JP2017186760A - Pile foundation structure - Google Patents

Pile foundation structure Download PDF

Info

Publication number
JP2017186760A
JP2017186760A JP2016074853A JP2016074853A JP2017186760A JP 2017186760 A JP2017186760 A JP 2017186760A JP 2016074853 A JP2016074853 A JP 2016074853A JP 2016074853 A JP2016074853 A JP 2016074853A JP 2017186760 A JP2017186760 A JP 2017186760A
Authority
JP
Japan
Prior art keywords
new
existing
pile
earthquake
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074853A
Other languages
Japanese (ja)
Other versions
JP6774774B2 (en
Inventor
将吾 熊谷
Shogo Kumagai
将吾 熊谷
俊司 山本
Shunji Yamamoto
俊司 山本
光平 岸本
Kohei Kishimoto
光平 岸本
哲 日下
Satoru Kusaka
哲 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2016074853A priority Critical patent/JP6774774B2/en
Publication of JP2017186760A publication Critical patent/JP2017186760A/en
Application granted granted Critical
Publication of JP6774774B2 publication Critical patent/JP6774774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly practicable pile foundation structure capable of significantly reducing drawing force exerted on the pile at a time of earthquake, and efficiently reducing the drawing force at the time of earthquake while preventing enlarging of shear force exerted on the pile at the time of earthquake.SOLUTION: A pile foundation structure includes an existing building frame 1 remaining underground at a construction ground G, a new pile 2 installed underground at the construction ground G, and a new building frame 3 connected on top of the new pile 2. The new building frame 3 is connected to the existing building frame 1 such that weight of the existing building frame 1 functions to resist drawing force at a time of earthquake.SELECTED DRAWING: Figure 1

Description

本発明は、建設地の地中に建て込まれた新設杭を備えた杭基礎構造に関する。   The present invention relates to a pile foundation structure including a new pile built in the ground of a construction site.

このような杭基礎構造は、建設地の状況や施工計画等の事情に応じて種々の構造が採用されている。例えば、特許文献1〜5には、建設地の地中に残された既存杭と新設杭とを備えた杭基礎構造が記載されている。これらの杭基礎構造では、建物の鉛直荷重の一部を既存杭に負担させることで、既存杭の撤去作業の削減や新設杭の構築コストの低減が図られている。   As such a pile foundation structure, various structures are adopted according to the circumstances of the construction site and the construction plan. For example, Patent Literatures 1 to 5 describe a pile foundation structure including existing piles and new piles left in the ground of a construction site. In these pile foundation structures, the existing pile is burdened with a part of the vertical load of the building, thereby reducing the removal work of the existing pile and reducing the construction cost of the new pile.

ところで、このような杭基礎構造では、地震時の揺れで建物の荷重バランスが崩れた場合に、杭に引抜力(以下、地震時引抜力と略称する。)が作用することになる。
そのため、この地震時引抜力によって杭頭と建物躯体である基礎との接合部(以下、杭頭接合部と略称する。)が破壊しないように、杭頭接合部は想定される地震時引抜力に応じた構造とするのが基本となる。一方、杭頭接合部の構造の簡略化が求められる場合や、杭頭接合部の構造はそのままで地震時引抜力への更なる安全性が求められる場合もある。
By the way, in such a pile foundation structure, when the load balance of a building collapses due to shaking at the time of an earthquake, a pulling force (hereinafter abbreviated as an earthquake pulling force) acts on the pile.
Therefore, the pile head joint is assumed to be pulled out in the event of an earthquake so that the joint between the pile head and the foundation that is the building frame (hereinafter abbreviated as a pile head joint) is not destroyed by this pull-out force during an earthquake. The basic structure is to meet the requirements. On the other hand, there is a case where simplification of the structure of the pile head joint is required, or there is a case where further safety against the pullout force during an earthquake is required with the structure of the pile head joint being left as it is.

そこで、従来、このような場合に対応するために、建物の架構形式を杭に地震時引抜力が作用しない架構形式に変更することや、地震時引抜力を相殺するウェイトを建物に追加的に載せることが行われている。   Therefore, conventionally, in order to cope with such a case, the building frame type has been changed to a frame type in which the pulling force during the earthquake does not act on the pile, and a weight that offsets the pulling force during the earthquake has been added to the building. It is done.

特開2000−154549号公報JP 2000-154549 A 特許第3656493号公報Japanese Patent No. 3656493 特許第5181288号公報Japanese Patent No. 5181288 特許第5687887号公報Japanese Patent No. 568787 特開2003−96794号公報JP 2003-96794 A

しかしながら、前者は、建物の架構形式を変更するだけでは地震時引抜力の低減量が小さく、地震時引抜力を大きく低減させたい場合に適切に対応できない不都合がある。
後者は、上述のような不都合はないものの、追加的なウェイトで建物自重が重くなるので、地震時に杭に作用するせん断力(以下、地震時せん断力と略称する。)が増大してしまうデメリットがある。
However, the former has a disadvantage that the amount of reduction in the pullout force during an earthquake is small only by changing the frame type of the building, and it cannot be appropriately handled when it is desired to greatly reduce the pullout force during an earthquake.
The latter is not disadvantageous as described above, but the weight of the building becomes heavy with an additional weight, so the shear force acting on the pile during an earthquake (hereinafter abbreviated as the shear force during an earthquake) increases. There is.

この実情に鑑み、本発明の主たる課題は、杭に作用する地震時引抜力を大きく低減させることが可能で、且つ、杭に作用する地震時せん断力の増大を回避しながら地震時引抜力を効率的に低減することができる実用性の高い優れた杭基礎構造を提供する点にある。   In view of this situation, the main problem of the present invention is that it is possible to greatly reduce the earthquake pulling force acting on the pile, and to prevent the earthquake pulling force while avoiding an increase in the earthquake shearing force acting on the pile. It is in the point which provides the excellent pile foundation structure with high practicality which can be reduced efficiently.

本発明の第1特徴構成は、杭基礎構造に係り、
建設地の地下に残された既存躯体と、
建設地の地中に建て込まれた新設杭と、
前記新設杭の上に接合された新設躯体とが備えられ、
前記新設躯体が、前記既存躯体の重量が地震時引抜力への抵抗要素となる状態で当該既存躯体に接続されている点にある。
The first characteristic configuration of the present invention relates to a pile foundation structure,
The existing structure left in the basement of the construction site,
A new pile built in the ground of the construction site,
A new structure joined on the new pile,
The new chassis is connected to the existing chassis in a state where the weight of the existing chassis becomes a resistance element against the pulling force during an earthquake.

上記構成によれば、新設躯体に接続された既存躯体の重量が、地震時引抜力への抵抗要素(換言すれば、地震時引抜力を相殺するウェイト)となるので、既存躯体を有効に利用して新設杭に作用する地震時引抜力を効率的に低減することができる。
また、このように既存躯体を有効に利用することで、既存躯体の解体・撤去作業の省力化や新設山留壁の構築作業の省力化等を図ることも可能となる。
更に、既存躯体の重量自体がそもそも大きい上、建設地に残す範囲を拡大する等の簡易な方法により重量を更に大きくできるので、杭に作用する地震時引抜力を大きく低減させることが可能となる。
しかも、地下に残された既存躯体は、自身の基礎構造にて下方から支持されているので、このように新設躯体と既存躯体とを接続しても、新設躯体の自重が重くなることはない。そのため、既存躯体の重量が新設躯体に追加されることで、新設杭に作用する地震時せん断力が増大することも回避することができる。
これらのことから、新設杭に作用する地震時引抜力を大きく低減させることが可能で、且つ、新設杭に作用する地震時せん断力の増大を回避しながら地震時引抜力を効率的に低減することができる実用性の高い優れた杭基礎構造を実現することができる。
According to the above configuration, the weight of the existing chassis connected to the new chassis is a resistance element to the pullout force during an earthquake (in other words, a weight that cancels the pullout force during an earthquake), so the existing chassis is used effectively. As a result, it is possible to efficiently reduce the pulling force during the earthquake that acts on the new pile.
In addition, by effectively using the existing frame in this way, it becomes possible to save labor for dismantling / removing the existing frame and for building a new mountain retaining wall.
Furthermore, since the weight of the existing frame itself is large in the first place and the weight can be further increased by a simple method such as expanding the range to be left in the construction site, it becomes possible to greatly reduce the pulling force at the time of earthquake acting on the pile. .
Moreover, since the existing frame that is left underground is supported from below by its own foundation structure, even if the new frame and the existing frame are connected in this way, the weight of the new frame will not increase. . Therefore, it is also possible to avoid an increase in the shear force at the time of the earthquake that acts on the new pile by adding the weight of the existing case to the new structure.
From these things, it is possible to greatly reduce the pull-out force during earthquake that acts on the new pile, and efficiently reduce the pull-out force during earthquake while avoiding an increase in the shear force during the earthquake acting on the new pile. It is possible to realize an excellent pile foundation structure with high practicality.

本発明の第2特徴構成は、前記新設杭は、前記新設躯体から受ける鉛直荷重及び水平荷重を単独負担可能に構成されている点にある。   The 2nd characteristic structure of this invention exists in the point by which the said new pile is comprised so that the vertical load received from the said new frame and a horizontal load can be borne separately.

上記構成によれば、新設躯体から受ける鉛直荷重及び水平荷重は新設杭にて負担することができるので、例えば、構造体の経年変化などの事情から実際の耐力が確定し難い既存杭等の状態にかかわらず、新設杭にて新設躯体から受ける鉛直荷重及び水平荷重を適切に処理することができる。
それでいて、地震時引抜力については、耐力に比べて確定し易い既存躯体の重量を利用して効率的に低減することができる。
According to the above configuration, since the vertical load and horizontal load received from the new frame can be borne by the new pile, for example, the state of an existing pile or the like where it is difficult to determine the actual yield strength due to circumstances such as aging of the structure Regardless of the vertical load and the horizontal load received from the new frame can be appropriately handled by the new pile.
Nevertheless, the pulling force during an earthquake can be efficiently reduced by utilizing the weight of the existing housing that is easier to determine than the proof stress.

本発明の第3特徴構成は、前記既存躯体における前記新設躯体との接続領域が、地震時に発現させる設定引抜抵抗力に応じた重量を有する領域に設定されている点にある。   The 3rd characteristic structure of this invention exists in the point which the connection area | region with the said new housing in the said existing housing is set to the area | region which has the weight according to the setting pulling-out resistance force to be expressed at the time of an earthquake.

つまり、既存躯体における新設躯体との接続領域は新設躯体との一体性が強いので、仮に地震時引抜力で既存躯体が分断破壊する場合でも、その分断ラインが接続領域と非接続領域との境界付近に位置するなどにより、接続領域が新設躯体に接続された状態が維持され易い。
そのため、当該接続領域が、地震時に発現させる設定引抜抵抗力に応じた重量を有する領域に設定されている上記構成によれば、少なくとも設定引抜抵抗力を高い確率で作用させることができ、地震時引抜力に対する安全性を更に高めることができる。
In other words, the connection area of the existing chassis with the new chassis is highly integrated with the new chassis, so even if the existing chassis is broken by the pulling force during an earthquake, the dividing line is the boundary between the connected area and the non-connected area. The state where the connection area is connected to the newly installed frame is easily maintained by being located in the vicinity.
Therefore, according to the above configuration in which the connection region is set in a region having a weight corresponding to the set pulling resistance force to be generated at the time of an earthquake, at least the set pulling resistance force can be applied with a high probability. Safety against pulling force can be further enhanced.

本発明の第4特徴構成は、前記新設躯体と前記既存躯体との接続は、互いの地下外壁どうしの間で行われている点にある。   The 4th characteristic structure of this invention exists in the point by which the connection of the said new housing and the said existing housing is performed between mutual underground outer walls.

上記構成によれば、新設躯体と既存躯体の地下外壁どうしは、新設杭の地震時引抜力の作用方向となる上下方向(縦方向)沿う姿勢にあるので、アンカーや鉄筋等の接続部材を亘らせる汎用性の高い接続構造に限らず、両地下外壁どうしの対向面間に凹部と凸部などの両者の上下相対移動を規制する係合部を設ける接続構造や、両地下外壁どうしの摩擦抵抗を高めて両者の上下相対移動を抑制する接続構造などの接続構造を採用することも可能となる。よって、既存躯体の状態や建築計画等に応じた適切な接続構造を採用することができる。   According to the above configuration, the underground outer walls of the new structure and the existing structure are in a posture along the vertical direction (longitudinal direction), which is the direction of action of the pulling force during the earthquake of the new pile. Not only a highly versatile connection structure, but also a connection structure in which an engaging part that restricts the relative movement of the concave and convex parts between the opposing surfaces of both underground walls is provided, and friction between the two underground walls It is also possible to employ a connection structure such as a connection structure that increases the resistance and suppresses the relative movement between the two. Therefore, it is possible to employ an appropriate connection structure according to the state of the existing housing, the building plan, and the like.

そして、アンカーや鉄筋等の接続部材を亘らせる汎用性の高い接続構造を採用する場合には、新設躯体と既存躯体の基礎どうしを接続するのに比べて地下水の問題が生じることを抑制しながら、接続部材のせん断耐力にて適切に伝達する形態で既存躯体の重量を利用した引抜抵抗力を的確に実現し、新設杭に作用する地震時引抜力を効果的に低減することができる。   And when adopting a highly versatile connection structure that spans connecting members such as anchors and reinforcing bars, it is possible to suppress the occurrence of groundwater problems compared to connecting the foundations of the new frame and the existing frame. However, it is possible to accurately realize the pulling resistance force using the weight of the existing frame in the form of appropriately transmitting with the shear strength of the connecting member, and to effectively reduce the pulling force at the time of earthquake acting on the newly installed pile.

杭基礎構造の縦断面図Longitudinal section of pile foundation structure 杭基礎構造の別実施形態を示す要部の縦断面図Longitudinal sectional view of the main part showing another embodiment of the pile foundation structure

本発明に係る杭基礎構造の実施形態を図面に基づいて説明する。
この杭基礎構造は、図1に示すように、建設地Gの地下に残された既存躯体1と、建設地Gの地中に建て込まれた新設杭2と、新設杭2の上に接合された新設躯体3とが主要構成として備えられており、建設地Gにて既設建物から新設建物に建て替える場合に好適に用いることができる。そして、当該杭基礎構造は、新設躯体3から受ける鉛直荷重及び水平荷重を新設杭2にて負担するとともに、既存躯体1の重量を利用して新設杭2に作用する地震時引抜力を低減するように構成されている。
An embodiment of a pile foundation structure according to the present invention will be described based on the drawings.
As shown in FIG. 1, this pile foundation structure is joined to the existing frame 1 left under the construction site G, the new pile 2 built in the ground of the construction site G, and the new pile 2. The newly constructed housing 3 is provided as a main component, and can be suitably used when rebuilding from an existing building to a new building at the construction site G. And the said pile foundation structure bears the vertical load and horizontal load which are received from the new frame 3 in the new pile 2, and reduces the pulling-out force at the time of the earthquake which acts on the new pile 2 using the weight of the existing frame 1 It is configured as follows.

前記既存躯体1は、既設建物の解体工事の際に敢えて解体せずに建設地Gの地下に残されたものである。既存躯体1は、RC造(鉄筋コンクリート造)やSRC造(鉄骨鉄筋コンクリート造)、S造(鉄骨造)、それらの複合構造などの如何なる構造であってもよいが、図示の例では、RC造の既存基礎11と既存地下外壁12などから構成されている。   The said existing frame 1 is left in the basement of the construction site G without deliberately demolition at the time of demolition work of an existing building. The existing housing 1 may be any structure such as RC structure (steel reinforced concrete structure), SRC structure (steel reinforced concrete structure), S structure (steel structure), or a composite structure thereof. It consists of an existing foundation 11 and an existing underground outer wall 12.

また、この杭基礎構造では、既存躯体1の重量のみを利用できれば十分であるので、既存躯体1の支持構造も如何なる構造であってもよいが、図示の例では、既存基礎11の下に建て込まれている既存杭4にて既存躯体1を支持する構造となっている。当該既存杭4は、例えば、既存基礎11の底面下の領域に分散配置された複数本の現場打ち又は既成のコンクリート杭などから構成されている。   Moreover, in this pile foundation structure, since it is sufficient if only the weight of the existing frame 1 can be used, the support structure of the existing frame 1 may be any structure, but in the illustrated example, it is built under the existing foundation 11. It is the structure which supports the existing frame 1 with the existing pile 4 embedded. The existing pile 4 is composed of, for example, a plurality of on-site casts or existing concrete piles that are dispersedly arranged in a region below the bottom surface of the existing foundation 11.

前記新設躯体3は、解体工事後に建設地Gに新たに構築されたものであり、図示の例では、RC造の新設基礎31と新設地下外壁32、鉄骨造の柱33と梁34、RC造の柱脚部35から構成されている。この新設躯体3も、RC造やSRC造、S造、それらの複合構造などの各種の構造にて構成することができる。また、図示の例では、新設杭2の直上に柱33の柱脚を位置させるために鉄骨造の柱33が傾斜しているが、新設基礎31や柱33などが求められる性能を有していれば、柱33を垂直にしても好適に実施できる。   The new frame 3 is newly constructed in the construction site G after the dismantling work. In the example shown in the figure, an RC new foundation 31 and a new underground outer wall 32, a steel column 33 and a beam 34, an RC structure The column base part 35 is comprised. The new housing 3 can also be configured by various structures such as RC structure, SRC structure, S structure, and a composite structure thereof. Further, in the illustrated example, the steel pillar 33 is inclined in order to position the column base of the pillar 33 directly above the new pile 2, but the new foundation 31, the pillar 33 and the like are required. Thus, the present invention can be suitably implemented even when the pillar 33 is vertical.

既存躯体1と新設躯体3との間、主として既存基礎11と新設基礎31との間には、新設基礎31の設置高さを設計高さに調整するための埋め戻し材5が充填されている。この埋め戻し材5は、流動化処理土や掘削土、解体ガラ、砂利、砕石等の各種の材料を施工計画等に応じて適宜に用いることができる。   A backfill material 5 for adjusting the installation height of the new foundation 31 to the design height is filled between the existing chassis 1 and the newly installed chassis 3 and mainly between the existing foundation 11 and the new foundation 31. . As the backfill material 5, various materials such as fluidized soil, excavated soil, dismantled glass, gravel, and crushed stone can be used as appropriate according to the construction plan and the like.

前記新設杭2は、解体工事後に建設地Gの地中に新たに建て込まれたものであり、例えば、新設基礎31の底面下の領域に分散配置した複数本の現場打ち又は既成のコンクリート杭などから構成されている。
当該新設杭2は、新設躯体3から受ける鉛直荷重及び水平荷重を既存杭4に負担させることなく単独負担可能に構成されている。具体的には、新設杭2は、新設躯体3から受ける鉛直荷重及び水平荷重を単独負担可能な耐力を有するように、杭径や杭長や本数等の仕様が設定されている。
The new pile 2 is newly built in the ground of the construction site G after the dismantling work. For example, a plurality of on-site or existing concrete piles distributed in the area below the bottom surface of the new foundation 31 Etc.
The new pile 2 is configured to be able to bear a single load without causing the existing pile 4 to bear the vertical load and the horizontal load received from the new frame 3. Specifically, specifications such as a pile diameter, a pile length, and the number of the new pile 2 are set so that the vertical load and the horizontal load received from the new frame 3 can be borne separately.

新設杭2の杭頭21と新設基礎31との接合部である杭頭接合部6は、剛接合構造や、それよりも回転拘束度を緩和した半剛接合構造などの各種の接合構造を適宜に採用することができる。
この点、本杭基礎構造は、既存躯体1の重量を利用して地震時引抜力を低減させるので、地震時引抜力への耐力としては半剛接合構造で十分ではあるが、本実施形態では、杭頭補強筋(図示省略)で頑強に補強した剛接合構造を採用し、地震時引抜力に対する杭頭接合部6の安全性を高める選択をしている。
The pile head joint 6, which is a joint between the pile head 21 of the new pile 2 and the new foundation 31, has various joint structures such as a rigid joint structure and a semi-rigid joint structure in which the degree of rotational restraint is relaxed. Can be adopted.
In this respect, this pile foundation structure uses the weight of the existing frame 1 to reduce the pullout force during an earthquake, so a semi-rigid joint structure is sufficient as a proof against the pullout force during an earthquake, but in this embodiment A rigid joint structure reinforced with pile head reinforcement bars (not shown) is employed to increase the safety of the pile head joint 6 against an earthquake pull-out force.

そして、この杭基礎構造では、新設躯体3が、既存躯体1の重量が地震時引抜力への抵抗要素となる状態で既存躯体1に接続部7により接続されている。このように新設躯体3と既存躯体1とを接続部7にて接続することで、地震時において既存躯体1の重量を抵抗要素にして新設杭2に作用する地震時引抜力を低減させることができる。   And in this pile foundation structure, the new structure 3 is connected to the existing structure 1 by the connection part 7 in the state by which the weight of the existing structure 1 becomes a resistance element to the pulling-out force at the time of an earthquake. By connecting the new frame 3 and the existing frame 1 at the connection portion 7 in this manner, it is possible to reduce the earthquake pull-out force acting on the new pile 2 by using the weight of the existing frame 1 as a resistance element in the event of an earthquake. it can.

新設躯体3と既存躯体1との接続部7は、少なくとも新設躯体3が上方側に移動しようとする場合に新設躯体3に対して既存躯体1の重量が移動抵抗力として付加される各種の構造を採用することができる。   The connecting portion 7 between the new housing 3 and the existing housing 1 has various structures in which the weight of the existing housing 1 is added to the new housing 3 as a movement resistance force at least when the new housing 3 is to move upward. Can be adopted.

本実施形態では、接続部7は、新設躯体3の上下方向(縦方向)に沿う新設地下外壁32と、既存躯体1の上下方向に沿う既存地下外壁12とに横方向に延びるアンカーや鉄筋等の接続部材71を介装して構成されている。この接続部材71を介して新設躯体3と既存躯体1とが相対移動不能に接続されている。   In the present embodiment, the connecting portion 7 includes an anchor, a reinforcing bar and the like that extend in the lateral direction to the newly installed underground outer wall 32 along the vertical direction (vertical direction) of the newly installed housing 3 and the existing underground outer wall 12 along the vertical direction of the existing housing 1. The connecting member 71 is interposed. The newly installed housing 3 and the existing housing 1 are connected via the connecting member 71 so as not to be relatively movable.

このように新設躯体3の新設地下外壁32と既存躯体1の既存地下外壁12とを接続部材71を介して接続することで、新設躯体3が上方側に移動しようとする場合に、接続部材71を介して接続部材71のせん断耐力によって既存躯体1の重量が移動抵抗力として適切に付加され、その結果、新設杭2に作用する地震時引抜力を好適に低減させることができる。   In this way, when the newly installed chassis 3 is to move upward by connecting the newly installed underground outer wall 32 of the newly installed chassis 3 and the existing underground outer wall 12 of the existing chassis 1 via the connecting member 71, the connecting member 71. Thus, the weight of the existing housing 1 is appropriately added as a movement resistance force by the shear strength of the connection member 71, and as a result, the pulling force at the time of earthquake acting on the new pile 2 can be suitably reduced.

前記既存躯体1における前記新設躯体3との接続領域A(図中のグレー表示部分)は、地震時引抜力で既存躯体1が分断破壊する可能性も考慮し、地震時に発現させる設定引抜抵抗力に応じた重量を有する領域に設定されている。
ここで、既存躯体1の接続領域Aは、多数の接続部材71にて直接的に新設躯体3に接続された領域である。本実施形態では、設定引抜抵抗力に応じた重量(つまり、地震時に設定引抜抵抗力を発現させる重量)が既存地下外壁12の上半側の重量となることから、設定引抜抵抗力に応じた重量を有する領域として既存地下外壁12の上半側の領域を接続領域Aとしている。
The connection area A (the gray display portion in the figure) of the existing chassis 1 with the newly installed chassis 3 is set pullout resistance force that is developed during an earthquake in consideration of the possibility of the existing chassis 1 being broken by the pullout force during an earthquake. It is set to the area | region which has the weight according to.
Here, the connection region A of the existing housing 1 is a region directly connected to the new housing 3 by a large number of connection members 71. In the present embodiment, the weight corresponding to the set pulling resistance force (that is, the weight that expresses the set pulling resistance force at the time of an earthquake) is the weight of the upper half side of the existing underground outer wall 12, so A region on the upper half side of the existing underground outer wall 12 is a connection region A as a region having a weight.

このように直接的に新設躯体3に接続された接続領域Aは、新設躯体3との一体性が強いので、地震時引抜力によって既存躯体1が分断破壊する場合でも、その分断ラインが接続領域Aと非接続領域との境界付近に位置するなどにより、接続領域Aが新設躯体3に接続された状態が維持され易い。つまり、既存躯体1の接続領域Aの重量は、地震時引抜力への抵抗要素として高い確率で維持される信頼性の高いものとなる。そのため、この杭基礎構造は、地震時において、少なくとも設定引抜抵抗力は高い確率で作用させることができる。   Since the connection region A directly connected to the new housing 3 in this way is highly integrated with the new housing 3, even if the existing housing 1 is parted and broken by the pulling force during an earthquake, the parting line is connected to the connection region A. It is easy to maintain the state where the connection area A is connected to the new housing 3 by being positioned near the boundary between A and the non-connection area. That is, the weight of the connection region A of the existing housing 1 is highly reliable and is maintained with a high probability as a resistance element against the pulling force during an earthquake. Therefore, at the time of an earthquake, this pile foundation structure can be made to act with a high probability of at least the set pulling resistance.

この既存躯体1の接続領域Aは、地震時に発現させる設定引抜抵抗力に応じて、その範囲などを適宜に設定することができる。例えば、設定引抜抵抗力を新設杭2に地震時引抜力が全く作用しない大きさとする場合には、接続領域Aは地震時引抜力を完全に相殺できる重量を有する範囲の領域とすればよく、設定引抜抵抗力をより小さくする場合には、接続領域Aもより小さな重量を有する範囲の領域とすればよい。   The connection area A of the existing housing 1 can be set as appropriate depending on the set pulling resistance force to be developed during an earthquake. For example, when the set pulling resistance is set to a magnitude that does not cause any earthquake pulling force to the new pile 2, the connection region A may be a region having a weight that can completely cancel the earthquake pulling force, When the set pull-out resistance force is further reduced, the connection area A may be an area having a smaller weight.

杭頭接合部6の破壊を回避するためには必要な箇所に必要な重量が配分されていればよいので、必ずしも既存躯体1における新設躯体3の全周に対面する部位を接続領域Aとしなくてもよく、例えば、既存躯体1における新設躯体3の地震時引抜力が生じ易い特定部位に対面する部位や新設躯体3の四隅に対面する部位を接続領域Aとするなど、接続領域Aは平面配置も適宜に設定することができる。   In order to avoid the destruction of the pile head joint 6, it is sufficient that the necessary weight is allocated to the necessary part. Therefore, the part facing the entire circumference of the newly installed chassis 3 in the existing chassis 1 is not necessarily the connection area A. For example, the connection region A is a flat surface, such as a region facing the specific region where the pull-out force of the new housing 3 is likely to be generated in the existing housing 1 or a portion facing the four corners of the new housing 3 as the connection region A. The arrangement can also be set appropriately.

上述の如く構成された杭基礎構造は、例えば、以下のような構築方法にて構築することができる。
まず、既存躯体1の既存基礎11と既存地下外壁12を建設地Gの地下に残して、既存建物を解体・撤去する。なお、建設地Gの地下に残された既存躯体1は、杭基礎構造において地震時引抜力の抵抗要素として構成するが、施工段階では、新規の土留め壁を不要として労務作業を低減することや地下水の湧出を抑制することにも効果を発揮する。
The pile foundation structure configured as described above can be constructed by, for example, the following construction method.
First, the existing foundation 11 and the existing underground outer wall 12 of the existing building 1 are left in the basement of the construction site G, and the existing building is dismantled and removed. In addition, the existing frame 1 left in the basement of the construction site G is configured as a resistance element of the pullout force during earthquake in the pile foundation structure, but at the construction stage, a new earth retaining wall is not required and labor work is reduced. It is also effective in suppressing the discharge of groundwater.

その後、新設躯体3の新設基礎31の底面下の地盤領域に対して既存基礎11を貫通する状態で新設杭2を建て込むとともに、上面が新設基礎31の設置レベルとなるように既存躯体1の既存基礎11の上に埋め戻し材5を充填する。
そして、埋め戻し材5の上に新設躯体3の新設基礎31を構築する。この際、杭頭接合部6が所望の接合構造となるように杭頭21は適宜に補強しておく。
Thereafter, the new pile 2 is built in a state of penetrating the existing foundation 11 with respect to the ground area below the bottom surface of the new foundation 31 of the new structure 3, and the upper surface of the existing structure 1 is set to the installation level of the new foundation 31. The backfill material 5 is filled on the existing foundation 11.
Then, a new foundation 31 of the new housing 3 is constructed on the backfill material 5. At this time, the pile head 21 is appropriately reinforced so that the pile head joint portion 6 has a desired joint structure.

次に、新設躯体3の新設基礎31の上に新設躯体3の柱33や梁34を組み付けるとともに、既存躯体1の既存地下外壁12における接続領域Aに対して多数の接続部材71を略等間隔で埋め込み固定する。
そして、新設躯体3の柱33の周囲及び新設躯体3の外周部にコンクリートを打設して柱脚部35及び新設地下外壁32を構築する。この際、柱脚部35と接続領域Aの間の部位36は、新設地下外壁32を構成するコンクリート増打部として柱脚部35と一体にコンクリートを打設する。このようにすることで、既存躯体1の接続領域Aと新設地下外壁32とを接続部材71を介して適切に接続しながら新設地下外壁32と柱脚部35を一体的に構築することができる。
以上の工程により、本発明に係る杭基礎構造を構築することができる。
Next, the pillar 33 and the beam 34 of the new frame 3 are assembled on the new foundation 31 of the new frame 3, and a large number of connection members 71 are arranged at substantially equal intervals with respect to the connection area A in the existing underground outer wall 12 of the existing frame 1. Embed and fix with.
Then, concrete is cast around the pillar 33 of the new housing 3 and the outer periphery of the new housing 3 to construct the column base 35 and the new underground outer wall 32. At this time, the part 36 between the column base part 35 and the connection area A places concrete integrally with the column base part 35 as a concrete beating part constituting the newly installed underground outer wall 32. By doing in this way, the new underground outer wall 32 and the column base part 35 can be constructed integrally while appropriately connecting the connection area A of the existing housing 1 and the new underground outer wall 32 via the connection member 71. .
The pile foundation structure according to the present invention can be constructed by the above steps.

〔別実施形態〕
(1)前述の実施形態では、新設躯体3と既存躯体1との接続部7が、新設躯体3の新設地下外壁32と既存躯体1の既存地下外壁12とに横方向に延びる接続部材71を亘らせて構成されている場合を例に示したが、これに限るものではない。
[Another embodiment]
(1) In the above-described embodiment, the connecting portion 7 between the new housing 3 and the existing housing 1 has the connecting member 71 extending laterally between the new underground outer wall 32 of the new housing 3 and the existing underground outer wall 12 of the existing housing 1. Although the case where it is made to extend is shown as an example, it is not limited to this.

新設躯体3と既存躯体1との接続部7は、例えば、図2(a)に示すように、既存躯体1の既存地下外壁12に横方向に沿う角溝等の一又は複数の凹部72を形成し、新設躯体3の新設地下外壁32に当該凹部72に入り込む一又は複数の凸部73を形成して構成することができる。
このようにすれば、新設躯体3が上方側に移動しようとする場合に、係合状態にある新設躯体3側の凸部73と既存躯体22側の凹部72とによって既存躯体1の重量が移動抵抗力として適切に付加され、その結果、新設杭2に作用する地震時引抜力を好適に低減させることができる。この接続部7は、既存地下外壁12に凹部72を形成した状態で、当該既存地下外壁12を型枠にしてコンクリートを打設して新設地下外壁32を構築することにより、凹部72に入り込む凸部73を備えた新設地下外壁32が構築できるので、容易に構築することができる。
For example, as shown in FIG. 2A, the connecting portion 7 between the new housing 3 and the existing housing 1 has one or a plurality of concave portions 72 such as square grooves along the lateral direction on the existing underground outer wall 12 of the existing housing 1. The one or more convex part 73 which forms and enters the said recessed part 72 in the newly installed underground outer wall 32 of the newly installed housing 3 can be comprised.
In this way, when the new housing 3 is about to move upward, the weight of the existing housing 1 is moved by the convex portion 73 on the new housing 3 side and the concave portion 72 on the existing housing 22 side in the engaged state. As a result, it is appropriately added as a resistance force, and as a result, the pulling-out force at the time of earthquake acting on the new pile 2 can be suitably reduced. The connecting portion 7 is a convex portion that enters the recess 72 by constructing a new underground outer wall 32 by placing concrete with the existing underground outer wall 12 as a formwork in a state where the recess 72 is formed in the existing underground outer wall 12. Since the new underground outer wall 32 provided with the part 73 can be constructed, it can be constructed easily.

この他、新設躯体3と既存躯体1との接続部7は、例えば、既存躯体1の既存地下外壁12の内表面を摩擦力の高い粗面とし、新設躯体3の新設地下外壁32の外表面と当接させることで、当接状態にある新設躯体3側の外表面と既存躯体22側の内表面との摩擦抵抗によって既存躯体1の重量が移動抵抗力として適切に付加されるように構成してもよい。この接続部7も、既存地下外壁12の内表面を粗面化した状態で、当該既存地下外壁12を型枠にしてコンクリートを打設して新設地下外壁32を構築することにより、容易に構築することができる。   In addition, the connecting portion 7 between the new housing 3 and the existing housing 1 is, for example, the inner surface of the existing underground outer wall 12 of the existing housing 1 is a rough surface having a high frictional force, and the outer surface of the new underground outer wall 32 of the new housing 3 The weight of the existing housing 1 is appropriately added as a movement resistance force by the frictional resistance between the outer surface on the new housing 3 side in contact with the inner surface on the existing housing 22 side. May be. This connecting portion 7 is also easily constructed by constructing a new underground outer wall 32 by placing concrete with the existing underground outer wall 12 as a formwork in a state where the inner surface of the existing underground outer wall 12 is roughened. can do.

(2)前述の実施形態では、既存躯体1における新設躯体3との接続領域A(図中のグレー表示部分)が、既存地下外壁12の上半側の領域に設定されている場合を例に示したが、例えば、図2(b)に示すように、接続部材71を追加するなどにより当該接続領域A(図中のグレー表示部分)が既存基礎11と既存地下外壁12との全領域に設定されていてもよく、接続領域Aは地震時に発現させる設定引抜抵抗力に応じて適宜に設定することができる。   (2) In the above-described embodiment, a case where the connection area A (the gray display portion in the figure) of the existing chassis 1 with the newly installed chassis 3 is set in the upper half area of the existing underground outer wall 12 is taken as an example. Although shown, for example, as shown in FIG. 2 (b), the connection region A (gray display portion in the drawing) is added to the entire region of the existing foundation 11 and the existing underground outer wall 12 by adding a connection member 71 or the like. It may be set, and the connection area A can be appropriately set according to the set pulling resistance force to be developed at the time of an earthquake.

(3)前述の実施形態では、杭頭接合部6が、剛接合構造にて構成されている場合を例に示したが、半剛接合構造にて構成しても好適に実施できる。   (3) In the above-described embodiment, the case where the pile head joint portion 6 is configured with a rigid joint structure has been described as an example.

(4)前述の実施形態において、地震時引抜力に対する引抜抵抗力が不足する場合には、更に、新設躯体3の架構形式を新設杭2に地震時引抜力が作用し難い架構形式としたり、地震時引抜力に抵抗するウェイトを新設躯体3に追加したりしてもよい。   (4) In the above-described embodiment, when the pulling-out resistance against the pull-out force at the time of earthquake is insufficient, the frame type of the new frame 3 is further changed to a frame type at which the pull-out force at the time of earthquake hardly acts on the new pile 2. A weight that resists the pulling force during an earthquake may be added to the new housing 3.

(5)前述の実施形態では、既存基礎11と新設基礎31との間に埋め戻し材5を充填する場合を例に示したが、埋め戻し材5を省いて既存基礎11と新設基礎31とが接するように構成してもよい。   (5) In the above-described embodiment, the case where the backfill material 5 is filled between the existing foundation 11 and the new foundation 31 is shown as an example, but the existing foundation 11 and the new foundation 31 are omitted by omitting the backfill material 5. You may comprise so that may touch.

(6)前述の実施形態では、既存建物の基礎構造が既存杭4を備えた杭基礎構造である場合を例に示したが、既存杭4を備えない直接基礎構造であってもよい。   (6) In the above-described embodiment, the case where the foundation structure of the existing building is a pile foundation structure including the existing pile 4 is shown as an example, but a direct foundation structure not including the existing pile 4 may be used.

(7)新設躯体3と既存躯体1との接続部7は、上述した接続部材71を介装する第一接続方法(図1参照)、上述した凹部72と凸部73を形成する第二接続方法(図2(a)参照)、上述した既存躯体1の既存地下外壁12の内表面を摩擦力の高い粗面とする第三接続方法などの接続方法を適宜に組み合わせても好適に実施できる。例えば、第一、第二接続方法、又は、第一〜第三接続方法を組み合わせてもよく、或いは、第一接続方法や第二接続方法にて実施する場合に、簡易な第三接続方法を付加的に組み合わせてもよい。また、第一〜第三接続方法以外の各種の接続方法を適宜に組み合わせてもよい。   (7) The connection part 7 between the newly established chassis 3 and the existing chassis 1 is the first connection method (see FIG. 1) for interposing the connection member 71 described above, and the second connection for forming the recess 72 and the projection 73 described above. The method (see FIG. 2 (a)) and the above-described connection method such as the third connection method in which the inner surface of the existing underground outer wall 12 of the existing housing 1 is a rough surface having a high frictional force can be suitably implemented. . For example, the first, second connection method, or the first to third connection methods may be combined, or when the first connection method or the second connection method is used, a simple third connection method is used. You may combine additionally. Various connection methods other than the first to third connection methods may be appropriately combined.

以上、本発明の実施形態について説明したが、本発明はこうした実施形態に何等限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in a various aspect.

1 既存躯体
2 新設杭
3 新設躯体
12 既存地下外壁
32 新設地下外壁
A 接続領域
1 Existing frame 2 New pile 3 New frame 12 Existing underground outer wall 32 New underground outer wall A Connection area

Claims (4)

建設地の地下に残された既存躯体と、
建設地の地中に建て込まれた新設杭と、
前記新設杭の上に接合された新設躯体とが備えられ、
前記新設躯体が、前記既存躯体の重量が地震時引抜力への抵抗要素となる状態で当該既存躯体に接続されている杭基礎構造。
The existing structure left in the basement of the construction site,
A new pile built in the ground of the construction site,
A new structure joined on the new pile,
A pile foundation structure in which the new structure is connected to the existing structure in a state where the weight of the existing structure becomes a resistance element against the pulling force during an earthquake.
前記新設杭は、前記新設躯体から受ける鉛直荷重及び水平荷重を単独負担可能に構成されている請求項1記載の杭基礎構造。   The pile foundation structure according to claim 1, wherein the new pile is configured to be capable of separately bearing a vertical load and a horizontal load received from the new frame. 前記既存躯体における前記新設躯体との接続領域が、地震時に発現させる設定引抜抵抗力に応じた重量を有する領域に設定されている請求項1又は2記載の杭基礎構造。   The pile foundation structure according to claim 1 or 2, wherein a region of connection between the existing frame and the newly installed frame is set to a region having a weight corresponding to a set pulling resistance force to be developed during an earthquake. 前記新設躯体と前記既存躯体との接続は、互いの地下外壁どうしの間で行われている請求項1〜3のいずれか1項に記載の杭基礎構造。   The pile foundation structure according to any one of claims 1 to 3, wherein the connection between the new structure and the existing structure is performed between the outer walls of each other.
JP2016074853A 2016-04-04 2016-04-04 Pile foundation structure Active JP6774774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074853A JP6774774B2 (en) 2016-04-04 2016-04-04 Pile foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074853A JP6774774B2 (en) 2016-04-04 2016-04-04 Pile foundation structure

Publications (2)

Publication Number Publication Date
JP2017186760A true JP2017186760A (en) 2017-10-12
JP6774774B2 JP6774774B2 (en) 2020-10-28

Family

ID=60045411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074853A Active JP6774774B2 (en) 2016-04-04 2016-04-04 Pile foundation structure

Country Status (1)

Country Link
JP (1) JP6774774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214106A (en) * 2018-09-26 2019-01-15 江南大学 A kind of Pile Foundations in Liquefaction Ground dynamic response centrifuge test method for numerical simulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162248A (en) * 1997-08-25 1999-03-05 Kajima Corp Construction method for building skeleton utilizing existing outer circumferential wall
JP2000154549A (en) * 1998-11-20 2000-06-06 Shimizu Corp Construction for reuse of existing foundation
JP2001303599A (en) * 2000-04-19 2001-10-31 Shimizu Corp Building demolishing and constructing method and building
JP2009121051A (en) * 2007-11-12 2009-06-04 Takenaka Komuten Co Ltd Method of re-constructing building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162248A (en) * 1997-08-25 1999-03-05 Kajima Corp Construction method for building skeleton utilizing existing outer circumferential wall
JP2000154549A (en) * 1998-11-20 2000-06-06 Shimizu Corp Construction for reuse of existing foundation
JP2001303599A (en) * 2000-04-19 2001-10-31 Shimizu Corp Building demolishing and constructing method and building
JP2009121051A (en) * 2007-11-12 2009-06-04 Takenaka Komuten Co Ltd Method of re-constructing building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109214106A (en) * 2018-09-26 2019-01-15 江南大学 A kind of Pile Foundations in Liquefaction Ground dynamic response centrifuge test method for numerical simulation

Also Published As

Publication number Publication date
JP6774774B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
KR101221970B1 (en) Construction Method for Basement Structure without Temporary Structure
JP2016199861A (en) Pile foundation structure
JP6650257B2 (en) Mountain retaining structure and construction method thereof
JP5041758B2 (en) Seismic isolation structure with artificial ground
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP2018003308A (en) Seismic reinforcement structure of pile foundation and construction method thereof
JP6855365B2 (en) Underground structure of new building
JP6774774B2 (en) Pile foundation structure
JP6461690B2 (en) Foundation structure and foundation construction method
JP6768477B2 (en) How to build an underground structure
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP5777435B2 (en) Reinforcement method for foundations for small buildings
JP6868881B2 (en) Foundation structure and its foundation construction method
JP2016223208A (en) Pile foundation structure
JP4612422B2 (en) Construction method of structure and foundation structure used for it
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
JP7133366B2 (en) Retaining wall structure
JP5322214B2 (en) Foundation reinforcement method for existing wooden houses
JP6827256B2 (en) How to rebuild the building
JP6895740B2 (en) Horizontal force restraint structure
JP7239459B2 (en) Pull-out/overturn prevention structure for seismically isolated buildings
JP7283659B2 (en) Mountain retaining structure
JP2005248428A (en) Foundation structure for construction
JP2019173453A (en) Construction method of building
JP7502208B2 (en) Building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6774774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150