性を有する突起部とを有し、前記出射側第2偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、反射層と、誘電体層と、吸収層とを有し、前記入射側偏光素子の直交軸に対する前記出射側第1偏光素子の直交軸の回転角が、±8.5°以内となるように前記出射側第1偏光素子を配置する工程と、前記入射側偏光素子の直交軸に対する前記出射側第2偏光素子の直交軸の回転角が、±0.7°以内となるように前記出射側第2偏光素子を配置する工程とを有する。
 本技術によれば、出射側第1偏光素子と出射側第2偏光素子との直交角度ズレを最適化することにより、可視光領域の全帯域において、高いP偏光透過率(Tp)及びコントラスト比(CR)を得ることができ、所望の偏光特性を得ることができる。
図1は、本実施の形態に係る光学機器の構成例を模式的に示す斜視図である。 図2は、入射側偏光素子の直交軸に対する回転角を説明するための図である。 図3は、出射側第1偏光素子の第1の構成例を模式的に示す断面図である。 図4は、出射側第1偏光素子の第2の構成例を模式的に示す断面図である。 図5は、出射側第2偏光素子の構成例を模式的に示す断面図である。 図6は、反射防止膜の構成例を模式的に示す断面図である。 図7は、液晶プロジェクターの光学ユニットの一部を模式的に示す上面図である。 図8は、出射プリ偏光板の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフである。 図9は、出射プリ偏光板の緑色帯域におけるS偏光透過率(Ts)の変化量を示すグラフである。 図10は、出射プリ偏光板の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフである。 図11は、図8に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフである。 図12は、出射メイン偏光板の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフである。 図13は、出射メイン偏光板の緑色帯域におけるS偏光透過率(Ts)の変化量を示すグラフである。 図14は、出射メイン偏光板の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフである。 図15は、図14に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。 図16は、出射プリ偏光板(0-30°)及び出射メイン偏光板(0-30°)の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフである。 図17は、図16に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフである。 図18は、出射側プリ偏光板(0-30°)及び出射メイン偏光板(0-30°)の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフである。 図19は、図18に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。 図20は、出射プリ偏光板(0°)及び出射メイン偏光板(0-30°)の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフである。 図21は、図20に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフである。 図22は、出射プリ偏光板(0°)及び出射メイン偏光板(0-30°)の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフである。 図23は、図22に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。 図24は、出射プリ偏光板(8.5°)及び出射メイン偏光板(0-30°)の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフである。 図25は、図24に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフである。 図26は、出射プリ偏光板(8.5°)及び出射メイン偏光板(0-30°)の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフである。 図27は、図26に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。 図28は、比較実験例1の偏光板の断面模式図である。 図29は、実験例1-1~1-4及び比較実験例1の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。 図30は、実験例2-1~2-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。 図31は、実験例3-1~3-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。 図32は、実験例4-1~4-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。 図33は、実験例5-1~5-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。 図34は、偏光板について、シミュレーションによって計算された、光学特性における透過軸透過率を示すグラフである。 実験例1~3について、透過軸透過率を実測した結果を示すグラフである。 図36は、偏光板について、シミュレーションによって計算された透過軸透過率の波長帯域毎の平均透過軸透過率を示すグラフである。 図37は、実験例1~3について、波長帯域毎の平均透過軸透過率を実測した結果を示すグラフである。 図38は、偏光板について、実際に作製し光学特性におけるコントラストを耐熱性評価によって比較したグラフである。
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.光学機器
2.第1の実施例
3.第2の実施例
4.第3の実施例
 <1.光学機器>
 図1は、本実施の形態に係る光学機器の構成例を模式的に示す斜視図である。図1に示すように、本実施の形態に係る光学機器10は、光源11と、入射側偏光素子12と、光変調素子13と、出射側第1偏光素子14と、出射側第2偏光素子15とを備える。
 出射側第1偏光素子14は、後述するように、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、凸部は、所定方向に延在する格子状凸部であり、格子状凸部は、透明基板側から順に、所定方向に直交する断面の幅が先端側ほど細くなるように形成されたベース形状部と、ベース形状部から突出し、使用帯域の光の波長に対して吸収性を有する突起部とを有する。
 また、出射側第2偏光素子15は、後述するように、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、凸部は、所定方向に延在する格子状凸部であり、格子状凸部は、透明基板側から順に、反射層と、誘電体層と、吸収層とを有する。
 このような構成からなる光学機器10は、出射側第2偏光素子15の手前に出射側第1偏光素子14を配置し、高光度な光の一部を出射側第1偏光素子14が吸収して高放熱することにより、出射側第2偏光素子15の耐性を向上させ、所望の偏光特性を得ることができる。
 図2は、入射側偏光素子の直交軸に対する回転角を説明するための図である。図2に示すように、入射側偏光素子12と出射側第1偏光素子14とは、入射側偏光素子12の直交軸に対する出射側第1偏光素子14の直交軸の回転角αが±8.5°以内となるように配置され、入射側偏光素子12と出射側第2偏光素子15とは、入射側偏光素子12の直交軸に対する出射側第2偏光素子15の直交軸の回転角αが±0.7°以内となるように配置される。
 出射側第1偏光素子14は、入射側偏光素子12の直交軸に対する回転角α(直交ズレ角度)が±8.5°以内である場合、可視光領域の全帯域のP偏光透過率(Tp)が95%以上であることが好ましく、可視光領域の全帯域のP偏光透過率(Tp)の0°(回転角α)の位置からの変化量が-1%以下(減少量が1%以下)であることが好ましい。また、出射側第1偏光素子14は、入射側偏光素子12の直交軸に対する回転角α(直交ズレ角度)が±8.5°以内である場合、可視光領域の全帯域のコントラスト比(CR)が2.0以下であることが好ましく、可視光領域の全帯域のコントラスト比(CR)の0°(回転角α)の位置からの変化量が-5%以下(減少量が5%以下)であることが好ましい。
 出射側第2偏光素子15は、入射側偏光素子12の直交軸に対する回転角α(直交ズレ角度)が±0.7°以内である場合、可視光領域の全帯域のP偏光透過率(Tp)が90%以上であることが好ましく、可視光領域の全帯域のP偏光透過率(Tp)の0°(回転角α)の位置からの変化量が-1%以下(減少量が1%以下)であることが好ましい。また、出射側第2偏光素子15は、入射側偏光素子12の直交軸に対する回転角α(直交ズレ角度)が±0.7°以内である場合、可視光領域の全帯域のコントラスト比(CR)が1000以上であることが好ましく、可視光領域の全帯域のコントラスト比(CR)の0°(回転角α)の位置からの変化量が-20%以下(減少量が20%以下)であることが好ましい。
 これにより、出射側第1偏光素子14及び出射側第2偏光素子15を配置した場合、可視光領域の全帯域のP偏光透過率(Tp)の0°(回転角α、α)位置からの変化量を-1%以内とすることが可能となり、可視光領域の全帯域のコントラスト比(CR)の0°(回転角α、α)位置からの変化量を-20%以内とすることが可能となる。
 偏光素子の直交軸は、例えば分光光度計を用いて、サンプルを回転させながら、S偏光透過率(Ts)が最小値となる角度位置を吸収軸(0°)とするとともに、吸収軸に対して90°の角度位置を透過軸として設定することができる。P偏光透過率(Tp)とは、偏光板に入射する透過軸方向(X軸方向)の偏光(TM波)の透過率を意味する。S偏光透過率(Ts)とは、偏光板に入射する吸収軸方向(Y軸方向)の偏光(TE波)の透過率を意味する。
 以下、光学機器10の各構成について詳細に説明する。
 [光源]
 光源11は、レーザー(LD)、LED、水銀ランプ(UHE)などを用いることができる。本実施の形態では、複数用いることで高光束とし、高輝度化を図ることができる半導体レーザーを好適に用いることができ、例えば、RGBの各色に対応する二次元レーザアレイ光源を用いることができる。
 [入射側偏光素子]
 入射側偏光素子12は、特に限定されるものではないが、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備える無機偏光板であることが好ましい。
 [光変調素子]
 光変調素子13は、特に限定されるものではないが、透過型液晶素子、反射型液晶表示素子などを用いた構成とすることができる。
 [出射側第1偏光素子(第1の構成例)]
 図3は、出射側第1偏光素子の第1の構成例を模式的に示す断面図である。図3に示すように、出射側第1偏光素子14の第1の構成例として示す偏光板20は、ワイヤグリッド構造を有し、透明基板21と、透明基板21上において第1方向(y方向)に延在し、使用帯域の光の波長よりも短いピッチPで互いに離間して周期的に配列された複数の凸部22とを備え、凸部22はそれぞれ、第1方向(y方向)に直交する断面の幅が先端側ほど細くなるように形成されてなるベース形状部23と、ベース形状部23から突出してなり、使用帯域の光の波長に対して吸収性を有する突起部24とからなる。
 そして、偏光板20は、入射側偏光素子12の直交軸に対する偏光板20の直交軸の回転角αが±8.5°以内となるように配置される。これにより、可視光領域の全帯域のP偏光透過率(Tp)を95%以上とすることが可能となり、可視光領域の全帯域のP偏光透過率(Tp)の0°(回転角α)の位置からの変化量を-1%以内とすることが可能となる。
 図3に示すように、透明基板21の主面21aが拡がる面をxy平面とし、凸部22が延在する方向(第1方向)をy方向、また、y方向に直交し、凸部が配列する方向をx方向とする。またxy平面に直交する方向をz方向とする。図3では、偏光板20に入射する光は、透明基板21の凸部22が形成されている側(グリッド面側)の、z方向から入射する例を示しているが、偏光板20に入射する光を透明基板21側から入射してもよい。
 偏光板20は、透過、反射、干渉、及び光学異方性による偏光波の選択的光吸収の4つの作用を利用することで、y方向に平行な電界成分をもつ偏光波(TE波(S波))を減衰させ、x方向に平行な電界成分をもつ偏光波(TM波(P波))を透過させる。従って、図3においては、y方向が偏光板の吸収軸の方向であり、x方向が偏光板の透過軸の方向である。
 偏光板20の凸部22が形成された側(グリッド面側)から入射した光は、突起部24を通過する際に一部が吸収されて減衰する。突起部24を透過した光のうち、TM波(P波)は高い透過率で、透明基板21を透過する。一方、突起部24を透過した光のうち、TE波(S波)は透明基板21で反射される。透明基板21で反射されたTE波は、突起部24を通過する際に干渉して減衰する。以上のようにTE波の選択的減衰を行うことにより、偏光板20は、所望の偏光特性を得ることができる。
 (透明基板)
 透明基板21は、偏光板20の使用帯域の波長の光に対して透明性を有する基板であれば特に制限されず、目的に応じて適宜選択することができる。「透明性を有する」とは、使用帯域の波長の光を100%透過する必要はなく、偏光板としての機能を保持可能な程度に透過できればよい。透明基板20の平均厚みは、0.3mm以上1mm以下であることが好ましい。使用帯域の光としては、例えば、波長380nm~810nm程度の可視光が挙げられる。
 透明基板21の構成材料としては、屈折率が1.1~2.2の材料が好ましく、ガラス、水晶、サファイア等が挙げられる。コスト及び透光率の観点からは、ガラス、特に石英ガラス(屈折率1.46)またはソーダ石灰ガラス(屈折率1.51)を用いることが好ましい。ガラス材料の成分組成は特に制限されず、例えば光学ガラスとして広く流通しているケイ酸塩ガラス等の安価なガラス材料を用いることができる。熱伝導性の観点からは、熱伝導性が高い水晶またはサファイアを用いることが好ましい。これにより、強い光に対して高い耐光性が得られ、発熱量の多いプロジェクターの光学エンジン用の偏光板として好ましく用いられる。
 また、水晶等の光学活性の結晶からなる透明基板を用いる場合には、結晶の光学軸に対して平行方向または垂直方向に凸部を配置することが好ましい。これにより、優れた光学特性が得られる。ここで、光学軸とは、その方向に進む光のO(常光線)とE(異常光線)との屈折率の差が最小となる方向軸である。
 (凸部)
 凸部22は、透明基板21上においてy方向に延在し、使用帯域の光の波長よりも短いピッチPでx方向に互いに離間して周期的に配列する。凸部22は、y方向に直交するxz断面の幅が先端側ほど細くなるように形成されてなるベース形状部23と、ベース形状部23から突出してなり、使用帯域の光の波長に対して吸収性を有する突起部24とからなる。
 図3において符号Pで示した、凸部22のピッチ(x方向の繰り返し間隔)は、使用帯域の光の波長よりも短ければ特に制限されない。作製の容易性及び安定性の観点から、凸部のピッチは、例えば、100nm~200nmが好ましい。この凸部のピッチは、走査型電子顕微鏡又は透過型電子顕微鏡で観察することにより測定することができる。例えば、走査型電子顕微鏡又は透過型電子顕微鏡を用いて、任意の4箇所についてピッチを測定し、その算術平均値を凸部のピッチとすることができる。以下、この測定方法を電子顕微鏡法と称する。
 (ベース形状部)
 ベース形状部23は、y方向に直交するxz断面の幅が先端側ほど細くなるように形成されてなる。xz断面の幅が先端側に向かって細くなる態様としては種々とりえる。ベース形状部23は、y方向に直交するxz断面において、略三角形状であってもよい。略三角形状は、略二等辺三角形であることが好ましい。ここで、略三角形状とは厳密な三角形状でなくても、効果を奏する限りにおいて、ほぼ三角形状であればよい。例えば、先端が欠けた台形状であってもよい。また、凸部は非常に微細な構造であるため、先細形状は、製造上のある程度の丸みを帯びる場合があり、この場合も上記略三角形状に含まれる。また、凸部の略三角形状の傾斜面(図3の符号23a)が多少の曲率を有する場合もあり、この場合も上記略三角形状に含まれる。
 ここで、本明細書におけるベース形状部23の寸法について、図3を用いて説明する。ベース形状部23の高さとは、ベース形状部23の底面23b(透明基板21の主面21a)から先端23cまでのz方向の寸法であり、図3において符号aで示した寸法である。また、ベース形状部23の幅とは、xz断面において、ベース形状部23の底面23bのx方向の寸法であり、図3において符号bで示した寸法である。
 ベース形状部23の高さaは、数十nm~数百nmの範囲で適宜設定される。このベース形状部23の高さは、例えば上述の電子顕微鏡法により測定可能である。ベース形状部23の高さaは、たとえば、50~130nmの範囲であることが好ましい。ベース形状部23の高さaは幅bとの関係でいうと、透過率の向上の観点から、(a/b)>1/2であることが好ましく、13/10≧(a/b)≧7/10であることがより好ましく、13/10≧(a/b)≧9/10であることがさらに好ましい。
 ベース形状部23の幅bは、数十nm~数百nmの範囲で適宜設定される。このベース形状部21の幅は、例えば上述の電子顕微鏡法により測定可能である。ベース形状部23の幅bは、たとえば、80~120nmの範囲であることが好ましい。ベース形状部23の幅bは高さaとの関係でいうと、透過率の向上の観点から、(a/b)>1/2であることが好ましく、13/10≧(a/b)≧7/10であることがより好ましく、13/10≧(a/b)≧9/10であることがさらに好ましい。
 ベース形状部23の幅bと、ベース形状部23が形成されていない領域「P-b」との比は、たとえば、6/1≧(b/P-b)≧4/3であることが好ましい。
 ベース形状部23は、透明基板21と同じ材料からなってもよい。ベース形状部23と透明基板21とは、一体に形成されたものとしてもよいし、透明基板21上に透明基板21と同じ材料からなるベース形状部23が形成されたものとしてもよい。前者の場合、ベース形状部23は、透明原板(透明基板21に加工する前の基板を透明原板と称するものとする)の主面を加工(例えば、選択的エッチング)することによって、透明基板21の主面21a上にベース形状部23が形成されたものとなる。
 また、ベース形状部23は、透明基板21と異なる誘電体からなってもよい。この場合、誘電体の膜厚(ベース形状部23の高さa)は、数十nm~数百nmの範囲で適宜設定される。この誘電体の膜厚は、例えば上述の電子顕微鏡法により測定可能である。誘電体の膜厚(ベース形状部21の高さa)は幅bとの関係でいうと、透過率の向上の観点から、(a/b)>1/2であることが好ましく、13/10≧(a/b)≧7/10であることがより好ましく、13/10≧(a/b)≧9/10であることがさらに好ましい。
 誘電体を構成する材料としては、SiO等のSi酸化物、Al、酸化ベリリウム、酸化ビスマス等の金属酸化物、MgF2、氷晶石、ゲルマニウム(Ge)、二酸化チタン、ケイ素、フッ化マグネシウム、窒化ボロン、酸化ボロン、酸化タンタル、炭素、またはこれらの組み合わせ等の一般的な材料が挙げられる。中でも、誘電体は、Si酸化物で構成されることが好ましい。誘電体の屈折率は、1.0より大きく、2.5以下であることが好ましい。突起部の光学特性は、周囲の屈折率によっても影響を受けるため、誘電体の材料を選択することで、偏光板の特性を制御することができる。誘電体からなるベース形状部23は、蒸着法やスパッタ法、CVD(Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法を利用することにより、高密度の膜として形成可能である。
 (突起部)
 突起部24は、ベース形状部23から突出してなり、使用帯域の光の波長に対して吸収性を有するものである。ベース形状部21から突出してなるとは、図3を用いて説明すると、ベース形状部23の傾斜面23a又は先端(頂点)23cから突き出ているように形成されてなることを意味する。
 突起部24は、xz断面において、微粒子状であってもよく、吸収軸であるy方向に延在して配列されてなるものとすることができる。この場合、突起部24はワイヤグリッド構造を構成してワイヤグリッド型偏光子としての機能を有し、突起部24の長手方向に平行な方向に電界成分をもつ偏光波(TE波(S波))を減衰させ、突起部22の長手方向に直交する方向に電界成分をもつ偏光波(TM波(P波))を透過させる。
 突起部24の構成材料としては、金属材料、半導体材料等の光学定数の消衰定数が零でない、光吸収作用を持つ物質の1種以上が挙げられ、適用される光の波長範囲によって適宜選択される。金属材料としては、Ta、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Sn等の元素単体またはこれらの1種以上の元素を含む合金が挙げられる。また、半導体材料としては、Si、Ge、Te、ZnO、シリサイド材料(β-FeSi、MgSi、NiSi、BaSi、CrSi、CoSi、TaSi等)が挙げられる。これらの材料を用いることにより、偏光板は、適用される可視光域に対して高い消光比が得られる。
 突起部24の構成材料として半導体材料を用いる場合には、吸収作用に半導体のバンドギャップエネルギーが関与するため、バンドギャップエネルギーが使用帯域以下であることが必要である。例えば、可視光で使用する場合、波長400nm以上での吸収、即ち、バンドギャップとしては3.1eV以下の材料を使用する必要がある。
 突起部24はxz断面において、略円形状である場合、その半径は、数nm~数百nmの範囲で適宜設定される。この突起部24の半径は、例えば上述の電子顕微鏡法により測定可能である。略円形状である突起部24である場合の半径は、たとえば、5nm~100nmの範囲であることが好ましい。
 突起部24の膜厚(ベース形状部21に対して突き出ている厚み)は、特に制限されず、例えば、5nm~100nmが好ましい。この突起部24の膜厚は、例えば上述の電子顕微鏡法により測定可能である。
 ベース形状部23上の突起部24の位置には特に制限はなく、ベース形状部23の傾斜面でも先端でも可能である。ベース形状部23上の突起部24の位置は、ベース形状部23の先端から底面までのうち、先端寄りの3/4以内の範囲であることが好ましく、先端寄りの1/2以内の範囲であることがより好ましい。ベース形状部23の底面寄りに配置させる場合、製造工程上、透明基板の主面にも配置してしまうおそれがあるからである。
 突起部24は、蒸着法やスパッタ法等の公知の乾式の手法により、形成可能である。この場合において、斜めから蒸着やスパッタを行うことにより、ベース形状部23の一方の傾斜面に突起部24を形成することもできる。ベース形状部23の一方の傾斜面に突起部24を形成した後にさらに、もう一方の傾斜面に突起部24を形成することもできる。前者の場合、突起部24は、z方向から平面視してベース形状部23に対して非対称な位置に形成されたものとなる。後者の場合は、z方向から平面視してベース形状部23に対して対称な位置に形成されたものとすることが可能となる。また、突起部23は、公知の湿式の手法によって形成してもよい。突起部23は、構成材料の異なる二層以上から構成されていてもよい。
 [保護膜]
 また、本実施形態の偏光板は、光学特性の変化に影響を与えない範囲において、光の入射側の表面が誘電体からなる保護膜により覆われていてもよい。
 [撥水膜]
 さらに、本実施形態の偏光板は、光の入射側の表面が、有機系撥水膜により覆われていてもよい。有機系撥水膜は、例えばパーフルオロデシルトリエトキシシラン(FDTS)等のフッ素系シラン化合物等で構成され、例えば上述のCVD法やALD法を利用することにより形成可能である。これにより、偏光板の耐湿性等の信頼性を向上できる。
 [出射側第1偏光素子(第2の構成例)]
 図4は、出射側第1偏光素子の第2の構成例を模式的に示す断面図である。図4に示すように、出射側第1偏光素子14の第2の構成例として示す偏光板30は、ワイヤグリッド構造を有し、透明基板31と、透明基板31上において第1方向(y方向)に延在し、使用帯域の光の波長よりも短いピッチPで互いに離間して周期的に配列された複数の凸部32とを備え、凸部32は、それぞれ第1方向(y方向)に直交する断面の幅が先端側ほど細くなるように形成されてなるベース形状部33と、ベース形状部33から突出してなり、使用帯域の光の波長に対して吸収性を有する突起部34とからなる。
 そして、偏光板30は、入射側偏光素子12の直交軸に対する偏光板30の直交軸の回転角αが±8.5°以内となるように配置される。これにより、可視光領域の全帯域のP偏光透過率(Tp)を95%以上とすることが可能となり、可視光領域の全帯域のP偏光透過率(Tp)の0°(回転角α)位置からの変化量を-1%以内とすることが可能となる。
 図4に示すように、透明基板31の主面31aが拡がる面をxy平面とし、凸部32が延在する方向(第1方向)をy方向、また、y方向に直交し、凸部32が配列する方向をx方向とする。またxy平面に直交する方向をz方向とする。図4では、偏光板に入射する光は、透明基板31の凸部32が形成されている側(グリッド面側)の、z方向から入射する例を示しているが、偏光板30に入射する光を透明基板31側から入射してもよい。
 第2の構成例として示す偏光板30は、第1の構成例と比べて、ベース形状部の形状が異なる。具体的には、第1の構成例のベース形状部21は、xz断面が三角形状であるのに対して、第2の構成例のベース形状部33ではxz断面が台形状である。透明基板31及び突起部34は、それぞれ第1の構成例の透明基板21及び突起部24と同様であるため、ここでは説明を省略する。
 ベース形状部33は、y方向に直交するxz断面において、略台形状であってもよい。略台形状は、上面33cと下面(底面)33bとの間を結ぶ2つの傾斜面33aが等しい長さを有し、かつ傾斜面33aと下面33bとが形成する角θが等しい形状であることが好ましい。この形状は、z軸に平行な軸に対して対称な台形である。
 ここで、略台形状とは厳密な台形状でなくても、効果を奏する限りにおいて、ほぼ台形状であればよい。また、凸部は非常に微細な構造であるため、先細形状は製造上のある程度の丸みを帯びる場合があり、この場合も上記略台形状に含まれる。また、凸部の略台形状の傾斜面(図4の符号33a)が多少の曲率を有する場合もあり、この場合も略台形状と言える。
 ベース形状部33の寸法について、図4を用いて説明する。ベース形状部33の高さとは、ベース形状部33の底面33b(透明基板31の主面31a)から上面33cまでのz方向の寸法であり、図4において符号aで示した寸法である。また、ベース形状部33の幅とは、xz断面において、ベース形状部33の底面33bのx方向の寸法であり、図4において符号bで示した寸法である。
 ベース形状部33の形状及び材料については、第1の構成例のベース形状部23で説明したものと同様のものとすることができる。
 [出射側第1偏光素子(変形例)]
 第1の構成例及び第2の構成例において、透明基板が、第1の材料からなる第1基板と、第2の材料からなる第2基板との積層体であってもよい。この場合、第1基板がベース形状部側に配置され、第1の材料がベース形状部の材料と同じ材料であることが好ましい。第2基板の材料としては、透明基板の材料として記載したものと同じものを用いることができる。
 また、第1の構成例及び第2の構成例において、光の入射側の表面に、位相差補償層が形成されていてもよい。位相差補償層は、例えば光学異方性を持つ無機材料を使った多層膜で構成され、例えば斜方からの蒸着法やスパッタ法を利用することにより形成可能である。これにより、液晶パネルを通った後の偏光の乱れを補正することができる。
 [出射側第2偏光素子]
 図5は、出射側第2偏光素子の構成例を模式的に示す断面図である。図5に示すように、出射側第2偏光素子15の第1の構成例として示す偏光板40は、ワイヤグリッド構造を有し、透明基板41と、透明基板41の第1の面41aに形成され、第1方向に延在し、使用帯域の光の波長よりも短いピッチで互いに離間して周期的に配列する複数の凸部42と、透明基板41の第1の面41aの反対側の第2の面41bに形成された反射防止層43とを備え、複数の凸部42は、透明基板41側から順に、反射層42Aと、第1の誘電体からなる誘電体層42Bと、吸収層42Cとを有し、複数の凸部42のそれぞれの表面42a、及び、反射防止層43の表面43aはそれぞれ、第2の誘電体からなる保護膜44A、44Bに覆われている。
 そして、偏光板40は、入射側偏光素子12の直交軸に対する偏光板40の直交軸の回転角αが±0.7°以内となるように配置される。これにより、可視光領域の全帯域のP偏光透過率(Tp)を90%以上とすることが可能となり、可視光領域の全帯域のコントラスト比(CR)の0°(回転角α)位置からの変化量を-20%以内とすることが可能となる。
 図5に示すように、透明基板41の主面41aが拡がる面をxy平面とし、複数の凸部42の延在する方向(第1方向)をY軸方向と称する。Y軸方向に直交し、透明基板41の主面に沿って複数の凸部42が配列する方向をX軸方向とする。Y軸方向ならびにX軸方向に直交し、透明基板の主面に対して垂直な方向をZ軸方向とする。図5では、偏光板40に入射する光は、透明基板41の凸部42が形成されている側(グリッド面側)の、Z方向から入射する例を示しているが、偏光板40に入射する光を透明基板41側から入射してもよい。
 偏光板40の複数の凸部42が形成された側(グリッド面側)から入射した光は、吸収層42C及び誘電体層42Bを通過する際に一部が吸収されて減衰する。吸収層42C及び誘電体層42Bを透過した光のうち、偏光波(TM波(P波))は高い透過率で反射層42Aを透過する。一方、吸収層42C及び誘電体層42Bを透過した光のうち、偏光波(TE波(S波))は反射層42Aで反射される。反射層42Aで反射されたTE波は、吸収層42C及び誘電体層42Bを通過する際に一部は吸収され、一部は反射して反射層42Aに戻る。また、反射層42Aで反射されたTE波は、吸収層42C及び誘電体層42Bを通過する際に干渉して減衰する。以上のようにTE波の選択的減衰を行うことにより、偏光板40は、所望の偏光特性を得ることができる。
 図5に示す偏光板40において、グリッドの高さhは、透明基板41の主面に垂直なZ軸方向の寸法であって、保護膜(高さ(厚さ)h1)を備えた複数の凸部42の高さを意味する。幅wとは、保護膜44Aを備えた複数の凸部42の延びる方向に沿うY軸方向から見たときに、高さh方向に直交するX軸方向の寸法を意味する。また、偏光板40を複数の凸部42の延びる方向に沿うY軸方向から見たときに、複数の凸部42のX軸方向の繰り返し間隔を、ピッチpと称する。
 偏光板40において、複数の凸部42のピッチpは、使用帯域の光の波長よりも短ければ特に制限されない。作製の容易性及び安定性の観点から、複数の凸部42のピッチpは、例えば、100nm~200nmが好ましい。この複数の凸部42のピッチpは、走査型電子顕微鏡又は透過型電子顕微鏡で観察することにより測定することができる。例えば、走査型電子顕微鏡又は透過型電子顕微鏡を用いて、任意の4箇所についてピッチpを測定し、その算術平均値を複数の凸部42のピッチpとすることができる。
 偏光板40は、グリッド先端からグリッド間を覆う保護膜44Aの厚みならびに反射防止層43上の保護膜44Bの厚みを最適化することにより、耐久性を維持しつつ透過軸方向の光透過特性を良くすることが可能である。
 (透明基板)
 出射側第1偏光素子の構成例の透明基板21と同様であるため、ここでは説明を省略する。
 (反射層)
 反射層42Aは、透明基板41上に形成され、吸収軸であるY軸方向に、帯状に延びた金属膜が配列されたものである。反射層42Aは、ワイヤグリッド型偏光子としての機能を有し、反射層42Aの長手方向に平行な方向に電界成分をもつ偏光波(TE波(S波))を減衰させ、反射層42Aの長手方向に直交する方向に電界成分をもつ偏光波(TM波(P波))を透過させる。反射層42Aの膜厚は、特に制限されず、例えば、100nm~300nmが好ましい。なお、反射層42Aの膜厚は、例えば上述の電子顕微鏡法により測定可能である。
 反射層42Aの構成材料としては、使用帯域の光に対して反射性を有する材料であれば特に制限されず、例えば、Al、Ag、Cu、Mo、Cr、Ti、Ni、W、Fe、Si、Ge、Te等の元素単体、又はこれらの1種以上の元素を含む合金が挙げられる。中でも、反射層42Aは、可視光領域においてワイヤグリッドでの吸収損失を小さく抑えるという観点とコストの観点から、アルミニウム(Al)又はアルミニウム合金で構成されることが好ましい。なお、これらの金属材料以外にも、例えば着色等により表面の反射率が高く形成された金属以外の無機膜や樹脂膜で構成してもよい。
 反射層42Aは、例えば蒸着法やスパッタ法を利用することにより、高密度の膜として形成可能である。また、反射層は、構成材料の異なる2層以上から構成されていてもよい。
 (誘電体層)
 誘電体層42Bは、反射層42A上に形成され、吸収軸であるY軸方向に帯状に延びた誘電体膜が配列されたものである。誘電体層42Bの膜厚は、吸収層42Cで反射した偏光に対して、吸収層42Cを透過して反射層42Aで反射した偏光の位相が半波長ずれる範囲で形成される。具体的には、誘電体層42Bの膜厚は、偏光の位相を調整して干渉効果を高めることが可能な1nm~500nmの範囲で適宜設定される。この誘電体層42Bの膜厚は、例えば上述の電子顕微鏡法により測定可能である。また、誘電体層42Bは、反射層42Aと後述する吸収層42Cとの構成元素の相互拡散を抑制するバリア層としても形成される。
 誘電体層42Bを構成する第1の誘電体としては、SiO等のSi酸化物、AlO3、酸化ベリリウム、酸化ビスマス等の金属酸化物、MgF、氷晶石、ゲルマニウム、二酸化チタン、ケイ素、フッ化マグネシウム、窒化ボロン、酸化ボロン、酸化タンタル、炭素、またはこれらの組み合わせ等の一般的な材料が挙げられる。中でも、透過率並びにバリア層の機能の観点から誘電体層42Bは、Si酸化物、Ti酸化物、Zr酸化物、Al酸化物、Nb酸化物及びTa酸化物から構成される群から選択されたいずれか一種以上の酸化物から構成されていることが好ましい。
 誘電体層42Bの屈折率は、1.0より大きく、2.5以下であることが好ましい。反射層42Aの光学特性は、周囲の屈折率によっても影響を受けるため、誘電体層42Bの材料を選択することで、偏光板の光学特性を制御することができる。また、誘電体層42Bの膜厚及び屈折率を適宜調整することにより、反射層42Aで反射したTE波について、吸収層42Cを透過する際に一部を反射して反射層42Aに戻すことができ、吸収層42Cを通過した光を干渉により減衰させることができる。このようにして、TE波の選択的減衰を行うことにより、所望の偏光特性を得ることができる。
 誘電体層42Bは、蒸着法やスパッタ法、CVD法やALD法を利用することにより、高密度の膜として形成可能である。また、誘電体層は、構成材料の異なる2層以上から構成されていてもよい。
 (吸収層)
 吸収層42Cは、使用帯域の光の波長に対して吸収作用を有するものであり、誘電体層42B上に形成され、吸収軸であるY軸方向に帯状に延びて配列されたものである。吸収層42Cの膜厚は、特に制限されず、例えば、5nm~50nmが好ましい。この吸収層42Cの膜厚は、例えば上述の電子顕微鏡法により測定可能である。
 吸収層42Cは、金属、合金材料及び半導体材料から構成される群から選択されたいずれか1種以上の材料から構成されていることが好ましい。吸収層42Cの構成材料としては、適用される光の波長範囲によって適宜選択される。金属材料としては、Ta、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Sn等の元素単体またはこれらの1種以上の元素を含む合金が挙げられる。また、半導体材料としては、Si、Ge、Te、ZnO、シリサイド材料(β-FeSi、MgSi、NiSi、BaSi、CrSi、CoSi、TaSi等)が挙げられる。これらの材料を用いることにより、偏光板は、適用される可視光域に対して高い消光比が得られる。中でも、吸収層42Cは、Fe又はTaを含むとともに、Siを含んで構成されることが好ましい。
 吸収層42Cとして半導体材料を用いる場合には、吸収作用に半導体のバンドギャップエネルギーが関与するため、バンドギャップエネルギーが使用帯域以下であることが必要である。例えば、可視光で使用する場合、波長400nm以上での吸収、即ち、バンドギャップとしては3.1eV以下の材料を使用する必要がある。
 吸収層42Cは、例えば蒸着法やスパッタ法を利用することにより、高密度の膜として形成可能である。また、吸収層42Cは、構成材料の異なる2層以上から構成されていてもよい。
 (反射防止層)
 反射防止層43は、透明基板41の第2面41b上に形成される。反射防止層43は、公知の反射防止材料からなるものとすることができ、例えば、誘電体層42Bを構成可能な材料を少なくとも2層以上の多層膜で構成されたものとすることができる。
 図6は、反射防止膜の構成例を模式的に示す断面図である。図6に示すように、反射防止膜43は、屈折率の異なる低屈折率層43Aと高屈折率層43Bとを交互に積層させることで、界面反射された光を干渉により減衰させることができる。反射防止層43の膜厚は、特に制限されず、誘電体層42Bを構成する誘電体層1層あたり1nm~500nmの範囲で適宜設定される。この反射防止層43の膜厚は、例えば上述の電子顕微鏡法により測定可能である。
 低屈折率層43Aは、SiO(Siの酸化物)等を主成分とした層である。低屈折率層の屈折率は、好ましくは1.20~1.60であり、より好ましくは1.30~1.50である。
 高屈折率層43Bの屈折率は、好ましくは2.00~2.60であり、より好ましくは2.10~2.45である。このような高屈折率の誘電体としては、五酸化ニオブ(Nb、屈折率2.33)、酸化チタン(TiO、屈折率2.33~2.55)、酸化タングステン(WO、屈折率2.2)、酸化セリウム(CeO、屈折率2.2)、五酸化タンタル(Ta、屈折率2.16)、酸化亜鉛(ZnO、屈折率2.1)、酸化インジウムスズ(ITO、屈折率2.06)などが挙げられる。
 反射防止層43は、上述の誘電体層42Bと同じ成膜方法を利用することにより、高密度の膜として形成可能である。好適には、より高密度な膜が形成可能となる、イオンビームアシスト蒸着(IAD:Ion-beam Assisted Deposition)法やイオンビームスパッタリング(IBS:Ion Beam Sputtering)法を用いることが望ましい。
 (保護膜)
 複数の凸部42の表面、及び、反射防止層43の表面43aは、それぞれ誘電体からなる保護膜44A、44Bで覆われている。保護膜44Aは、凸部42の頂面、及び凸部42の側面を覆うものであり、必要に応じて、凸部42間の透明基材41表面を覆うようにしてもよい。保護膜44A及び保護膜44Bにより覆うことで、偏光板の耐久性を向上することができる。
 保護膜44A及び保護膜44Bを形成する際には、緻密で均一且つ膜厚制御性に優れる、ALD法を用いることが好ましい。また、上述の誘電体層42Bと同様、構成材料の異なる2層以上から構成されていてもよい。
 また、保護膜40Aとして、凸部42間を完全に埋め込むようにしてもよい。この場合には、上述の誘電体層42Bを形成する方法以外にも、SOG(Spin on Glass)法を利用することができる。SOGによれば、空気層を含まず平坦化が可能となる。
 保護膜44A、44Bを構成する誘電体としては誘電体膜22を構成する第1の誘電体と同じ誘電体を用いることができる。耐熱性の観点からはAlが特に好ましい。
 保護膜44A及び保護膜44Bの少なくとも一方の膜厚を、2.5nm以下とすることができ、耐久性維持の観点から、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2.0nm以上であることがさらに好ましい。これにより、偏光板の耐久性を維持しつつ、光透過特性の向上も得られ、特に光学特性の大きな低下が回避できる。
 また、保護膜44A及び保護膜44Bの少なくとも一方の膜厚を、2.5nm以上とすることもでき、光透過特性向上の観点から、10nm以下であることが好ましく、7.5nm以下であることがより好ましく、5.0nm以下であることがさらに好ましい。この場合、偏光板の耐久性を維持しつつ、光透過特性の向上も得られ、特に高耐熱性を維持できる。
 (撥水膜)
 さらに、偏光板40は、保護膜44A及び保護膜44Bの少なくとも一方が、有機系撥水膜により覆われていてもよい。有機系撥水膜は、例えばパーフルオロデシルトリエトキシシラン(FDTS)等のフッ素系シラン化合物等で構成され、例えば上述のCVD法やALD法を利用することにより形成可能である。これにより、偏光板の耐湿性等の信頼性を向上できる。
 [液晶プロジェクター]
 上述した光学機器10は、耐熱性が要求される、例えば、液晶プロジェクター、ヘッドアップディスプレイなどの用途に好適に用いることができる。以下、具体例として、液晶プロジェクターを例に挙げて説明する。
 図7は、透過型の3LCD方式の液晶プロジェクターの光学ユニットの一部を模式的に示す上面図である。液晶プロジェクター50の光学エンジン部分は、赤色光Lに対する入射側偏光素子51R、液晶パネル52R、出射プリ偏光素子53R、及び出射メイン偏光素子54Rと、緑色光Lに対する入射側偏光素子51G、液晶パネル52G、出射プリ偏光素子53G、及び出射メイン偏光素子54Gと、青色光Lに対する入射側偏光素子51B、液晶パネル52B、出射プリ偏光素子53B、及び出射メイン偏光素子54Bと、それぞれの出射メイン偏光素子54R、54G、54Bから出射された光を合成し、投射レンズに出射するクロスダイクロプリズム55とを備える。ここで、入射側偏光素子51R、51G、51B、液晶パネル52R、53G、52B、出射プリ偏光素子53R、53G、53B、及び出射メイン偏光素子54R、54G、54Bは、それぞれ上述した光学機器10の入射側偏光素子12、光変調素子13と、出射側第1偏光素子14、及び出射側第2偏光素子15に対応する。
 本技術を適用した液晶プロジェクター50では、赤色光L、緑色光L、青色光Lの光に対応する入射側偏光素子51R、51G、51Bに入射させ、入射側偏光素子51R、51G、51Bで偏光された光L、L、Lを各液晶パネル52R、53G、52Bにて空間変調して出射し、出射プリ偏光素子53R、53G、53B、及び出射メイン偏光素子54R、54G、54Bを通過した後、クロスダイクロプリズム55にて合成されて投射レンズ(不図示)から投射される。赤色光L、緑色光L、青色光Lは、光源から出射される光をダイクロイックミラーにより分離したものであってもよいが、本技術は、強い光に対して優れた耐光特性を持つため、各色に対応する二次元レーザアレイ光源からの高出力なものを使用することができる。
 本技術に係る光学機器によれば、入射側偏光素子12の直交軸に対する出射側第1偏光素子14の直交軸の回転角(直交ズレ角度)、及び入射側偏光素子12の直交軸に対する出射側第2偏光素子15の直交軸の回転角(直交ズレ角度)を最適化することにより、可視光領域の全帯域において、高いP偏光透過率(Tp)及びコントラスト比(CR)を得ることができる。従って、プロジェクターで投影した場合、明るく、明暗がはっきりした画質を得ることができる。
 なお、本技術を図面および実施形態に基づき説明してきたが、本技術は上記実施の形態のみに限定されるものではなく、当業者であれば本開示に基づき、種々の変形または修正を行うことが容易であることに注意されたい。したがって、これらの変形または修正は本技術の範囲に含まれることに留意されたい。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は、上記説明を参酌して判断すべきものであり、図面相互間においても互いの寸法の関係や比率の異なる部分が含まれていることは勿論である。
 <2.第1の実施例>
 第1の実施例では、出射プリ偏光板及び出射メイン偏光板の角度依存性について測定した。なお、本技術は、これらの実施例に限定されるものではなく、本技術の効果を奏する範囲の変形及び改良についても本技術に含まれる。
 [出射プリ偏光板]
 図3に示す第1の構成例と同様な構成の偏光板を作製した。透明基板21をサファイア、ベース形状部23をSiO、突起部24をGeで構成した。ベース形状部23の形状は、xz断面を略三角形状とし、突起部24の形状は断面を略円とし、かつ、突起部24は傾斜面23aに接触している構造とした。
 [出射メイン偏光板]
 図5に示す構成例と同様な構成の偏光板を作製した。透明基板41をガラス、凸部42の反射層42AをAl、誘電体層42BをSiO、吸収層42CをFeSiで構成した。反射防止層43を、透明基板41に近い側から順に第1層(SiO)、第2層(TiO)、第3層(SiO)、第4層(TiO)、第5層(SiO)、第6層(TiO)、第7層(SiO)、第8層(TiO)、第9層(SiO)と交互に積層した。また、保護膜44A、44BをAlで構成した。
 [光学特性の測定]
 測定器として日立分光光度計U-4100を使用し、偏光板サンプルを回転させ、S偏光透過率(Ts)が最も小さい値となる角度位置を0°に設定し、そこから角度を変化させて測定した。
 [出射プリ偏光板の光学特性及び光学特性変化]
 表1に、出射プリ偏光板の光学特性及び光学特性変化を示す。出射プリ偏光板の直交軸を回転させ、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))の全帯域について、S偏光透過率(Ts)及びP偏光透過率(Tp)を測定し、コントラスト比(CR)を算出した。また、0°位置のS偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)からの変化量(%)をそれぞれ算出した。
 
Figure JPOXMLDOC01-appb-T000001
 図8は、出射プリ偏光板の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフであり、図9は、出射プリ偏光板の緑色帯域におけるS偏光透過率(Ts)の変化量を示すグラフであり、図10は、出射プリ偏光板の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフであり、図11は、図8に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフである。
 表1及び図8~図11に示すように、出射プリ偏光板は、直交ズレ角度が±20°の範囲において、可視光領域の全帯域について90%以上のP偏光透過率(Tp)を有するものであった。また、出射プリ偏光板の直交ズレ角度が±8.5°の場合、青色帯域、緑色帯域、及び赤色帯域のP偏光透過率(Tp)は、それぞれ95.1%、96.7%及び97.7%であり、青色帯域、緑色帯域、及び赤色帯域のP偏光透過率(Tp)の0°位置からの変化量は、それぞれ-1.1%、-1.1%及び-0.8%であった。また、出射プリ偏光板は、コントラスト比(CR)が2.0以下であり、出射プリ偏光板の直交ズレ角度が±8.5°の場合、コントラスト比(CR)の0°位置からの変化量は、可視光領域の全帯域において-5%以下であり、出射プリ偏光板の直交ズレ角度が±20°の場合でも、コントラスト比(CR)の0°位置からの変化量は、可視光領域の全帯域において-20%以下であった。
 [出射メイン偏光板の光学特性及び光学特性変化]
 表2に、出射メイン偏光板の光学特性及び光学特性変化を示す。出射メイン偏光板の直交軸を回転させ、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))の全帯域について、S偏光透過率(Ts)及びP偏光透過率(Tp)を測定し、コントラスト比(CR)を算出した。また、0°位置のS偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)からの変化量(%)をそれぞれ算出した。
 
Figure JPOXMLDOC01-appb-T000002
 図12は、出射メイン偏光板の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフであり、図13は、出射メイン偏光板の緑色帯域におけるS偏光透過率(Ts)の変化量を示すグラフであり、図14は、出射メイン偏光板の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフであり、図15は、図14に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。
 表2及び図12~15に示すように、出射メイン偏光板は、直交ズレ角度が±0.7°の範囲において、可視光領域の全帯域について90%以上のP偏光透過率(Tp)を有するものであった。また、出射メイン偏光板の直交ズレ角度が±0.7°の場合、P偏光透過率(Tp)の0°の位置からの変化量は、可視光領域の全帯域において-1%以下であった。また、出射メイン偏光板は、直交ズレ角度が±0.7°の範囲において、可視光領域の全帯域について1000以上のコントラスト比(CR)を有するものであった。また、出射メイン偏光板の直交ズレ角度が±0.7°の場合、コントラスト比(CR)の0°位置からの変化量は、可視光領域の全帯域において-20%以下であった。
 [出射プリ偏光板(0-30°)及び出射メイン偏光板(0-30°)の光学特性及び光学特性変化]
 表3に、出射プリ偏光板及び出射メイン偏光板の直交軸を同時に回転させたときの光学特性及び光学特性変化を示す。表2に示す出射プリ偏光板の光学特性、及び表3に示す出射メイン偏光板の光学特性から、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))の全帯域について、S偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)をそれぞれ算出した。また、出射プリ偏光板及び出射メイン偏光板の直交軸が0°位置のS偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)からの変化量(%)をそれぞれ算出した。
 
Figure JPOXMLDOC01-appb-T000003
 図16は、出射プリ偏光板(0-30°)及び出射メイン偏光板(0-30°)の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフであり、図17は、図16に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフであり、図18は、出射側プリ偏光板(0-30°)及び出射メイン偏光板(0-30°)の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフであり、図19は、図18に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。
 表3及び図16~19に示すように、出射プリ偏光板及び出射メイン偏光板の直交ズレ角度が0°の場合、青色帯域、緑色帯域、及び赤色帯域のP偏光透過率(Tp)は、それぞれ87.9%、91.7%及び92.0%であった。また、直交ズレ角度が±0.7°の場合、コントラスト比(CR)の0°位置からの変化量は、可視光領域の全帯域において-20%程度であった。
 [出射プリ偏光板(0°)及び出射メイン偏光板(0-30°)の光学特性及び光学特性変化]
 表4に、出射プリ偏光板の直交軸を0°位置に配置させ、出射メイン偏光板の直交軸を回転させたときの光学特性及び光学特性変化を示す。表2に示す出射プリ偏光板の光学特性、及び表3に示す出射メイン偏光板の光学特性から、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))の全帯域について、S偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)をそれぞれ算出した。また、出射プリ偏光板及び出射メイン偏光板の直交軸が0°位置のS偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)からの変化量(%)をそれぞれ算出した。
 
Figure JPOXMLDOC01-appb-T000004
 図20は、出射プリ偏光板(0°)及び出射メイン偏光板(0-30°)の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフであり、図21は、図20に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフであり、図22は、出射プリ偏光板(0°)及び出射メイン偏光板(0-30°)の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフであり、図23は、図22に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。
 表4及び図20~23に示すように、出射プリ偏光板の直交軸を0°位置に配置させ、出射メイン偏光板の直交ズレ角度が±0.7°の場合、出射メイン偏光板の直交ズレ角度が0°位置からのP偏光透過率(Tp)の変化量は、可視光領域の全帯域において-1%以内であり、コントラスト比(CR)の変化量は、可視光領域の全帯域において-20%程度であった。
 [出射プリ偏光板(8.5°)及び出射メイン偏光板(0-30°)の光学特性及び光学特性変化]
 表5に、出射プリ偏光板の直交軸を8.5°位置に配置させ、出射メイン偏光板の直交軸を回転させたときの光学特性及び光学特性変化を示す。表2に示す出射プリ偏光板の光学特性、及び表3に示す出射メイン偏光板の光学特性から、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))の全帯域について、S偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)をそれぞれ算出した。また、出射プリ偏光板の直交軸を8.5°位置に配置させ、出射メイン偏光板の直交軸が0°位置のS偏光透過率(Ts)、P偏光透過率(Tp)、及びコントラスト比(CR)からの変化量(%)をそれぞれ算出した。
 
Figure JPOXMLDOC01-appb-T000005
 図24は、出射プリ偏光板(8.5°)及び出射メイン偏光板(0-30°)の緑色帯域におけるP偏光透過率(Tp)の変化量を示すグラフであり、図25は、図24に示すP偏光透過率(Tp)の変化量の直交ズレ角度±10°の範囲を示すグラフであり、図26は、出射プリ偏光板(8.5°)及び出射メイン偏光板(0-30°)の緑色帯域におけるコントラスト比(CR)の変化量を示すグラフであり、図27は、図26に示すコントラスト比(CR)の変化量の直交ズレ角度±1°の範囲を示すグラフである。
 表5及び図24~27に示すように、出射プリ偏光板の直交軸を8.5°位置に配置させ、出射メイン偏光板の直交ズレ角度が±0°の場合、青色帯域、緑色帯域、及び赤色帯域のP偏光透過率(Tp)は、それぞれ86.9%、90.7%及び91.2%であった。
 また、出射プリ偏光板の直交軸を8.5°位置に配置させ、出射メイン偏光板の直交ズレ角度が±0.7°の場合、出射メイン偏光板の直交ズレ角度が0°位置からのP偏光透過率(Tp)の変化量は、可視光領域の全帯域において-1%以内であり、コントラスト比(CR)の変化量は、可視光領域の全帯域において-20%程度であった。
 第1の実施例によれば、出射プリ偏光板の直交ズレ角度を8.5°以内の位置に配置させ、出射メイン偏光板の直交ズレ角度を±0.7°以内に配置させることにより、可視光領域の全帯域において、高いP偏光透過率(Tp)及びコントラスト比(CR)を得ることができた。従って、プロジェクターで投影した場合、明るく、明暗がはっきりした画質を得ることができる。
 <3.第1の実験例>
 第1の実験例では、出射側プリ偏光板の光学特性について検証した。
 出射側プリ偏光板について、シミュレーションを行って効果を検証した。より具体的には、偏光板の光学特性について、RCWA(Rigorous Coupled Wave Analysis)法による電磁界シミュレーションにより検証した。シミュレーションには、Grating Solver Development社のグレーティングシミュレータGsolverを用いた。
 [実験例1-1~1-4]
 実験例1-1の偏光板の形状は図3に示した通りであり、実験例1-2~1-4の偏光板の形状は図4に示した通りである。実験例1-1~1-4の偏光板の材料は、透明基板21、31とベース形状部23、33とはいずれも水晶からなるものであり、突起部24、34はGeからなるものである。実験例1-1~1-4のベース形状部23、33の形状はいずれも、高さaが70nm、幅bが100nm、ピッチPが141nmであり、傾斜角θがそれぞれ、54°、63°、72°、81°である。高さa及び幅bを固定しているので、実験例1-1(θ=54°)はxz断面が三角形状であり、実験例1-2(θ=63°)、実験例1-3(θ=72°)、及び、実験例1-4(θ=81°)はxz断面が台形形状である。また、実験例1-1~1-4の突起部24の形状はすべて、断面が円であり、その半径が15nmである。ベース形状部23、33における突起部24、34の位置については、図3及び図4に示した通り、円の最外周が高さaと同じとし、かつ傾斜面21aに接触させている。
 [比較実験例1]
 比較実験例1の偏光板のxz断面の形状は図28に示した通りである。比較実験例1の偏光板100の材料は、透明基板101とベース形状部103とはいずれも水晶からなるものであり、突起部104はGeからなるものである点は実験例1-1~1-4と共通するが、xz断面が矩形である点は実験例1-1~1-4と異なる。
 比較実験例1のベース形状部103の形状は、高さaが70nm、幅bが100nm、ピッチPが141nmであり、傾斜角θが90°である。また、比較実験例1の突起部104の形状は断面が円であり、その半径が15nmである。ベース形状部103における突起部104の位置については、図28に示した通り、円の最外周が高さaと同じとし、かつ傾斜面103aに接触させている。
 図29は、実験例1-1~1-4及び比較実験例1の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。横軸が波長λ(nm)を示しており、縦軸が透過軸透過率Tp(%)を示している。ここで、透過軸透過率Tpとは、偏光板に入射する透過軸方向(X方向)の偏光波(TM波)の透過率を意味する。
 図29に示すように、比較実験例1の偏光板よりも本技術に係る偏光板は、傾斜角θを小さくしていくことで、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))のいずれも透過軸透過率が向上している。
 高さa及び幅bが同じ場合、ベース形状部121は矩形よりも先細形状の方が、光学特性が良いことがわかった。また、高さa及び幅bが同じ場合、xz断面が台形状であるよりも三角形状の方が、光学特性が良いことがわかった。また、高さa及び幅bが同じであって、xz断面が台形状である場合、傾斜角θが小さい方が、光学特性が良いことがわかった。
 [実験例2-1~2-5]
 実験例2-1~2-5の偏光板の形状は図3に示した通りである。実験例2-1~2-5の偏光板の材料は、透明基板21とベース形状部23とはいずれも水晶からなるものであり、突起部24はGeからなるものである。
 実験例2-1~2-5の偏光板の形状はいずれも、幅bが100nm、ピッチPが141nmと共通であるが、高さaは順に、50nm、70nm、90nm、110nm、130nm、である(その結果、傾斜角θは順に、54°、45°、61°、66°、69°である)。また、実験例1-1~1-4の突起部24の形状はすべて、断面が円であり、その半径が15nmである。ベース形状部23における突起部24の位置については、図3に示した通り、円の最外周が高さaと同じとし、かつ傾斜面23aに接触させている。
 図30は、実験例2-1~2-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。横軸が波長λ(nm)を示しており、縦軸が透過軸透過率Tp(%)を示している。図30に基づくと、幅bに対する高さaの比(a/b)は、1/2を超えていることが好ましく、7/10以上であることがより好ましく、9/10、11/10、及び、13/10である場合は7/10の場合よりも好ましい。
 [実験例3-1~3-5]
 実験例3-1~3-5の偏光板の形状は図3に示した通りである。実験例3-1~3-5の偏光板の材料は、透明基板21がベース形状部23とはいずれもサファイアからなるものであり、突起部24はGeからなるものである。
 実験例3-1~3-5の偏光板の形状はいずれも、幅bが100nm、ピッチPが141nmと共通であるが、高さaは順に、50nm、70nm、90nm、110nm、130nm、である(その結果、傾斜角θは順に、54°、45°、61°、66°、69°である)。また、実験例3-1~3-5の突起部24の形状はすべて、断面が円であり、その半径が15nmである。ベース形状部23における突起部24の位置については、図3に示した通り、円の最外周が高さaと同じとし、かつ傾斜面23aに接触させている。
 図31は、実験例3-1~3-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。横軸が波長λ(nm)を示しており、縦軸が透過軸透過率Tp(%)を示している。図31に基づくと、幅bに対する高さaの比(a/b)は、1/2を超えていることが好ましく、7/10以上であることがより好ましく、9/10、11/10、及び、13/10である場合は7/10の場合よりも好ましい。この点は、実験例2-1~2-5の偏光板と同様であり、透明基板及びベース形状部の材料を水晶からサファイアに変えても、かかる特徴は変わらないことがわかった。
 [実験例4-1~4-5]
 実験例4-1~4-5の偏光板の形状は図3に示した通りである。実験例4-1~4-5の偏光板の材料は、透明基板21はサファイアからなるものであり、ベース形状部23はSiOからなるものであり、突起部24はGeからなるものである。
 実験例4-1~4-5の偏光板の形状はいずれも、幅bが100nm、ピッチPが141nmと共通であるが、高さaは順に、50nm、70nm、90nm、110nm、130nm、である(その結果、傾斜角θは順に、54°、45°、61°、66°、69°である)。また、実験例4-1~4-5の突起部24の形状はすべて、断面が円であり、その半径が15nmである。ベース形状部23における突起部24の位置については、図3に示した通り、円の最外周が高さaと同じとし、かつ傾斜面23aに接触させている。
 図32は、実験例4-1~4-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。横軸が波長λ(nm)を示しており、縦軸が透過軸透過率Tp(%)を示している。図32に基づくと、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))のすべてについて、幅bに対する高さaの比(a/b)を1/2を超えた形状とすることが、透過軸透過率が向上しているから好ましい。また、可視光領域のすべてについて、a/bを7/10以上の形状とすることが、透過軸透過率が向上しているからより好ましい。また、可視光領域のすべてについて、a/bを9/10、及び、11/10の形状とする構成は7/10の形状とする構成よりも好ましい。また、緑色帯域(波長λ=520nm~590nm)及び青色帯域(λ=430nm~510nm)については、a/bを13/10の形状とする構成は7/10の形状とする構成よりも好ましい。
 [実験例5-1~5-5]
 実験例5-1~5-3の偏光板の形状は、図3に示した透明基板21の代わりに、SiOからなる第1基板及びサファイアからなる第2基板の積層板とした。ベース形状部23はSiOからなるものであり、突起部24はGeからなるものである。また、実験例5-1~5-3の偏光板は、それぞれ第1基板の厚さd1が、35nm、70nm、105nmであり、第2基板の厚さd2が、0.7mmである。
 また、実験例5-4の偏光板の形状は図3に示した通りのものであって、透明基板21はサファイアからなるものであり、ベース形状部23はSiOからなるものであり、突起部24はGeからなるものである。透明基板21の厚さは0.7mmである。
 また、実験例5-5の偏光板の形状は図3に示した通りのものであって、透明基板21がベース形状部23とはいずれもサファイアからなるものであり、突起部24はGeからなるものである。透明基板21の厚さは0.7mmである。
 また、実験例5-1~5-5の突起部24の形状はすべて、断面が円であり、その半径が15nmである。ベース形状部23における突起部24の位置については、図3に示した通り、円の最外周が高さaと同じとし、かつ傾斜面23aに接触させている。
 シミュレーションにおいては、入射光は基板側から入射した場合について行った。
 図33は、実験例5-1~5-5の偏光板における、各波長帯域の透過軸透過率の平均値を示すグラフである。横軸が波長λ(nm)を示しており、縦軸が透過軸透過率Tp(%)を示している。図33に基づくと、透明基板が二層の積層体であって、ベース形状部側の第1基板がベース形状部と同じ材料からなる実験例5-1~5-2の偏光板は、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))のすべて波長域において、透明基板が単層である実験例5-4及び実験例5-5の偏光板よりも、透過軸透過率が向上していた。また、実験例5-3の偏光板についても、緑色帯域及び青色帯域において、透明基板が単層である実験例5-4及び実験例5-5の偏光板よりも、透過軸透過率が向上していた。従って、透過軸透過率向上の観点からは、透明基板として、二層の積層体であって、ベース形状部側の第1基板がベース形状部と同じ材料からなるものを用いる方が好ましい。
 <4.第2の実験例>
 第2の実験例では、出射側メイン偏光板の光学特性について検証した。
[シミュレーション]
 本技術に係る偏光板として、図5に示した偏光板をモデルとしてシミュレーションを行った。より具体的には、これらの偏光板の光学特性について、RCWA(Rigorous Coupled Wave Analysis)法による電磁界シミュレーションにより検証した。
 図34は、図5に示した偏光板をモデルとしてシミュレーションを行って得られた、可視光領域(赤色帯域:波長λ=600~680nm、緑色帯域:波長λ=520nm~590nm、青色帯域:λ=430nm~510nm))における透過軸透過率の分光波形を示すグラフである。横軸が波長λ(nm)を示しており、縦軸が透過軸透過率(%)を示している。ここで、透過軸透過率とは、偏光板に入射する透過軸方向(X軸方向)の偏光(TM波)の透過率を意味する。
 偏光板モデルにおいては、以下のパラメータ及び材料とした。
 透明基板:材料(無アルカリガラス)、厚み(0.7mm)、
 反射層 :材料(Al)、厚み(250nm)、幅(35nm)、
 誘電体層:材料(SiO)、厚み(5nm)、幅(35nm)、
 吸収層 :材料(FeSi)、厚み(25nm)、幅(35nm)、
 反射防止層:材料(TiO層/SiO層の交互積層体)、厚み(641.15nm)、幅(35nm)、表6に具体的な層構成を示す。第1層~第9層は透明基板に近い側から遠い側に順に配置させた。
 グリッド:高さh(280+保護膜厚み)nm、幅w(35+保護膜厚み×2)nm、ピッチp(141nm)。
Figure JPOXMLDOC01-appb-T000006
 また、偏光板モデルにおいて、保護膜(図5における符号44A、44B)は材料をAlとし、膜厚(厚み)を1nm、2.5nm、5nm、7.5nm、10nmとした。また、比較実験例として、保護膜を備えない場合もシミュレーションを行い、図34に示した。
 保護膜は、偏光板の耐久性を向上させることができるが、図34から、その膜厚が厚くなるにつれて可視光領域全体で透過軸透過率は低下し、特に短波長側の落ち込みが大きくなることがわかった。
 [実験例1~3、比較実験例]
 保護膜が2.5nm(実験例1)、保護膜が5nm(実験例2)、保護膜が7.5nm(実験例3)とし、その他は上記シミュレーションを行ったパラメータで実際に偏光板を作製して、透過軸透過率を実測した。その結果を図35に示す。また、保護膜を備えない偏光板(比較実験例)についても透過軸透過率を実測してその結果を図35に示した。図34に示したシミュレーション結果が実際の偏光板の光学特性をよく反映していることがわかる。
 図34及び図35の結果に基づくと、波長400nm~700nmの全波長で透過軸透過率を80%以上とすることが求められる場合には、保護膜の膜厚を5nm以下とする。また、波長430nm~700nmの全波長で透過軸透過率を80%以上とすることが
求められる場合には、保護膜の膜厚を10nm以下とする。
 図36は、シミュレーションを行って得た、各波長帯域毎の透過軸透過率の平均値を示すグラフであり、図37は、実験例1~3及び比較実験例の偏光板について実測した、各波長帯域の透過軸透過率の平均値を示すグラフである。図37に示すグラフは、図36に示したシミュレーション結果が実際の偏光板の光学特性をよく反映していることがわかる。
 図36及び図37に基づくと、赤色帯域、緑色帯域及び青色帯域の全帯域で、平均透過軸透過率を86%以上とすることが求められる場合には、保護膜の膜厚を5nm以下とする。また、赤色帯域、緑色帯域及び青色帯域の全帯域で、平均透過軸透過率を90%以上とすることが求められる場合には、保護膜の膜厚を2.5nm以下とする。
 本技術に係る偏光板として、実際に作製した偏光板の耐熱性評価を行った。なお、耐熱性評価はクリーンオーブンの300℃で行い、偏光板の光学特性であるコントラストについて、初期特性すなわち、クリーンオーブンに入れる前からの変化率にて評価した。コントラストとは、透過軸透過率/吸収軸透過率で算出でき、吸収軸透過率とは、偏光板に入射する吸収軸方向(Y軸方向)の偏光(TE波)の透過率を意味する。コントラスト変化率は、偏光板の耐熱性への影響を捉えるのに適している。
 図38は、実際に作製し光学特性におけるコントラストを耐熱性評価によって比較したグラフである。横軸に試験時間(クリーンオーブン内に配置した時間)、縦軸にコントラストの変化率を示しており、入射光が可視光領域の緑色帯域の光(波長=520nm~590nm)の場合を例とした。図38において、保護膜を備えない場合の結果も併せて示した。
 図38に示すように、保護膜が厚くなるにつれてコントラストの変化率は小さくなり、偏光板の耐久性は向上している。なお、入射光が緑色帯域の光の場合を例として示したが、赤色帯域の光(波長=600~680nm)あるいは青色帯域の光(波長=430nm~510nm)であったとしても、コントラスト変化率の値が多少前後するだけで、同様の効果が得られた。図38の結果から、保護膜の膜厚を2.5nm以上とすると、高耐熱性を維持できることがわかった。
 以上の結果から、凸部の表面及び反射防止層の表面に保護膜を備える本技術の偏光板は、耐久性を維持しつつ光透過特性の向上も得られることがわかり、特に、光学特性を著しく低下させない膜厚としては2.5nm以下が望ましく、また、高耐熱性を維持させる膜厚としては2.5nm以上が望ましいことがわかった。なお、保護膜を形成するにあたり、複数の凸部だけでなく反射防止層への影響も加味した、保護膜ならびに反射防止層を設計することが好ましい。
 10 光学機器、11 光源、12 入射側偏光素子、13 光変調素子、14 出射側第1偏光素子、15 出射側第2偏光素子、20 偏光板、21 透明基板、21a 主面、22 凸部、23 ベース形状部、24 突起部、30 偏光板、31 透明基板、31a 主面、32 凸部、33 ベース形状部、 34 突起部、40 偏光板、41 透明基板、41a 第1の面、41b 第2の面、42 凸部、42A 反射層、42B 誘電体層、42C 吸収層、43 反射防止層、44A、44B 保護膜、
50 液晶プロジェクター、51R、51G、51B 入射側偏光素子、52R、52G、52B 液晶パネル、53R、53G、53B 出射プリ偏光素子、54R、54G、54B 出射メイン偏光素子、100 偏光板、101 透明基板、102 凸部、103 ベース形状部、104 突起部
 

Claims (11)

  1.  光源と、入射側偏光素子と、光変調素子と、出射側第1偏光素子と、出射側第2偏光素子とを備えた光学機器であって、
     前記出射側第1偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、前記所定方向に直交する断面の幅が先端側ほど細くなるように形成されたベース形状部と、前記ベース形状部から突出し、前記使用帯域の光の波長に対して吸収性を有する突起部とを有し、
     前記出射側第2偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、反射層と、誘電体層と、吸収層とを有し、
     前記入射側偏光素子の直交軸に対する前記出射側第1偏光素子の直交軸の回転角が、±8.5°以内であり、
     前記入射側偏光素子の直交軸に対する前記出射側第2偏光素子の直交軸の回転角が、±0.7°以内である、光学機器。
  2.  前記出射側第1偏光素子は、前記入射側偏光素子の直交軸に対する回転角が±8.5°以内である場合、可視光領域の全帯域のP偏光透過率が95%以上であり、可視光領域の全帯域のP偏光透過率の回転角0°の位置からの変化量が-1%以下である請求項1記載の光学機器。
  3.  前記出射側第2偏光素子は、前記入射側偏光素子の直交軸に対する回転角が±0.7°以内である場合、可視光領域の全帯域のコントラスト比が1000以上であり、可視光領域の全帯域のコントラスト比の回転角0°の位置からの変化量が-20%以下である請求項1記載の光学機器。
  4.  前記出射側第2偏光素子が、前記透明基板の他方の面に反射防止層をさらに備える請求項1又は2記載の光学機器。
  5.  前記出射側第2偏光素子における前記凸部の表面及び前記反射防止層の表面が、誘電体からなる保護膜に覆われている請求項4記載の光学機器。
  6.  前記出射側第2偏光素子における前記保護膜の膜厚が、10nm以下である請求項5記載の光学機器。
  7.  前記出射側第1偏光素子における前記ベース形状部が、前記所定方向に直交する断面において略三角形状である請求項1乃至6のいずれか1項に記載の光学機器。
  8.  前記出射側第1偏光素子が、前記透明基板の他方の面に位相差補償素子が設けられている請求項1乃至7のいずれか1項に記載の光学機器。
  9.  前記出射側第1偏光素子における前記突起部が、使用帯域の光の波長に対して吸収性を有する、金属、合金及び半導体からなる群から選択された材料からなる請求項1乃至8のいずれか1項に記載の光学機器。
  10.  光源と、入射側偏光素子と、光変調素子と、出射側第1偏光素子と、出射側第2偏光素子とを備えた光学機器の製造方法であって、
     前記出射側第1偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、前記所定方向に直交する断面の幅が先端側ほど細くなるように形成されたベース形状部と、前記ベース形状部から突出し、前記使用帯域の光の波長に対して吸収性を有する突起部とを有し、
     前記出射側第2偏光素子は、ワイヤグリッド構造を有し、かつ、透明基板の一方の面に前記光源の使用帯域の光の波長よりも短いピッチで互いに離間して配列された複数の凸部を備え、前記凸部は、所定方向に延在する格子状凸部であり、該格子状凸部は、前記透明基板側から順に、反射層と、誘電体層と、吸収層とを有し、
     前記入射側偏光素子の直交軸に対する前記出射側第1偏光素子の直交軸の回転角が、±8.5°以内となるように前記出射側第1偏光素子を配置する工程と、
     前記入射側偏光素子の直交軸に対する前記出射側第2偏光素子の直交軸の回転角が、±0.7°以内となるように前記出射側第2偏光素子を配置する工程とを有する、光学機器の製造方法。
  11.  透過型の液晶プロジェクターである、請求項1乃至9のいずれか1項に記載の光学機器。
     
PCT/JP2022/009686 2021-03-15 2022-03-07 光学機器 WO2022196409A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/270,124 US20240069378A1 (en) 2021-03-15 2022-03-07 Optical device
CN202280020303.2A CN117083545A (zh) 2021-03-15 2022-03-07 光学仪器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021041786A JP2022141467A (ja) 2021-03-15 2021-03-15 光学機器
JP2021-041786 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196409A1 true WO2022196409A1 (ja) 2022-09-22

Family

ID=83320416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009686 WO2022196409A1 (ja) 2021-03-15 2022-03-07 光学機器

Country Status (4)

Country Link
US (1) US20240069378A1 (ja)
JP (1) JP2022141467A (ja)
CN (1) CN117083545A (ja)
WO (1) WO2022196409A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216957A (ja) * 2007-02-06 2008-09-18 Sony Corp 偏光素子及び液晶プロジェクター
JP2010145608A (ja) * 2008-12-17 2010-07-01 Seiko Epson Corp 偏光素子および偏光素子の製造方法、液晶装置、電子機器および投射型表示装置
JP2010210705A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp 偏光素子および偏光素子の製造方法、投射型表示装置、液晶装置、電子機器
WO2012118204A1 (ja) * 2011-03-02 2012-09-07 ソニーケミカル&インフォメーションデバイス株式会社 偏光素子
JP2014164124A (ja) * 2013-02-25 2014-09-08 Seiko Epson Corp 偏光素子の製造方法および偏光素子、投射型表示装置
JP2020140073A (ja) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 光変調装置、光学モジュールおよびプロジェクター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216957A (ja) * 2007-02-06 2008-09-18 Sony Corp 偏光素子及び液晶プロジェクター
JP2010145608A (ja) * 2008-12-17 2010-07-01 Seiko Epson Corp 偏光素子および偏光素子の製造方法、液晶装置、電子機器および投射型表示装置
JP2010210705A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp 偏光素子および偏光素子の製造方法、投射型表示装置、液晶装置、電子機器
WO2012118204A1 (ja) * 2011-03-02 2012-09-07 ソニーケミカル&インフォメーションデバイス株式会社 偏光素子
JP2014164124A (ja) * 2013-02-25 2014-09-08 Seiko Epson Corp 偏光素子の製造方法および偏光素子、投射型表示装置
JP2020140073A (ja) * 2019-02-28 2020-09-03 セイコーエプソン株式会社 光変調装置、光学モジュールおよびプロジェクター

Also Published As

Publication number Publication date
JP2022141467A (ja) 2022-09-29
US20240069378A1 (en) 2024-02-29
CN117083545A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US9360608B2 (en) Polarizing element
US9477024B2 (en) Polarizing element, projector and method of manufacturing polarizing element
JP5672702B2 (ja) 偏光素子、偏光素子の製造方法、電子機器
JP6410906B1 (ja) 偏光素子及び光学機器
JP7236230B2 (ja) 光学素子、液晶表示装置および投射型画像表示装置
JP2019120925A (ja) 偏光板及びその製造方法、並びに光学機器
US11971568B2 (en) Polarizing plate, manufacturing method thereof, and optical device
WO2022196409A1 (ja) 光学機器
US20230204840A1 (en) Polarizing plate, method of manufacturing the same and optical apparatus
US20210080634A1 (en) Polarizing plate, polarizing plate manufacturing method, and optical apparatus
JP7333168B2 (ja) 偏光素子、偏光素子の製造方法及び光学機器
JP7569164B2 (ja) 偏光板及びその製造方法、ならびに光学機器
JP6670879B2 (ja) 偏光素子、液晶プロジェクター及び偏光素子の製造方法
WO2023053868A1 (ja) 偏光板、光学機器及び偏光板の製造方法
JP7553226B2 (ja) 偏光板及びそれを備えた光学機器
US11543573B2 (en) Polarizing plate and optical apparatus containing same
WO2023145357A1 (ja) ワイヤグリッド偏光素子およびその製造方法ならびに光学機器
WO2023145307A1 (ja) ワイヤグリッド偏光素子およびその製造方法ならびに光学機器
JP7101028B2 (ja) 偏光素子及びその製造方法、並びに光学機器
US8508675B2 (en) Liquid crystal projector that includes an inorganic polarizer
JP2020003771A (ja) 偏光板の製造方法
JP7219735B2 (ja) 偏光板及びその製造方法、並びに光学機器
US20210231853A1 (en) Polarizing plate, optical apparatus and method of manufacturing polarizing plate
CN118033800A (zh) 线栅偏振元件及其制造方法以及光学设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270124

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280020303.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771163

Country of ref document: EP

Kind code of ref document: A1