JP2003064657A - Construction method for improving soft ground - Google Patents

Construction method for improving soft ground

Info

Publication number
JP2003064657A
JP2003064657A JP2001252033A JP2001252033A JP2003064657A JP 2003064657 A JP2003064657 A JP 2003064657A JP 2001252033 A JP2001252033 A JP 2001252033A JP 2001252033 A JP2001252033 A JP 2001252033A JP 2003064657 A JP2003064657 A JP 2003064657A
Authority
JP
Japan
Prior art keywords
embankment
soft ground
upper structure
superstructure
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001252033A
Other languages
Japanese (ja)
Inventor
Shoji Nomura
正二 野村
Seiichi Nagaike
誠一 永池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIKEN KK
Original Assignee
NIPPON CHIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIKEN KK filed Critical NIPPON CHIKEN KK
Priority to JP2001252033A priority Critical patent/JP2003064657A/en
Publication of JP2003064657A publication Critical patent/JP2003064657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method for improving soft ground, which can prevent settlement of a superstructure, such as fill, constructed on the soft ground, the sliding rupture of the superstructure and the displacement of a neighboring area, and can avoid an influence exerted upon an environment by cut-off of underground water. SOLUTION: In the construction method for improving the soft ground, grouped columns, whose horizontal cross sections are formed annularly by making the columns overlap the ground, are vertically arranged at intervals; a superstructure supporting plate for supporting the superstructure is formed on upper parts of the grouped columns; and the superstructure is supported on the superstructure supporting plate.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、軟弱地盤上に盛
土、堤防等の上部構造物を構築する場合に問題となる、
上部構造物の沈下、上部構造物のすべり破壊、および近
接地の変位を防止するとともに、地下水遮断による環境
に与える影響を回避することができる軟弱地盤改良工法
に関する。 【0002】 【従来の技術】軟弱地盤上に上部構造物として盛土を形
成した場合、軟弱層が圧縮されるために盛土の沈下が生
じ、軟弱層にせん断が生じるために盛土が破壊する。ま
た地震液状化時には、盛土の重量を受けた大きな土水圧
が生じるため、土砂が噴出して盛土の破壊につながる。 【0003】そこで、軟弱層上の盛土の沈下防止及び安
定対策として、例えば、ブッロクおよび格子状改良工法
あるいは複合地盤改良工法がある。 【0004】図2は従来のブッロクあるいは格子状改良
工法を示し、(a)は縦断面図、(b)は水平断面図で
ある。 【0005】盛土2の端部に柱1をブロック状あるいは
格子状に構築するもので、盛土荷重を受けた大きな主動
土圧や地震液状化時の土水圧に対して安定となる断面の
地盤改良体を構築するものである。この場合、地盤改良
体は図2(b)に示すように壁状につながる。 【0006】図3は従来の複合地盤工法を示し、(a)
は縦断面図、(b)は水平断面図である。 【0007】上部構造物である盛土全域に単一の柱1a
を均等に平面配置して軟弱地盤を改良しようとするもの
である。 【0008】 【発明が解決しようとする課題】図2に示すブッロク又
は格子状改良工法は、諸外力に対し安定化を図ることが
できるが、改良体を盛土の延長方向に壁状に構築するた
め、近年になって地下水遮断による環境への影響が問題
とされている。この問題を解決するために、連続する壁
状改良体に通水用のスリットを設けることが考えられる
が、この場合盛土荷重を受けた液状化土水圧がスリット
から吹き出し、近接地の噴砂と道路などの陥没が生じる
ことが懸念される。 【0009】一方、図3の複合地盤工法は、改良柱強度
quを盛土の鉛直力で設定し、盛土の安定を複合地盤平
均粘着力がqu/2×α(α:改良率)とした円弧すべ
り計算で検討するもので、一般に地震時の対策とはなら
ない。また、単独の柱が曲げ応力に弱いことから、水平
力が作用する場合や耐震性を考慮する場合に採用ができ
ない場合が多い。 【0010】軟弱地盤上に道路盛土や堤防などの土構造
物を構築する場合、常時および地震時における盛土自体
のすべり破壊、盛土沈下および周辺地盤への変位の影響
が問題となる。そして、これらの問題点の対策を考慮し
て、設計・施工する場合、地下水遮断など環境に与える
影響も回避する必要がある。 【0011】そこで、本発明は、軟弱地盤上に構築され
る盛土などの上部構造物の沈下、上部構造物のすべり破
壊、および近接地の変位を防止するとともに、地下水遮
断による環境に与える影響を回避することができる軟弱
地盤改良工法を提供するものである。 【0012】 【課題を解決するための手段】本発明の軟弱地盤改良工
法は、地盤に複数の柱をオーバーラップさせて水平断面
を環状に形成した群柱を間隔をおいて鉛直に配置し、前
記群柱の上部に上部構造物を支持する上部構造物支持板
を形成し、上部構造物支持板上に上部構造物を支持する
ことを特徴とする。 【0013】 【発明の実施の形態】常時および地震時に安定した形状
の複数の群柱と、これらの複数の群柱に支えられる上部
構造物支持板に上部構造物である盛土の荷重を安定して
支持することにより、軟弱地盤に増加応力を与えない。
その結果、軟弱層に盛土荷重が作用しないので、盛土の
沈下、円弧すべり破壊、近接地への変位の影響が生じな
いことになり、軟弱地盤に起因する常時および地震時の
盛土等の安定、地盤沈下の問題を解決することができ
る。 【0014】図1は本発明の軟弱地盤改良工法の説明図
で、(a)は縦断面図、(b)は水平断面図である。 【0015】軟弱地盤中に群柱1を形成し、次いで群柱
1の上位に盛土や堤防などの上部構造物2を支持する上
部構造物支持板3を形成して上部構造物2の荷重を群柱
1と上部構造物支持板3で支持する。 【0016】群柱は、単一の柱1aを互いにオーバーラ
ップさせて、水平断面が矩形、円形、多角形状などの環
状に形成して一つの群柱1を形成し、複数の群柱1を間
隔をおいて配置する。 【0017】群柱は、公知の工法で形成することができ
る。例えば、粉体噴射攪拌工法、スラリー機械攪拌工法
を利用することができる。 【0018】粉体噴射攪拌工法では、セメント系、石灰
系の粉体を軟弱地盤中に噴射供給し、攪拌翼で現位置土
と攪拌混合して固結することにより群柱を形成する。 【0019】また、スラリー機械攪拌工法では、スラリ
ー状のセメント系固化材を軟弱地盤中に供給し、現位置
土と攪拌混合して固結することにより群柱を形成する。
群柱の施工天端は、改良部以深とする。 【0020】群柱の大きさと強度ならびに配置は、上部
構造物による常時及び地震時の鉛直力と水平力に安定と
なるように決定するものである。群柱は、安定して盛土
荷重を支える必要があるため、盛土の鉛直力を支える強
度を有し、水平力作用時や液状化時に転倒、滑動に対し
安定し、かつ引張り応力が作用しない断面係数が得られ
る大きさとする。 【0021】群柱1を施工後に、群柱の上位にセメント
系、石灰系固化材と現位置土または搬入土をスタビライ
ザ、バックホウあるいはプラント等で混合して、現場の
表層部で板状に固化させて、上部構造物支持板3を形成
する。 【0022】上部構造物支持板は、その厚さを群柱が負
担する盛土荷重を鉛直力で伝えることの出来る厚さとし
て、隣り合う群柱間の最大間隔の1/2以上とし、その
上部構造物支持板の強度を押し抜きせん断力に対して安
定となる圧縮強度を持たせる。これにより、地震液状化
時に発生する過剰間隙水圧は、大きな盛土荷重の影響を
受けず、上部構造物支持板以深の土被り相当分のみとな
り、この条件で安定する群柱で支えられた盛土が沈下、
破壊を起こすことがない。また、近接地の変形対策とし
ては、軟弱地盤に土構造物による応力が生じないため影
響を与えない。 【0023】また、地下水環境に対して、群柱を上部構
造物支持板が曲げ破壊を生じない間隔で配置するため、
地下水遮断の影響を回避することが出来る。 【0024】本発明による工法の設計の基本的考え方
は、次のとおりである。 【0025】1.軟弱地盤中に群柱を形成し、群柱の上
位に盛土支持板を施工して盛土荷重を盛土支持板と群柱
で支持する。これにより、 (1)軟弱層に盛土による鉛直増加応力を与えない(圧
密沈下が生じない)。 【0026】(2)軟弱層に盛土による剪断力を与えな
い(円弧すべり破壊が生じない。)。 【0027】(3)常時の改良群柱に作用する土圧は、
盛土支持板以深の土被りによるもので、 主動・受
動が平衡する。 【0028】(4)地震時の群柱に作用する土圧は、盛
土支持板以深の液状化時の土水圧、慣性力検討時の地震
時土圧である。 【0029】2.一つの群柱が負担する盛土荷重は、各
群柱間の中心までとする。 3.一つの群柱に作用する地震時土圧・土水圧は、主動
・受動ともに各群柱幅に作用するとする。 【0030】4.盛土により群柱に作用する水平力は群
柱が負担する。 【0031】(1)常時の盛土内部主動土圧は、盛土支
持板を介して群柱頭部に水平力とモーメントとして作用
するとする。 【0032】(2)地震時の盛土慣性力は、盛土支持板
を介して群柱の頭部に水平力として作用するものとす
る。このとき、液状化による耐震設計地盤面が設定され
る場合は、この面から突出した柱として検討する。 【0033】 【発明の効果】本発明によれば、常時および地震時に安
定となる形状の群柱と、これに支えられる上部構造物支
持板で盛土などの上部構造物の荷重を安定して支持する
ことができ、軟弱地盤上の盛土の沈下、盛土のすべり破
壊、および近接地の変位を防止するとともに、地下水遮
断による環境に与える影響を回避することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is problematic when constructing an upper structure such as embankment or embankment on soft ground.
The present invention relates to a soft ground improvement method capable of preventing subsidence of an upper structure, sliding destruction of the upper structure, and displacement of a nearby ground, and avoiding the influence of groundwater interruption on the environment. [0002] When an embankment is formed as an upper structure on a soft ground, the embankment is settled because the soft layer is compressed, and the embankment is broken because the soft layer is sheared. At the time of earthquake liquefaction, a large earth pressure is generated due to the weight of the embankment, so that the earth and sand erupts, leading to destruction of the embankment. In order to prevent the settlement of the embankment on the soft layer and to make it stable, there are, for example, a block and grid improvement method or a composite ground improvement method. FIGS. 2A and 2B show a conventional block or lattice improvement method, in which FIG. 2A is a longitudinal sectional view and FIG. 2B is a horizontal sectional view. A pillar 1 is constructed in a block shape or a grid shape at an end of an embankment 2 and a ground improvement of a cross section which is stable against a large main earth pressure under embankment load and a soil water pressure during earthquake liquefaction. It builds the body. In this case, the ground improvement body is connected to a wall shape as shown in FIG. FIG. 3 shows a conventional composite ground method, in which (a)
Is a longitudinal sectional view, and (b) is a horizontal sectional view. [0007] A single pillar 1a is provided throughout the embankment, which is the upper structure.
Are to be evenly arranged on a plane to improve soft ground. [0008] The block or grid-like improvement method shown in FIG. 2 can stabilize against external forces, but the improved body is constructed in a wall shape in the extension direction of the embankment. Therefore, in recent years, the impact on the environment due to groundwater interruption has been a problem. In order to solve this problem, it is conceivable to provide slits for water passage in the continuous wall-shaped improvement body.In this case, the liquefied soil water pressure receiving the embankment load blows out from the slits, causing There is a concern that depression such as depression may occur. On the other hand, in the composite ground method shown in FIG. 3, the improved column strength qu is set by the vertical force of the embankment, and the stability of the embankment is determined by setting the composite ground average adhesive strength to qu / 2 × α (α: improvement ratio). It is considered by slip calculation and is not generally a countermeasure in the event of an earthquake. In addition, since a single column is weak against bending stress, it cannot be adopted in many cases when a horizontal force acts or when considering earthquake resistance. When constructing an earth structure such as a road embankment or embankment on a soft ground, there is a problem in that the embankment itself is always slid or destroyed during the earthquake, the embankment subsidence, and the influence of displacement on the surrounding ground. When designing and constructing in consideration of measures against these problems, it is necessary to avoid the influence on the environment such as groundwater shutoff. Accordingly, the present invention prevents the subsidence of an upper structure such as an embankment constructed on soft ground, the sliding destruction of the upper structure, and the displacement of a nearby ground, and the effect on the environment due to groundwater interruption. It is intended to provide a soft ground improvement method that can be avoided. A soft ground improvement method according to the present invention is characterized in that a plurality of columns having a horizontal cross section formed in an annular shape by overlapping a plurality of columns on the ground are vertically arranged at intervals. An upper structure support plate for supporting the upper structure is formed above the group pillar, and the upper structure is supported on the upper structure support plate. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plurality of group pillars having a stable shape at all times and during an earthquake and an upper structure supporting plate supported by the plurality of group pillars stabilize a load of an embankment as an upper structure. By supporting it, the increased stress is not applied to the soft ground.
As a result, the embankment load does not act on the soft layer, so the settlement of the embankment, arc-slide destruction, and the influence of displacement to the nearby ground do not occur. The problem of land subsidence can be solved. 1A and 1B are explanatory views of the soft ground improvement method of the present invention, wherein FIG. 1A is a longitudinal sectional view and FIG. 1B is a horizontal sectional view. A group pillar 1 is formed in the soft ground, and an upper structure support plate 3 for supporting an upper structure 2 such as an embankment or a dike is formed above the group pillar 1 to reduce the load of the upper structure 2. It is supported by the group pillar 1 and the upper structure support plate 3. The group pillars are formed by overlapping a single pillar 1a with each other, and forming a horizontal section in a ring shape such as a rectangular, circular, or polygonal shape to form one group pillar 1, and a plurality of group pillars 1 are formed. Place at intervals. The group pillar can be formed by a known method. For example, a powder injection stirring method and a slurry mechanical stirring method can be used. In the powder injection stirring method, a cement-based or lime-based powder is injected and supplied into soft ground, and is stirred and mixed with the soil at the current position by a stirring blade to form a group pillar. Further, in the slurry mechanical stirring method, a slurry-type cement-based solidifying material is supplied into soft ground, and is stirred and mixed with the soil at the present position to be consolidated to form a group pillar.
The construction top of the group pillar shall be deeper than the improved part. The size, strength and arrangement of the group columns are determined so as to be stable to the vertical force and the horizontal force due to the superstructure at all times and during an earthquake. Since the group pillars need to stably support the embankment load, they have the strength to support the vertical force of the embankment, are stable against overturning and sliding when horizontal force or liquefaction is applied, and have a section where no tensile stress is applied. The size is such that the coefficient can be obtained. After the group pillar 1 is constructed, the cement or lime-based solidification material and the soil at the current position or the loaded soil are mixed above the group pillar with a stabilizer, a backhoe, a plant, or the like, and solidified in a plate shape on the surface layer at the site. Thus, the upper structure support plate 3 is formed. The upper structure supporting plate has a thickness capable of transmitting the embankment load borne by the group columns by a vertical force, and is set to be at least 1/2 of the maximum distance between adjacent group columns. The strength of the structure support plate is pushed out to give a compressive strength that is stable against shearing force. As a result, the excess pore water pressure generated during seismic liquefaction is not affected by the large embankment load, and is only equivalent to the depth of the overburden below the upper structure support plate, and the embankment supported by the group columns stabilized under this condition subsidence,
No destruction. In addition, as a countermeasure against deformation of the nearby ground, there is no influence because no stress due to the soil structure is generated on the soft ground. Further, in order to arrange the group columns in the groundwater environment at intervals such that the upper structure support plate does not bend and break,
The effect of groundwater interruption can be avoided. The basic concept of the design of the construction method according to the present invention is as follows. 1. A group pillar is formed in the soft ground, and an embankment support plate is constructed above the group pillar to support the embankment load with the embankment support plate and the group column. As a result, (1) no vertical increase stress due to embankment is applied to the soft layer (consolidation settlement does not occur). (2) No shearing force due to embankment is applied to the soft layer (the arc-slip failure does not occur). (3) The earth pressure acting on the improved group pillar at all times is:
This is due to the earth covering below the embankment support plate. (4) The earth pressure acting on the group columns at the time of the earthquake is the soil water pressure at the time of liquefaction below the embankment support plate and the earth pressure at the time of the study of the inertial force. 2. The embankment load borne by one group column is to the center between each group column. 3. It is assumed that the earth pressure and the soil pressure during one earthquake that act on one group column affect the width of each group column, both active and passive. 4. The horizontal force acting on the columns by the embankment is borne by the columns. (1) It is assumed that the normal main earth pressure inside the embankment acts as a horizontal force and a moment on the group column head via the embankment support plate. (2) The inertia force of the embankment during an earthquake acts on the head of the group column as a horizontal force via the embankment support plate. At this time, if a seismic design ground surface due to liquefaction is set, consider it as a column protruding from this surface. According to the present invention, a group pillar having a shape that is stable at all times and during an earthquake and an upper structure support plate supported by the group pillar stably support the load of an upper structure such as an embankment. It is possible to prevent the settlement of the embankment on the soft ground, the sliding destruction of the embankment, and the displacement of the nearby ground, and to avoid the influence on the environment due to groundwater interruption.

【図面の簡単な説明】 【図1】本発明の軟弱地盤改良工法の説明図で、(a)
は縦断面図、(b)は水平断面図である。 【図2】従来のブッロクあるいは格子状改良工法を示
し、(a)は縦断面図、(b)は水平断面図である。 【図3】従来の複合地盤工法を示し、(a)は縦断面
図、(b)は水平断面図である。 【符号の説明】 1:群柱 1a:単一の柱 2:上部構造物(盛土等) 3:上部構造物支持板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a soft ground improvement method of the present invention, wherein (a)
Is a longitudinal sectional view, and (b) is a horizontal sectional view. 2A and 2B show a conventional block or grid-like improvement method, in which FIG. 2A is a longitudinal sectional view, and FIG. 2B is a horizontal sectional view. 3A and 3B show a conventional composite ground method, in which FIG. 3A is a longitudinal sectional view and FIG. 3B is a horizontal sectional view. [Description of Signs] 1: Group pillar 1a: Single pillar 2: Upper structure (embankment etc.) 3: Upper structure support plate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D040 AA01 AB03 AB11 BA08 BD02 BD03 BD05 CA01 CA03 CB01 CB03    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 2D040 AA01 AB03 AB11 BA08 BD02                       BD03 BD05 CA01 CA03 CB01                       CB03

Claims (1)

【特許請求の範囲】 【請求項1】 地盤に複数の柱をオーバーラップさせて
水平断面を環状に形成した群柱を間隔をおいて鉛直に配
置し、前記群柱の上部に上部構造物を支持する上部構造
物支持板を形成し、上部構造物支持板上に上部構造物を
支持することを特徴とする軟弱地盤改良工法。
Claims 1. A plurality of pillars, each having a plurality of pillars overlapped on the ground and having a horizontal cross section formed in an annular shape, are vertically arranged at intervals, and an upper structure is provided above the pillars. A soft ground improvement method comprising: forming an upper structure support plate for supporting; and supporting the upper structure on the upper structure support plate.
JP2001252033A 2001-08-22 2001-08-22 Construction method for improving soft ground Pending JP2003064657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252033A JP2003064657A (en) 2001-08-22 2001-08-22 Construction method for improving soft ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252033A JP2003064657A (en) 2001-08-22 2001-08-22 Construction method for improving soft ground

Publications (1)

Publication Number Publication Date
JP2003064657A true JP2003064657A (en) 2003-03-05

Family

ID=19080577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252033A Pending JP2003064657A (en) 2001-08-22 2001-08-22 Construction method for improving soft ground

Country Status (1)

Country Link
JP (1) JP2003064657A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299174A (en) * 2004-04-09 2005-10-27 Public Works Research Institute Construction method of improved column body
JP2008144386A (en) * 2006-12-07 2008-06-26 Onoda Chemico Co Ltd Soil improving method and soil improving body
JP2008303580A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Reinforcing structure of banking support ground
JP2008303581A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Reinforcing structure of banking support ground
JP2008303583A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Structure of artificial ground
JP2009203678A (en) * 2008-02-27 2009-09-10 Penta Ocean Construction Co Ltd Soil improvement method
WO2009145147A1 (en) * 2008-05-26 2009-12-03 株式会社ノム Ground improvement method
JP2010024757A (en) * 2008-07-23 2010-02-04 Asanuma Corp Liquefaction resistant structure of ground
JP2011196173A (en) * 2010-02-26 2011-10-06 Univ Of Tokyo Pile arranging method and foundation structure
JP2013227747A (en) * 2012-04-24 2013-11-07 Re Earth Corp Soil improvement body, soil improvement structure, and foundation construction method
JP2014066035A (en) * 2012-09-25 2014-04-17 Re Earth Corp Ground improvement structure
JP2016141980A (en) * 2015-01-30 2016-08-08 規之 安福 Wall-type ground improvement method utilizing displacement suppression wall
JP2017014807A (en) * 2015-07-01 2017-01-19 三井住友建設株式会社 Construction method for pile type rigid connection structure body
JP2017150208A (en) * 2016-02-24 2017-08-31 株式会社大林組 Settlement prevention structure of linear construction, and construction method for the same
JP6339752B1 (en) * 2018-04-16 2018-06-06 株式会社ヤマガタ Reinforcement method for soft ground and reinforcement support device for soft ground
JP2018184816A (en) * 2017-04-27 2018-11-22 株式会社リアス System and method for monitoring settlement displacement of floor
JP2019152080A (en) * 2018-03-06 2019-09-12 株式会社リアス Foundation structure and construction management method
JP7336049B1 (en) * 2023-06-01 2023-08-30 株式会社不動テトラ Calculation method of embankment volume

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299174A (en) * 2004-04-09 2005-10-27 Public Works Research Institute Construction method of improved column body
JP2008144386A (en) * 2006-12-07 2008-06-26 Onoda Chemico Co Ltd Soil improving method and soil improving body
JP2008303580A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Reinforcing structure of banking support ground
JP2008303581A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Reinforcing structure of banking support ground
JP2008303583A (en) * 2007-06-06 2008-12-18 Public Works Research Institute Structure of artificial ground
JP2009203678A (en) * 2008-02-27 2009-09-10 Penta Ocean Construction Co Ltd Soil improvement method
JPWO2009145147A1 (en) * 2008-05-26 2011-10-13 株式会社ノム Ground improvement method
JP4514835B2 (en) * 2008-05-26 2010-07-28 株式会社ノム Ground improvement method
WO2009145147A1 (en) * 2008-05-26 2009-12-03 株式会社ノム Ground improvement method
JP2010024757A (en) * 2008-07-23 2010-02-04 Asanuma Corp Liquefaction resistant structure of ground
JP2011196173A (en) * 2010-02-26 2011-10-06 Univ Of Tokyo Pile arranging method and foundation structure
JP2013227747A (en) * 2012-04-24 2013-11-07 Re Earth Corp Soil improvement body, soil improvement structure, and foundation construction method
JP2014066035A (en) * 2012-09-25 2014-04-17 Re Earth Corp Ground improvement structure
JP2016141980A (en) * 2015-01-30 2016-08-08 規之 安福 Wall-type ground improvement method utilizing displacement suppression wall
JP2017014807A (en) * 2015-07-01 2017-01-19 三井住友建設株式会社 Construction method for pile type rigid connection structure body
JP2017150208A (en) * 2016-02-24 2017-08-31 株式会社大林組 Settlement prevention structure of linear construction, and construction method for the same
JP2018184816A (en) * 2017-04-27 2018-11-22 株式会社リアス System and method for monitoring settlement displacement of floor
JP2019152080A (en) * 2018-03-06 2019-09-12 株式会社リアス Foundation structure and construction management method
JP7007951B2 (en) 2018-03-06 2022-01-25 株式会社リアス Foundation structure and construction management method
JP6339752B1 (en) * 2018-04-16 2018-06-06 株式会社ヤマガタ Reinforcement method for soft ground and reinforcement support device for soft ground
JP2019183559A (en) * 2018-04-16 2019-10-24 株式会社ヤマガタ Reinforcement method of weak ground, and reinforcement support device for weak ground
JP7336049B1 (en) * 2023-06-01 2023-08-30 株式会社不動テトラ Calculation method of embankment volume

Similar Documents

Publication Publication Date Title
JP2003064657A (en) Construction method for improving soft ground
JP2009249999A (en) Construction method for suppressing deformation of filling
JP2005180079A (en) Aseismatic reinforcement structure of construction
JP2007009421A (en) Foundation structure of structure
CN105926637B (en) Prestress supporting system for protecting existing subway and design
JP7345614B2 (en) Joint structure and structure between pile and superstructure
JP3515567B1 (en) Seismic reinforcement structure of structures
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
KR102116085B1 (en) A Eco-friendly retain wall structure
JP3225397B2 (en) Independent mountain retaining wall by ground improvement method
JP3643571B2 (en) Pile foundation reinforcement structure
JP3244324B2 (en) Mountain retaining method
JP2008150859A (en) Reinforcing structure of ground level different part
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP2000336669A (en) Liquefaction countermeasure construction method
CN220908416U (en) Temporary enclosure structure for foundation pit
WO2021111690A1 (en) Foundation structure for building, and method for constructing same
WO2019068016A1 (en) Improved counterfort retaining wall
CN212336050U (en) Anchoring structure of deformation side slope
JP2876471B2 (en) Lateral flow countermeasure structure
JP2019210743A (en) Retaining wall structure
KR102285192B1 (en) A Eco-friendly retain wall structure
JP2017186760A (en) Pile foundation structure
JPH1046619A (en) Foundation structure of construction in sand-layer ground
KR20100029425A (en) Concrete plate for reinforcing ground slope by using soil nail and reinforcing method using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060811