JP2009203678A - Soil improvement method - Google Patents

Soil improvement method Download PDF

Info

Publication number
JP2009203678A
JP2009203678A JP2008045844A JP2008045844A JP2009203678A JP 2009203678 A JP2009203678 A JP 2009203678A JP 2008045844 A JP2008045844 A JP 2008045844A JP 2008045844 A JP2008045844 A JP 2008045844A JP 2009203678 A JP2009203678 A JP 2009203678A
Authority
JP
Japan
Prior art keywords
improvement
ground
improved
value
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045844A
Other languages
Japanese (ja)
Other versions
JP5187829B2 (en
Inventor
Kentaro Hayashi
健太郎 林
Koki Zen
功企 善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Penta Ocean Construction Co Ltd
Original Assignee
Kyushu University NUC
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Penta Ocean Construction Co Ltd filed Critical Kyushu University NUC
Priority to JP2008045844A priority Critical patent/JP5187829B2/en
Publication of JP2009203678A publication Critical patent/JP2009203678A/en
Application granted granted Critical
Publication of JP5187829B2 publication Critical patent/JP5187829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil improvement method for improving the liquefied layer of a sand ground at low cost. <P>SOLUTION: In this soil improvement method, chemical injection holes 2 are excavated in the sand ground under a paved road bed 13, a chemical is injected through the chemical injection holes 2 and an improvement ratio is changed for each improvement depth until the sand ground 1 just below the paved road bed 13 is improved at an improvement factor of 100%. The improvement factor is further lowered as the depth is larger. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は地盤改良工法に関するものである。   The present invention relates to a ground improvement method.

従来の液状化対策のための薬液を用いた砂質地盤の地盤改良工法は、地下水面から20mまでの深度に薬液を注入することにより、これらの層における砂の間隙を薬液で置き換えていた。すなわち改良率100%で薬液を注入することにより地震による砂質地盤の液状化を防いでいた。これは砂質地盤の液状化層を全て改良するという工法であった。また、その他の地盤改良工法としては、特開2004−346636号公報の発明がある。
特開2004−346636号公報
The conventional ground improvement method for sandy ground using a chemical solution for liquefaction countermeasures was to inject the chemical solution at a depth of 20 m from the groundwater surface, thereby replacing the sand gaps in these layers with the chemical solution. In other words, the liquefaction of sandy ground due to the earthquake was prevented by injecting the chemical solution at an improvement rate of 100%. This was a method of improving all the liquefied layers of sandy ground. As another ground improvement method, there is an invention of JP-A-2004-346636.
JP 2004-346636 A

しかし、上記の地盤改良工法は地下水面から20mまでを全て改良し、この液状化層における全ての砂の間隙量と、同じ量の薬液を砂質地盤に注入するためコスト高になるという問題があった。   However, the above-mentioned ground improvement method improves all the 20m from the groundwater surface, and there is a problem that the cost is high because all the gaps of sand in this liquefied layer and the same amount of chemicals are injected into the sandy ground. there were.

本願発明は上記のような間題に鑑みてなされたものであり、その目的は、低コストで液状化層の改良ができる地盤改良工法、すなわち、砂質地盤の液状化層を全て改良するのではなく、改良体による構造体が形成できる程度の改良をすることにより、地盤の軟化による変形を防いで地盤本来の剛性を保つとともに、過剰間隙水の地表への排水によって生じる圧密沈下を防ぐことのできる、地盤改良工法を提供することである。   The present invention has been made in view of the above problems, and its purpose is to improve the ground improvement method that can improve the liquefied layer at low cost, that is, to improve all the liquefied layer of the sandy ground. Instead, by improving the structure to the extent that the structure can be formed, the deformation due to softening of the ground is prevented, the original rigidity of the ground is maintained, and consolidation settlement caused by drainage of excess pore water to the ground surface is prevented. It is to provide a ground improvement method.

以上の課題を解決するための地盤改良工法は、舗装路盤の下側の砂質地盤に薬液注入孔を掘削し、該薬液注入孔から薬液を注入して改良率を改良深度ごとに変え、舗装路盤の直下の砂質地盤を改良率l00%で改良し、深度が深くなるにしたがって改良率を低下させることを特徴とする。また深度が深くなるにしたがって低下する改良率は最低が53%であることを含む。また深度xが深くなるにしたがって改良率αを低下させる際に、

Figure 2009203678
の式で算定される地盤の液状化指数であるP値が、一定の値以下になるように改良率αを設定することを含む。またP値を求める際に使用される、F=R/L(R:地盤の液状化強度比、L:地震時の地盤内部のせん断応力比)の式で算定される液状化に対する安全率であるF値については、未改良時のF値に(1一F)×改良率αを加算して算定することを含むものである。よって、
Figure 2009203678
The ground improvement method to solve the above problems is to drill a chemical injection hole in the sandy ground below the paved roadbed, inject the chemical solution from the chemical injection hole and change the improvement rate for each improvement depth. The sandy ground directly under the roadbed is improved at an improvement rate of 100%, and the improvement rate decreases as the depth increases. Further, the improvement rate that decreases as the depth increases includes a minimum of 53%. Further, when the improvement rate α is lowered as the depth x increases,
Figure 2009203678
P L value is a liquefaction index of the ground which is calculated by the formula comprises setting the improvement ratio α to be less than a certain value. In addition, the safety against liquefaction calculated by the formula of F L = R / L (R: ratio of liquefaction strength of the ground, L: ratio of shear stress in the ground during an earthquake) used when calculating the P L value The F L value, which is a rate, includes calculating by adding (1 1 F L ) × improvement rate α to the F L value when not improved. Therefore,
Figure 2009203678

ここに改良率αとは、ある立方体の改良域の中における改良された領域(改良体)の割合をいう。したがって、薬液を改良域の砂質地盤に注入すると、注入点を中心にしたほぼ球状の改良体が形成されるため、深度が深くなるにしたがって低下する改良率αの最低を53%にすると、改良体同士が互いに接して、地盤本来の剛性を保つことのできる構造体を形成することができる。しかし、改良率αが53%未満の場合には、隣り合う球状の改良体は互いに接しないようになる。   Here, the improvement rate α refers to a ratio of an improved region (improved body) in an improved region of a certain cube. Therefore, when the chemical solution is injected into the sandy ground in the improved area, an almost spherical improved body is formed around the injection point. Therefore, when the minimum of the improvement rate α that decreases as the depth becomes deeper is set to 53%, The improved bodies can be in contact with each other to form a structure that can maintain the original rigidity of the ground. However, when the improvement rate α is less than 53%, adjacent spherical improvement bodies do not come into contact with each other.

上記の改良率53%の改良体aは、飽和地盤中に水と同程度の比重の薬液を注入すると、図1の(1)に示すように、注入点を中心にほぼ球状に形成されることにより確認できる。
この改良体aの土中の形状確認事例として、本出願人が2000年度に三重県の津市松坂で行った、特殊シリカによる原位置注入実験の掘削後の改良形態からも確認されている。したがって、縦、横、高さが等しい改良域Mの中心から薬液の注入を行うと、図1の(2)に示すような、改良域Mの境界に接する改良率53%の改良体aが形成される。
The improved body a having an improvement rate of 53% is formed in a substantially spherical shape around the injection point as shown in FIG. 1 (1) when a chemical solution having a specific gravity similar to that of water is injected into the saturated ground. Can be confirmed.
As an example of confirming the shape of the improved body a in the soil, it has also been confirmed from an improved form after excavation in an in-situ injection experiment using special silica conducted by the present applicant in Matsuzaka, Mie Prefecture in 2000. Therefore, when the chemical solution is injected from the center of the improved region M having the same vertical, horizontal, and height, as shown in (2) of FIG. 1, an improved body a having an improvement rate of 53% in contact with the boundary of the improved region M is obtained. It is formed.

このような改良率53%の改良体a同士は相互に連結した構造体bとなるため、改良域の一部に作用する力が構造体bの内部で分散される(図2の(1)参照)。これとは反対に53%未満の改良体aの集まりでは、改良体a同士が相互に接しておらず、独立しているため構造体bを形成しない。そのため改良域に作用した力は分散されずに、改良域を大きく変形させる(図2の(2)参照)。   Since the improvement bodies a having such an improvement rate of 53% are connected to each other, the force acting on a part of the improvement region is dispersed inside the structure b ((1) in FIG. 2). reference). On the contrary, in a group of improved bodies a of less than 53%, the improved bodies a are not in contact with each other and are independent, so that the structural body b is not formed. Therefore, the force acting on the improved region is not dispersed, and the improved region is greatly deformed (see (2) in FIG. 2).

この改良率100〜53%の間の層の改良率αを設定するためのP値とは、地盤の液状化指数をいい、下記の式によって算定される。 The P L values for setting the improvement ratio α of the layer between the improvement ratio from 100 to 53%, refers to the liquefaction index of the ground, is calculated by the following equation.

Figure 2009203678
Figure 2009203678

このP値は液状化が生じたときの、地表面近くの変形量と相関関係があることが認めれている。そのため、このP値を求める際に使用されるF値については、改良率100%の場合には液状化が生じないため、F=1となる。このF値とは液状化に対する安全率をいい、F=R/Lにより算出する。ここにRは地盤の液状化強度比であり、Lは地震時の地盤内部のせん断応力比である。 The P L values when the liquefaction occurs, has been found to correlate with the amount of deformation of nearby ground surface. Therefore, the F L value used in determining the P L value, in the case of improvement of 100% for liquefaction does not occur, the F L = 1. From this F L value refers to a safety factor against liquefaction is calculated by F L = R / L. Here, R is the liquefaction strength ratio of the ground, and L is the shear stress ratio inside the ground at the time of the earthquake.

しかし、改良率100%未満の場合には、改良域の一部で液状化が生じるため、現状ではF値の設定手順がない。そこで模型振動実験で改良率100%未満の均一な地盤についての改良率と沈下量との関係を調べた事例により、改良率l00%未満の地盤における改良率について、改良後の(1−F値)と地表面の沈下量との関係を求めたところ、図3のように、改良後のF値と沈下量はほぼ比例関係にあることが認められた。 However, when the improvement rate is less than 100%, liquefaction occurs in a part of the improvement region, so there is currently no FL value setting procedure. So the case of examining the relationship between improvement rate and subsidence of the uniform soil improvement rate of less than 100% Shaking experiments, the improvement rate in soil under improvement ratio L00%, improved after the (1-F L was determined a relationship between the subsidence of the value) ground surface, as shown in FIG. 3, F L value and subsidence of the improved it has been found that almost proportional.

この結果から改良率100%未満の地盤のF値には、未改良時のF値に(1一F値)×改良率αを加算すればよいことになる。したがって、改良率100%の場合は未改良のF値をF0とすると、改良後のF値はF0+(1一F0)×100%、すなわち1.0となる。また改良率53%の場合は、F0+(1一F0)×53%=0.53(1十F)となる。 This result F L values of ground improvement of less than 100% would in F L value while not improve (1 one F L value) × improvement ratio α may be added. Thus, when in the case of improvement of 100% of F L values of unmodified and F L 0, F L value after the modification is F L 0+ (1 one F L 0) × 100%, i.e. 1.0. When the improvement rate is 53%, F L 0+ (1 1 F L 0) × 53% = 0.53 (1 + F L ).

そのため、この改良率の設定は液状化指数であるP値を用いて設定する。例えば改良率100%の場合は、液状化に対する安全率であるF値は、未改良値のF値より大きくなって「1」を満足する。また改良率50〜70%の場合は、せん断強度が大きくなるため、本来のF値より大きくなるが、F値が「l」までは改善されない。このため改良前のF値と完全改良値のF=lの間で(1一F値)×改良率αだけ、本来のF値から増加するとしてP値を算出する。 Therefore, setting of the improvement ratio is set by using the P L value is a liquefaction index. For example, in the case of improvement ratio 100%, F L value is a safety factor against liquefaction, it is greater than F L values of unmodified value satisfies "1". In the case of improvement ratio 50% to 70%, since the shear strength increases, becomes greater than the original F L values, F L value does not improve to "l". Therefore (1 one F L value) between the F L = l of F L value and the full improvement value before improvement × improvement ratio α only, calculates the P L value as to increase from the original F L value.

このように改良率を、液状化指数であるP値が「5」以下になるように設定する。このP値が「5」以下であれば、沈下などの地表面への影響が小さくできるが、「5」を超えると沈下などの地表面への影響が大きくなるからである。したがって、地表面への影響を抑えるためのP値は「5」以下を目標とする。 Thus the improvement ratio, P L value is a liquefaction index is set to be below "5". If this P L value is "5" or less, but the effect on the ground surface, such as a subsidence can be reduced, because the impact on the ground surface, such as a subsidence exceeds "5" is increased. Therefore, P L value of the order to suppress the influence of the earth's surface is the target the following "5".

薬液を砂質地盤の間隙部に注入することによる地盤改良工法は、地盤中の砂の間隙水をゼリー状の薬液に置換することで、地震時の過剰間隙水圧の上昇を防ぎ、地盤の持つ本来の剛性を保つことと、地震によって発生した周辺の未改良地盤の過剰間隙水が、改良範囲の地表面に伝達して、これを変形させることを防ぐことである。したがって、構造体を形成できる程度の改良率53%で地盤改良することができれば、周辺地盤が液状化した時にも、地盤が本来の剛性を保つことが可能となる。また地表面近くの地盤の改良率をl00%にすることで、地表面への過剰間隙水の影響を防ぐことができる。また、例え周辺地盤および改良範囲直下の地盤が液状化により軟化したとしても、舗装路盤の下側に形成された改良体が液状化した範囲に浮いた状態となるため、舗装面は変形しない。また周辺の未改良地盤で発生した過剰間隙水は、地表面との間に透水性の悪い改良率l00%の改良層があるため、地表面までは伝わらない。このため舖装路盤は、液状化による変形などの影響を受けにくい。また液状化層全体を改良することなく、舗装路盤に影響の大きい、地表面に近い部分の改良に限定したので、改良コストが全面改良に比べるとl/2〜1/4程度まで縮減され、同じ費用で、従来の工法と比べて2〜4倍の長さの地盤改良が可能になる。   The ground improvement method by injecting chemical liquid into the gap of sandy ground prevents the increase of excess pore water pressure at the time of earthquake by substituting the pore water of the sand in the ground with jelly-like chemical liquid, It is to maintain the original rigidity and to prevent the excess pore water in the surrounding unimproved ground generated by the earthquake from being transmitted to the ground surface in the improved range and deforming it. Therefore, if the ground can be improved at an improvement rate of 53% to the extent that a structure can be formed, the ground can maintain its original rigidity even when the surrounding ground is liquefied. Further, by setting the improvement rate of the ground near the ground surface to 100%, it is possible to prevent the influence of excess pore water on the ground surface. Moreover, even if the surrounding ground and the ground immediately below the improved area are softened by liquefaction, the improved body formed on the lower side of the paved roadbed floats in the liquefied area, so the pavement surface does not deform. In addition, excess pore water generated in the surrounding unimproved ground is not transmitted to the ground surface because there is an improved layer with an improvement rate of 100% having poor water permeability between the ground surface and the ground surface. For this reason, the outfitting roadbed is not easily affected by deformation due to liquefaction. In addition, without improving the entire liquefied layer, because it was limited to the improvement of the portion close to the ground surface, which has a large effect on the paved roadbed, the improvement cost was reduced to about 1/2-1/4 compared to the overall improvement, At the same cost, the ground can be improved 2 to 4 times longer than conventional methods.

以下、本願発明の地盤改良工法の実施の形態を図面に基づいて詳細に説明する。本願発明は、滑走路または道路の舗装路盤の下側における砂質地盤を改良するものであり、本実施の形態においては滑走路を対象にして説明する。   Hereinafter, embodiments of the ground improvement method of the present invention will be described in detail with reference to the drawings. The present invention is intended to improve the sandy ground below the runway or the paved roadbed of the road, and in the present embodiment, the runway will be described.

図4〜図7は地盤改良工法の実施の形態である。この地盤改良工法は、深度が深くなるに従って改良率を低下させるものであるが、滑走路の路盤直下である地下水面から2mの深さの地盤の改良率を100%とする。これは地震によって発生した、周辺の未改良地盤の過剰間隙水が改良範囲の地表面に伝達して、地表面を変形させることを防ぐためである。すなわち、地表面との間に透水性の悪い改良率l00%の改良層を形成して、過剰間隙水を地表面まで伝えないようにするためである。   4-7 is embodiment of a ground improvement construction method. This ground improvement method reduces the improvement rate as the depth increases, but the improvement rate of the ground at a depth of 2 m from the groundwater surface directly under the runway is 100%. This is to prevent excess pore water in the surrounding unimproved ground generated by the earthquake from being transmitted to the ground surface in the improved area and deforming the ground surface. That is, an improvement layer having an improvement rate of 100% with poor water permeability is formed between the ground surface and the excess pore water so as not to be transmitted to the ground surface.

そして、この改良率l00%の改良層の下側の層の改良率、すなわち100〜53%の間の層の改良率をP値が「5」以下の範囲において設定する。これは事前に様々な組み合わせ(シュミレーション)を行って最も良い改良率を設定するものであるが、本実施例においては70%に設定した。ここにおいてP値は下記の式によって算定した。 Then, set in the improvement ratio of the lower layer of the improvement ratio L00% improvement layer, i.e. the range improvements of the layer between the 100-53% P L value is less than "5". In this example, various combinations (simulations) are performed in advance to set the best improvement rate, but in this embodiment, it is set to 70%. P L value in this case was calculated by the following equation.

Figure 2009203678
Figure 2009203678

ここに改良前における深度(GL)l〜3mまでのF値を0.9と仮定する。また深度0〜2mまでを改良率100%、深度2〜4mまでを改良率70%、深度4〜6mまでを改良率53%で改良したものとしてP値を算定している。したがって、最下層を改良率53%、中間層を改良率70%、最上層を改良率l00%に改良する。この改良前と改良後のP値の算定表を下記に示す。 Assume F L values to a depth (GL) l~3m before improvement and 0.9 here. Further up the depth 0~2m improved 100%, up to a depth 2~4m improvement rate of 70% is calculated P L value as an improvement up to a depth 4~6m in improved 53%. Accordingly, the lower layer is improved to 53%, the intermediate layer is improved to 70%, and the uppermost layer is improved to 100%. It shows a calculation table of P L value after improvement before and this improved below.

Figure 2009203678
Figure 2009203678

次に、上記のようなシュミレーションを行った後、最下層の地盤改良を行うが、まず、図4の(1)に示すように、砂質地盤1に地下水面から6mの深さの薬液注入孔2をl.5〜2mのピッチで掘削する。このピッチは改良率53%の球状の改良体が互いに接することができるものである。そして、この薬液注入孔2にストレーナー型注入管3を挿入して、シリカ系水溶液型の薬液4を注入する。   Next, after performing the simulation as described above, the ground improvement in the lowermost layer is performed. First, as shown in (1) of FIG. 4, a chemical solution having a depth of 6 m from the groundwater surface is injected into the sandy ground 1. Hole 2 is l. Drilling at a pitch of 5-2m. This pitch is such that spherical improvement bodies with an improvement rate of 53% can contact each other. Then, a strainer type injection tube 3 is inserted into the chemical solution injection hole 2 to inject a silica-based aqueous solution type chemical solution 4.

このシリカ系水溶液型の薬液4としては、いわゆる「水ガラス」製造用の原料であるNaO/nSiOまたはKO/nSiOと、その硬化剤である無機塩類、有機塩類、金属酸化物、金属水酸化物、無機酸、有機酸、酸性塩、金属酸化物、金属水酸化物、塩基性塩等を組み合わせて調整したもの、ならびに特殊シリカ溶液とその硬化剤、例えばリン酸などである。 As this silica-based aqueous solution type chemical solution 4, Na 2 O / nSiO 2 or K 2 O / nSiO 2 which is a raw material for producing so-called “water glass”, and inorganic salts, organic salts, metal oxides which are curing agents thereof. Products, metal hydroxides, inorganic acids, organic acids, acid salts, metal oxides, metal hydroxides, basic salts, etc., as well as special silica solutions and their curing agents such as phosphoric acid is there.

この地下水面から6mの深さの砂質地盤1に改良率53%になる薬液4、すなわち薬液中のシリカ分含有量濃度を1〜8%、注入速度をl0L/分に設定した薬液4を注入すると、図4の(2)に示すように、球状の改良体5が水平方向で互いに重なり合った半改良層6が形成される。この球状の改良体5が形成されたか否かの確認は、ボーリングなどのサンプリングによって行う。このように改良率53%の場合は、隣り合う球状の改良体5が互いに接して絡み合うが、改良率53%未満の場合は隣り合う球状の改良体5は互いに接しない。   From the groundwater surface to the sandy ground 1 at a depth of 6 m, a chemical solution 4 having an improvement rate of 53%, that is, a chemical solution 4 having a silica content concentration of 1 to 8% and an injection rate set to 10 L / min. When injected, as shown in (2) of FIG. 4, a semi-improved layer 6 in which spherical improved bodies 5 overlap each other in the horizontal direction is formed. Whether or not the spherical improvement body 5 has been formed is confirmed by sampling such as boring. Thus, when the improvement rate is 53%, the adjacent spherical improvement bodies 5 are in contact with each other and entangled with each other, but when the improvement rate is less than 53%, the adjacent spherical improvement bodies 5 are not in contact with each other.

次に、中間層の改良地盤を形成するが、上記のストレーナー型注入管3を引き上げて半改良層6の上側、すなわち地下水面から4mの深さの砂質地盤lに、改良率70%になる薬液4、すなわち薬液濃度をl〜8%、注人速度を10L/分に設定した薬液4を注入すると、図5に示すように、重なり合う範囲が大きくなって、ぼぼ箱形(立方体)に形成された改良体7からなる中間改良層8が形成される。このように改良率70%になると、球状の改良体同士の重なり合う範囲が大きくなるため、改良体が箱形に近い形に形成される。そして中間改良層8の改良体7の下部と、半改良層6の球状の改良体5の上部とが、互いに重なり合って上下で一体になる。   Next, an improved ground of the intermediate layer is formed. The strainer type injection pipe 3 is pulled up to the sandy ground 1 above the semi-improved layer 6, that is, 4 m deep from the groundwater surface, with an improvement rate of 70%. As shown in FIG. 5, the overlapping range becomes large and becomes a box shape (cube) when the chemical solution 4, that is, the chemical solution concentration of 1 to 8% and the injection speed is set to 10 L / min. An intermediate improvement layer 8 made of the formed improvement body 7 is formed. Thus, when the improvement rate is 70%, the overlapping range of the spherical improvement bodies becomes large, so that the improvement bodies are formed in a shape close to a box shape. And the lower part of the improvement body 7 of the intermediate | middle improvement layer 8 and the upper part of the spherical improvement body 5 of the semi-improvement layer 6 mutually overlap, and are united up and down.

次に、上記のストレーナー型注人管3を更に引き上げて中間改良層8の上側、すなわち地下水面から2mの深さの砂質地盤lに、改良率100%になる薬液、すなわち薬液濃度をl〜8%、注入速度をl0L/分に設定した薬液4を注入すると、図6に示すように、完全改良体9が水平方向で密に重なり合った、均質かつ一体的な全面改良層10が形成される。このように改良率l00%になると、球状の改良体5同士の重なり合う範囲が大幅に増えて、球状の改良体5が原型を留めない程になる。そして全面改良層10の完全改良体9の下部と、箱形の改良体7の上部とが互いに重なり合って上下で一体になる。   Next, the strainer type inlet pipe 3 is further pulled up to the upper side of the intermediate improvement layer 8, that is, to the sandy ground 1 having a depth of 2 m from the groundwater surface, and the chemical solution, that is, the chemical solution concentration is set to 1 When the chemical solution 4 with ˜8% and the injection speed set at 10 L / min is injected, as shown in FIG. 6, a uniform and integrated whole surface improvement layer 10 in which the complete improvement bodies 9 are closely overlapped in the horizontal direction is formed. Is done. When the improvement rate becomes 100% in this way, the overlapping range of the spherical improvement bodies 5 is greatly increased, and the spherical improvement body 5 does not retain its original shape. And the lower part of the complete improvement body 9 of the whole surface improvement layer 10 and the upper part of the box-shaped improvement body 7 overlap each other and are united vertically.

したがって、図7に示すように、半改良層6と中間改良層8と全面改良層10とが上下で一体となった改良層11が、滑走路12下側の全長にわたって形成されるので、この改良層11の上面にコンクリートまたはアスファルトで舖装路盤13を形成する。   Accordingly, as shown in FIG. 7, an improved layer 11 in which the semi-improved layer 6, the intermediate improved layer 8, and the entire improved layer 10 are integrated vertically is formed over the entire length below the runway 12. A rigged roadbed 13 is formed on the upper surface of the improvement layer 11 with concrete or asphalt.

このように深度が深くなるに従って改良率を低下させると、地下水面から2〜6mの範囲の砂質地盤lに、液状化しない改良層11が形成されるので、例え周辺地盤および改良範囲直下の地盤が液状化によって軟化したとしても、滑走路下側の地盤を本来の剛性に保つことができ、かつ過剰間隙水を地表面に伝えないようにすることができる。   When the improvement rate is lowered as the depth increases, the improvement layer 11 that does not liquefy is formed on the sandy ground l in the range of 2 to 6 m from the groundwater surface. For example, immediately below the surrounding ground and the improvement range. Even if the ground is softened by liquefaction, the ground below the runway can be maintained at its original rigidity, and excess pore water can be prevented from being transmitted to the ground surface.

また上記の改良率はl00〜53%の間を70%にしたが、これは70%に限らず、l00〜53%の間であれば70%以上または70%未満であっても良い。   Moreover, although the said improvement rate made 70% between l00 to 53%, this is not restricted to 70%, and if it is between l00 to 53%, it may be 70% or more or less than 70%.

なお、本実施の形態においては薬液注入孔2を砂質地盤lの上面から掘削したが、この薬液注入孔2を既存の滑走路の舗装路盤13から掘削すること、または既存の滑走路の舗装路盤13の側面(法面)から掘削することもできる。   In this embodiment, the chemical injection hole 2 is excavated from the upper surface of the sandy ground l. However, the chemical injection hole 2 is excavated from the existing runway pavement 13 or the existing runway is paved. It is also possible to excavate from the side surface (slope) of the roadbed 13.

(1)は改良率53%の改良体の斜視図、(2)は改良率53%の改良体同士が接した平面図である。(1) is a perspective view of an improved body with an improvement rate of 53%, and (2) is a plan view in which the improved bodies with an improvement rate of 53% are in contact with each other. (1)は改良率53%の改良体からなる構造体の正面図、(2)は改良率53%未満の改良体の正面図である。(1) is a front view of a structure made of an improved body having an improvement rate of 53%, and (2) is a front view of an improved body having an improvement rate of less than 53%. 改良後の(1−F値)と沈下量との関係のグラフ図である。It is a graph of the relationship between the (1- FL value) after improvement and the amount of settlement. (1)は半改良層の垂直方向の断面図、(2)は(1)のA−A線断面図である。(1) is a cross-sectional view in the vertical direction of the semi-improved layer, and (2) is a cross-sectional view taken along line AA of (1). (1)は中間改良層の垂直方向の断面図、(2)は(1)のB一B線断面図である。(1) is a cross-sectional view in the vertical direction of the intermediate improvement layer, and (2) is a cross-sectional view along line B-B in (1). (l)は完全改良層の垂直方向の断面図、(2)は(1)のC−C線断面図である。(L) is a sectional view in the vertical direction of the completely improved layer, and (2) is a sectional view taken along the line CC of (1). (1)は地盤改良工法で形成した改良層の垂直方向の断面図、(2)は同斜視図である。(1) is a vertical sectional view of an improved layer formed by the ground improvement method, and (2) is a perspective view thereof.

符号の説明Explanation of symbols

M 改良領域
a 改良体
b 構造体
1 砂質地盤
2 薬液注入孔
3 ストレーナー型注入管
4 薬液
5 球状の改良体
6 半改良層
7、15、17、19 箱形の改良体
8 中間改良層
9 完全改良体
10 全面改良層
11、21 改良層
12 滑走路
13 舗装路盤
M Improvement area a Improvement body b Structure 1 Sandy ground 2 Chemical solution injection hole 3 Strainer type injection tube 4 Chemical solution 5 Spherical improvement body 6 Semi-improvement layer 7, 15, 17, 19 Box-shaped improvement body 8 Intermediate improvement layer 9 Completely improved body 10 Entirely improved layer 11, 21 Improved layer 12 Runway 13 Pavement roadbed

Claims (4)

舗装路盤の下側の砂質地盤に薬液注入孔を掘削し、該薬液注入孔から薬液を注入して改良率を改良深度ごとに変え、舗装路盤の直下の砂質地盤を改良率100%で改良し、深度が深くなるにしたがって改良率を低下させることを特徴とする地盤改良工法。   Drilling a chemical injection hole in the sandy ground below the paved roadbed, injecting the chemical liquid from the chemical injection hole and changing the improvement rate according to the improvement depth, the sandy ground directly under the paved roadbed with an improvement rate of 100% A ground improvement method that improves and lowers the improvement rate as the depth increases. 深度が深くなるにしたがって低下する改良率は最低が53%であることを特徴とする請求項lに記載の地盤改良工法。   The ground improvement method according to claim 1, wherein the improvement rate that decreases as the depth increases is 53% at a minimum. 深度xが深くなるにしたがって改良率αを低下させる際に、
Figure 2009203678
の式で算定される地盤の液状化指数であるP値が一定の値以下になるように改良率αを設定することを特徴とする請求項lに記載の地盤改良工法。
When reducing the improvement rate α as the depth x increases,
Figure 2009203678
Ground improvement method according to claim l where P L value is a liquefaction index of the ground which is calculated by the formula of and sets the improvement ratio α to be less than a certain value.
値を求める際に使用される、F=R/L(R:地盤の液状化強度比、L:地震時の地盤内部のせん断応力比)の式で算定される液状化に対する安全率であるF値については、未改良時のF値に(l−F)×改良率αを加算して算定することを特徴とする請求項3に記載の地盤改良工法。 P L value is used to determine the, F L = R / L ( R: liquefaction intensity ratio of the ground, L: shear stress ratio of ground inside during an earthquake) safety factor against liquefaction is calculated by the formula for F L value is, ground improvement method according to claim 3, characterized in that to calculate by adding the F L value during unmodified (l-F L) × improvement ratio alpha.
JP2008045844A 2008-02-27 2008-02-27 Ground improvement method Expired - Fee Related JP5187829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045844A JP5187829B2 (en) 2008-02-27 2008-02-27 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045844A JP5187829B2 (en) 2008-02-27 2008-02-27 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2009203678A true JP2009203678A (en) 2009-09-10
JP5187829B2 JP5187829B2 (en) 2013-04-24

Family

ID=41146217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045844A Expired - Fee Related JP5187829B2 (en) 2008-02-27 2008-02-27 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5187829B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019125A (en) * 2011-07-08 2013-01-31 Penta Ocean Construction Co Ltd Infiltration solidification processing method
JP2021179148A (en) * 2020-05-15 2021-11-18 鹿島建設株式会社 Ground improvement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131467A (en) * 1997-10-29 1999-05-18 Port & Harbour Res Inst Ministry Of Transport Consolidation improvement method of sand ground by chemical injection
JP2003064657A (en) * 2001-08-22 2003-03-05 Nippon Chiken Kk Construction method for improving soft ground
JP2007217979A (en) * 2006-02-17 2007-08-30 Kyushu Univ Liquefaction prevention construction and its construction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131467A (en) * 1997-10-29 1999-05-18 Port & Harbour Res Inst Ministry Of Transport Consolidation improvement method of sand ground by chemical injection
JP2003064657A (en) * 2001-08-22 2003-03-05 Nippon Chiken Kk Construction method for improving soft ground
JP2007217979A (en) * 2006-02-17 2007-08-30 Kyushu Univ Liquefaction prevention construction and its construction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019125A (en) * 2011-07-08 2013-01-31 Penta Ocean Construction Co Ltd Infiltration solidification processing method
JP2021179148A (en) * 2020-05-15 2021-11-18 鹿島建設株式会社 Ground improvement method
JP7461211B2 (en) 2020-05-15 2024-04-03 鹿島建設株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP5187829B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
CN105696427B (en) The construction method and its road structure of a kind of consolidation process newly built railway karst foundation
CN206308569U (en) It is a kind of to reinforce the road structure for punishing the solution cavity that underlies
CN105064157A (en) Treatment method of settlement of high-speed railway roadbeds in soft-soil areas
CN104532714B (en) Roadbed structure for treating deep soft soil karst foundation
CN105926391B (en) A kind of curb method for widening of existing railway roadbed
CN205475197U (en) Soft native karst foundation stabilization structure
JP2019015100A (en) Removing method of earth retaining wall
CN105971637A (en) Application of WSS construction method in shield end reinforcement of water-rich sand layer
JP5187829B2 (en) Ground improvement method
CN104074183A (en) Drilling and concrete injected root composite pile implanting pile structure and construction method
CN106677791A (en) Construction method for enabling shallow shield tunnel to pass through highway
CN206204978U (en) For the miniature grouting steel pipe pile multi-column pier foundation structure of Selection of Urban Pedestrian Overpass
CN104818658A (en) Road widening system and road widening method for collapsible yellow earth foundation layer
JP4114944B2 (en) Ground improvement method
CN109487793A (en) Inner support of pile foundation pit permanent support structure is perfused in a kind of solid matter under complex environment
CN205000325U (en) Urban road ground that tubular pile was handled
CN105350544A (en) Waterproof curtain used for stone-contained area and construction method thereof
JP2013147805A (en) Method and structure for countermeasure against liquefaction
CN107083775B (en) Rock slope fracture surface replacement treatment method
CN205576638U (en) Consolidate roadbed structure who handles newly -built railway karst foundation
CN106149631B (en) High mountain strid arch dam avalanche type Slope Treatment method
CN204753289U (en) System is widened to road on settlement by soaking loess foundation layer
CN107905219A (en) The construction method of ultra-deep hand excavation stake holes under a kind of complex geological condition
CN107630706A (en) A kind of tunnel bottom structure and construction method for eliminating highland nip tunnel inverted arch protuberance
CN209669910U (en) A kind of karst ground treatment crosses over the combination pile slab structure of larger molten chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190201

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 5187829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees