JP2008150859A - Reinforcing structure of ground level different part - Google Patents

Reinforcing structure of ground level different part Download PDF

Info

Publication number
JP2008150859A
JP2008150859A JP2006339919A JP2006339919A JP2008150859A JP 2008150859 A JP2008150859 A JP 2008150859A JP 2006339919 A JP2006339919 A JP 2006339919A JP 2006339919 A JP2006339919 A JP 2006339919A JP 2008150859 A JP2008150859 A JP 2008150859A
Authority
JP
Japan
Prior art keywords
ground
improved
ground level
level difference
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339919A
Other languages
Japanese (ja)
Inventor
Takashi Kurosawa
隆志 黒澤
Hiroshi Ijuin
博 伊集院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2006339919A priority Critical patent/JP2008150859A/en
Publication of JP2008150859A publication Critical patent/JP2008150859A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Retaining Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing structure of a ground level difference, capable of exhibiting the reducing effect of a load acting on an underground structure on a high level, by improving soil of a refilling part, regardless of a position of an upper structure. <P>SOLUTION: Improved earth 7 is filled in a space between a cantilever retaining wall 3 and the existing ground 6. The improved earth 7 is rolled and solidified after mixing and agitating by inputting a cement-based solidifying material to refilled surplus soil by a hydraulic excavator, after refilling the surplus soil generated by excavation work at a job site. A foundation 4 of the upper structure is arranged over an improved part 8 and the existing ground 6, and unimproved ordinary earth 9 is also refilled in the improved part 8 so as to become the same level as the existing ground. A form of the foundation 4 of the upper structure is a continuous footing, and an inclined face 10 (a boundary surface between the improved part 8 and the existing ground 6) of the existing ground 6 and the foundation 4 are substantially orthogonally constituted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、擁壁等の地中構造物を構築して地盤の段差部を補強する際の補強構造に関するものである。   The present invention relates to a reinforcing structure when an underground structure such as a retaining wall is constructed to reinforce a step portion of the ground.

従来から地盤の段差部において地盤の崩壊防止や土地の有効利用を目的として擁壁等の地中構造物が構築されてきた。擁壁等の地中構造物を構築する場合、(a)地中構造物を構築する上で障害となる地盤が存在する場合には該当部分を掘削し、(b)地中構造物を構築し、(c)地中構造物の背面の埋め戻しを行い地盤面を復旧あるいは新設する、という手順で構築される。   Conventionally, underground structures such as retaining walls have been constructed for the purpose of preventing the collapse of the ground and effective use of the land at the level difference portion of the ground. When constructing underground structures such as retaining walls, (a) If there is a ground that obstructs the construction of the underground structure, excavate the relevant part, and (b) construct the underground structure (C) The back surface of the underground structure is backfilled, and the ground surface is restored or newly constructed.

この場合、地中構造物の背面の埋め戻しに使われるのは、一般には地盤を掘削して発生した残土や山砂であるが、埋め戻し部上部に構造物を構築するような場合、埋め戻し部の沈下を防止する為に砕石が使用されることもある。いずれの場合であっても、地中構造物に対して水平方向に土圧等の側圧が作用するので地下構造物を設計する際には、側圧を考慮する必要がある。   In this case, what is used for backfilling the back of underground structures is generally the remaining soil or mountain sand generated by excavating the ground, but when constructing a structure above the backfill, Sometimes crushed stone is used to prevent sinking of the return part. In any case, since a lateral pressure such as earth pressure acts on the underground structure in the horizontal direction, it is necessary to consider the lateral pressure when designing the underground structure.

また、特許文献1に開示されているように、段差部近傍の地盤面に建造物が構築される場合、建造物の荷重によって擁壁の立ち上がり部に作用する土圧を可及的に低減させる為に、建造物の基礎の直下の土質層を改良することが行なわれてきた。この場合、建造物の荷重による土圧については低減が可能である。   Moreover, as disclosed in Patent Document 1, when a building is constructed on the ground surface near the stepped portion, the earth pressure acting on the rising portion of the retaining wall is reduced as much as possible by the load of the building. For this reason, the soil layer directly under the foundation of the building has been improved. In this case, the earth pressure due to the load of the building can be reduced.

特開2001−164557号公報JP 2001-164557 A

しかし、特許文献1に開示された技術では、改良土質層の土圧は擁壁には作用しないが、非改良土質層の土圧が擁壁に直接あるいは改良土質層を介して作用するので、この土圧を考慮して擁壁の設計を行わなければならず、特に、改良土質層の縦横の比が小さいほど(縦長になればなるほど)、改良土質層が非改良土質層による土圧に対する「盾」としての機能が薄らいでしまい、改良土質層形成の効果が損なわれるという問題があった。   However, in the technique disclosed in Patent Document 1, the earth pressure of the improved soil layer does not act on the retaining wall, but the soil pressure of the non-improved soil layer acts on the retaining wall directly or through the improved soil layer. Retaining walls must be designed in consideration of this earth pressure. In particular, the smaller the aspect ratio of the improved soil layer (the longer it becomes longer), the more the improved soil layer is against the earth pressure caused by the unmodified soil layer. There was a problem that the function as the “shield” was weakened and the effect of the improved soil layer formation was impaired.

また、改良土質層が上部構造物の基礎直下に限定されている為、上部構造物を建替えた場合には基礎が改良土質層以外の領域に配置される可能性があり、その際には非改良土質層の土圧以外に建造物の荷重による土圧が作用することになるので建替え後の基礎の配置に応じて再度土質を改良しなければならないという問題もあった。   In addition, since the improved soil layer is limited to just below the foundation of the superstructure, if the superstructure is rebuilt, the foundation may be placed in an area other than the modified soil layer. There was also a problem that the soil quality had to be improved again according to the layout of the foundation after rebuilding because the soil pressure due to the load of the building would act in addition to the soil pressure of the unimproved soil layer.

本発明は、上記従来技術の問題点を解決し、上部構造物の位置にかかわらず埋め戻し部分の土質改良による地中構造物に作用する荷重の軽減効果を高いレベルで発揮することができる地盤段差部の補強構造を提供することを目的とする。   The present invention solves the above-described problems of the prior art, and can provide a high level of effect of reducing the load acting on the underground structure by improving the soil quality of the backfill portion regardless of the position of the upper structure. It aims at providing the reinforcement structure of a level | step-difference part.

上記課題を解決するための本発明に係る地盤段差部の補強構造の第1の構成は、土圧に対抗し得る地中構造物によって構成される地盤段差部の補強構造であって、所定の傾斜角を持つ斜面が形成された地盤段差部に底版端部が斜面の起点に接し又はその近傍に位置するように地中構造物を構築するとともに、前記地中構造物と高所側の既存地盤との間の空隙を所定の高さまで所定の圧縮強度とせん断強度とを有する改良土で埋め戻して構成したことを特徴とする。   A first configuration of a ground level difference portion reinforcing structure according to the present invention for solving the above-described problem is a ground level difference portion reinforcing structure constituted by an underground structure capable of resisting earth pressure, and has a predetermined structure. An underground structure is constructed in such a manner that the bottom plate edge is in contact with or near the starting point of the slope on the ground step portion where the slope with the inclined angle is formed. The gap between the ground and the ground is backfilled with improved soil having a predetermined compressive strength and shear strength to a predetermined height.

また、本発明に係る地盤段差部の補強構造の第2の構成は、前記第1の構成において改良土を低吸水性材料としたことを特徴とする。   Moreover, the 2nd structure of the reinforcement structure of the ground level | step-difference part which concerns on this invention uses the improved soil as a low water absorption material in the said 1st structure, It is characterized by the above-mentioned.

また、本発明に係る地盤段差部の補強構造の第3の構成は、前記第1又は2の構成において、地盤段差部の高所側に構築された上部構造物の基礎梁に対し、既存地盤の傾斜面を略直交するように設定したことを特徴とする。   Further, the third structure of the reinforcing structure of the ground step portion according to the present invention is the same as that of the first or second structure, the existing ground with respect to the foundation beam of the upper structure constructed on the high side of the ground step portion. The inclined surfaces are set so as to be substantially orthogonal.

また、本発明に係る地盤段差部の補強構造の第4の構成は、前記第1〜3の何れかの構成において、所定の高さを、前記上部構造物の基礎の根切り底面あるいは地業面の高さと略同一としたことを特徴とする。   Moreover, the 4th structure of the reinforcement structure of the ground level | step-difference part which concerns on this invention is the root cutting bottom surface of the foundation of the said upper structure, or ground work in any one of the said 1st-3rd structure. It is characterized by being substantially the same as the height of the surface.

本発明に係る第1の地盤段差部の補強構造によれば、所定の圧縮強度とせん断強度を有する改良土で埋め戻しを行うことによって地中構造物に作用する土圧を低減することができ、更に既存地盤が所定の傾斜角度を有する傾斜面を形成しているので改良部分に比べて土圧係数の大きな既存地盤の土圧の影響を可及的に排除することができる。また、埋め戻し部を全面的に改良するので、上部構造物の配置を考慮することなく施工することができる。   According to the reinforcing structure of the first ground level difference portion according to the present invention, the earth pressure acting on the underground structure can be reduced by backfilling with the improved soil having the predetermined compressive strength and shear strength. Furthermore, since the existing ground forms an inclined surface having a predetermined inclination angle, it is possible to eliminate as much as possible the influence of the earth pressure of the existing ground having a larger earth pressure coefficient than the improved portion. In addition, since the backfill portion is entirely improved, construction can be performed without considering the arrangement of the upper structure.

本発明に係る第2の地盤段差部の補強構造によれば、改良土を吸水性の低いものにすることによって地中構造物に対して含水による側圧の増大をも抑制することができる。   According to the reinforcement structure of the 2nd ground level | step-difference part which concerns on this invention, the increase in the side pressure by water | moisture content can also be suppressed with respect to an underground structure by making improved soil a thing with low water absorption.

本発明に係る第3の地盤段差部の補強構造によれば、既存地盤と改良部との境界部を上部構造物の基礎梁に対し略直交するように配置することにより、上部構造物が異なる性状を示す既存地盤と改良部とにまたがって配置された場合でも、基礎梁の有する剛性が充分に機能して構造安全性を高めることができる。   According to the reinforcing structure of the third ground level difference portion according to the present invention, the upper structure is different by arranging the boundary portion between the existing ground and the improved portion so as to be substantially orthogonal to the foundation beam of the upper structure. Even when arranged over the existing ground showing the properties and the improved portion, the rigidity of the foundation beam can sufficiently function to enhance the structural safety.

本発明に係る第4の地盤段差部の補強構造によれば、改良面を上部構造物の基礎の根切り底面あるいは地業面と一致させたので、改良面上に直に基礎が構築できるので施工の手間が軽減される。   According to the fourth ground level difference reinforcement structure of the present invention, since the improved surface is made to coincide with the rooted bottom surface or the groundwork surface of the foundation of the upper structure, the foundation can be constructed directly on the improved surface. The labor of construction is reduced.

以下、本発明に係る地盤段差部の補強構造を実施する為の最良の形態について説明する。本発明は、上部構造物がどのように配置されたとしてもその位置にかかわらず、土質改良による地中構造物に作用する荷重の軽減効果が高いレベルで発揮できる地盤段差部の補強構造を実現するものである。   Hereinafter, the best mode for carrying out the reinforcing structure of a ground level difference portion according to the present invention will be described. The present invention realizes a reinforcing structure for a ground step portion that can exert a high level of effect of reducing the load acting on the underground structure by improving the soil regardless of the position of the upper structure regardless of the position. To do.

本発明において地盤段差部に構築される地中構造物とは、地中に完全に埋め込まれた状態にあるものではなく、地盤の段差部に構築され高所側の土壌や上部構造物による土圧を受ける擁壁、地下車庫、建物の布基礎等の構造物をさす。   In the present invention, the underground structure constructed in the ground level difference part is not in a state of being completely embedded in the ground, but is constructed in the level difference part of the ground, and is the soil by the high side or the upper structure. This refers to structures such as retaining walls that receive pressure, underground garages, and cloth foundations of buildings.

地中構造物が擁壁の場合、その構造形式は特に限定されるものではなく、鉄筋コンクリート製のL字状、逆T字状等の片持ち式擁壁、コンクリート製の重力式擁壁、間知石、間知ブロック等を傾斜させて積み上げて構成したもたれ式擁壁など、多様な形式に適用が可能である。   When the underground structure is a retaining wall, the structure type is not particularly limited, and cantilevered retaining walls such as L-shape and inverted T-shape made of reinforced concrete, gravity-type retaining walls made of concrete, It can be applied to various types such as leaning type retaining walls constructed by stacking slanting stones and wisdom blocks.

地中構造物の背面の改良部に充填される改良土は、所定の圧縮強度とせん断強度とを有しており地中構造物に作用する土圧を低減し得るものであればよいが、掘削の際に発生する残土に改良材を加えて混合攪拌し固化させたものが、残土の処分量の低減という点で好ましい。改良材としては粉状のセメント系の固化材が好ましく、固化材の成分や混合比を調整することによって改良土の圧縮強度と剪断強度を所望の数値に設定することができ、鉛直荷重が作用しても土圧が発生しない程度の強度を持たせることが可能である。また、改良材と混合攪拌して転圧し固化させることにより、雨水等の吸水が制限され地中構造物に作用する側圧を可及的に低減させることも可能である。   The improved soil filled in the improved portion on the back side of the underground structure may have a predetermined compressive strength and shear strength, as long as it can reduce the earth pressure acting on the underground structure, A material obtained by adding an improving material to the remaining soil generated during excavation, mixing, stirring, and solidifying is preferable from the viewpoint of reducing the disposal amount of the remaining soil. As the improvement material, a powdered cement-based solidification material is preferable, and by adjusting the components and mixing ratio of the solidification material, the compressive strength and shear strength of the improved soil can be set to desired values, and vertical load is applied. Even so, it is possible to provide strength that does not cause earth pressure. Further, by mixing and stirring with the improving material and rolling and solidifying, it is possible to limit the water absorption such as rainwater and to reduce the lateral pressure acting on the underground structure as much as possible.

地盤の段差部に形成される斜面は、高所側の既存地盤に地盤を構成する土壌の応力分散角に基づく傾斜角を持たせることが好ましい。ここで応力分散角とは、地盤上のある点に下向きの鉛直荷重を作用させたときにその荷重が地盤の下方に向かって伝達されていく際の応力の広がる角度である。   It is preferable that the slope formed in the step portion of the ground has an inclination angle based on the stress dispersion angle of the soil constituting the ground in the existing ground on the high place side. Here, the stress dispersion angle is an angle at which a stress spreads when a downward vertical load is applied to a certain point on the ground and the load is transmitted downward to the ground.

既存地盤の傾斜角(地中構造物の底版の高所側の先端部と既存地盤の突端を結ぶ直線がなす仰角)を応力分散角(α)に基づく値、すなわち(90−α)度以下とすることにより、既存地盤の自重や既存地盤に加わる鉛直荷重が改良土に伝達されなくなり、地中構造物に作用する土圧も低減することができる。また、段差部が安定するので段差部の崩壊防止の為の親杭、矢板等による仮設工事を省略あるいは簡略化できる。応力分散角は土壌の構成により変動するが、関東地区の一般的な粘性土の場合、凡そ30度から45度とみなすことができる。   The inclination angle of the existing ground (the elevation angle formed by the straight line connecting the tip of the bottom of the bottom plate of the underground structure and the tip of the existing ground) is a value based on the stress dispersion angle (α), that is, (90−α) degrees or less By doing so, the weight of the existing ground and the vertical load applied to the existing ground are not transmitted to the improved soil, and the earth pressure acting on the underground structure can be reduced. In addition, since the stepped portion is stabilized, temporary work such as a parent pile and a sheet pile for preventing the stepped portion from collapsing can be omitted or simplified. The stress dispersion angle varies depending on the soil composition, but in the case of general clay soil in the Kanto region, it can be regarded as approximately 30 to 45 degrees.

地盤段差部に構築される地中構造物は、底版端部が斜面の起点に接した位置に或いは起点の近傍に位置する。底版端部が斜面の起点に接した位置にある場合、段差部における土砂の掘削量を少なくすることができ好ましい。底版端部は斜面の起点に接した位置になくとも本発明の目的とする補強構造を実現できるが、底版端部が斜面の起点から離隔するに従って土砂の掘削量が増加するため、斜面の起点の近傍であることが好ましい。   The underground structure constructed in the ground level difference portion is located at a position where the bottom plate end is in contact with the starting point of the slope or in the vicinity of the starting point. When the bottom plate end is in a position in contact with the starting point of the slope, the amount of earth and sand excavated at the stepped portion can be reduced, which is preferable. Although the end of the bottom slab is not in contact with the starting point of the slope, the reinforcement structure intended by the present invention can be realized, but the amount of excavation of the sand increases as the bottom slab end separates from the starting point of the slope. It is preferable that it is the vicinity.

上記の構成で補強された地盤段差部の高所側において、既存地盤と改良部とに跨って建物等の上部構造物を構築する際には、既存地盤と改良部の圧縮強度やばね定数等の違いによる上部構造物への影響を低減させる為に高い剛性を有する基礎を備えていることが好ましい。高い剛性を持たせる為の基礎形式は連続基礎(布基礎)であることが好ましく、更に既存地盤の傾斜面(既存地盤と改良部との境界面)が基礎と略直交するように設定するのが好ましい。このように構成することで基礎の有する剛性が充分に機能して上部構造物の構造安全性を高めることができる。   When constructing an upper structure such as a building across the existing ground and the improved portion on the high side of the ground stepped portion reinforced with the above configuration, the compressive strength, spring constant, etc. of the existing ground and the improved portion It is preferable that a foundation having high rigidity is provided in order to reduce the influence on the superstructure due to the difference. The foundation type for giving high rigidity is preferably a continuous foundation (cloth foundation), and the inclined surface of the existing ground (boundary surface between the existing ground and the improved part) is set so that it is substantially orthogonal to the foundation. Is preferred. By comprising in this way, the rigidity which a foundation has fully functions can improve the structural safety | security of a superstructure.

また、上記の構成で補強された地盤段差部の高所側において建物等の上部構造物を構築する際には、改良土は上部構造物の基礎の根切り底面あるいは地業面の高さと等しくすることが好ましい。このように構成することで、上部構造物の基礎を構築する際に改良部のレベル調整をすることなく直接基礎を構築することができ、施工の手間を軽減させることができる。 In addition, when constructing an upper structure such as a building on the high side of the ground stepped portion reinforced with the above structure, the improved soil is equal to the height of the bottom root of the foundation of the upper structure or the groundwork surface. It is preferable to do. By comprising in this way, when constructing the foundation of the superstructure, it is possible to construct the foundation directly without adjusting the level of the improved portion, and to reduce the labor of construction.

次に、図を用いて本発明にかかる地盤段差部の補強構造の第1実施例について具体的に説明する。本実施例はL字状の片持ち式擁壁を構築した地盤段差部における補強構造であり、図1は地盤段差部の補強構造の第1実施例の平面図、図2は断面図である。   Next, the first embodiment of the reinforcing structure of the ground level difference portion according to the present invention will be specifically described with reference to the drawings. The present embodiment is a reinforcing structure in a ground step portion constructed with an L-shaped cantilever retaining wall, FIG. 1 is a plan view of the first embodiment of the reinforcing structure of the ground step portion, and FIG. 2 is a sectional view. .

図1において、一点鎖線は本実施例の補強構造を施して上部構造物を構築する敷地1の範囲を示しており、当該敷地1に比べ図の左側の隣地2が一段低くなっており、この地盤の段差部を補強する為に地中構造物である片持ち式擁壁3が隣地境界に沿って構築されている。片持ち式擁壁3は鉄筋コンクリート製であり、図2に示すように、底版3aと立ち上がり壁3bとからなるL字型の断面形状を持ち、割栗石、砕石、捨てコンクリート等で構成された地業面3cの上部に構築されている。   In FIG. 1, the alternate long and short dash line indicates the range of the site 1 where the upper structure is constructed by applying the reinforcing structure of the present embodiment, and the adjacent land 2 on the left side of the drawing is lower than the site 1. In order to reinforce the step portion of the ground, a cantilever retaining wall 3 that is an underground structure is constructed along the boundary of the adjacent land. The cantilever retaining wall 3 is made of reinforced concrete, and has an L-shaped cross section consisting of a bottom plate 3a and a rising wall 3b, as shown in FIG. 2, and is composed of cracked stone, crushed stone, discarded concrete, etc. It is constructed in the upper part of the business surface 3c.

片持ち式擁壁3の構築に先立って地盤の掘削工事が行われるが、掘削工事は地業面3cの上部の領域及び底版3aの先端より所定の角度を持って地盤の段差部の高所側に引いた二点鎖線で示すライン5よりも上の領域について施される。ここで所定の角度とは、先に説明した敷地1を構成する地盤の応力分散角αに基づくものであり、例えば応力分散角αを30度とした場合、90−30=60度以下の角度である。この角度は60度以下であればよいが角度を小さくする程地盤の掘削量が増大し手間やコストがかさむことになるので60度に近い角度に設定するのが好ましい。   Prior to the construction of the cantilever retaining wall 3, excavation work is performed on the ground. The excavation work is performed at a height above the ground step 3c and a predetermined angle from the tip of the bottom slab 3a. It is applied to a region above the line 5 indicated by a two-dot chain line drawn to the side. Here, the predetermined angle is based on the stress dispersion angle α of the ground constituting the site 1 described above. For example, when the stress dispersion angle α is 30 degrees, the angle is 90-30 = 60 degrees or less. It is. This angle may be 60 degrees or less. However, the smaller the angle, the greater the amount of excavation of the ground, which increases labor and cost. Therefore, it is preferable to set the angle close to 60 degrees.

図2に示すように、片持ち式擁壁3と高所側の既存地盤6との間の空間には改良土7が充填されている。改良土7は現場での掘削工事により発生した残土を埋め戻した上で、埋め戻した残土にセメント系固化材を投入し油圧ショベルで混合攪拌した後転圧し固化させたものである。固化材の投入量は、残土1m3 に対し、50〜150kgであり、固化後の改良土7の圧縮強度は、0.073N/mm2 以上、せん断強度は、0.036N/mm2 以上である。これは上部構造物が中低層の住宅程度の規模であれば十分な強度であり、片持ち式擁壁3等の地中構造物に対する土圧の影響はごくわずかである。また、改良土7の上端のレベルは予め後述する上部構造物の基礎4のフーチング4bの底面のレベルに等しく設定されており、レベル合わせをすることなく改良部8の上に直接基礎4を構築することができる。 As shown in FIG. 2, the space between the cantilever retaining wall 3 and the existing ground 6 on the high place side is filled with the improved soil 7. The improved soil 7 is obtained by refilling residual soil generated by excavation work on site, adding cement-based solidification material to the backfilled residual soil, mixing and agitating with a hydraulic excavator, and then rolling and solidifying. The input amount of the solidifying material is 50 to 150 kg with respect to 1 m 3 of the remaining soil, the compressive strength of the improved soil 7 after solidification is 0.073 N / mm 2 or more, and the shear strength is 0.036 N / mm 2 or more. is there. This is sufficiently strong if the upper structure is of a size of a medium- and low-rise housing, and the influence of earth pressure on the underground structure such as the cantilever retaining wall 3 is negligible. Further, the level of the upper end of the improved soil 7 is set in advance equal to the level of the bottom surface of the footing 4b of the foundation 4 of the superstructure described later, and the foundation 4 is constructed directly on the improved portion 8 without level adjustment. can do.

上部構造物の基礎4は鉄筋コンクリート造で、図2に示すように基礎梁4aとフーチング4bとからなる逆T字の断面形状を有し、上部構造物の外周部及びその内部に格子状に連続的に構築され、改良部8の上部には既存地盤6と同一レベルとなるように、改良されていない普通土9が埋め戻されている。   The base 4 of the superstructure is reinforced concrete, and has an inverted T-shaped cross section consisting of a base beam 4a and a footing 4b as shown in FIG. In the upper part of the improved portion 8, ordinary soil 9 that has not been improved is backfilled so as to be at the same level as the existing ground 6.

改良部8は改良を施さない普通土に比べて圧縮強度や剪断強度が向上している為、改良土7の自重や上部構造物等による荷重によって片持ち式擁壁3の立ち上がり壁3bに作用する土圧が低減される。更に、既存地盤6は応力分散角に基づく傾斜角を有するので、既存地盤6の自重や上部構造物等による荷重が作用してもその荷重が既存地盤6の範囲を超えて改良部8側に伝達されることはない。従って、片持ち式擁壁3の立ち上がり壁3bが改良土7及び既存地盤6から受ける土圧は低減され、立ち上がり壁3bの厚みや鉄筋量を削減することや、底版3aの長さを小さくすることが可能となり、片持ち式擁壁3の構築の手間やコストを大幅に削減することができる。このような効果は、地上構造物の位置によらず発揮されるものであり、地上構造物の建替え等により鉛直荷重の値や作用する位置が変化した場合にも対応することができる。また、改良土7は改良を施さない普通土に比べ吸水性が低いので降雨時に吸水して立ち上がり壁3bに作用する側圧が増加することを可及的に低減することができる。   Since the improved portion 8 has improved compressive strength and shear strength compared to ordinary soil that is not improved, the improved portion 8 acts on the rising wall 3b of the cantilever retaining wall 3 due to the weight of the improved soil 7 or a load caused by an upper structure. The earth pressure to be reduced is reduced. Furthermore, since the existing ground 6 has an inclination angle based on the stress dispersion angle, even if a load due to the weight of the existing ground 6 or an upper structure is applied, the load exceeds the range of the existing ground 6 and enters the improved portion 8 side. It is never transmitted. Therefore, the earth pressure that the rising wall 3b of the cantilever retaining wall 3 receives from the improved soil 7 and the existing ground 6 is reduced, the thickness of the rising wall 3b and the amount of reinforcing bars are reduced, and the length of the bottom plate 3a is reduced. Therefore, the labor and cost for constructing the cantilever retaining wall 3 can be greatly reduced. Such an effect is exhibited regardless of the position of the ground structure, and it is also possible to deal with a case where the value of the vertical load or the position where it acts changes due to rebuilding of the ground structure or the like. Further, since the improved soil 7 has a lower water absorption than ordinary soil that is not improved, it is possible to reduce as much as possible the side pressure acting on the rising wall 3b due to water absorption during rainfall.

また、上部構造物は片持ち式擁壁3と平行に配置されており、改良部8も片持ち式擁壁3と平行に形成されているので、基礎4のうち図1、2の左右方向に連続するものは既存地盤6の傾斜面10(改良部8と既存地盤6との境界面)に直交するように配置されている。このように構成することで上部構造物が強度や硬度等の異なる改良部8と既存地盤6とにまたがって配置されていても、基礎4の剛性が充分に機能して構造安全性を高めることができる。 The upper structure is arranged in parallel with the cantilever retaining wall 3 and the improved portion 8 is also formed in parallel with the cantilever retaining wall 3. Are arranged so as to be orthogonal to the inclined surface 10 of the existing ground 6 (the boundary surface between the improved portion 8 and the existing ground 6). By configuring in this way, even if the upper structure is arranged across the improved portion 8 having different strength and hardness and the existing ground 6, the rigidity of the foundation 4 functions sufficiently to increase the structural safety. Can do.

次に、図を用いて本発明にかかる地盤段差部の補強構造の第2実施例について具体的に説明する。本実施例は間知ブロックを使用したもたれ式擁壁を構築した地盤段差部における補強構造であり、図3は地盤段差部の補強構造の第2実施例の断面図である。   Next, the second embodiment of the ground level difference reinforcing structure according to the present invention will be described in detail with reference to the drawings. The present embodiment is a reinforcing structure in a ground step portion in which a leaning type retaining wall using a cognitive block is constructed, and FIG. 3 is a cross-sectional view of a second embodiment of the reinforcing structure of the ground step portion.

図3において、11は間知ブロックを使用したもたれ式擁壁、11aはコンクリート製の底版、11bは間知ブロック、11cは地業面である。他の構成は第一実施例と同一の為説明は省略する。間知ブロック11cは自立しない構造の為、間知ブロックの積み上げが全て完了した後に改良土を充填するという手順で施工することはできない。本実施例では(a)間知ブロック11cを1段積み上げる。(b)上段の間知ブロック7を載置可能なレベルまで改良土7を充填する。という工程を間知ブロック11bが所定の高さになるまで複数回繰り返すことによって、間知ブロック11bを使用したもたれ式擁壁11が構築された地盤段差部の補強構造を実現している。なお、図3において12は土留めコンクリートである。   In FIG. 3, 11 is a leaning type retaining wall using a cognitive block, 11 a is a concrete bottom slab, 11 b is a cognitive block, and 11 c is a geotechnical surface. Since other configurations are the same as those of the first embodiment, description thereof is omitted. Since the cognitive block 11c has a structure that does not stand on its own, it cannot be constructed according to the procedure of filling the improved soil after the stacking of the cognitive blocks has been completed. In this embodiment, (a) the knowledge block 11c is stacked one stage. (B) The improved soil 7 is filled to a level at which the upper knowledge block 7 can be placed. By repeating this process a plurality of times until the cognitive block 11b reaches a predetermined height, the ground level stepped portion reinforcement structure in which the leaning type retaining wall 11 using the cognitive block 11b is constructed is realized. In addition, in FIG. 3, 12 is earth retaining concrete.

改良部8は改良を施さない土壌に比べて圧縮強度や剪断強度が向上している為、改良土7の自重や上部構造物等による荷重によって間知ブロック11bに作用する土圧が低減される。更に、既存地盤6は応力分散角αに基づく傾斜角を有するので、既存地盤6の自重や上部構造物等による荷重が作用してもその荷重が既存地盤6の範囲を超えて改良部8側に伝達されることはない。従って、間知ブロック11bが改良土7及び既存地盤6から受ける土圧は低減され、間知ブロック11bの傾斜角度を大きくし敷地1の有効面積を広げることができる。また、改良土7は改良を施さない普通土に比べ吸水性が低いので降雨時に吸水して間知ブロック11bに作用する側圧が増加することを可及的に低減することができる。   Since the improvement part 8 has improved compressive strength and shear strength compared with the soil which does not improve, the earth pressure which acts on the cognitive block 11b by the load by the dead weight of the improvement soil 7, an upper structure, etc. is reduced. . Further, since the existing ground 6 has an inclination angle based on the stress dispersion angle α, even if a load due to the weight of the existing ground 6 or an upper structure acts, the load exceeds the range of the existing ground 6 and the improved portion 8 side. Will not be transmitted. Therefore, the earth pressure received by the knowledge block 11b from the improved soil 7 and the existing ground 6 is reduced, and the effective angle of the site 1 can be increased by increasing the inclination angle of the knowledge block 11b. Further, since the improved soil 7 has a lower water absorption than ordinary soil that is not improved, it is possible to reduce as much as possible the increase in the side pressure acting on the knowledge block 11b due to water absorption during rainfall.

また、上部構造物はもたれ式擁壁11と平行に配置されており、改良部8ももたれ式擁壁11と平行に形成されているので、基礎4のうち図3の左右方向に連続するものは既存地盤6の傾斜面10(改良部8と既存地盤6との境界面)に直交するように配置されている。このように構成することで上部構造物が強度や硬度等の異なる改良部8と既存地盤6とにまたがって配置されていても、基礎4の剛性が充分に機能して構造安全性を高めることができる。   Further, since the superstructure is arranged in parallel with the leaning type retaining wall 11 and the improved portion 8 is also formed in parallel with the leaning type retaining wall 11, the foundation 4 is continuous in the left-right direction in FIG. Is arranged so as to be orthogonal to the inclined surface 10 of the existing ground 6 (the boundary surface between the improved portion 8 and the existing ground 6). By configuring in this way, even if the upper structure is arranged across the improved portion 8 having different strength and hardness and the existing ground 6, the rigidity of the foundation 4 functions sufficiently to increase the structural safety. Can do.

本発明は、地中構造物に対する土圧の影響を低減する補強構造であるので、特に転倒や滑動の検討で断面形状が決定する擁壁において利用価値が高い。   Since the present invention is a reinforcing structure that reduces the influence of earth pressure on underground structures, it has a high utility value particularly in a retaining wall whose cross-sectional shape is determined by investigation of overturning and sliding.

本発明に係る地盤段差部の補強構造の第一実施例の平面図である。It is a top view of the 1st example of the reinforcement structure of the ground level difference part concerning the present invention. 本発明に係る地盤段差部の補強構造の第一実施例の断面図である。It is sectional drawing of the 1st Example of the reinforcement structure of the ground level | step-difference part which concerns on this invention. 本発明に係る地盤段差部の補強構造の第二実施例の断面図である。It is sectional drawing of the 2nd Example of the reinforcement structure of the ground level | step-difference part which concerns on this invention.

符号の説明Explanation of symbols

1…敷地
2…隣地
3…片持ち式擁壁
3a…底版
3b…立ち上がり壁
3c…地業面
4…基礎
4a…基礎梁
4b…フーチング
5…ライン
6…既存地盤
7…改良土
8…改良部
9…普通土
10…傾斜面
11…もたれ式擁壁
11a…底版
11b…間知ブロック
11c…地業面
12…土留めコンクリート
α…応力分散角
DESCRIPTION OF SYMBOLS 1 ... Site 2 ... Neighboring land 3 ... Cantilever retaining wall 3a ... Bottom plate 3b ... Rising wall 3c ... Groundwork surface 4 ... Foundation 4a ... Foundation beam 4b ... Footing 5 ... Line 6 ... Existing ground 7 ... Improvement soil 8 ... Improvement part DESCRIPTION OF SYMBOLS 9 ... Ordinary soil 10 ... Inclined surface 11 ... Leaning type retaining wall 11a ... Bottom plate 11b ... Machi block 11c ... Groundwork surface 12 ... Earth retaining concrete α ... Stress dispersion angle

Claims (4)

土圧に対抗し得る地中構造物によって構成される地盤段差部の補強構造であって、所定の傾斜角を持つ斜面が形成された地盤段差部に底版端部が斜面の起点に接し又はその近傍に位置するように地中構造物を構築するとともに、前記地中構造物と高所側の既存地盤との間の空隙を所定の高さまで所定の圧縮強度とせん断強度とを有する改良土で埋め戻して構成したことを特徴とする地盤段差部の補強構造。 Reinforcement structure of ground level difference part composed of underground structures that can resist earth pressure, and the bottom plate end touches the starting point of the slope or the ground level difference part where the slope with a predetermined inclination angle is formed. An underground structure is constructed so as to be located in the vicinity, and the gap between the underground structure and the existing ground on the high place side is improved soil having a predetermined compressive strength and a shear strength up to a predetermined height. A structure for reinforcing a ground level difference portion, characterized by being backfilled. 前記改良土を低吸水性材料としたことを特徴とする請求項1に記載した地盤段差部の補強構造。 The reinforcing structure of a ground level difference part according to claim 1, wherein the improved soil is made of a low water absorption material. 前記地盤段差部の高所側に構築された上部構造物の基礎梁に対し、前記既存地盤の傾斜面を略直交するように設定したことを特徴とする請求項1又は2に記載した地盤段差部の補強構造。 The ground level difference according to claim 1 or 2, wherein an inclined surface of the existing ground is set to be substantially orthogonal to a base beam of an upper structure constructed on a high side of the ground level difference part. Reinforcement structure of the part. 前記所定の高さを、前記上部構造物の基礎の根切り底面あるいは地業面の高さと略同一としたことを特徴とする請求項1乃至3の何れかに記載した地盤段差部の補強構造。 4. The structure for reinforcing a ground level difference portion according to claim 1, wherein the predetermined height is substantially the same as a height of a rooted bottom surface or a geotechnical surface of a foundation of the superstructure. .
JP2006339919A 2006-12-18 2006-12-18 Reinforcing structure of ground level different part Pending JP2008150859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339919A JP2008150859A (en) 2006-12-18 2006-12-18 Reinforcing structure of ground level different part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339919A JP2008150859A (en) 2006-12-18 2006-12-18 Reinforcing structure of ground level different part

Publications (1)

Publication Number Publication Date
JP2008150859A true JP2008150859A (en) 2008-07-03

Family

ID=39653325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339919A Pending JP2008150859A (en) 2006-12-18 2006-12-18 Reinforcing structure of ground level different part

Country Status (1)

Country Link
JP (1) JP2008150859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197604A (en) * 2011-03-22 2012-10-18 Asahi Kasei Homes Co Safety evaluation method for retaining wall, safety evaluation program for retaining wall, and safety evaluation system for retaining wall
CN102839686A (en) * 2012-09-26 2012-12-26 中铁二院工程集团有限责任公司 Stabilizing plate type anchor pile retaining structure
WO2023173687A1 (en) * 2022-03-17 2023-09-21 中交第三航务工程局有限公司江苏分公司 Mounting method for slot-type prefabricated component of fabricated high-piled wharf

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452327A (en) * 1990-06-19 1992-02-20 Sumitomo Cement Co Ltd Stabilized soil and construction method using this soil
JPH06313314A (en) * 1993-04-30 1994-11-08 Tone Chika Gijutsu Kk Foundation ground improving construction method for low storied building
JPH11343622A (en) * 1998-06-01 1999-12-14 Osamu Kuroishi Banking construction method, banking structure, and concrete block to be used therefor
JP2000144743A (en) * 1998-11-11 2000-05-26 Kajima Corp Lightweight soil cement utilizing glass waste material and its execution method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452327A (en) * 1990-06-19 1992-02-20 Sumitomo Cement Co Ltd Stabilized soil and construction method using this soil
JPH06313314A (en) * 1993-04-30 1994-11-08 Tone Chika Gijutsu Kk Foundation ground improving construction method for low storied building
JPH11343622A (en) * 1998-06-01 1999-12-14 Osamu Kuroishi Banking construction method, banking structure, and concrete block to be used therefor
JP2000144743A (en) * 1998-11-11 2000-05-26 Kajima Corp Lightweight soil cement utilizing glass waste material and its execution method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013034501; 社団法人 日本建築学会: 建築基礎構造設計指針 第4刷, 20040810, p37、pp116-117, 社団法人 日本建築学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197604A (en) * 2011-03-22 2012-10-18 Asahi Kasei Homes Co Safety evaluation method for retaining wall, safety evaluation program for retaining wall, and safety evaluation system for retaining wall
CN102839686A (en) * 2012-09-26 2012-12-26 中铁二院工程集团有限责任公司 Stabilizing plate type anchor pile retaining structure
WO2023173687A1 (en) * 2022-03-17 2023-09-21 中交第三航务工程局有限公司江苏分公司 Mounting method for slot-type prefabricated component of fabricated high-piled wharf

Similar Documents

Publication Publication Date Title
CN103958780B (en) The method for forming cementing retaining wall
Han et al. Use of geogrid-reinforced and pile-supported earth structures
KR20090130637A (en) Fill-up structure for back-area of rigid structure and construction method of the same
CN103215889A (en) Arch bridge foundation used on bad geological conditions and construction method of arch bridge foundation
KR100816382B1 (en) A stone column reinforced with uniformly graded permeable concrete and method for it
CN101215840B (en) Airplane-type foundation reinforcement given-force construction method
CN107142959A (en) A kind of geotechnical grid reinforcement foam concrete retaining wall fills structure and its method
JP5146117B2 (en) Retaining wall structure consisting of ground improvement body and its construction method
JP2008150859A (en) Reinforcing structure of ground level different part
JP2014109179A (en) Sand compaction pile construction method
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
KR100603140B1 (en) The structure construction method of having used geogrid reinforced stone column and this
KR102490872B1 (en) Reinforced earth retaining wall and construction method using tensile force of steel rod piles
JP4310502B1 (en) Reinforcement structure for embankment support ground
JP2013002077A (en) Ground improvement body, and piled raft foundation equipped therewith
CN109338909B (en) Integral pier reinforcing structure and construction method thereof
JP7452877B2 (en) Linear structures and construction methods for linear structures
JP5294117B2 (en) Dirt floor
JP3059058U (en) Solid foundation structure with stabilizer
KR100479500B1 (en) The slope tree-planting structure using socket type steel pipe, and his construction method
JP5967869B2 (en) Building foundation construction method
WO2019008866A1 (en) Foundation structure for building, and construction method therefor
JP2876471B2 (en) Lateral flow countermeasure structure
JP7326679B2 (en) Mountain retaining method
JP3360061B2 (en) Preceding plate-shaped beam of mountain retaining frame

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131024

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131213