JPH06313314A - Foundation ground improving construction method for low storied building - Google Patents

Foundation ground improving construction method for low storied building

Info

Publication number
JPH06313314A
JPH06313314A JP10391093A JP10391093A JPH06313314A JP H06313314 A JPH06313314 A JP H06313314A JP 10391093 A JP10391093 A JP 10391093A JP 10391093 A JP10391093 A JP 10391093A JP H06313314 A JPH06313314 A JP H06313314A
Authority
JP
Japan
Prior art keywords
ground
cement
foundation
sand
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10391093A
Other languages
Japanese (ja)
Other versions
JP2742862B2 (en
Inventor
Takekazu Baba
雄計 馬場
Torajiro Soejima
寅二郎 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TONE CHIKA GIJUTSU KK
Original Assignee
TONE CHIKA GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TONE CHIKA GIJUTSU KK filed Critical TONE CHIKA GIJUTSU KK
Priority to JP5103910A priority Critical patent/JP2742862B2/en
Publication of JPH06313314A publication Critical patent/JPH06313314A/en
Application granted granted Critical
Publication of JP2742862B2 publication Critical patent/JP2742862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a foundation supporting ground for a low storied building which has sufficient supporting power, and is easily formed, and can produce labor saving such as the shortening of the term of work. CONSTITUTION:After excavating the ground 1 as wide as a fixed extent to a fixed depth (H), a cement system hardener 4 is scattered on the bottom of the excavated ground, and next the excavated earth and sand 5 are uniformly spread to a fixed thickness, and agitated with the cement system hardener 4 and compacted to form the compacted layer 8 of the earth and sand mixed with the cement system hardener 10. The compacted layer 8 is formed in one or plural layers to compose a foundation supporting ground for a low layer building. A reinforcement net 9 can be provided between the compacted layers to reinforce the compacted layer. In addition, the earth and sand mixed with the cement system hardener 10 which is produced by mixing the excavated earth and sand with the cement system hardener 4 and agitating them may be spread on the bottom 3 of the excavated ground to fixed thickness and compacted. Thus the excavated earth is increased in strength by the chemical uniting action of the cement system hardener, and the earth and sand are stuck fast to the hardener by compacting and spreadly hardening to increase the strength of the foundation supporting ground and to secure its safety.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低層構築物基礎地盤改良
工法に係り、特に、低層構築物の基礎の支持地盤を簡易
に形成できる低層構築物基礎地盤改良工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-rise building foundation ground improvement method, and more particularly to a low-rise structure foundation ground improvement method capable of easily forming a supporting ground for the foundation of a low-rise structure.

【0002】[0002]

【従来の技術】従来の低層構築物の基礎の支持工法は、
基礎フーチングを現場打ちコンクリート杭または既製コ
ンクリート杭で支持したり、或いは、割栗石や土間コン
クリートで布基礎やべた基礎を支持するのが一般的であ
る。
2. Description of the Related Art A conventional supporting method for a foundation of a low-rise building is
It is common to support foundation footings with cast-in-place concrete piles or ready-made concrete piles, or to support cloth foundations or solid foundations with split stones or soil concrete.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
技術は、杭工事、或いは、割栗石の施工や、土間コンク
リートの打設という大がかりな工事を伴い、工事費、材
料費、工期短縮、作業手間などの省力化のネックとなっ
ていた。
However, the above-mentioned prior art involves large-scale construction such as pile construction, cracked stone construction, and earth concrete placement, resulting in construction costs, material costs, shortened construction period, and labor. Was a bottleneck for labor saving.

【0004】本発明の目的は、低層構築物の基礎の支持
地盤を、十分な支持力を有し、かつ容易に形成でき、工
期短縮等の省力化を図ることのできる低層構築物基礎地
盤改良工法を提供することである。
An object of the present invention is to provide a low-rise building foundation ground improvement method capable of forming a support ground for a low-rise structure foundation with sufficient support force and easily, and achieving labor saving such as shortening the construction period. Is to provide.

【0005】[0005]

【課題を解決するための手段】上記目的は、地盤を所定
範囲、所定深さ掘削した後、掘削した地盤面にセメント
系固化材を散布し、次に掘削した土砂を所定厚さ敷きな
らして前記セメント系固化材と撹拌し転圧することによ
り、セメント系固化材混入土砂の転圧層を形成し、この
転圧層を低層構築物の基礎の支持地盤にすることにより
達成される。
[Means for Solving the Problems] The object is to excavate the ground in a predetermined range and to a predetermined depth, then spread a cement-based solidifying material on the excavated ground surface, and then spread the excavated earth and sand to a predetermined thickness. It is achieved by stirring and rolling with the cement-based solidifying material to form a compacted layer of soil mixed with the cement-based solidifying material, and using this rolling layer as a supporting ground for the foundation of the low-rise building.

【0006】また、地盤を所定範囲、所定深さ掘削した
後、掘削した土砂にセメント系固化材を混入して撹拌し
たセメント系固化材混入土砂を掘削した地盤面に所定厚
さ敷いて転圧することにより、セメント系固化材混入土
砂の転圧層を形成し、この転圧層を低層構築物の基礎の
支持地盤にすることにより達成することができる。
Further, after excavating the ground to a predetermined range and a predetermined depth, the cement-based solidifying material mixed with the excavated earth and sand is mixed and stirred, and the soil is mixed with the cement-based solidifying material to a predetermined thickness and rolled. This can be achieved by forming a compaction layer of cement-solidified material-mixed earth and sand, and using this compaction layer as a supporting ground for the foundation of the low-rise building.

【0007】[0007]

【作用】上記構成によれば、セメント系固化材の化学的
固結作用により、掘削土に低層構築物に対する支持強度
が生じ、これを転圧して敷き固めることにより、撹拌時
の気泡が除去され、掘削土砂とセメント系固化材とが密
着して強度の増加と安定性が確保される。そのため、簡
単な施工で十分な支持力を有する低層構築物の基礎の支
持地盤を形成することができる。
According to the above structure, the chemical solidification action of the cement-based solidifying material causes the excavated soil to have a supporting strength for the low-rise building structure, and by compacting it by rolling it, air bubbles at the time of stirring are removed. The excavated soil and the cement-based solidifying material adhere to each other to increase the strength and ensure stability. Therefore, it is possible to form the supporting ground for the foundation of the low-rise building having a sufficient supporting force with simple construction.

【0008】[0008]

【実施例】以下、本発明のいくつかの実施例を、図面を
参照して説明する。まず、本発明の一実施例の作業手順
を説明する。 (1)準備作業 施工場所のゴミ・ガラ、草木根等を除去、水溜まりの排
水などを行い、施工個所の測量・墨出し、セメント・掘
削土の仮置き場所の整備などの作業を行う。 (2)掘削 図1に示すように、施工個所の地盤面1を所定の深度H
まで掘削する。本実施例では掘削機械にバックホウ2を
用いている。 (3)セメント系固化材の散布 図2に示すように、地盤の掘削底面3に所定量のセメン
ト系固化材4を均等に散布する。セメント系固化材4と
しては、普通ポルトランドセメント、高炉セメント、或
いはセメント系土質改良材が適用される。本実施例では
普通ポルトランドセメントを用いている。セメントの散
布方法としては、袋詰め(40kg/袋)の場合、セメ
ント袋を散布地面に適当間隔で配置し、バックホウで開
封し散布したのちスコップなどで均す。フレキシブルコ
ンテナバッグ(1t/バッグ)の場合は、コンテナをト
ラッククレーン等で開封し、バックホウ、スコップ等で
散布する。また、バルク(バラ積み)の場合は、コンベ
アまたは専用散布機により散布する。 (4)掘削土砂敷きならし 図3に示すように、散布したセメント4の上に、バック
ホウ2などで掘削した土砂5を所定量配置して敷きなら
す。 (5)混合撹拌 次に、図4に示すように、耕耘機6またはバックホウに
より、セメント4と敷きならした掘削土砂5とを十分に
混合撹拌する。混合の判定は混合むらがなくセメントの
色が目立たなくなる程度を目安とする。 (6)締固め 図5に示すように、セメントを混合撹拌した掘削土砂を
振動ローラ7で締固め、転圧層8を形成する。化学的固
結作用をより確実にするためには、セメントと土が密着
していることが必要であり、機械的撹拌時に生じた気泡
を排除することが重要となる。このため混合撹拌後は、
振動ローラ7、バックホウのバケット等による十分な押
さえ載荷が必要になる。これにより、混合土砂の密度の
増大とセメントの化学的固結作用が促進され、強度の増
加と安定性が確保される。尚、締固め作業の標準として
は、仕上がり厚さ30cmの場合の転圧回数は、振動ロ
ーラ7で約4回、タンパまたはランマで約8回である。 (7)補強材の施設 図6に示すように、混合土砂の転圧層8の形成サイクル
を複数回行い、複数の転圧層を形成する。この場合、転
圧層8、8の間に餅網状の組立鉄筋(鉄筋網9)を施設
すると構築物の支持強度が増大する。本実施例では、最
上層の転圧層を形成する前に鉄筋網9を施設した後、最
上層を形成し、4層の転圧層を実施している。この場
合、鉄筋網9の直上層は、撹拌時に鉄筋網9の損傷を避
けるため、あらかじめセメントを混合した土砂(プレミ
ックス土10)を用いるとよい。 (8)基礎の施工 図7に示すように、複数の転圧層が形成され、表面の凹
凸を均した多層転圧改良地盤11に、建築物の基礎工事
であるフーチング12を施工する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. First, the work procedure of one embodiment of the present invention will be described. (1) Preparation work Dust, debris, plant roots, etc. are removed from the construction site, drainage of the water pool, etc. is carried out, and the work such as surveying and marking out the construction site and preparing a temporary storage place for cement and excavated soil are carried out. (2) Excavation As shown in FIG. 1, the ground surface 1 of the construction site has a predetermined depth H.
Drill up to. In this embodiment, the backhoe 2 is used for the excavating machine. (3) Dispersion of cement-based solidifying material As shown in FIG. 2, a predetermined amount of cement-based solidifying material 4 is evenly distributed on the excavated bottom surface 3 of the ground. As the cement-based solidifying material 4, ordinary Portland cement, blast furnace cement, or cement-based soil improving material is applied. In this embodiment, ordinary Portland cement is used. As a method for spraying cement, in the case of bag filling (40 kg / bag), cement bags are arranged on the spraying ground at appropriate intervals, opened with a backhoe, sprayed, and then leveled with a scoop or the like. In the case of a flexible container bag (1 t / bag), the container is opened with a truck crane or the like and sprayed with a backhoe or a scoop. In the case of bulk (bulk loading), spray on a conveyor or a dedicated sprayer. (4) Leveling excavated earth and sand As shown in FIG. 3, a predetermined amount of earth and sand 5 excavated by the backhoe 2 and the like are placed on the scattered cement 4 and spread. (5) Mixing and stirring Next, as shown in FIG. 4, the cultivator 6 or the backhoe sufficiently mixes and stirs the cement 4 and the spread excavated earth and sand 5. Judgment of mixing is based on the extent that there is no unevenness of mixing and the color of cement becomes inconspicuous. (6) Compaction As shown in FIG. 5, excavated earth and sand in which cement is mixed and stirred is compacted by the vibrating roller 7 to form the compaction layer 8. In order to make the chemical solidification action more reliable, it is necessary that the cement and the soil are in close contact with each other, and it is important to eliminate air bubbles generated during mechanical stirring. Therefore, after mixing and stirring,
Sufficient pressure loading by the vibrating roller 7, backhoe bucket, etc. is required. This promotes an increase in the density of the mixed soil and a chemical setting action of cement, and an increase in the strength and stability is secured. As a standard for compaction work, the number of times of rolling when the finished thickness is 30 cm is about 4 times with the vibration roller 7 and about 8 times with the tamper or rammer. (7) Facility of Reinforcement Material As shown in FIG. 6, the formation cycle of the compaction layer 8 of the mixed earth and sand is performed a plurality of times to form a plurality of compaction layers. In this case, if a mochi net-shaped assembled reinforcing bar (reinforcing bar net 9) is provided between the rolling layers 8, the supporting strength of the structure is increased. In this embodiment, after the reinforcing bar net 9 is installed before forming the uppermost compaction layer, the uppermost layer is formed and four compaction layers are implemented. In this case, for the layer immediately above the rebar net 9, it is preferable to use earth and sand (premix soil 10) in which cement is mixed in advance in order to avoid damage to the rebar net 9 during stirring. (8) Construction of foundation As shown in FIG. 7, a footing 12 which is a foundation construction of a building is constructed on a multi-layer compaction-improved ground 11 in which a plurality of compaction layers are formed and surface irregularities are evened out.

【0009】図8は、これらの作業手順のステップ
(準備)からステップ(10)(養生)までの基本的なもの
を示すフローである。図に示すように、ステップ(セ
メント散布)からステップ(締固め)までの作業を第
1サイクルとして、設計条件、施工条件に応じて、ステ
ップ(埋戻し敷均し)からステップ(締固め)まで
を第2サイクルとして行い、これを必要サイクル繰り返
す。
FIG. 8 is a flow chart showing the basic steps from these steps (preparation) to step (10) (curing). As shown in the figure, the work from step (cement spraying) to step (compacting) is the first cycle, and from step (backfilling leveling) to step (compacting) depending on design conditions and construction conditions. Is performed as a second cycle, and this is repeated for a required cycle.

【0010】以上は本発明の一実施例であるが、他の実
施例として、掘削面に先に所定量の掘削土砂を敷きなら
し、その上にセメントを散布してバックホウなどで混合
撹拌し転圧してもよい。また、掘削土砂にセメントをあ
らかじめ混合撹拌し、この混合土砂(プレミックス土)
を掘削面に敷きならして転圧することもできる。セメン
トをあらかじめ掘削土砂に混合することにより、セメン
ト散布時の風による飛散を防止することができる。尚、
転圧層数、鉄筋網の位置或いは有無は施工条件によって
適宜定めることができる。
The above is one embodiment of the present invention, but as another embodiment, a predetermined amount of excavated earth and sand is spread on the excavated surface first, and then cement is sprinkled on the excavated sand and mixed and stirred with a backhoe or the like. You may roll. Also, cement is mixed in advance with excavated earth and sand, and this mixed earth and sand (premixed soil)
Can be laid on the excavation surface and compacted. By preliminarily mixing the cement with the excavated soil, it is possible to prevent the wind from scattering during the spraying of the cement. still,
The number of rolling layers and the presence or absence of the rebar net can be appropriately determined depending on the construction conditions.

【0011】転圧した安定処理土の品質管理は、セメン
トの所要添加量における室内配合試験の供試体の乾燥密
度を基準にして行い、締固め度は90%以上、間隙率1
5%以下を管理基準とする。品質管理のサンプリング頻
度は、施工目的により定め、擁壁・カルバート等の基礎
の場合、施工延長20mに1個所、低層・戸建て住宅の
基礎の場合、1戸につき1地点、不良地盤の部分的改良
の場合は、その都度行うようにする。
Quality control of the compacted stabilized soil is carried out on the basis of the dry density of the specimen of the indoor mixing test in the required addition amount of cement, the compaction degree is 90% or more, and the porosity is 1
The management standard is 5% or less. The sampling frequency for quality control is determined by the purpose of construction. In the case of foundations such as retaining walls and culverts, there is one location with a 20m construction extension, in the case of foundations of low-rise / detached houses, one point per unit, partial improvement of defective ground. In case of, do it each time.

【0012】本発明による改良地盤の地耐力の確認は、
所定の材令時における平板載荷によることを原則とする
が、建築物等の重要度を考慮し、施工規模が比較的小さ
い場合や、平板載荷試験の補完を目的とする場合では、
スウェーデン式サウンディング等による。平板載荷試験
は、1個所以上で、処理面積2000m2 ごとに1個所
の割合で追加し、直接的に地耐力を求める。スウェーデ
ン式サウンディングは、小規模施工や平板載荷試験の補
完を目的として行い、擁壁・カルバート等の基礎の場
合、施工延長10mごとに1個所、低層・戸建て住宅の
基礎の場合、1戸につき5個所、不良地盤の部分的改良
の場合は、その都度行うようにする。
Confirmation of the ground bearing capacity of the improved ground according to the present invention is as follows.
In principle, it is based on flat plate loading at the time of prescribed material, but considering the importance of buildings, etc., when the construction scale is relatively small, or when the purpose is to supplement the flat plate loading test,
According to Swedish sounding. In the flat plate loading test, one place or more is added at a rate of one place for every 2000 m 2 of treated area, and the ground bearing capacity is directly obtained. Swedish-style sounding is conducted for the purpose of small-scale construction and supplementation of flat plate loading test. For foundations such as retaining walls and culverts, one place is provided for every 10m of construction extension, and for low-rise / detached house foundations, 5 units per unit. In case of partial improvement of parts and defective ground, it should be carried out each time.

【0013】本実施例による地盤改良原理は、セメント
の水和・固結作用によって土の強度増加を図り改良を行
なうもので、適応土質としては、砂質土系の土に最も適
するが、適当な固化材の選択と均一な撹拌により、粘性
土や有機物含有土にも適応する。また、セメント等の固
化材を混合した後の状態が泥状にあるような高含水比土
でも、適切な固化材と添加量の選択によって十分に掘削
地盤を固化させることが可能である。
The ground improvement principle according to the present embodiment aims to increase the strength of the soil by hydration / consolidation action of cement to improve the soil. As an applicable soil, it is most suitable for sandy soil, but is suitable. Applicable to cohesive soil and soil containing organic matter by selecting appropriate solidifying material and uniform stirring. Further, even in a high water content soil in which the solidified material such as cement is mixed in a mud-like state, it is possible to sufficiently solidify the excavated ground by selecting an appropriate solidified material and the addition amount.

【0014】本工法に用いる主要な施工機械としては、
剥土・固化材散布にミニバックホウ、撹拌に耕耘機(ミ
ニティラー)、土砂敷均しにハンドドーザ、或いは排土
板付ミニバックホウの兼用も可能である。また、転圧に
は、ハンド振動ローラ、タンパ、ランマ等で十分であ
る。施工管理項目としては、材料管理が、固化材の性
能、適応性確認、施工中の管理には、材料計量管理、散
布密度管理、混合撹拌管理、改良深さ管理等があり、施
工後の試験として、処理層厚検査、および、テストピー
ス試験、ボーリングコア試験、貫入試験等による処理土
の強さ、均一性の検査などを行う。
The main construction machines used in this method are:
It is also possible to use a mini backhoe for stripping and solidifying material, a tiller (mini tiller) for agitation, a hand dozer for leveling earth and sand, or a mini backhoe with a waste plate. Further, a hand vibration roller, a tamper, a rammer or the like is sufficient for the compaction. The construction management items include material management, performance of the solidified material, confirmation of adaptability, and management during construction includes material measurement management, spray density management, mixing and agitation management, improvement depth management, etc. As a test, a treatment layer thickness inspection, a test piece test, a boring core test, a penetration test, and the like to inspect the strength and uniformity of the treated soil are performed.

【0015】このように、地表付近の不良土(軟弱層)
にセメント系粉状安定処理材を添加混合し、ローラによ
る締固め、またはバックホーのバケットや、ドーザーに
よる上載圧力をかけることにより、土の耐圧縮性と強度
特性を改善、すなわち、基礎地盤の支持力の向上、沈下
の防止をすることができ、さらに、改良土塊の水平方向
の一体化を増強するため餅網状の組立鉄筋、ネット等を
敷込むことにより、以下のような広い適用範囲に優れた
効果を奏することができる。
As described above, defective soil (soft layer) near the surface of the earth
By adding and mixing cement-based powdery stabilizer to the soil, compacting with a roller, or applying loading pressure with a bucket of a backhoe or a dozer, the soil compression resistance and strength characteristics are improved, that is, the foundation ground is supported. It is possible to improve force and prevent subsidence. Furthermore, by laying a mochi net-shaped assembly rebar, net, etc. to enhance the horizontal integration of the improved soil mass, it is excellent in a wide range of applications such as the following. It is possible to exert the effect.

【0016】長期設計用荷重(5〜10t/m2)程度
までを目的として、 低層住宅布基礎地盤改良 工場、倉庫土間地盤改良 擁壁基礎地盤改良 路床安定処理 斜面安定処理 土工機械作業地盤表層処理 等に適用することができる。
For the purpose of long-term design load (5 to 10 t / m 2 ), low-rise residential fabric foundation ground improvement factory, warehouse soil ground improvement, retaining wall foundation ground improvement, roadbed stabilization, slope stabilization, earthwork machine work ground surface It can be applied to processing.

【0017】そして、これらの適用目的に対して、 工期が短く、かつコストが低い。For these application purposes, the construction period is short and the cost is low.

【0018】狭隘で不規則な敷地、地形等現地の状況
に適応する。
Adapt to local conditions such as narrow and irregular sites and topography.

【0019】特殊な施工機械、技術を必要とせず、施
工管理が容易である。
Construction management is easy without requiring special construction machines and techniques.

【0020】改良効果が優れている。The improvement effect is excellent.

【0021】通常では改良困難な土質に対応できる。It is possible to deal with soil properties that are usually difficult to improve.

【0022】改良土は降雨、地下水等水に対する抵抗
力が高い。
The improved soil has a high resistance to water such as rainfall and groundwater.

【0023】等の優れた効果がある。There are excellent effects such as

【0024】以下、いくつかの適用例を、図面を参照し
て説明する。 (A)埋戻し直後の地盤を建築物等の基礎とする場合 図9に示すように、本工法を実施して地盤を改良する安
定処理部21が、擁壁22内の埋戻し部(盛土)の安定
を図り、地山部23と同程度の地耐力を得ようとするも
のである。施工条件等により大型機械による十分な締固
めが行えないため、降雨等による地耐力の低下が予想さ
れる場合に適応する。
Hereinafter, some application examples will be described with reference to the drawings. (A) When the ground immediately after backfilling is used as the foundation of a building, etc. As shown in FIG. 9, the stabilization processing part 21 which implements this construction method and improves the ground is the backfilling part (embankment) in the retaining wall 22. ), The ground bearing capacity is about the same as that of the ground portion 23. Due to the construction conditions, etc., it is not possible to perform sufficient compaction with a large machine, so this method is applicable when it is expected that the bearing capacity will decrease due to rainfall.

【0025】 (B)軟弱層を建築物等の基礎とする場合 図10に示すように、浅く堆積した軟弱層24上に建設
される建築物等の基礎とする場合に、安定処理部21の
支持力の確保と沈下防止を図るものである。軟弱層24
が厚い場合(2m以上)や、未改良部の圧密、液状化の
可能性がある場合は別途検討する。
(B) When a soft layer is used as the foundation of a building or the like As shown in FIG. 10, when the building is constructed as a foundation on a soft layer 24 that is shallowly deposited, It is intended to secure bearing capacity and prevent subsidence. Soft layer 24
If the thickness is thick (2 m or more), or if there is a possibility of consolidation or liquefaction of the unimproved part, consider it separately.

【0026】(C)中層住宅等の建設において部分的不
良部を改良する場合 図11に示すように、地盤の部分的不良部を局部的に安
定処理部21として改良し、周辺基礎地盤と同程度の地
耐力に増強して不等沈下を防止する。
(C) In the case of improving a partially defective portion in the construction of a middle-rise house, etc. As shown in FIG. 11, the partially defective portion of the ground is locally improved as a stabilization processing portion 21 to be the same as the surrounding foundation ground. Prevents unequal settlement by increasing the soil bearing capacity.

【0027】(D)軟弱地盤上に構築される擁壁等の土
木構造物の基礎となる場合 図12に示すように、軟弱層24上に構築される擁壁2
5等の土木構造物の基礎部の地盤を改良して安定処理部
21とする場合にも採用でき、さらに、カルバート、下
水管きょ等の基礎地盤の地耐力増強にも適応する。
(D) In the case of being the basis of a civil engineering structure such as a retaining wall constructed on soft ground As shown in FIG. 12, a retaining wall 2 constructed on a soft layer 24.
It can also be used when improving the ground of the foundation of civil engineering structures such as 5 to form the stabilization treatment unit 21, and is also applicable to enhance the ground bearing capacity of the foundation such as culverts and sewer pipes.

【0028】次に、安定処理部21の範囲と深さについ
て説明する。 1)処理の範囲 図13または図14に示すように、安定処理部21の処
理範囲は、建築物の基礎26、あるいは擁壁27等の構
築物のフーチング28の外周に、処理深さZの1/2を
加えた範囲とする。
Next, the range and depth of the stabilization processing unit 21 will be described. 1) Processing Range As shown in FIG. 13 or FIG. 14, the processing range of the stabilization processing unit 21 is such that the processing depth Z is 1 at the outer periphery of the foundation 26 of the building or the footing 28 of the building such as the retaining wall 27. / 2 is added.

【0029】2)処理の深さ 建築物等の長期設計用荷重および安定処理地盤部の重量
に対し、未処理部の許容支持力を満足する厚さとする。
図15に示すように、地中への応力伝播を図のように考
えると、深さZにおける地中の鉛直応力度σzは、下記
(1)式となる。
2) Depth of treatment For the long-term design load of buildings and the weight of the stabilized ground, the thickness should satisfy the allowable bearing capacity of the untreated part.
As shown in FIG. 15, considering the stress propagation into the ground as shown in the figure, the vertical stress level σz in the ground at the depth Z is as follows.
It becomes formula (1).

【0030】 σz=(B×q)/B×Z ……(1)式 ただし、σz:地中の鉛直応力度(t/m2) B :基礎底面の最小幅(m) q :接地圧(t/m2) z :改良厚(m) Df:基礎に隣接する最低地盤面から基礎底面までの深
さ(m)である。
Σz = (B × q) / B × Z (1) where σz: vertical stress level in the ground (t / m 2 ) B: minimum width of the base of the foundation (m) q: contact pressure (T / m 2 ) z: Improved thickness (m) Df: Depth (m) from the lowest ground surface adjacent to the foundation to the bottom surface of the foundation.

【0031】3)原地盤の許容支持力度 原地盤の許容支持力度qaは、日本建築学会の建築基礎
構造設計基準第14条により、(2)式および(3)式のとお
りである。 長期許容支持力度 qa=(1/3)・(α・C・Nc+β・γ1・B・Nr+γ2・Df・Nq) ……(2)式 短期許容支持力度 qa=(2/3)・(α・C・Nc+β・γ1・B・Nr+(1/2)・γ2・Df・Nq) ……(3)式 qa:許容支持力度(t/m2) C :基礎底面下にある地盤の粘着力(t/m2) γ1 :基礎底面下にある地盤の単位体積重量(t/
3)(地下水位以下にある場合は水中単位重量をと
る) γ2 :基礎底面より上方にある地盤の単位体積重量(t
/m3)(地下水位以下にある場合は水中単位重量をと
る) α・β:形状係数(下記表1参照) Nc,Nr,Na:支持力係数、内部摩擦角φの関数
(下記表2参照)
3) Permissible bearing capacity of original ground The permissible bearing capacity qa of the original ground is as shown in the equations (2) and (3) according to Article 14 of the Building Basic Structural Design Standard of the Japan Institute of Architecture. Long allowable bearing capacity of qa = (1/3) · (α · C · Nc + β · γ 1 · B · Nr + γ 2 · Df · Nq) ...... (2) Equation short tolerance bearing capacity of qa = (2/3) · ( α · C · Nc + β · γ 1 · B · Nr + (1/2) · γ 2 · Df · Nq) ...... (3) formula qa: allowable bearing capacity of (t / m 2) C: soil under basal bottom Adhesive force (t / m 2 ) γ 1 : Unit volume weight of the ground below the bottom of the foundation (t /
m 3 ) (If the water level is below the groundwater level, take the unit weight in water) γ 2 : Unit volume weight of the ground above the bottom of the foundation (t
/ M 3 ) (Unit weight in water is below groundwater level) α / β: Shape factor (see Table 1 below) Nc, Nr, Na: Coefficient of bearing capacity, function of internal friction angle φ (Table 2 below) reference)

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】4)設計強度 安定処理地盤の設計強度は、前記支持力の算定によって
必要とされる1軸圧縮強度qaとする。一般に本工法が
適用する改良深さは通常1〜2mであるため、安定処理
地盤の変形については特に考慮する必要は無い。ただし
安定処理地盤内には引張応力が発生し、処理地盤の許容
引張強度を1軸圧縮強度の20%とすると、図16また
は図17に示す改良厚さとの関係を参考として設計強度
を決めることができる。
4) Design strength The design strength of the stabilized ground is the uniaxial compressive strength qa required by the calculation of the bearing capacity. Generally, the improvement depth to which the present method is applied is usually 1 to 2 m, so it is not necessary to consider the deformation of the stabilized ground. However, if tensile stress occurs in the stabilized ground and the allowable tensile strength of the treated ground is 20% of the uniaxial compressive strength, the design strength should be determined by referring to the relationship with the improved thickness shown in Fig. 16 or 17. You can

【0035】5)固化材量の決定 本工法の実施例では、固化材の添加量は、図18に示す
ように、設計強度による一軸圧縮強度qaに対して、施
工条件等を考慮した強度割増しを行い、これに対応する
添加量を室内配合試験に基づいて決定する。尚、割増係
数αは、締固めを行う場合で、α=2.0、締固めを行
わない場合で、α=2.0〜5.0とし、含水、有機質分
の高い土質ほど大きな値とする。例えば、α=5.0
は、高含水、高有機質土に相当する。
5) Determination of the amount of solidifying material In the example of this construction method, as shown in FIG. 18, the addition amount of the solidifying material was set to the uniaxial compressive strength qa based on the design strength as a strength premium considering construction conditions and the like. And the corresponding addition amount is determined based on the indoor compounding test. The additional coefficient α is α = 2.0 when compaction is performed and α = 2.0-5.0 when compaction is not performed, and the larger the water content and the soil content, the larger the soil value. To do. For example, α = 5.0
Corresponds to high water content and high organic soil.

【0036】6)最少添加量 現場での処理材の撹拌混合の均一性を考慮して、施工時
の最少添加量の目安を、粘性土地盤:60kg/m3
砂質土地盤:50kg/m3と設定する。
6) Minimum addition amount Considering the uniformity of stirring and mixing of treatment materials on site, a guideline for the minimum addition amount at the time of construction is as follows: Cohesive soil bed: 60 kg / m 3 ,
Sandy soil: Set 50kg / m 3 .

【0037】本工法を実施する前に、圧密沈下量の算定
を行う。 (イ)改良地盤底面以深に圧密層がある場合、圧密沈下
量を計算し、許容沈下量を超えないことを確認する。
Before carrying out this method, the amount of consolidation settlement is calculated. (B) If there is a consolidation layer deeper than the bottom of the improved ground, calculate the consolidation settlement amount and confirm that it does not exceed the allowable settlement amount.

【0038】(ロ)改良地盤の即時沈下量は弾性体とみ
なして計算する。
(B) The immediate settlement amount of the improved ground is calculated assuming that it is an elastic body.

【0039】(ハ)圧密沈下の無視できる粘性土および
砂質土は弾性体とみなして即時沈下量を計算する。
(C) Immediate settlement amount is calculated by regarding cohesive soil and sandy soil that can be ignored for consolidation settlement as elastic bodies.

【0040】(ニ)許容沈下量は、地盤の条件、基礎の
形式、改良コラムの配置、上部構造物の特性、周囲の状
況などを考慮し、有害な不同沈下を生じないように決め
る。
(D) The allowable subsidence amount is determined in consideration of ground conditions, foundation type, improved column arrangement, superstructure characteristics, surrounding conditions, etc. so as not to cause harmful uneven settlement.

【0041】(ホ)改良コラムの間隔が改良径の約3倍
以下の場合は、図19または図20に示すような荷重の
仮想作用面を設定し、荷重作用面内に一様に分散すると
仮定して沈下量を計算すればよい。図19は軟弱粘性土
で支持されている場合、図20は中間砂層で支持されて
いる場合の荷重の仮想作用面を示した図である。
(E) When the spacing between the improved columns is about 3 times the improved diameter or less, a virtual action surface for the load as shown in FIG. 19 or 20 is set and the load action surface is uniformly distributed. It is sufficient to calculate the subsidence amount. FIG. 19 is a diagram showing a virtual action surface of a load when it is supported by soft clay and FIG. 20 is a virtual action surface when it is supported by an intermediate sand layer.

【0042】以下、本工法のいくつかの設計例を、図面
を参照して説明する。 〈設計例1〉 建築基礎の場合 低層住宅の基礎をセメントで安定処理したものである。
Some design examples of this method will be described below with reference to the drawings. <Design example 1> In the case of building foundation The foundation of a low-rise house is stabilized with cement.

【0043】1)設計条件 本設計例の支持力検討モデルを図21に示す。また、図
22は土質条件を示す地層図である。
1) Design conditions FIG. 21 shows a bearing capacity examination model of this design example. In addition, FIG. 22 is a stratum map showing soil conditions.

【0044】2)施工条件 安定処理の使用機械は、 混合:バックホー(0.6m3) 押え圧:バックホーの覆帯による 3)安定処理地盤の設計強度の算定 安定処理地盤の長期許容支持力度はqa1、前述した(2)
式から、 qa1=(1/3)・(α・C・Nc+β・γ1・B・Nr+γ2・Df・Nq) ……(4)式 ここに、連続フーチング基礎として、 α =1.0, β=0.5 φ =0°より Nc=5.3, Nγ=0, Nq=
3.0 γ1=γ2=1.7tf/m2 qa1=(1/3)・(1.0×C×5.3+1.7×0.5×3.0) ……(5)式 図23に示すようにqa1>qより安定処理地盤の設計
強度は、C=4.1tf/m2となる。
2) Construction conditions The machine used for stabilizing treatment is as follows: Mixing: Backhoe (0.6m 3 ) Pressing pressure: By cover of the backhoe 3) Calculation of design strength of stabilizing ground The long-term allowable bearing capacity of stabilizing ground is qa 1 , the above (2)
From the formula, qa 1 = (1/3) · (α · C · Nc + β · γ 1 · B · Nr + γ 2 · Df · Nq) (4) Formula Here, α = 1.0 as the continuous footing basis. , Β = 0.5 φ = 0 °, Nc = 5.3, Nγ = 0, Nq =
3.0 γ 1 = γ 2 = 1.7 tf / m 2 qa 1 = (1/3) ・ (1.0 × C × 5.3 + 1.7 × 0.5 × 3.0) ...... (5) As shown in the equation 23, the design strength of the stabilized ground is q = 4.1 tf / m 2 from qa 1 > q.

【0045】4)必要安定処理厚の検討 未安定処理地盤の長期許容支持力度の算定 改良厚さ1.5mを仮定して、Df=H=1.5m α =1.0, β=0.5, Nc=5.3, Nγ=
0, Nq=3.0 γ1=1.6tf/m3, γ2=1.7tf/m3 qa2=(1/3)・(1.0×2.0×5.3+0+1.7×0.5×3.0) =1.7tf/m2 ……(6)式 なお、qa2をHについて整理すると、qa2=3.53
+1.7×Hとなる。
4) Examination of required stable treatment thickness Calculation of long-term allowable bearing capacity of unstable treatment ground Assuming an improved thickness of 1.5 m, Df = H = 1.5 m α = 1.0, β = 0. 5, Nc = 5.3, Nγ =
0, Nq = 3.0 γ 1 = 1.6 tf / m 3 , γ 2 = 1.7 tf / m 3 qa 2 = (1/3) ・ (1.0 × 2.0 × 5.3 + 0 + 1.7 × 0.5 × 3.0) = 1.7 tf / m 2 Equation (6) When qa 2 is rearranged with respect to H, qa 2 = 3.53
It becomes + 1.7 × H.

【0046】 荷重の分散 安定処理地盤地盤の厚さHによる荷重の分散を考える。
その場合、分散角θは、tanθ=1/2とする。 q :基礎面直下の荷重度(tf/m2) q′:未安定処理地盤における荷重度(tf/m2) q″:基礎面下の安定処理地盤の重量を未安定処理地盤
上面に作用する荷重と考えたときの荷重度(tf/m2) q′=〔(q・B)/{B+2・(H−Df)・tanθ}〕+q″ =〔(q・B)/{B+2・(H−Df)・tanθ}〕+(H−Df)・γ ……(7)式 B=1.2,Df=0.5m,γ=1.7tf/m3,tanθ=
1/2,q=8tf/m2とすると、 q′=〔(8×1.2)/{1.2+2×(H−0.5)・ 1/2}〕 +(H−0.5)×1.7 ……(8)式 ={9.6/(0.7+H)}+(H−0.5)×1.7 以上のqa2及びq′とHとの関係を図示すると、図2
4のようになり、qa2>q′となるHが必要安定処理
厚である。ここではH=1.5mとする。この値は安定
処理地盤内の引張強度に対する条件を満足する。
Dispersion of load Consideration will be given to dispersion of load due to the thickness H of the stabilized ground.
In that case, the dispersion angle θ is tan θ = 1/2. q: Load degree just under the foundation surface (tf / m 2 ) q ': Load degree on the unstabilized soil (tf / m 2 ) q ″: Weight of the stabilized soil under the foundation surface acts on the upper surface of the unstabilized soil Load degree (tf / m 2 ) q ′ = [(q · B) / {B + 2 · (H−Df) · tan θ}] + q ″ = [(q · B) / {B + 2 · (H−Df) · tan θ}] + (H−Df) · γ (7) Formula B = 1.2, Df = 0.5 m, γ = 1.7 tf / m 3 , tan θ =
1/2, q = When 8tf / m 2, q '= [(8 × 1.2) / {1.2 + 2 × (H-0.5) · 1/2} ] + (H-0.5 ) × 1.7 (8) formula = {9.6 / (0.7 + H)} + (H-0.5) × 1.7 The above relationship between qa 2 and q ′ and H is illustrated. , Fig. 2
4 and H satisfying qa 2 > q 'is the required stable treatment thickness. Here, H = 1.5 m. This value satisfies the conditions for tensile strength in stabilized ground.

【0047】B=1.2,Df=0.5m,γ=1.7tf/
m3,tanθ=1/2,q=8tf/m2とすると、 q′=〔(8×1.2)/{1.2+2×(H−0.5)・ 1/2}〕 +(H−0.5)×1.7 ……(8)式 ={9.6/(0.7+H)}+(H−0.5)×1.7 以上のqa2及びq′とHとの関係を図示すると、図2
4のようになり、qa2>q′となるHが必要安定処理
厚である。ここではH=1.5mとする。この値は安定
処理地盤内の引張強度に対する条件を満足する。
B = 1.2, Df = 0.5 m, γ = 1.7 tf /
m 3, When tanθ = 1/2, q = 8tf / m 2, q '= [(8 × 1.2) / {1.2 + 2 × (H-0.5) · 1/2} ] + ( H-0.5) × 1.7 (8) formula = {9.6 / (0.7 + H)} + (H-0.5) × 1.7 qa 2 and q ′ and H above Figure 2 shows the relationship between
4 and H satisfying qa 2 > q 'is the required stable treatment thickness. Here, H = 1.5 m. This value satisfies the conditions for tensile strength in stabilized ground.

【0048】5)室内配合試験 室内配合試験結果を図25に示す。設計強度quは、C
=0.41kgf/cm2より、qu=2×C=0.82kgf/cm2
である。所要添加量は、セメントで締固めを行わない場
合の割り増し率を2.0とすると、設計強度の2.0倍の
強度に対応する添加量として74kg/cm3とする。
5) Indoor Mixing Test FIG. 25 shows the results of the indoor mixing test. Design strength qu is C
From = 0.41 kgf / cm 2 , qu = 2 × C = 0.82 kgf / cm 2
Is. The required addition amount is 74 kg / cm 3 as an addition amount corresponding to 2.0 times the design strength, assuming a premium rate of 2.0 without compaction with cement.

【0049】6)まとめ 安定処理深さ:1.5m、添加量:74kg/m3となる。6) Summary Stabilization depth: 1.5 m, addition amount: 74 kg / m 3 .

【0050】〈設計例2〉 擁壁基礎の場合 鉄筋コンクリート型擁壁の基礎をセメントで安定処理し
たものである。
<Example 2 of design> Retaining wall foundation This is a foundation of a reinforced concrete type retaining wall that has been stabilized with cement.

【0051】1)設計条件 図26に本例の接地圧分布図を、図27に土質条件を表
す地層図を示す。擁壁高:L=4m、基礎幅:B=2.
6m、根入れ深さ:Df=0.7mである。奥行き1m
当りとして計算する。
1) Design Conditions FIG. 26 shows a ground pressure distribution map of this example, and FIG. 27 shows a stratum map showing soil conditions. Retaining wall height: L = 4m, foundation width: B = 2.
6 m, depth of penetration: Df = 0.7 m. Depth 1m
Calculate as a hit.

【0052】2)施工条件 安定処理の使用機械は、 混合:バックホー(0.6m3) 締固め:ランマ(80kg) 3)安定処理部の長期許容支持力の算定 安定処理部の長期許容支持力Qaは、一軸圧縮強度をq
u=14tf/m2とし、また、荷重の偏心・傾斜を考慮す
ると、 Qa=(1/3)A′・(α・k・C・Nc+k・q・Nq+1/2・γ1・B′・Nγ) (tf) ……(9)式 ここに、C:安定処理部の粘着力(tf/m2) C=qu
/2(tf/m2) q:上載荷重(tf/m2),q=γ2・Df=1.7×0.7
=1.19(tf/m2) A′:有効載荷面積(m2
A′=B′×1.0=2.56m2 γ1,γ2:支持地盤及び根入れ地盤の土の単位体積重
量。但し、地下水位以下では水中単位体積重量を用い
る。
2) Construction conditions The machine used for stabilizing treatment is: mixing: backhoe (0.6 m 3 ) compaction: rammer (80 kg) 3) calculation of long-term allowable bearing capacity of stabilizing treatment section Long-term allowable bearing capacity of stabilizing treatment section Qa is the uniaxial compressive strength q
and u = 14tf / m 2, In consideration of eccentricity, inclination of the load, Qa = (1/3) A ' · (α · k · C · Nc + k · q · Nq + 1/2 · γ 1 · B'・ Nγ) (tf) (9) where C: Adhesive force (tf / m 2 ) of the stabilized part C = qu
/ 2 (tf / m 2 ) q: Overlay load (tf / m 2 ), q = γ 2 · Df = 1.7 × 0.7
= 1.19 (tf / m 2 ) A ′: Effective loading area (m 2 )
A ′ = B ′ × 1.0 = 2.56 m 2 γ 1 , γ 2 : Unit volume weight of soil of supporting ground and rooting ground. However, the unit volume weight in water is used below the groundwater level.

【0053】 B′:偏心を考慮した基礎の有効載荷幅(m), B′=B−2e=2.6−2×0.02=2.56m B:基礎幅(m),B=2.6 e:荷重の偏心量 e=0.02m Df:基礎の有効根入れ深さ(m),Df=0.7m α,β:基礎の形状係数 帯状の場合α=β=1.0 Nc,Nq,Nγ:荷重の傾斜を考慮した支持力係数 支持力係数表より Nc=3.4,Nq=1.0,Nγ=0(但しtanθ=HD/Y=4/15=
0.267) k:根入れ効果に対する割り増し係数 k=1.0 Qa=(1/3)×2.56×(1.0×1.0×7.0×3.4+1.0×1.19×1.0+0) =21.3 (tf) ……(10)式 qa=Qa/A′=8.3tf/m2 上記の安定処理部の強度についての試算を図示すると、
図28のようになる。同図よりqa>q1となるCが設
計強度C=5tf/m2である。
B ′: Effective loading width (m) of foundation considering eccentricity, B ′ = B-2e = 2.6-2 × 0.02 = 2.56 m B: Foundation width (m), B = 2 .6 e: eccentricity of load e = 0.02 m Df: effective rooting depth (m) of foundation, Df = 0.7 m α, β: shape factor of foundation α = β = 1.0 Nc in case of strip , Nq, Nγ: Bearing capacity coefficient considering the load inclination From the bearing capacity coefficient table, Nc = 3.4, Nq = 1.0, Nγ = 0 (however, tan θ = HD / Y = 4/15 =
0.267) k: Surplus factor for rooting effect k = 1.0 Qa = (1/3) × 2.56 × (1.0 × 1.0 × 7.0 × 3.4 + 1.0 × 1.19 × 1.0 + 0) = 21.3 (tf) …… ( 10) Formula qa = Qa / A ′ = 8.3 tf / m 2 When the trial calculation of the strength of the above-mentioned stabilization processing part is illustrated,
It becomes like FIG. From the figure, C where qa> q 1 is the design strength C = 5 tf / m 2 .

【0054】 4)未安定処理部の長期許容支持力の算定 図29に示すように、改良厚さHを1mと仮定すると、 Df′=Df+H=0.7+1.0=1.7m、 この際、改良厚さによる荷重の分散を考え、分散角θは
tanθ=1/2とする。
4) Calculation of long-term allowable bearing capacity of unstabilized portion As shown in FIG. 29, assuming that the improved thickness H is 1 m, Df ′ = Df + H = 0.7 + 1.0 = 1.7 m, , Considering the dispersion of the load due to the improved thickness, the dispersion angle θ is
tan θ = 1/2.

【0055】C=4.5tf/m21′=B′+2・H・tanθ =2.56+2×1.0×1/2 =3.56m A1′=B1′×1.0=3.86m21′=(N/B1)・(1+6e/B1)=4.31tf/m2 q=γ2(Df+H)=1.7×(0.7+1.0)=2.
89tf/m22′=(N/B1)・(1+6e/B1)=4.03tf/m2 tanθ=(HB)/(V)=4/15=0.267より Nc=3.4, Nq=1.0, Nγ=0 Qa′=(1/3)×3.86×(1.0×1.0×4.5×3.4+1.0×2.
89×1.0+0)=23.4(tf/m2) qa′=Qa′/A′=6.06tf/m2 ここでqa′をHについて整理すると、 qa′=5.5+0.567・Hである。
C = 4.5 tf / m 2 B 1 ′ = B ′ + 2 · H · tan θ = 2.56 + 2 × 1.0 × 1/2 = 3.56 m A 1 ′ = B 1 ′ × 1.0 = 3.86m 2 q 1 ′ = (N / B 1 ) ・ (1 + 6e / B 1 ) = 4.31 tf / m 2 q = γ 2 (Df + H) = 1.7 × (0.7 + 1.0) = 2.0
89tf / m 2 q 2 ′ = (N / B 1 ) · (1 + 6e / B 1 ) = 4.03 tf / m 2 tan θ = (HB) / (V) = 4/15 = 0.267 From Nc = 3. 4, Nq = 1.0, Nγ = 0 Qa ′ = (1/3) × 3.86 × (1.0 × 1.0 × 4.5 × 3.4 + 1.0 × 2.
89 × 1.0 + 0) = 23.4 (tf / m 2 ) qa ′ = Qa ′ / A ′ = 6.06 tf / m 2 Here, if qa ′ is rearranged with respect to H, then qa ′ = 5.5 + 0.567 · H. .

【0056】また、未安定処理地盤では、基礎面の荷重
と基礎面下の安定処理地盤の重量も荷重として作用する
ものと考える。
Further, in the unstabilized ground, the load on the foundation surface and the weight of the stabilized ground below the foundation surface are considered to act as the load.

【0057】 (B′+2・H・tanθ)・{(q1′+q2′)/2} ={B′・(q1+q2)/2}+(B′+2・H・tanθ)・γ・H ……(11)式 ここで、q12′=1/2(q1′+q2′),q12=1/2(q1
q2)とし、Hについて整理すると q12′={(B′・q)/(B′+2・H・tanθ)}+γ・H =〔{2.56×(1/2)×(6.04+5.5)}/{2.56+2×H×(1/2)}〕 +1.7H ={14.77/(2.56+H)}+1.7×H ……(12)式 qa′及びq12′との関係について図示したものが図3
0である。同図より、qa′>q12′となるHが必要安
定処理厚である。ここではH=1.0mとする。
(B ′ + 2 · H · tan θ) · {(q 1 ′ + q 2 ′) / 2} = {B ′ · (q 1 + q 2 ) / 2} + (B ′ + 2 · H · tan θ) · γ · H (11) where q 12 ′ = 1/2 (q 1 ′ + q 2 ′), q 12 = 1/2 (q 1 +
q 2 ), and rearranging about H q 12 ′ = {(B ′ · q) / (B ′ + 2 · H · tan θ)} + γ · H = [{2.56 × (1/2) × (6.04 + 5.5) )} / {2.56 + 2 × H × (1/2)} ] + 1.7H = {14.77 / (2.56 + H)} + 1.7 × H ...... (12) illustrated the relationship between the expression qa 'and q 12' Figure 3
It is 0. From the figure, H satisfying qa ′> q 12 ′ is the required stable treatment thickness. Here, H = 1.0 m.

【0058】5)室内配合試験 所要の添加量は設計強度C=5tf/m2に割り増し率αを
乗じた値に対応する添加量とする。セメント使用で締固
めを行う場合、α=2.0とすると、目標強度はC=2.
0×5=10tf/m2となる。従って図31より現場にお
ける所要の添加量は123kg/m3である。
5) Indoor Mixing Test The required addition amount is the addition amount corresponding to the value obtained by multiplying the design strength C = 5 tf / m 2 by the premium rate α. When compacting using cement, if α = 2.0, the target strength is C = 2.0.
It becomes 0 × 5 = 10 tf / m 2 . Therefore, from FIG. 31, the required amount of addition at the site is 123 kg / m 3 .

【0059】6)まとめ 安定処理深さ:1.7m、配合量:123kg/m3である。6) Summary Stabilization depth: 1.7 m, compounding amount: 123 kg / m 3 .

【0060】〈設計例3〉次に、擁壁工事における、地
盤支持力度が接地圧に対して満足していないため、ロー
ム、シルト用のセメント系固化材を用いた表層地盤改良
を行った。
<Design Example 3> Next, in the retaining wall construction, since the ground support capacity is not satisfied with respect to the ground contact pressure, surface ground improvement was performed using cement solidifying materials for loam and silt.

【0061】1)設計条件 設計用荷重 地盤反力度 7.0t/m2 原地盤条件 土 質:粘土質シルト 単位体積重量:γt=1.7t/m3 水中単位体積重量:γ′t=0.7t/m3 現地盤強度:N値=2 粘 着 力:C=qu/2 qu=N/8 ∴C=N/16=0.125kgf/cm2 =1.25t/m2 内部摩擦角:φ=0°(粘性土より) 2)検討 地中の鉛直応力度 地中の鉛直応力度σzは、深さZにおける地中応力は地
中への応力伝播を、前記した図15に示したように考え
ると下式になる。
1) Design conditions Design load Ground reaction force 7.0 t / m 2 Original ground conditions Soil: Clay silt Unit volume weight: γt = 1.7 t / m 3 Underwater unit volume weight: γ't = 0 .7t / m 3 Local board strength: N value = 2 Adhesion force: C = qu / 2 qu = N / 8 ∴C = N / 16 = 0.125kgf / cm 2 = 1.25t / m 2 Internal friction angle : Φ = 0 ° (from cohesive soil) 2) Examination of vertical stress in the ground The vertical stress σz in the ground indicates the stress propagation to the ground in the underground stress at the depth Z. If you think like this,

【0062】 σz=(B×q)/(B+Z) ……(13)式 ここで、B:基礎幅(m) q:接地圧(t/m2) Z:改良厚(m) である。Σz = (B × q) / (B + Z) (13) Here, B: base width (m) q: ground pressure (t / m 2 ) Z: improved thickness (m).

【0063】 原地盤の許容支持力度 原地盤の許容支持力度qaは、日本建築学会の建築基礎
構造設計基準・第14条によるものとする。長期荷重に
対しては(14)式、短期荷重に対しては(15)式が適用され
る。 qa=(1/3)・(α・C・Nc+β・γ1・B・Nr+γ2・Df・Nq) ……(14)式 qa=(2/3)・(α・C・Nc+β・γ1・B・Nr+1/2・γ2・Df・Nq) ……(15)式 但し、 qa:許容支持力度(t/m2) C:基礎底面下にある地盤の粘着力(t/m2) γ1 :基礎底面下にある地盤の単位体積重量(t/
3) 地下水位以下にある場合は水中単位体積重量をとる。 γ2 :基礎底面より上方にある地盤の単位体積重量(t
/m3) 地下水位以下にある場合は水中単位体積重量をとる。 α・β:表1に示す形状係数 Nc,Nr,Nq:表2に示す支持力係数、内部摩擦角
φの関数 Df:基礎に隣接した最低地盤面から基礎底面までの深
さ(m) B:基礎底面の最少幅(m) 改良底面下の許容支持力度の計算 土の内部摩擦角φ=0°なので、表2の支持力係数より Nc=5.3、 Nr=0.0、 Nq=3.0 また、表1の連続基礎より、形状係数:α=1.0、β
=0.5の現地盤条件を(14)式に代入すると、 qa=(1/3)・(α・C・Nc+β・γ1・B・Nr+γ2・Df・Nq) =(1/3)・(1.0×1.25×5.3+0+1.7×0.9×3.0) =3.74 t/m2 ……(16)式 改良厚の検討 改良底面下の許容支持力度が分散圧とつりあう深度まで
改良する。 (13)式 ≦ (16)式 σz=(B×q)/(B+Z)≦3.74 =(8.4)/(1.2+Z)≦3.74 これから、Z≧1.04mとなる。
Permissible Bearing Capacity of Original Ground The allowable bearing capacity of the original ground qa is based on the Building Basic Structural Design Standard, Article 14 of the Architectural Institute of Japan. Equation (14) is applied to long-term loads and Equation (15) is applied to short-term loads. qa = (1/3) · (α · C · Nc + β · γ 1 · B · Nr + γ 2 · Df · Nq) ...... (14) equation qa = (2/3) · (α · C · Nc + β · γ 1 · B · Nr + 1/2 · γ 2 · Df · Nq) ...... (15) equation where, qa: allowable bearing capacity of (t / m 2) C: adhesion of the ground under basal bottom (t / m 2 ) Γ 1 : Unit volume weight of the ground beneath the bottom of the foundation (t /
m 3 ) If the water level is below the groundwater level, take the unit volume weight in water. γ 2 : Unit volume weight of the ground above the base of the foundation (t
/ M 3 ) If the water level is below the groundwater level, take the unit volume weight in water. α / β: Shape factor shown in Table 1 Nc, Nr, Nq: Bearing force coefficient shown in Table 2, function of internal friction angle φ Df: Depth from the lowest ground surface adjacent to the foundation to the bottom surface of the foundation (m) B : Minimum width of the base of the foundation (m) Calculation of the allowable bearing capacity under the improved bottom Since the internal friction angle φ of soil = 0 °, from the bearing coefficient of Table 2, Nc = 5.3, Nr = 0.0, Nq = 3.0 Further, based on the continuous basis of Table 1, the shape factor: α = 1.0, β
= Substituting 0.5 Local Release condition of the equation (14), qa = (1/3) · ( α · C · Nc + β · γ 1 · B · Nr + γ 2 · Df · Nq) = (1/3)・ (1.0 × 1.25 × 5.3 + 0 + 1.7 × 0.9 × 3.0) = 3.74 t / m 2 (16) Formula Study of improved thickness Allowable bearing capacity under the improved bottom surface Improve to a depth that balances the dispersion pressure. Expression (13) ≦ Expression (16) σz = (B × q) / (B + Z) ≦ 3.74 = (8.4) / (1.2 + Z) ≦ 3.74 From this, Z ≧ 1.04 m.

【0064】 改良地盤の強度 改良土の目標強度qufとしては、改良土の許容支持力
度が、擁壁の接地圧とつり合うような粘着力を目標強度
とする。改良土のせん断強度については、内部摩擦角を
0とみなし粘着力のみを評価する。 qa=(1/3)・α・C・Nc (q=7.0t/m2) qa=(1/3)・α・C・Nc (q=7.0t/m2) ゆえに、C=(3×7.0)/(1×1.0×5.3)=
3.96 t/m2 現場目標強度をqufとすると、 quf=2・C=7.92 t/m2 =0.79 kgf/cm2
1.0 kgf/cm2 となる。
Strength of Improved Ground As the target strength quf of the improved soil, the target strength is the adhesive strength with which the allowable bearing capacity of the improved soil balances with the ground contact pressure of the retaining wall. Regarding the shear strength of the improved soil, the internal friction angle is regarded as 0 and only the adhesive force is evaluated. qa = (1/3) ・ α ・ C ・ Nc (q = 7.0t / m 2 ) qa = (1/3) ・ α ・ C ・ Nc (q = 7.0t / m 2 ) Therefore, C = (3 × 7.0) / (1 × 1.0 × 5.3) =
3.96 t / m 2 Letting quf be the target strength of the site, quf = 2 · C = 7.92 t / m 2 = 0.79 kgf / cm 2
It becomes 1.0 kgf / cm 2 .

【0065】3)添加量の決定 室内強度qulと現場強度のqufの比を3とすると、
室内強度qul=3.0 kgf/m3 となる。よって、添加
量は、図32の室内配合試験結果から、120kg/m3
する。
3) Determination of addition amount If the ratio of the room strength qul to the field strength quf is 3, then
The indoor strength is qul = 3.0 kgf / m 3 . Therefore, the addition amount is set to 120 kg / m 3 from the indoor mixing test result of FIG. 32.

【0066】4)結果 従って、本例では、改良深さ1.1m以上、セメント系
固化材の添加量120kg/m3となる。
4) Results Therefore, in this example, the improved depth is 1.1 m or more and the amount of the cement-based solidifying agent added is 120 kg / m 3 .

【0067】[0067]

【発明の効果】上述のとおり本発明によれば、低層構築
物の基礎の支持地盤を、十分な支持力を有し、かつ容易
に形成でき、工期短縮等の省力化を図ることのできる低
層構築物基礎地盤改良工法を提供することができる。
As described above, according to the present invention, a low-rise structure which has a sufficient supporting force and can be easily formed on the foundation ground of the low-rise structure and can save labor such as shortening the construction period. A foundation ground improvement method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における掘削を示す断面説明
図。
FIG. 1 is a cross-sectional explanatory view showing excavation in an embodiment of the present invention.

【図2】本実施例におけるセメント系固化材の散布を示
す断面説明図。
FIG. 2 is an explanatory cross-sectional view showing the dispersion of the cement-based solidifying material in this example.

【図3】本実施例における掘削土砂の敷き均しを示す断
面説明図。
FIG. 3 is an explanatory cross-sectional view showing the leveling of excavated earth and sand in the present embodiment.

【図4】本実施例におけるセメントと掘削土砂との混合
撹拌を示す断面説明図。
FIG. 4 is a sectional explanatory view showing mixing and stirring of cement and excavated earth and sand in the present embodiment.

【図5】本実施例における混合土砂の転圧を示す断面説
明図。
FIG. 5 is an explanatory sectional view showing the compaction of mixed soil in this example.

【図6】本実施例における複数の転圧層の形成を示す断
面説明図。
FIG. 6 is an explanatory cross-sectional view showing the formation of a plurality of compaction layers in this example.

【図7】本実施例による多層転圧改良地盤を示す断面説
明図。
FIG. 7 is an explanatory cross-sectional view showing a multilayer rolling improvement ground according to the present embodiment.

【図8】本実施例の作業手順を示すフロー図。FIG. 8 is a flowchart showing a work procedure of this embodiment.

【図9】本実施例の適用例の一例を示す断面図。FIG. 9 is a sectional view showing an example of an application example of the present embodiment.

【図10】本実施例の適用例の他の例を示す断面図。FIG. 10 is a sectional view showing another example of application of the present embodiment.

【図11】本実施例の適用例の更に他の例を示す断面
図。
FIG. 11 is a sectional view showing still another example of application of the present embodiment.

【図12】本実施例の適用例の更に他の例を示す断面
図。
FIG. 12 is a sectional view showing still another example of application of the present embodiment.

【図13】本実施例による処理範囲を示す断面図。FIG. 13 is a sectional view showing a processing range according to the present embodiment.

【図14】本実施例による処理範囲を示す断面図。FIG. 14 is a sectional view showing a processing range according to the present embodiment.

【図15】地中における応力伝播を示す説明図。FIG. 15 is an explanatory diagram showing stress propagation in the ground.

【図16】地盤の改良厚さと一軸圧縮強さとの関係を示
す図。
FIG. 16 is a diagram showing the relationship between the improved thickness of the ground and the uniaxial compressive strength.

【図17】地盤の改良厚さと一軸圧縮強さとの関係を示
す図。
FIG. 17 is a diagram showing the relationship between the improved thickness of the ground and the uniaxial compressive strength.

【図18】一軸圧縮強度とセメント配合量との関係を示
す図。
FIG. 18 is a graph showing the relationship between uniaxial compressive strength and cement content.

【図19】軟弱粘性土で支持された荷重の仮想作用面を
示す説明図。
FIG. 19 is an explanatory diagram showing a virtual action surface of a load supported by soft cohesive soil.

【図20】中間砂層で支持された荷重の仮想作用面を示
す説明図。
FIG. 20 is an explanatory diagram showing a virtual action surface of a load supported by an intermediate sand layer.

【図21】本発明による設計例1における支持力検討モ
デルを示す図。
FIG. 21 is a diagram showing a bearing capacity examination model in Design Example 1 according to the present invention.

【図22】設計例1における地層図。FIG. 22 is a geological map in design example 1.

【図23】設計例1における許容支持力と設計強度との
関係を示す図。
FIG. 23 is a diagram showing a relationship between an allowable supporting force and design strength in Design Example 1.

【図24】設計例1における許容支持力、および荷重度
と改良厚さとの関係を示す図。
FIG. 24 is a diagram showing a relationship between an allowable supporting force, a load degree, and an improved thickness in Design Example 1.

【図25】設計例1における改良地盤の設計強度と固化
材の添加量との関係を示す図。
FIG. 25 is a diagram showing the relationship between the design strength of the improved ground and the addition amount of the solidifying material in Design Example 1.

【図26】本発明による設計例2における擁壁基礎の接
地圧分布図。
FIG. 26 is a ground pressure distribution map of the retaining wall foundation in Design Example 2 according to the present invention.

【図27】設計例2における土質条件を表す地層図。27 is a geological map showing soil conditions in Design Example 2. FIG.

【図28】設計例2における許容荷重と設計強度との関
係を示す図。
28 is a diagram showing the relationship between the allowable load and design strength in Design Example 2. FIG.

【図29】設計例2における荷重の分散を示す図。FIG. 29 is a diagram showing load distribution in design example 2;

【図30】設計例2における荷重及び有効荷重と改良厚
さとの関係を示す図。
FIG. 30 is a diagram showing a relationship between a load and an effective load in design example 2 and an improved thickness.

【図31】設計例2における改良地盤の設計強度と固化
材の添加量との関係を示す図。
31 is a diagram showing the relationship between the design strength of the improved ground and the addition amount of the solidifying material in Design Example 2. FIG.

【図32】設計例3における設計強度と固化材の添加量
との関係を示す図。
FIG. 32 is a diagram showing the relationship between the design strength and the addition amount of the solidifying material in Design Example 3;

【符号の説明】[Explanation of symbols]

1 地盤面 2 バックホウ 3 掘削底面 4 セメント系固化材 5 掘削土砂 6 耕耘機 7 転圧ローラ 8 転圧層 9 鉄筋網 10 プレミックス土(セメント系固化材混入土砂) 11 多層転圧改良地盤 12 フーチング 21 安定処理部 22 擁壁 23 地山部 24 軟弱層 25 擁壁 26 基礎 27 擁壁 28 フーチング 1 Ground surface 2 Backhoe 3 Excavation bottom surface 4 Cement-based solidifying material 5 Excavated earth and sand 6 Cultivator 7 Rolling roller 8 Rolling layer 9 Reinforcing bar net 10 Premix soil (soil mixed with cement-based solidifying material) 11 Multi-layer rolling ground 12 Footing 21 Stabilization part 22 Retaining wall 23 Rock mass part 24 Soft layer 25 Retaining wall 26 Foundation 27 Retaining wall 28 Footing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地盤を所定範囲、所定深さ掘削した後、
掘削した地盤面にセメント系固化材を散布し、次に掘削
した土砂を所定厚さ敷きならして前記セメント系固化材
と撹拌し転圧することにより、セメント系固化材混入土
砂の転圧層を形成し、この転圧層を低層構築物の基礎の
支持地盤にする低層構築物基礎地盤改良工法。
1. After excavating the ground in a predetermined area and a predetermined depth,
Disperse the cement-based solidifying material on the excavated ground surface, then spread the excavated earth and sand to a predetermined thickness and stir it with the cement-based solidifying material to roll the compacted layer of the cement-based solidifying material mixed soil. A low-rise building foundation ground improvement method that is formed and uses this compaction layer as the support ground for the foundation of the low-rise structure.
【請求項2】 地盤を所定範囲、所定深さ掘削した後、
掘削した土砂にセメント系固化材を混入して撹拌したセ
メント系固化材混入土砂を、掘削した地盤面に所定厚さ
敷いて転圧することにより、セメント系固化材混入土砂
の転圧層を形成し、この転圧層を低層構築物の基礎の支
持地盤にする低層構築物基礎地盤改良工法。
2. After excavating the ground in a predetermined area and a predetermined depth,
Cement-based solidifying material mixed with the excavated earth and sand is mixed and stirred, and the cement-based solidifying material-containing earth and sand is laid on the excavated ground surface to a predetermined thickness and rolled to form a compacted layer of the cement-based solidified material-containing earth and sand. , Low-rise building foundation ground improvement method using this compaction layer to support the foundation of low-rise building foundation.
【請求項3】 前記セメント系固化材混入土砂の転圧層
を順次重ねて施工することにより、前記低層構築物の基
礎の支持地盤を形成する請求項1または2記載の低層構
築物基礎地盤改良工法。
3. The low-rise building foundation ground improvement method according to claim 1, wherein a foundation ground for the foundation of the low-rise structure is formed by successively stacking compaction layers of the cement-based solidifying material-containing earth and sand.
【請求項4】 前記セメント系固化材混入土砂の転圧層
に組立鉄筋網を敷き、この組立鉄筋網の上に重ねてセメ
ント系固化材混入土砂の転圧層を施工することにより、
前記低層構築物の基礎の支持地盤を形成する請求項3記
載の低層構築物基礎地盤改良工法。
4. An assembly rebar net is laid on the compaction layer of the cement-based solidifying material-mixed sand, and a compaction layer of the cement-based solidifying material-containing soil is applied by stacking on the assembled rebar mesh.
4. The low-rise building foundation ground improvement method according to claim 3, wherein a supporting ground for the foundation of the low-rise structure is formed.
JP5103910A 1993-04-30 1993-04-30 Low-rise building foundation ground improvement method Expired - Fee Related JP2742862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103910A JP2742862B2 (en) 1993-04-30 1993-04-30 Low-rise building foundation ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103910A JP2742862B2 (en) 1993-04-30 1993-04-30 Low-rise building foundation ground improvement method

Publications (2)

Publication Number Publication Date
JPH06313314A true JPH06313314A (en) 1994-11-08
JP2742862B2 JP2742862B2 (en) 1998-04-22

Family

ID=14366586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103910A Expired - Fee Related JP2742862B2 (en) 1993-04-30 1993-04-30 Low-rise building foundation ground improvement method

Country Status (1)

Country Link
JP (1) JP2742862B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150859A (en) * 2006-12-18 2008-07-03 Asahi Kasei Homes Kk Reinforcing structure of ground level different part
JP2008231827A (en) * 2007-03-22 2008-10-02 Kajima Corp Reinforced concrete block wall body and its construction method
JP2015034439A (en) * 2013-08-09 2015-02-19 兼松日産農林株式会社 Ground improvement structure and ground improvement method
CN106400772A (en) * 2016-08-31 2017-02-15 中国科学院寒区旱区环境与工程研究所 Sand preventing fence and sand preventing system
JP2019007333A (en) * 2017-06-21 2019-01-17 株式会社平林工業 Dust prevention method and mist jet device of surface layer ground improvement method
JP2020190099A (en) * 2019-05-21 2020-11-26 株式会社竹中工務店 Flotation preventing structure, and earth retaining method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107937U (en) * 1978-01-18 1979-07-30
JPS6049734A (en) * 1983-08-31 1985-03-19 株式会社北陸地所 Lobster breeding field and its construction
JPS6363816A (en) * 1986-09-03 1988-03-22 Sekisui House Ltd Improving work of surface soil of ground for building
JPS63233115A (en) * 1987-03-20 1988-09-28 Sumitomo Cement Co Ltd Soil reclaiming and filling work
JPS63277316A (en) * 1987-05-09 1988-11-15 Sekisui House Ltd Ground improving work for building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107937U (en) * 1978-01-18 1979-07-30
JPS6049734A (en) * 1983-08-31 1985-03-19 株式会社北陸地所 Lobster breeding field and its construction
JPS6363816A (en) * 1986-09-03 1988-03-22 Sekisui House Ltd Improving work of surface soil of ground for building
JPS63233115A (en) * 1987-03-20 1988-09-28 Sumitomo Cement Co Ltd Soil reclaiming and filling work
JPS63277316A (en) * 1987-05-09 1988-11-15 Sekisui House Ltd Ground improving work for building

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150859A (en) * 2006-12-18 2008-07-03 Asahi Kasei Homes Kk Reinforcing structure of ground level different part
JP2008231827A (en) * 2007-03-22 2008-10-02 Kajima Corp Reinforced concrete block wall body and its construction method
JP2015034439A (en) * 2013-08-09 2015-02-19 兼松日産農林株式会社 Ground improvement structure and ground improvement method
CN106400772A (en) * 2016-08-31 2017-02-15 中国科学院寒区旱区环境与工程研究所 Sand preventing fence and sand preventing system
JP2019007333A (en) * 2017-06-21 2019-01-17 株式会社平林工業 Dust prevention method and mist jet device of surface layer ground improvement method
JP2020190099A (en) * 2019-05-21 2020-11-26 株式会社竹中工務店 Flotation preventing structure, and earth retaining method

Also Published As

Publication number Publication date
JP2742862B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
CN102444142B (en) Pile group column replacement expanded basement and construction method of same
CN100386484C (en) New type cement soil pile and its construction method
CN113186766A (en) Shallow soft soil foundation foam light soil embankment structure and construction method
US20180238012A1 (en) Method for forming a stable foundation ground
RU2392387C2 (en) Device and method for reinforcement of mast base
JP3010356B1 (en) How to build a tunnel
CN109706952A (en) Large-scale well-sinking construction method
CN101008178B (en) Soft base processing construction process using excavating and stirring method
EP1084301B1 (en) A method of stabilising the ground in road construction work
JP2742862B2 (en) Low-rise building foundation ground improvement method
CN100523394C (en) Construction method for concrete shaft wall module masonry
KR20020072416A (en) Lightweight fill materials using waste styrofoam beads and lightweight fill method applying the same
KR101372163B1 (en) Structure on soft ground using a compensated foundation and improved surface layer and construction method for the compensated foundation
JP2013238034A (en) Soil structure and soil improvement method
JP2003184072A (en) Surface layer ground improvement method
JP2004225453A (en) Construction method of civil engineering structure
KR100462529B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
KR100451092B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
JP2005113651A (en) Reinforced embankment construction method
Gitskin et al. Settlement of building floor slab-on-grade constructed on unsuitable urban fill in Chicago
JPS5996320A (en) Improvement of soft ground
JPH05132942A (en) Backfilling material and backfilling method
JP3769521B2 (en) Civil engineering groundwork, civil engineering methods using this civil engineering groundwork
CN116446378A (en) Method for manufacturing steel bar processing field by utilizing solidified drilling slag soil
Roy Foundation on Soft and Filled-Up Soil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees