JP3769521B2 - Civil engineering groundwork, civil engineering methods using this civil engineering groundwork - Google Patents

Civil engineering groundwork, civil engineering methods using this civil engineering groundwork Download PDF

Info

Publication number
JP3769521B2
JP3769521B2 JP2002189692A JP2002189692A JP3769521B2 JP 3769521 B2 JP3769521 B2 JP 3769521B2 JP 2002189692 A JP2002189692 A JP 2002189692A JP 2002189692 A JP2002189692 A JP 2002189692A JP 3769521 B2 JP3769521 B2 JP 3769521B2
Authority
JP
Japan
Prior art keywords
civil engineering
roadbed
ash
ton
groundwork
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002189692A
Other languages
Japanese (ja)
Other versions
JP2003232003A (en
Inventor
武志 中川
Original Assignee
株式会社川島工業
武志 中川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社川島工業, 武志 中川 filed Critical 株式会社川島工業
Priority to JP2002189692A priority Critical patent/JP3769521B2/en
Priority to CN 02824129 priority patent/CN1599826A/en
Priority to AU2002349659A priority patent/AU2002349659A1/en
Priority to PCT/JP2002/012566 priority patent/WO2003048457A1/en
Publication of JP2003232003A publication Critical patent/JP2003232003A/en
Application granted granted Critical
Publication of JP3769521B2 publication Critical patent/JP3769521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/22Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling
    • E02F5/223Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling for back-filling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Road Paving Structures (AREA)
  • Railway Tracks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、木工事用下地材、この土木工事方法および配管の埋め戻し方法に関する。
【0002】
【従来の技術】
家庭等で排出されるゴミなどは、一般に、各自治体等のゴミ焼却場などで焼却される。そして、この焼却によって発生した焼却灰は、埋め立て処分場で埋め立て処理されている。
しかしながら、埋め立て処分地のスペースにも限界があり、焼却灰を埋め立てることなく、有効利用する方法が望まれている。
【0003】
また、昨今は、道路の補修時の掘削等によって発生したコンクリート殻やアスファルト殻を破砕したコンクリートの破砕物、アスファルトの破砕物、再生クラッシャーラン等のリサイクル品などが、下層路盤やその下部の路体を形成する土木工事用下地材を形成する下地層形成材料として用いられているが、これらの土木工事用下地材として用いられるコンクリートの破砕物、アスファルトの破砕物、再生クラッシャーラン等のリサイクル品などは、その粒度が規定されているものの、その粒度分布が広範囲のものであるので、ダンプカー等で搬送中の振動で、どうしても粒度の細かいものと、粒度の粗いものとが分離してしまい、このリサイクル品を用いて形成した路体や下層路盤なども上層部分に粗い骨材、下層部分に細かい骨材が多くなる。したがって、施工時の突き固めが不十分であると、大型自動車などが頻繁に通る道路では、粗い骨材部分の隙間が大きく、路盤が安定せず、経時的にこの隙間がつぶれて下層路盤や路体部分の沈下が起こるため、轍ができやすく、補修頻度が増すという問題がある。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような事情に鑑みて、各所で発生する灰を有効利用して埋立処分問題を解決することができるとともに、強度的に優れ、安定した下地層を得ることができる木工事用下地材、この土木工事方法および配管の埋め戻し方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に記載の木工事用下地材(以下、「請求項1の木工事用下地材」と記す)は、酸化カルシウムを15重量%以上含有する灰と、粗骨材と、細骨材とからなる材料が、容量比で、1.0〜2.5:0.75〜1.5:0.3〜1.0の割合で配合されるとともに、前記材料に対して5重量%〜7重量%の水が加水された状態で攪拌混合して得られる粒状をしてなることを特徴としている。
【0006】
本発明の請求項2に記載の木工事用下地材(以下、「請求項1の木工事用下地材」と記す)は、請求項1の木工事用下地材において、粗骨材が砂利であって、細骨材が砂および/または溶融スラグであることを特徴としている。
【0007】
本発明の請求項3に記載の土木工事方法(以下、「請求項3の土木工事方法」と記す)は、請求項1または請求項2に記載の土木工事用下地材を下層路盤上に敷詰めたのち、押し固める工程を経て上層路盤を形成することを特徴としている。
【0008】
本発明の請求項4に記載の土木工事方法(以下、「請求項4の土木工事方法」と記す)は、請求項1または請求項2に記載の土木工事用下地材を下層路盤上に敷詰めるとともに、押し固めたのち、土木工事用下地材上に散水する工程を経て上層路盤を形成することを特徴としている。
【0009】
本発明の請求項5に記載の土木工事用下地材(以下、「請求項5の土木工事用下地材」と記す)は、酸化カルシウムを15重量%以上含有する灰と、砂とが混合されてなり、灰が粒径0.6mm以上の塊状をしていることを特徴としている。
【0010】
本発明の請求項6に記載の土木工事用下地材(以下、「請求項5の土木工事用下地材」と記す)は、請求項5の土木工事用下地材において、灰と砂との配合割合が3:1〜1:3であることを特徴としている。
【0011】
本発明の請求項7に記載の土木工事方法(以下、「請求項7の土木工事方法」と記す)は、地面を掘削して形成された掘削溝内に敷設された配管の周囲に、請求項5または請求項6に記載の土木工事用下地材を充填し、押し固めたのち、掘削溝を埋め戻す工程を備えることを特徴としている。
【0012】
本発明において、土木工事用下地材とは、土木構造物の表面材の下側に配置されるものを意味し、たとえば、舗装道路の下地である路盤を形成する路盤材、擁壁などの背面に配設され裏込め材、堀込配管施工時に配管を埋め戻す際に、配管回りに配設される埋め戻し材(「巻き立て材」あるいは「クッション材」とも言う)などが挙げられる。
また、この土木工事用下地材を路盤材として用いる場合、たとえば、アスファルト舗装の下層路盤、コンクリート舗装の路盤、駐車場の路盤、グラウンドの路盤、アスファルト舗装の上層路盤を形成することができるが、特に上層路盤形成用として好適に使用される。さらに、セメントを配合すれば、耐水性のある排水性舗装の路盤を形成することもできる。
【0013】
本発明において、灰は、酸化カルシウムを15重量%以上含んでいることが必須であり、20重量%以上含んでいることが好ましいが、その理由は、酸化カルシウムを含有していると、酸化カルシウムの働きにより、経時的にこの下地材によって形成された下地層の強度が高まるが、酸化カルシウムの含有量が15重量%未満であると、その効果が不十分となるためである。
【0014】
灰としては、上記のように、酸化カルシウムを15重量%以上含んでいるものであれば、特に限定されないが、特開2001−132930号公報に記載の方法等によってダイオキシンや重金属等を分解や除去し、無害化処理された灰(以下、「焙焼炉灰」と記す)を用いることが好ましい。
灰の粒度は、土木工事用下地材の用途によって適宜決定されるが、たとえば、アスファルト舗装等の上層路盤や下層路盤として使用する場合には、最少粒度品と、中小粒度品と、中大粒度品と、最大粒度品とを略同程度の割合で配合することが好ましい。また、透水性舗装の路盤として使用する場合には。中粒度品と、大粒度品とを同量程度配合するとともにセメントを配合することが好ましい。
【0015】
さらに、この土木工事用下地材を埋め戻し材として用いる場合は、請求項5の下地材のように0.6mm以上(好ましくは0.6mm以上2mm以下)の塊状と砂との混合物が好適に用いられる。すなわち、灰の0.6mm未満の粒径であると、埋め戻し材として必要とするクッション性を確保できなくなる恐れがある。
埋め戻し材として用いる場合、灰と砂との配合割合は、特に限定されないが、3:1〜1:3程度が好ましい。
【0016】
本発明の土木工事用下地材には、用途に応じて、軽量骨材やセメント等のその他の添加材を添加するようにしても構わない。たとえば、セメントを配合するようにすると透水性舗装に用いる耐水性を備えた路盤を形成することができる。
【0017】
本発明において、粗骨材とは、粒径3mm以上40mm以下、好ましくは5mm以上で15mm以下のもの、細骨材とは、粒径3mm未満、好ましくは0.1mm以上2mm以下のものを言う。
粗骨材および細骨材は、特に限定されず、たとえば、粗骨材として、砂利、コンクリートの破砕物、アスファルトの破砕物、再生クラッシャーラン等のリサイクル品、溶融スラグなどが挙げられ、細骨材として、砂、溶融スラグ等が挙げられ、粗骨材となる大きい粒度ものと、細骨材となる細かい粒度のものとが混合した砕石でも構わないが、路盤材料として用いる場合には、請求項4の下地材のように粗骨材として砂利、細骨材として砂および/またはスラグを用いることが好ましい。
【0018】
灰と、粗骨材と、細骨材との配合比は、容量比で、1.0〜2.5:0.5〜1.5:0.3〜1.0の割合で配合されていることが好ましく、1.5〜2.5:0.75〜1.25:0.3〜0.7がより好ましく、2.0:1.0:0.5がさらに好ましい。
【0019】
【作用】
本発明の土木工事用下地材は、従来埋立処分されていた灰を使用しているので、埋立処分が不要になる。また、灰が他の下地層形成材料の表面に付着し、この灰が経時的に固化し、強固な下地層を形成できる。
灰と、粗骨材と、細骨材とを含むようにすれば、押し固めた場合、互いの粒子がうまく細密充填される。
押し固めにより灰の中に含まれる酸化カルシウム同士が経時的に結合された状態になり、路盤材として用いた場合、路盤強度が経時的に向上し、より強固な路盤を形成する。
【0020】
請求項の下地材のように、粒径0.6mm以上の塊状の灰と砂との混合物とし、埋め戻し材として用いるようにすれば、押し固めの際に灰が押しつぶされ、配管をうまく保護することができる。
請求項6の下地材のようにすれば、灰が風等によって飛散しなくなる。
【0021】
【発明の実施の形態】
以下に、本発明の実施の形態を、図面を参照しつつ詳しく説明するが、本発明はこの実施の形態に限定されるものではない。
図1に示すように、本発明の土木工事用下地材としての路盤材1は、焙焼炉灰等の酸化カルシウム(石灰)を含む灰2と、砂利等の粗骨材3と、溶融スラグや砂等の細骨材4とが容積比で1.5〜2.5:0.75〜1.25:0.3〜0.7の割合となるように、混合機5に供給し、混合機5中で均一混合するとともに、全体の5〜7重量%の水6加えて得ることができる。
【0022】
そして、この路盤材1は、路盤形成部に敷設するとともに、ローラー、振動コンパクター、ランマー等の押し固め機器を用いて押し固めることによって、路盤を形成することができる。
【0023】
この路盤材1は、以上のように、構成されているので、以下のような優れた効果を備えている。
(1) 廃棄されるべき灰2を用いるようにしたので、灰2の埋立処分が不要になり、灰の処分コストを低減できる。
(2) 長時間放置しても材料が固化しないので、施工時間に制約を受けない。
(3) 押し固めによって路盤強度が得られ、その後固化するので突貫性に優れている。
(4) 従来の粒状路盤施工におけるグレーダー施工だけでなく、フィニッシャー等による施工も可能になり、不陸性能に優れているので、機械施工における平坦性に富み、人力施工にも適している。
(5) 吸水性を備えているので、セメントを配合し転圧するだけで、路盤表面排水層として用いることができ、ヒートアイランド等の防止を図ることもできる。
(6) 予め加水してあるので、施工の際、灰2等の粒子の飛散がなく、施工性に優れている。
【0024】
そして、この路盤材1を用いて得られた路盤は、灰2と、粗骨材3と、細骨材4とを含むので、押し固めた場合、互いの粒子がうまく細密充填される。したがって、強固な路盤を得ることができる。しかも、押し固めにより灰の中に含まれる酸化カルシウム同士が結合された状態になり、より強固なものになる。また、押し固めのみで固化し、モルタル化していないので、路面補修時等の路盤掘削も容易に行うことができるとともに、路盤材として再利用も図れる。
【0025】
図2に示すように、本発明の土木工事用下地としての埋め戻し材7は、粒径0.6mm以上の塊状の灰と、平均粒径砂とが、容量比で1:1の割合で混合されていて、地面Gを掘削して形成された掘削溝8内に敷設された配管9の周囲に充填し、押し固めたのち、埋め戻し材7の上部に砂利(図示せず)、土を入れさらに押し固めた後、アスファルト舗装等を施すようになっている。
すなわち、上記の埋め戻し材7を用いれば、埋め戻し材7中に、粒径0.6mm以上の塊状の灰が含まれているので、押し固めの際に灰が押しつぶされ、配管9を傷つけたりすることなく、緻密化される。そして、灰の作用により埋め戻し材7が経時的に固化し、配管9をしっかりと保護する。すなわち、従来の砂のみの埋め戻し材に比べ、道路上からかかる加重により配管9が破損したりすることをより確実に防止することができる。
【0026】
【実施例】
以下に、本発明の具体的な実施例を詳しく説明する。
【0027】
(実施例1)
材料全体に5重量%〜7重量%の割合で加水した状態で、焙焼炉灰と、砂利(粒径3mm〜12mm)と、スラグ(粒径2mm以下)とを容量比で2.0:1.0:0.5の割合で撹拌混合し、土木工事用下地材としての路盤材料Aを得た。
なお、焙焼炉灰の成分は、以下の表1の通りであった。
【0028】
【表1】

Figure 0003769521
【0029】
つぎに、再生クラッシャーラン(RC−40)を用いて厚み200mmの下層路盤を形成したのち、この下層路盤の上に、上記のようにして得られた路盤材料Aを敷きつめ、振動コンパクターで押し固め、厚み150mmの上層路盤を形成した。
そして、この上層路盤を形成した直後に、上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0030】
(実施例2)
スラグに代えて砂(粒径2mm以下)を用いた以外は、実施例1と同様にして土木工事用下地材としての路盤材料Bを得た。
そして、この路盤材料Bを用いて実施例1と同様にして上層路盤を形成した直後に、上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0031】
(実施例3)
実施例1の上層路盤上に散水したのち、15時間後に上層路盤上に1トン,2トン,3トン載荷盤荷重をかけ沈下量を測定し、その結果から地盤反力係数を求めた。
(実施例4)
実施例2の上層路盤上に散水したのち、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0032】
(実施例5)
振動コンパクターに代えて4トンローラーで路盤材料Aを押し固めた以外は、実施例1と同様にして上層路盤を形成し、その直後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
(実施例6)
振動コンパクターに代えて4トンローラーで路盤材料Bを押し固めた以外は、実施例2と同様にして上層路盤を形成し、その直後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0033】
(実施例7)
振動コンパクターに代えて4トンローラーで路盤材料Aを押し固めた以外は、実施例1と同様にして上層路盤を形成し、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
(実施例8)
振動コンパクターに代えて4トンローラーで路盤材料Bを押し固めた以外は、実施例2と同様にして上層路盤を形成し、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0034】
(実施例9)
振動コンパクターに代えて4トンローラーで路盤材料Aを押し固めた以外は、実施例1と同様にして上層路盤を形成し、上層路盤上に散水したのち、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
(実施例10)
振動コンパクターに代えて4トンローラーで路盤材料Bを押し固めた以外は、実施例2と同様にして上層路盤を形成し、上層路盤上に散水したのち、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0035】
(実施例11)
振動コンパクターに代えて10トンローラーで路盤材料Aを押し固めた以外は、実施例1と同様にして上層路盤を形成し、その直後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
(実施例12)
振動コンパクターに代えて10トンローラーで路盤材料Bを押し固めた以外は、実施例2と同様にして上層路盤を形成し、その直後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0036】
(実施例13)
振動コンパクターに代えて10トンローラーで路盤材料Aを押し固めた以外は、実施例1と同様にして上層路盤を形成し、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
(実施例14)
振動コンパクターに代えて10トンローラーで路盤材料Bを押し固めた以外は、実施例2と同様にして上層路盤を形成し、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0037】
(実施例15)
振動コンパクターに代えて10トンローラーで路盤材料Aを押し固めた以外は、実施例1と同様にして上層路盤を形成し、上層路盤上に散水したのち、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
(実施例16)
振動コンパクターに代えて10トンローラーで路盤材料Bを押し固めた以外は、実施例2と同様にして上層路盤を形成し、上層路盤上に散水したのち、15時間後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0038】
(比較例1)
路盤材料Aに代えて粒調砕石(M−30)を用いた以外は、実施例5と同様にして上層路盤を形成し、形成直後に上層路盤上に1トン,2トン,3トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。
【0039】
上記実施例1〜16および比較例1,2で求めた沈下量および地盤反力係数を表2に示す。なお、平板載荷試験における地盤反力係数は、直径30cmの載荷盤(載荷盤面積A=706.5cm2)に油圧ジャッキにより荷重をかけ、載荷盤の沈下量を記録し、その結果から以下の式により求めることができる。
地盤反力係数(kgf/cm3)=荷重強さ(kgf/cm2)/沈下量(cm)
3t荷重の場合の荷重強さ=3000kgf÷706.5cm2=4.264kgf/cm2
【0040】
【表2】
Figure 0003769521
【0041】
上記表2から、本発明の路盤材料を用いれば、押し固め機器の種類に関係なく、平板載荷試験の上層路盤として要求される強固な路盤をえられることがよく分かる。また、路盤形成後散水し、15時間放置した方がより強度が上がることがよく解る。
【0042】
また、「社団法人 地盤工学会」発行の地盤調査方法によると地盤反力係数を算定する地盤の沈下量が、コンクリート舗装道路、鉄道、空港滑走路が1.25mm、アスファルト舗装道路が2.5mm、タンク基礎が5.0mmと規定されている。この規定沈下量を3tの荷重強さにおける地盤反力係数K30(kgf/cm3)であらわすと、コンクリート舗装道路、鉄道、空港滑走路の地盤反力係数が34.0kgf/cm3以上、アスファルト舗装道路が17.0kgf/cm3以上あればよいことになる。
【0043】
したがって、上記実施例1〜16のように、本発明の土木工事用下地材を路盤材料として用いれば、アスファルト舗装だけでなく、コンクリート舗装道路、鉄道、空港滑走路にも有効な路盤を形成できることがよくわかる。
【0044】
(実施例17)
表3に示すように、粒径2mm〜5mm,粒径3mm〜10mm,粒径5mm〜15mm,粒径15mm〜25mm,粒径20mm〜30mmの5種類の砂利を用い、焙焼炉灰と、砂利と、砂との比を表3に示すように変化させて路盤材料をそれぞれ得た。そして、得られた路盤材料を用いて実施例5と同様にして上層路盤を形成し、平板載荷試験を実施してその結果を表3に併せて示した。
【0045】
【表3】
Figure 0003769521
【0046】
上記表3から、路盤材料を、灰と3mm〜10mm程度の粒径の粗骨材と細骨材とを灰:砂利:砂が2.0:1.0:0.5の配合割合とすれば、より高強度の路盤を形成できることがわかる。
【0047】
(実施例18)
上記路盤材料Aに50kg/m3となるようにセメントを混合し、路盤材料Cを得た。
(実施例19)
上記路盤材料Aに100kg/m3となるようにセメントを混合し、路盤材料Dを得た。
【0048】
(実施例20)
上記路盤材料Bに50kg/m3となるようにセメントを混合し、路盤材料Eを得た。
(実施例21)
上記路盤材料Bに100kg/m3となるようにセメントを混合し、路盤材料Fを得た。
【0049】
上記実施例18〜21で得た路盤材料C〜Fを用いて上記実施例5と同様にして上層路盤を形成した。そして、水を散水後7日養生後、14日養生後の一軸圧縮強度を測定し、その結果を表4に示した。
【0050】
【表4】
Figure 0003769521
【0051】
上記表4から、路盤材料中にセメントをさらに配合するようにすれば、レディミクスコンクリートのように、型枠を組んだりすることなく、敷き均して押し固め装置で押し固めるだけで、十分な強度を備えた路盤を形成できることが解る。しかも、施工時点では、セメントに水を加えていないので、レディミクスコンクリートのように施工時間がかかり過ぎると固化するという問題もなく、施工性に優れていることがわかる。
【0052】
【発明の効果】
本発明にかかる土木下地層の施工方法は、以上のように、下地層形成材料中に酸化カルシウムを15重量%以上含む灰を添加するようにしたので、灰が経時的に固化するとともに、骨材等の他の下地層形成材料の連結材として働き、安定した強固な下地層を形成することができる。
請求項2の施工方法によれば、灰が風等で飛散せず、施工現場の作業環境を良好に保つことができる。また、灰を密に充填し、より強固な下地層を形成することができる。
【0053】
本発明にかかる土木工事用下地材は、以上のように、従来埋め立て処分等されていた焼却灰等の灰を成分中に含んでいるので、灰のリサイクルを図ることができ、従来の灰の埋立処分地等が不要になるとともに、灰の処分コストを低減できる。また、従来の下地材の使用を減らすことができ、材料コストも低減される。しかも、灰が15重量%以上の酸化カルシウムを含んでいるので、所定の部分に敷設し、押し固めるだけで、経時的に強固な下地層を形成することができる。また、モルタル化しないため、補修時等に掘削を容易に行うことができるとともに、再利用も可能である。さらに、従来のコンクリートのように施工時間がかかると固化したり、アスファルトのように冷えて固まったりすることがない。したがって、時間的な制約を受けることなく強固な下地層を容易に得ることができる。
【0054】
また、路盤材として用いることによって、強固な路盤を得ることができる。
請求項5の下地材のようにすれば、埋め戻し材として用いることによって、従来の砂等に比べ、配管を強固に保護することができる。
【0055】
請求項の下地材のようにすれば、加水してあるので、施工の際、灰2等の粒子の飛散がなく、施工性に優れている。
【図面の簡単な説明】
【図1】 本発明にかかる土木工事用下地材の1例である路盤材の製造方法の1つの実施の形態を説明する説明図である。
【図2】 本発明にかかる土木工事用下地材の他例である埋め戻し材の施工方法を説明する断面図である。
【符号の説明】
1 路盤材(土木工事用下地材)
2 灰
3 粗骨材
4 細骨材
6 水
7 埋め戻し材(土木工事用下地材)
8 掘削溝
9 配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a base material for woodwork, a civil engineering method, and a pipe backfilling method .
[0002]
[Prior art]
Garbage discharged at home and the like is generally incinerated at a garbage incineration site of each local government. The incineration ash generated by this incineration is landfilled at the landfill disposal site.
However, there is a limit to the space of the landfill site, and there is a demand for a method for effectively using the incinerated ash without landfilling.
[0003]
In recent years, concrete shells generated by excavation during road repairs, crushed concrete from asphalt shells, asphalt crushed materials, recycled products such as reclaimed crusher runs, etc. It is used as a foundation layer forming material to form a foundation material for civil engineering work, but the concrete crushed material, asphalt crushed material, recycled products such as reclaimed crusher run, etc. used as the foundation material for civil engineering work are Although its particle size is specified, its particle size distribution is wide, so vibrations during transportation with a dump truck etc. will inevitably separate fine particles and coarse particles, and this recycling There are many coarse aggregates in the upper layer part and fine aggregates in the lower layer part of the road bodies and lower layer roadbeds that are formed using products. That. Therefore, if the ramming at the time of construction is insufficient, on the road where large automobiles etc. frequently pass, the gap of coarse aggregate part is large, the roadbed is not stable, this gap collapses over time and the lower roadbed or Since subsidence of the road body portion occurs, there is a problem that wrinkles are easy to make and the repair frequency increases.
[0004]
[Problems to be solved by the invention]
The present invention is, in view of the above circumstances, it is possible to solve the landfill problem by effectively utilizing the ash generated in many places, strength superior, trees can be obtained a stable underlying layer construction It aims at providing the foundation material for this, this civil engineering method, and the backfilling method of piping .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the woodworking base material according to claim 1 of the present invention (hereinafter referred to as “ woodworking base material of claim 1”) contains 15% by weight or more of calcium oxide. Materials composed of ash, coarse aggregate, and fine aggregate are blended at a volume ratio of 1.0 to 2.5: 0.75 to 1.5: 0.3 to 1.0. At the same time, it is characterized in that it is in the form of granules obtained by stirring and mixing in a state where 5 wt% to 7 wt% of water is added to the material .
[0006]
The base material for woodwork according to claim 2 of the present invention (hereinafter referred to as "the base material for woodwork of claim 1") is the base material for woodwork of claim 1, wherein the coarse aggregate is gravel. The fine aggregate is characterized by being sand and / or molten slag .
[0007]
Civil engineering method according to claim 3 of the present invention (hereinafter, referred to as "civil engineering method according to claim 3") is laying the civil engineering for the base material according to claim 1 or claim 2 on the lower roadbed After packing, the upper roadbed is formed through a pressing process .
[0008]
Civil engineering method according to claim 4 of the present invention (hereinafter, referred to as "civil engineering method of claim 4") is laying the civil engineering for the base material according to claim 1 or claim 2 on the lower roadbed After packing and compacting, the upper roadbed is formed through a process of sprinkling water on the groundwork material .
[0009]
The groundwork material for civil engineering according to claim 5 of the present invention (hereinafter referred to as "the groundwork material for civil engineering work according to claim 5") is a mixture of ash containing 15% by weight or more of calcium oxide and sand. The ash is in the form of a lump having a particle size of 0.6 mm or more .
[0010]
The groundwork material for civil engineering according to claim 6 of the present invention (hereinafter referred to as "the groundwork material for civil engineering work of claim 5") is a combination of ash and sand in the groundwork material for civil engineering work according to claim 5. The ratio is 3: 1 to 1: 3 .
[0011]
The civil engineering method according to claim 7 of the present invention (hereinafter referred to as "the civil engineering method according to claim 7") is charged around a pipe laid in an excavation groove formed by excavating the ground. The method further comprises a step of filling the excavation groove after filling and compacting the civil engineering foundation material according to claim 5 or claim 6 .
[0012]
In the present invention, the foundation material for civil engineering means a material disposed below the surface material of the civil engineering structure. For example, the back surface of a roadbed material or a retaining wall that forms a roadbed that is the foundation of a paved road. And a backfill material (also referred to as a “winding material” or a “cushion material”) disposed around the pipe when the pipe is backfilled at the time of constructing the excavation pipe.
In addition, when this civil engineering base material is used as a roadbed material, for example, asphalt pavement lower roadbed, concrete pavement roadbed, parking lot roadbed, ground roadbed, asphalt pavement upper roadbed, In particular, it is suitably used for forming an upper layer roadbed. Furthermore, if cement is blended, a water-resistant drainage pavement can be formed.
[0013]
In the present invention, it is essential that the ash contains 15% by weight or more of calcium oxide, and preferably 20% by weight or more. The reason is as follows. This is because the strength of the base layer formed by this base material increases with time, but if the calcium oxide content is less than 15% by weight, the effect becomes insufficient.
[0014]
The ash is not particularly limited as long as it contains 15% by weight or more of calcium oxide as described above, but it decomposes or removes dioxins, heavy metals, and the like by the method described in JP-A-2001-132930. However, it is preferable to use detoxified ash (hereinafter referred to as “roasting furnace ash”).
The particle size of the ash is appropriately determined depending on the use of the base material for civil engineering work. For example, when used as an upper or lower roadbed such as asphalt pavement, the minimum particle size product, medium and small particle size product, medium and large particle size It is preferable that the product and the maximum grain size product are blended at a ratio of approximately the same. Also, when used as a roadbed for permeable pavement. It is preferable that the medium-size product and the large-size product are blended in the same amount and cement is blended.
[0015]
Furthermore, when this civil engineering base material is used as a backfill material, a mixture of lump and sand of 0.6 mm or more (preferably 0.6 mm or more and 2 mm or less) as in the base material of claim 5 is preferably used. Used. That is, if the particle size of ash is less than 0.6 mm, the cushioning property required as a backfill material may not be ensured.
When used as a backfill material, the blending ratio of ash and sand is not particularly limited, but is preferably about 3: 1 to 1: 3.
[0016]
You may make it add other additives, such as a lightweight aggregate and cement, to the base material for civil engineering of this invention according to a use. For example, when cement is blended, a roadbed having water resistance used for water-permeable pavement can be formed.
[0017]
In the present invention, the coarse aggregate means a particle diameter of 3 mm or more and 40 mm or less, preferably 5 mm or more and 15 mm or less, and the fine aggregate means a particle diameter of less than 3 mm, preferably 0.1 mm or more and 2 mm or less. .
Coarse aggregates and fine aggregates are not particularly limited, and examples include coarse aggregates such as gravel, crushed concrete, asphalt crushed, recycled products such as reclaimed crusher run, and molten slag. As such, sand, molten slag, etc. may be mentioned, and it may be a crushed stone mixed with a large particle size that becomes a coarse aggregate and a fine particle size that becomes a fine aggregate, but when used as a roadbed material, claim It is preferable to use gravel as the coarse aggregate and sand and / or slag as the fine aggregate as in the base material of No. 4.
[0018]
The blending ratio of ash, coarse aggregate, and fine aggregate is a volume ratio, and is blended at a ratio of 1.0 to 2.5: 0.5 to 1.5: 0.3 to 1.0. It is preferably 1.5 to 2.5: 0.75 to 1.25: 0.3 to 0.7, and more preferably 2.0: 1.0: 0.5.
[0019]
[Action]
Since the ground material for civil engineering work of the present invention uses ash that has been disposed of in the past, landfill disposal becomes unnecessary. Also, ash adheres to the surface of the other of the base layer forming material, the ash over time solidified, Ru can form a strong foundation layer.
If ash , coarse aggregate, and fine aggregate are included, when pressed, the particles are finely packed.
The calcium oxide contained in the ash is bonded over time by the compaction, and when used as a roadbed material, the roadbed strength is improved over time and a stronger roadbed is formed.
[0020]
As in the base material of claim 5 , if a mixture of massive ash and sand having a particle size of 0.6 mm or more is used as a backfill material, the ash will be crushed during compaction, and the piping will be fine. Can be protected.
According to the base material of claim 6 , ash is not scattered by wind or the like.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to these embodiments.
As shown in FIG. 1, a roadbed material 1 as a base material for civil engineering work of the present invention includes an ash 2 containing calcium oxide (lime) such as a roasting furnace ash, a coarse aggregate 3 such as gravel, and a molten slag. And the fine aggregate 4 such as sand and sand are supplied to the mixer 5 so that the volume ratio is 1.5 to 2.5: 0.75 to 1.25: 0.3 to 0.7. It can be obtained by uniformly mixing in the mixer 5 and adding 5 to 7% by weight of water 6 as a whole.
[0022]
And this roadbed material 1 can form a roadbed by laying in a roadbed formation part, and compacting using compaction equipment, such as a roller, a vibration compactor, and a rammer.
[0023]
Since the roadbed material 1 is configured as described above, it has the following excellent effects.
(1) Since the ash 2 to be discarded is used, landfill disposal of the ash 2 becomes unnecessary, and the ash disposal cost can be reduced.
(2) Since the material does not solidify even if left for a long time, the construction time is not restricted.
(3) Since the roadbed strength is obtained by compaction and then solidifies, it has excellent piercing properties.
(4) Not only the grader construction in the conventional granular roadbed construction but also the finisher and the like are possible, and since it is excellent in non-land performance, it is rich in flatness in machine construction and suitable for human construction.
(5) Since it has water absorption, it can be used as a drainage layer on the roadbed surface simply by blending and rolling cement, and can prevent heat islands and the like.
(6) Since it has been pre-hydrated, there is no scattering of particles such as ash 2 during construction, and construction is excellent.
[0024]
And since the roadbed obtained using this roadbed material 1 contains the ash 2, the coarse aggregate 3, and the fine aggregate 4, when it compacts, each particle | grain is filled finely well. Therefore, a strong roadbed can be obtained. In addition, the calcium oxide contained in the ash is bonded to each other by pressing and becomes stronger. Further, since it is solidified only by compaction and not mortar, it is possible to easily excavate the roadbed during road surface repair or the like and to reuse it as a roadbed material.
[0025]
As shown in FIG. 2, the backfill material 7 as the groundwork for civil engineering work of the present invention has a volume ratio of 1: 1 in which the volume of ash having a particle size of 0.6 mm or more and the average particle size sand are 1: 1. After being mixed and filled around the pipe 9 laid in the excavation groove 8 formed by excavating the ground G, and compacted, gravel (not shown) and soil are placed on the backfill material 7. After being pressed and hardened, asphalt pavement is applied.
That is, if the backfill material 7 is used, the backfill material 7 contains massive ash having a particle size of 0.6 mm or more, so that the ash is crushed during the compaction and damages the pipe 9. It is densified without doing. And the backfill material 7 is solidified with time by the action of ash, and the pipe 9 is firmly protected. That is, it is possible to more reliably prevent the pipe 9 from being damaged by the load applied from the road as compared with the conventional sand-only backfill material.
[0026]
【Example】
Hereinafter, specific examples of the present invention will be described in detail.
[0027]
Example 1
In a state where water is added to the whole material at a ratio of 5 wt% to 7 wt%, the roasting furnace ash, gravel (particle size 3 mm to 12 mm), and slag (particle size 2 mm or less) are 2.0 by volume ratio. The mixture was stirred and mixed at a ratio of 1.0: 0.5 to obtain a roadbed material A as a base material for civil engineering work.
The components of the roasting furnace ash were as shown in Table 1 below.
[0028]
[Table 1]
Figure 0003769521
[0029]
Next, after forming a lower layer roadbed having a thickness of 200 mm using a reclaimed crusher run (RC-40), the roadbed material A obtained as described above is laid on the lower layer roadbed and pressed with a vibration compactor. An upper layer roadbed with a thickness of 150 mm was formed.
Immediately after the formation of the upper layer roadbed, a load of 1 ton, 2 ton and 3 ton was applied to the upper layer roadbed to measure the subsidence amount, and the ground reaction force coefficient was obtained from the result.
[0030]
(Example 2)
A roadbed material B as a foundation material for civil engineering work was obtained in the same manner as in Example 1 except that sand (particle size of 2 mm or less) was used instead of slag.
Immediately after forming the upper layer roadbed using this roadbed material B in the same manner as in Example 1, 1 ton, 2 ton and 3 ton loadboard loads were applied to the upper layer roadbed, and the subsidence amounts were respectively measured. The ground reaction force coefficient was obtained from the results.
[0031]
Example 3
After watering on the upper roadbed of Example 1, 15 tons later, 1 ton, 2 ton, and 3 ton loadboard loads were applied on the upper roadbed, the subsidence amount was measured, and the ground reaction force coefficient was obtained from the result.
(Example 4)
After watering on the upper roadbed in Example 2, 15 tons later, 1 ton, 2 ton, and 3 ton loadboard loads were applied to measure the subsidence, and the ground reaction coefficient was obtained from the results. .
[0032]
(Example 5)
An upper layer roadbed is formed in the same manner as in Example 1 except that the roadbed material A is pressed and hardened with a 4-ton roller instead of the vibration compactor. Immediately after that, a 1-ton, 2-ton, or 3-ton loadboard is formed on the upper-layer roadbed. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
(Example 6)
An upper layer roadbed was formed in the same manner as in Example 2 except that the roadbed material B was pressed and hardened with a 4-ton roller instead of the vibration compactor, and immediately after that, a 1-ton, 2-ton, and 3-ton loadboard The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
[0033]
(Example 7)
An upper layer roadbed was formed in the same manner as in Example 1 except that the roadbed material A was pressed and hardened by a 4-ton roller instead of the vibration compactor, and a loading board of 1 ton, 2 ton and 3 ton was formed on the upper layer roadbed after 15 hours. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
(Example 8)
An upper layer roadbed was formed in the same manner as in Example 2 except that the roadbed material B was pressed and hardened with a 4-ton roller instead of the vibration compactor, and a loading board of 1 ton, 2 ton and 3 ton was formed on the upper layer roadbed after 15 hours. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
[0034]
Example 9
An upper layer roadbed was formed in the same manner as in Example 1 except that the roadbed material A was pressed and hardened with a 4-ton roller in place of the vibration compactor, and after sprinkling water on the upper layer roadbed, 1 ton on the upper layer roadbed 15 hours later, Subsidence amounts were measured by applying loading loads of 2 tons and 3 tons, and the ground reaction coefficient was obtained from the results.
(Example 10)
An upper layer roadbed was formed in the same manner as in Example 2 except that the roadbed material B was pressed and hardened with a 4-ton roller instead of the vibration compactor, and after sprinkling on the upper layer roadbed, 15 tons on the upper layer roadbed after 1 hour, Subsidence amounts were measured by applying loading loads of 2 tons and 3 tons, and the ground reaction coefficient was obtained from the results.
[0035]
(Example 11)
An upper layer roadbed is formed in the same manner as in Example 1 except that the roadbed material A is pressed and hardened by a 10-ton roller instead of the vibration compactor, and immediately after that, a 1-ton, 2-ton, and 3-ton loadboard is formed on the upper-layer roadbed. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
(Example 12)
An upper layer roadbed was formed in the same manner as in Example 2 except that the roadbed material B was pressed and hardened with a 10-ton roller instead of the vibration compactor. Immediately after that, a 1-ton, 2-ton, or 3-ton loadboard was formed on the upper-layer roadbed. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
[0036]
(Example 13)
An upper layer roadbed was formed in the same manner as in Example 1 except that the roadbed material A was pressed and solidified with a 10-ton roller instead of the vibration compactor, and a loading board of 1 ton, 2 ton and 3 ton was formed on the upper layer roadbed after 15 hours. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
(Example 14)
An upper layer roadbed was formed in the same manner as in Example 2 except that the roadbed material B was pressed and hardened with a 10-ton roller instead of the vibration compactor. After 15 hours, a 1-ton, 2-ton, or 3-ton loadboard was formed on the upper-layer roadbed. The amount of subsidence was measured by applying a load, and the ground reaction coefficient was obtained from the result.
[0037]
(Example 15)
An upper layer roadbed was formed in the same manner as in Example 1 except that the roadbed material A was pressed and solidified with a 10-ton roller instead of the vibration compactor, and after sprinkling water on the upper layer roadbed, 1 ton on the upper layer roadbed after 15 hours. Subsidence amounts were measured by applying loading loads of 2 tons and 3 tons, and the ground reaction coefficient was obtained from the results.
(Example 16)
An upper layer roadbed was formed in the same manner as in Example 2 except that the roadbed material B was pressed and hardened with a 10-ton roller in place of the vibration compactor, and after sprinkling water on the upper layer roadbed, 1 ton on the upper layer roadbed after 15 hours. Subsidence amounts were measured by applying loading loads of 2 tons and 3 tons, and the ground reaction coefficient was obtained from the results.
[0038]
(Comparative Example 1)
An upper layer roadbed was formed in the same manner as in Example 5 except that granulated crushed stone (M-30) was used instead of the roadbed material A, and 1 ton, 2 ton and 3 ton were loaded on the upper layer roadbed immediately after the formation. The subsidence amount was measured by applying a panel load, and the ground reaction coefficient was obtained from the result.
[0039]
Table 2 shows the amount of settlement and the ground reaction force coefficient obtained in Examples 1 to 16 and Comparative Examples 1 and 2. In addition, the ground reaction force coefficient in the flat plate loading test was applied to a loading board having a diameter of 30 cm (loading board area A = 706.5 cm 2 ) with a hydraulic jack, and the amount of settlement of the loading board was recorded. It can be obtained by an expression.
Ground reaction coefficient (kgf / cm 3 ) = Load strength (kgf / cm 2 ) / Subsidence amount (cm)
Load strength in case of 3t load = 3000kgf ÷ 706.5cm 2 = 4.264kgf / cm 2
[0040]
[Table 2]
Figure 0003769521
[0041]
From Table 2 above, it can be seen that the use of the roadbed material of the present invention makes it possible to obtain the strong roadbed required as the upper roadbed of the plate loading test regardless of the type of the compacting device. In addition, it is well understood that the strength increases when the roadbed is sprinkled and left for 15 hours.
[0042]
In addition, according to the ground survey method published by the Japan Geotechnical Society, the ground subsidence for calculating the ground reaction force coefficient is 1.25 mm for concrete paved roads, railways and airport runways, and 2.5 mm for asphalt paved roads. The tank foundation is defined as 5.0 mm. When this specified settlement is expressed as a ground reaction coefficient K30 (kgf / cm 3 ) at a load strength of 3 tons, the ground reaction coefficient of concrete paved roads, railways, and airport runways is 34.0 kgf / cm 3 or more. If the paved road is 17.0 kgf / cm 3 or more, it is sufficient.
[0043]
Therefore, if the groundwork material for civil engineering work of the present invention is used as a roadbed material as in Examples 1 to 16 above, it is possible to form an effective roadbed not only on asphalt pavement but also on concrete paved roads, railways, and airport runways. I understand well.
[0044]
(Example 17)
As shown in Table 3, using 5 types of gravel with a particle size of 2 mm to 5 mm, a particle size of 3 mm to 10 mm, a particle size of 5 mm to 15 mm, a particle size of 15 mm to 25 mm, and a particle size of 20 mm to 30 mm, The ratio of gravel to sand was changed as shown in Table 3 to obtain roadbed materials. And the upper-layer roadbed was formed like Example 5 using the obtained roadbed material, the flat plate loading test was implemented, and the result was combined with Table 3, and was shown.
[0045]
[Table 3]
Figure 0003769521
[0046]
From Table 3 above, the roadbed material is made of ash, coarse aggregate and fine aggregate having a particle diameter of about 3 mm to 10 mm, and the mixing ratio of ash: gravel: sand is 2.0: 1.0: 0.5. It can be seen that a higher strength roadbed can be formed.
[0047]
(Example 18)
Cement was mixed with the above-mentioned roadbed material A so as to be 50 kg / m 3 to obtain roadbed material C.
(Example 19)
Cement was mixed with the above-mentioned roadbed material A so as to be 100 kg / m 3, and roadbed material D was obtained.
[0048]
(Example 20)
Cement was mixed with the above-mentioned roadbed material B so as to be 50 kg / m 3, and roadbed material E was obtained.
(Example 21)
Cement was mixed with the above-mentioned roadbed material B so as to be 100 kg / m 3, and roadbed material F was obtained.
[0049]
An upper layer roadbed was formed in the same manner as in Example 5 using the roadbed materials C to F obtained in Examples 18 to 21. The uniaxial compressive strength after 7 days after water sprinkling and after 14 days was measured, and the results are shown in Table 4.
[0050]
[Table 4]
Figure 0003769521
[0051]
From Table 4 above, if cement is further blended into the roadbed material, it is sufficient to lay and level with a compacting device without using a formwork like ready-mixed concrete. It can be seen that a roadbed with strength can be formed. Moreover, since water is not added to the cement at the time of construction, it can be seen that there is no problem of solidifying when construction time is too long like ready-mixed concrete, and that it is excellent in workability.
[0052]
【The invention's effect】
As described above, the construction method of the civil engineering foundation layer according to the present invention is such that ash containing 15% by weight or more of calcium oxide is added to the foundation layer forming material. It acts as a connecting material for other underlayer forming materials such as materials, and can form a stable and strong underlayer.
According to the construction method of claim 2, the ash is not scattered by wind or the like , and the work environment at the construction site can be kept good. In addition, the ash can be densely packed to form a stronger base layer.
[0053]
As described above, the foundation material for civil engineering work according to the present invention contains ash such as incinerated ash that has been disposed of in landfills in the component, so that the ash can be recycled. Landfill disposal site is not required, and ash disposal cost can be reduced. Further, the use of the conventional base material can be reduced, and the material cost is also reduced. Moreover, since the ash contains 15% by weight or more of calcium oxide, it is possible to form a strong foundation layer over time simply by laying it in a predetermined part and pressing it. Moreover, since it is not mortarized, excavation can be easily performed at the time of repair, and reuse is also possible. Furthermore, it does not solidify when it takes a long time to construct like conventional concrete, nor does it solidify by cooling like asphalt. Therefore, a strong underlayer can be easily obtained without being restricted by time.
[0054]
Moreover, a strong roadbed can be obtained by using as a roadbed material .
If it uses it as the base material of Claim 5, it can protect piping firmly compared with the conventional sand etc. by using as a backfilling material.
[0055]
If it is made like the base material of Claim 6 , since it has added water, at the time of construction, there is no scattering of particles, such as ash 2, and it is excellent in workability.
[Brief description of the drawings]
FIG. 1 is an explanatory view for explaining one embodiment of a method for producing a roadbed material, which is an example of a foundation material for civil engineering work according to the present invention.
FIG. 2 is a cross-sectional view for explaining a method for constructing a backfill material that is another example of the foundation material for civil engineering work according to the present invention.
[Explanation of symbols]
1 Roadbed material (base material for civil engineering work)
2 Ash 3 Coarse aggregate 4 Fine aggregate 6 Water 7 Backfill material (base material for civil engineering work)
8 Drilling groove 9 Piping

Claims (7)

酸化カルシウムを15重量%以上含有する灰と、粗骨材と、細骨材とからなる材料が、容量比で、1.0〜2.5:0.75〜1.5:0.3〜1.0の割合で配合されるとともに、前記材料に対して5重量%〜7重量%の水が加水された状態で攪拌混合して得られる粒状をしてなる土木工事用下地材。A material composed of ash containing 15% by weight or more of calcium oxide, coarse aggregate, and fine aggregate is 1.0 to 2.5: 0.75 to 1.5: 0.3 to volume ratio. A foundation material for civil engineering, which is blended at a ratio of 1.0 and has a granular shape obtained by stirring and mixing in a state where 5 wt% to 7 wt% of water is added to the material. 粗骨材が砂利であって、細骨材が砂および/または溶融スラグである請求項The coarse aggregate is gravel and the fine aggregate is sand and / or molten slag. 11 に記載の土木工事用下地材。The base material for civil engineering described in 1. 請求項1または請求項2に記載の土木工事用下地材を下層路盤上に敷詰めたのち、押し固める工程を経て上層路盤を形成する土木工事方法。A civil engineering method for forming an upper layer roadbed through a step of pressing and solidifying the foundation material for civil engineering work according to claim 1 or 2 on the lower layer roadbed. 請求項1または請求項2に記載の土木工事用下地材を下層路盤上に敷詰めるとともに、押し固めたのち、土木工事用下地材上に散水する工程を経て上層路盤を形成する土木工事方法。A civil engineering method for forming an upper layer roadbed through a step of spreading the groundwork material for civil engineering work according to claim 1 or 2 on a lower layer roadbed and pressing and then watering the groundwork material. 酸化カルシウムを15重量%以上含有する灰と、砂とが混合されてなり、粒径0.6mm以上の塊状をしている土木工事用下地材。A groundwork material for civil engineering, which is a mixture of ash containing 15% by weight or more of calcium oxide and sand, and has a lump shape with a particle size of 0.6 mm or more. 灰と砂との配合割合が3:1〜1:3である請求項5に記載の土木工事用下地材。The base material for civil engineering works according to claim 5, wherein the mixing ratio of ash and sand is 3: 1 to 1: 3. 地面を掘削して形成された掘削溝内に敷設された配管の周囲に、請求項5または請求項6に記載の土木工事用下地材を充填し、押し固めたのち、掘削溝を埋め戻す工程を備える土木工事方法。A step of filling a ground material for civil engineering work according to claim 5 or 6 around a pipe laid in a digging groove formed by excavating the ground, and after filling the digging groove, backfilling the digging groove Civil engineering method with
JP2002189692A 2001-12-07 2002-06-28 Civil engineering groundwork, civil engineering methods using this civil engineering groundwork Expired - Fee Related JP3769521B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002189692A JP3769521B2 (en) 2001-12-07 2002-06-28 Civil engineering groundwork, civil engineering methods using this civil engineering groundwork
CN 02824129 CN1599826A (en) 2001-12-07 2002-11-29 Method of constructing civil work bedding layer and bedding material for civil work
AU2002349659A AU2002349659A1 (en) 2001-12-07 2002-11-29 Method of constructing civil work bedding layer and bedding material for civil work
PCT/JP2002/012566 WO2003048457A1 (en) 2001-12-07 2002-11-29 Method of constructing civil work bedding layer and bedding material for civil work

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-373640 2001-12-07
JP2001373640 2001-12-07
JP2002189692A JP3769521B2 (en) 2001-12-07 2002-06-28 Civil engineering groundwork, civil engineering methods using this civil engineering groundwork

Publications (2)

Publication Number Publication Date
JP2003232003A JP2003232003A (en) 2003-08-19
JP3769521B2 true JP3769521B2 (en) 2006-04-26

Family

ID=26624929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189692A Expired - Fee Related JP3769521B2 (en) 2001-12-07 2002-06-28 Civil engineering groundwork, civil engineering methods using this civil engineering groundwork

Country Status (4)

Country Link
JP (1) JP3769521B2 (en)
CN (1) CN1599826A (en)
AU (1) AU2002349659A1 (en)
WO (1) WO2003048457A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103266642B (en) * 2013-06-14 2015-09-30 中交天航滨海环保浚航工程有限公司 A kind of open type collection stock tank relay hydraulic reclamation pumping station system and construction method thereof
JP2023038435A (en) * 2021-09-07 2023-03-17 株式会社番匠伊藤組 Underground heat accumulation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JPH11236256A (en) * 1998-02-25 1999-08-31 Taiheiyo Cement Corp Solidifying material for roadbed material and roadbed material using the same
JP2000257007A (en) * 1999-03-05 2000-09-19 Tokyo Hoso Kogyo Stabilized subgrade and pavement structure
TW510830B (en) * 1999-08-10 2002-11-21 Sumitomo Metal Ind Method for treating hazardous material
JP2001205241A (en) * 2000-01-26 2001-07-31 Nagasaki Prefecture Method for solidifying incineration ash
JP3496610B2 (en) * 2000-01-26 2004-02-16 Jfeエンジニアリング株式会社 Alkaline fly ash treatment method
JP4319312B2 (en) * 2000-01-26 2009-08-26 太平洋セメント株式会社 Concrete pavement
JP2001259597A (en) * 2000-03-16 2001-09-25 Mitsubishi Materials Corp Method for solidification of fly ash
JP2001295212A (en) * 2000-04-10 2001-10-26 Taiheiyo Cement Corp Concrete pavement
JP2001130945A (en) * 2000-09-21 2001-05-15 Engan Kankyo Kaihatsu Shigen Riyou Center:Kk Hydrated hardened body utilizing steelmaking slag

Also Published As

Publication number Publication date
CN1599826A (en) 2005-03-23
WO2003048457A1 (en) 2003-06-12
AU2002349659A1 (en) 2003-06-17
JP2003232003A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
US6867249B2 (en) Lightweight and porous construction materials containing rubber
GB2365859A (en) Cementitious construction materials containing rubber
EP1084301B1 (en) A method of stabilising the ground in road construction work
JP3364228B2 (en) Drilling opening filling method
JP2007154528A (en) Reinforced and back-filled ground, and method of developing the same
JP2012229376A (en) Wet sand of coal ash and various construction methods utilizing the wet sand of coal ash
JP3769521B2 (en) Civil engineering groundwork, civil engineering methods using this civil engineering groundwork
Raavi Design of controlled low strength material for bedding and backfilling using high plasticity clay
JPH06344328A (en) Fast-curing fluidized threaded soil and rapid construction of roadbed/road body using the same
JPH10227003A (en) Construction of base course
JP3519032B2 (en) Lightweight embankment method
JPH05287723A (en) Method for constructing foundation ground of road, etc., onto poor subsoil
JP3996837B2 (en) Improvement method for soft ground
JP2764645B2 (en) Effective use of construction surplus soil
JP2007131805A (en) Improved ground material
JPH06313314A (en) Foundation ground improving construction method for low storied building
JP2001293449A (en) Impervious structural material and execution method for the same
JP3230147B2 (en) Fluidized soil construction structure and its construction method
JPH05132942A (en) Backfilling material and backfilling method
JP2001139947A (en) Method for recycling dug soil and roadbed material produced thereby and used for road
JP2005113651A (en) Reinforced embankment construction method
JP3158900B2 (en) Construction method of structures such as waterways
Yuan et al. Experimental Study on the Construction Site of the Subgrade of the Engineering Waste Soft Soil Solidified Material
JP2022020950A (en) Coal ash wet sand and various construction method using coal ash wet sand
Lee LIGHTLY CEMENTED SCRAP TIRE CHIPS AS LGM FOR CONSTRUCTION EARTH STRUCTURES

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees