WO2003048457A1 - Method of constructing civil work bedding layer and bedding material for civil work - Google Patents

Method of constructing civil work bedding layer and bedding material for civil work Download PDF

Info

Publication number
WO2003048457A1
WO2003048457A1 PCT/JP2002/012566 JP0212566W WO03048457A1 WO 2003048457 A1 WO2003048457 A1 WO 2003048457A1 JP 0212566 W JP0212566 W JP 0212566W WO 03048457 A1 WO03048457 A1 WO 03048457A1
Authority
WO
WIPO (PCT)
Prior art keywords
ash
roadbed
civil engineering
foundation
bedding
Prior art date
Application number
PCT/JP2002/012566
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Nakagawa
Original Assignee
A Joint-Stock Corporation Kawashima Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Joint-Stock Corporation Kawashima Industry filed Critical A Joint-Stock Corporation Kawashima Industry
Priority to AU2002349659A priority Critical patent/AU2002349659A1/en
Publication of WO2003048457A1 publication Critical patent/WO2003048457A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/22Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling
    • E02F5/223Dredgers or soil-shifting machines for special purposes for making embankments; for back-filling for back-filling

Definitions

  • the present invention relates to a construction method of a civil engineering foundation layer and a foundation material for civil engineering work.
  • Garbage discharged from households is generally incinerated at garbage incineration sites of local governments. And the incineration ash generated by this incineration is landfilled at a landfill.
  • the compaction during construction is not sufficient, the gap between the coarse aggregates will be large on roads where large vehicles and other vehicles pass frequently, and the roadbed will not be stable. There is a problem in that the road surface is settled, making it easier to make ruts and increasing the frequency of repairs.
  • the present invention can effectively solve the problem of landfill disposal by using ash generated in various places, and can obtain a stable underlayer excellent in strength and stable.
  • the purpose of this method is to provide a base material for civil engineering work. Disclosure of the invention
  • the timing of adding the ash to the other civil engineering foundation material may be such that the ash is added to the aggregate or the like in advance at a factory or the like or may be added immediately before the construction. I do not care.
  • the foundation material for civil engineering work means a material disposed below a surface material of a civil engineering structure, and includes, for example, a roadbed material, a retaining wall, and the like that form a roadbed that is a foundation of a pavement road.
  • backfill materials provided on the back, and backfill materials (also referred to as “roll-up materials J” or “cushion materials”) that are provided around the pipes when backfilling the pipes during construction of excavated pipes.
  • this civil engineering construction base material when used as a roadbed material, for example, the lower roadbed of asphalt pavement, the roadbed of concrete pavement, the roadbed of parking lot, the roadbed of ground, and the upper roadbed of asphalt pavement can be formed. Although it can be used, it is particularly suitably used for forming the upper subgrade.
  • cement can be used to form a water-resistant, drainage pavement base.
  • the ash contains 15% by weight or more of calcium oxide, and it is preferable that the ash contains 20% by weight or more. The effect of calcium oxide increases the strength of the underlayer formed by this underlayer over time, but if the content of calcium oxide is less than 15% by weight, the effect becomes insufficient. is there.
  • the ash is not particularly limited as long as it contains 15% by weight or more of calcium oxide, as described above.
  • the method described in Japanese Patent Application Laid-Open No. 2001-132930 It is preferable to use ash that has been detoxified by decomposing or removing dioxins and heavy metals, etc. (hereinafter referred to as “roasting furnace ash”).
  • the particle size of the ash is appropriately determined depending on the use of the foundation material for civil engineering work.
  • a minimum particle size product when used as an upper roadbed or a lower roadbed such as asphalt pavement, a minimum particle size product, a medium / small particle size product, and a medium particle size It is preferable to mix the large particle size product and the maximum particle size product at substantially the same ratio.
  • a roadbed of permeable pavement When using. It is preferable to mix the medium-grained product and the large-grained product in the same amount, and to mix cement.
  • a mixture of a lump of 0.6 mm or more (preferably 0.6 mm or more and 2 mm or less) and sand is suitably used. That is, if the ash has a particle size of less than 0.6 mm, the cushioning property required as a backfill material may not be able to be secured.
  • the mixing ratio of ash and sand is not particularly limited, but is preferably about 3: 1 to 1: 3.
  • additives such as lightweight aggregate and cement may be added depending on the use. For example, if cement is added, a water-resistant roadbed used for permeable pavement can be formed.
  • coarse aggregates have a particle size of 3 mm or more and 40 mm or less, preferably 5 mm or more and 15 mm or less, and fine aggregates have a particle size of less than 3 mm, preferably 0. It means the thing of 1 mm or more and 2 mm or less.
  • Coarse aggregates and fine aggregates are not particularly limited.
  • coarse aggregates include gravel, crushed concrete, crushed asphalt, recycled products such as recycled crushers, and melted slag.
  • fine aggregate include sand, molten slag, etc.Crushed stones composed of a mixture of large aggregates of coarse aggregate and fine aggregates of fine aggregate may be used. When used, it is preferable to use gravel as coarse aggregate and sand and Z or slag as fine aggregate.
  • the mixing ratio of ash, coarse aggregate and fine aggregate is 1.0-2.5: 0.5-1.5: 0.3-1.3. It is preferably blended at a ratio of 0, 1.5 to 2.5: 0.75 to: L. 25: 0.3 to 0.7, more preferably, 2.0 to 1.0: 0.5 is even more preferred.
  • the construction method of the civil engineering foundation layer of the present invention uses ash that has been conventionally landfilled. Landfill disposal is not required. Further, the ash adheres to the surface of another underlayer forming material, and this ash solidifies with time, so that a strong underlayer can be formed. It seems that ash, coarse aggregate and fine aggregate are blended in a volume ratio of 1.0 to 2.5: 0.75 to 1.5: 0.3 to 1.0. In this case, the ash will be moistened by water and will not be scattered by wind or the like.
  • the ground material for civil engineering work of the present invention uses ash that has been conventionally disposed of in landfill, landfill disposal is not required. Also, the ash solidifies over time, and a strong underlayer can be formed.
  • ash when compacted, it is preferable to include ash, coarse aggregate, and fine aggregate so that the particles can be finely packed with each other.
  • the calcium oxide contained in the ash becomes bonded with time, and when used as a roadbed material, the roadbed strength is improved over time and a stronger roadbed is formed.
  • the foundation material for civil engineering work of the present invention contains water in advance so as to be hardly scattered by wind or the like.
  • FIG. 1 is an explanatory view illustrating one embodiment of a method of manufacturing a roadbed material which is an example of the foundation material for civil engineering according to the present invention
  • FIG. 2 is a diagram illustrating the foundation for civil engineering according to the present invention
  • FIG. 6 is a cross-sectional view illustrating a method of applying a backfill material as another example of the material.
  • a roadbed material 1 as a foundation material for civil engineering work includes a ash 2 containing calcium oxide (lime) such as a roasting furnace ash, and a coarse aggregate 3
  • the fine aggregates 4 such as molten slag and sand have a volume ratio of 1.5-2.5: 0.75-1.5.25: 0.3-0.7. It can be obtained by supplying the mixture to the mixer 5, mixing uniformly in the mixer 5, and adding 5 to 7% by weight of water 6.
  • the roadbed material 1 can be formed by laying the roadbed material in a roadbed forming portion and compacting the compacted material using a compacting device such as a roller, a vibration compactor, a rammer, or the like.
  • the roadbed material 1 is configured as described above, it has the following excellent effects.
  • the roadbed obtained by using the roadbed material 1 includes the ash 2, the coarse aggregate 3, and the fine aggregate 4, so that when compacted, the particles are finely packed with each other. Therefore, a solid roadbed can be obtained.
  • the compaction causes the calcium oxides contained in the ash to be in a state of being bonded to each other, which makes the ash stronger.
  • it since it is solidified only by compaction and not mortar, it is possible to easily excavate the roadbed when repairing road surfaces. In addition, it can be reused as roadbed material.
  • the backfill material 7 as a foundation for civil engineering work according to the present invention has a volume ratio of lump of ash having a particle size of 0.6 mm or more and sand having an average particle size of 1: 1. After filling the area around the pipe 9 laid in the excavation groove 8 formed by excavating the ground G, compacting it, and gravel (not shown) on the top of the backfill material 7, After putting the soil and compacting it, asphalt pavement is applied.
  • the backfill material 7 contains massive ash with a particle size of 0.6 mm or more, the ash is crushed during compaction and piping 9 is densified without damaging it. Then, the backfill material 7 solidifies with time due to the action of the ash, and the pipe 9 is tightly protected. That is, it is possible to more reliably prevent the pipe 9 from being damaged by the load applied on the road as compared with the conventional backfill material made of only sand.
  • the present invention is not limited to the above embodiment.
  • the ash and the other material for forming the underlayer such as the aggregate are mixed in advance, but may be mixed at the construction site.
  • the roasting furnace ash, gravel (particle diameter: 3 mm to 12 mm), and slag (particle diameter: 2 mm or less) are mixed in a volume ratio of 2%.
  • 0: 1.0: 0.5 was mixed by stirring to obtain a roadbed material A as a base material for civil engineering work.
  • the components of the roasting furnace ash were as shown in Table 1 below.
  • Subbase material B was obtained as a base material for civil engineering work in the same manner as in Example 1, except that sand (particle size: 2 mm or less) was used instead of slag.
  • Example 1 After sprinkling water on the upper subgrade, 1 ton, 2 tons and 3 tons of load were applied to the upper subgrade 15 hours later to measure the amount of settlement, and the ground reaction force coefficient was determined from the results. .
  • Example 2 After water sprinkling on the upper subgrade, a load of 1 ton, 2 tons and 3 tons was applied to the upper subgrade 15 hours later, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results.
  • a load of 1 ton, 2 tons and 3 tons was applied to the upper subgrade 15 hours later, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results.
  • the upper subgrade was formed in the same manner as in Example 1, except that the roadbed material A was compacted with a 4 ton roller instead of the vibration compactor. Immediately after that, 1 ton, 2 ton and 3 ton were loaded on the upper subgrade. The amount of settlement was measured by applying a load to the ground, and the ground reaction force coefficient was determined from the results.
  • An upper subgrade was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 4 ton roller in place of the vibration compactor. Immediately after that, 1 ton, 2 tons, and 3 tons were loaded on the upper subbase. The amount of settlement was measured by applying a load to the ground, and the ground reaction force coefficient was determined from the results.
  • An upper roadbed was formed in the same manner as in Example 1 except that the roadbed material A was compacted with a 4 ton roller instead of the vibration compactor. Loads of 1 ton, 2 tons, and 3 tons were applied to the board, and the settlement was measured.
  • An upper roadbed was formed in the same manner as in Example 2 except that the roadbed material B was compacted with a 4 ton roller in place of the vibration compactor, and 1 ton, 2 tons, and 3 tons were placed on the upper roadbed 15 hours later.
  • the subsidence amount was measured by applying the load on the ground, and the ground reaction force coefficient was determined from the results.
  • An upper subgrade was formed in the same manner as in Example 1 except that the subbase material A was compacted with a 4 ton roller instead of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was replaced on the upper subbase.
  • the subsidence amount was measured by applying a loading load of 1 ton, 2 tons, and 3 tons, and the ground reaction force coefficient was obtained from the results.
  • the upper subgrade was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 4 ton roller instead of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was replaced on the upper subbase.
  • the subsidence amount was measured by applying a loading load of 1 ton, 2 tons, and 3 tons, and the ground reaction force coefficient was obtained from the results.
  • An upper subgrade was formed in the same manner as in Example 1 except that the subgrade material A was compacted with a 10 ton roller in place of the vibration compactor, and immediately thereafter, 1 ton, 2 tons, and 3 tons on the upper subgrade.
  • the subsidence amount was measured by applying the loading load of, and the ground reaction force coefficient was calculated from the results.
  • An upper subbase was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 10 ton roller in place of the vibration compactor. Immediately thereafter, 1 ton, 2 tons, and 3 tons were placed on the upper subbase. The subsidence amount was measured by applying the loading load of, and the ground reaction force coefficient was calculated from the results.
  • An upper roadbed was formed in the same manner as in Example 2 except that the roadbed material B was compacted with a 10-ton roller instead of the vibration compactor, and 1 ton, 2 tons, and 3 tons were placed on the upper roadbed 15 hours later.
  • the subsidence amount was measured by applying the load of the loading board, and the ground reaction force coefficient was calculated from the results.
  • An upper subbase was formed in the same manner as in Example 1 except that the subbase material A was compacted with a 10-ton roller in place of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was put on the upper subbase. The loadings of 1 ton, 2 tons and 3 tons were applied, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results.
  • An upper subgrade was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 10-ton roller in place of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was replaced on the upper subbase.
  • the loadings of 1 ton, 2 tons and 3 tons were applied, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results.
  • An upper subgrade was formed in the same manner as in Example 5 except that granulated crushed stone (M-30) was used in place of subbase material A. Immediately after formation, 1 ton, 2 ton, and 3 ton were placed on the upper subgrade. The subsidence amount was measured by applying the load on the ground, and the ground reaction force coefficient was calculated from the results.
  • M-30 granulated crushed stone
  • Table 2 shows the settlement amount and ground reaction coefficient obtained in Examples 1 to 16 and Comparative Examples 1 and 2.
  • Table 2 clearly shows that the use of the roadbed material of the present invention can provide a strong roadbed required as the upper layer roadbed for the flat plate loading test, regardless of the type of compacting equipment. It is also clear that sprinkling water after forming the roadbed and leaving it for 15 hours increases the strength.
  • the amount of ground subsidence for calculating the ground reaction coefficient is 1.2 mm for concrete paved roads, railways and airport runways, and asphalt paved roads. Is 2.5 mm and the tank base is 5. Omm.
  • this provision subsidence in 3 t of the load intensity to your Keru subgrade reaction coefficient K 3 0 (kgf / cm 3 ), concrete paved roads, railways, ground reaction force coefficient airport runway 3 4. 0 kgf / cm 3 or more, and asphalt paved road 1 7. Okgf / cm 3 or more.
  • the roadbed is effective not only for asphalt pavement but also for concrete paved roads, railways, and airport runways. It can be clearly seen that a can be formed.
  • the roadbed material is ash and 3 mn! Higher strength roadbed can be formed if coarse and fine aggregates with a particle size of about 10 mm are mixed in a ratio of ash: gravel: sand of 2.0: 1.0: 0.5. I understand.
  • the roadbed material B was mixed with cement so as to be 100 kg / m 3 to obtain a roadbed material F.
  • the ash containing 15% by weight or more of calcium oxide is added to the underlayer forming material, the ash solidifies with time, It acts as a linking material for other underlayer forming materials such as aggregate, and can form a stable and strong underlayer.
  • the ash will not be scattered by wind and the like, and the work environment at the construction site can be maintained well. Further, the ash can be densely filled to form a stronger underlayer.
  • the foundation material for civil engineering work Since ash such as incinerated ash is included in the components, ash can be recycled, eliminating the need for conventional ash landfill sites and reducing ash disposal costs. it can. In addition, the use of conventional base materials can be reduced, and material costs are also reduced. Moreover, since the ash contains 15% by weight or more of calcium oxide, a strong underlayer can be formed with time only by laying in a predetermined portion and compacting it. In addition, since mortar is not used, excavation can be easily performed at the time of repair, etc., and reuse is also possible. Furthermore, unlike conventional concrete, it does not solidify when the construction time is long, nor does it harden as cold as asphalt. Therefore, a strong underlayer can be easily obtained without being restricted by time.
  • Ash, coarse aggregate, and fine aggregate are blended in a volume ratio of 1.0 to 2.5: 0.75 to 1.5: 0.3 to 1.0. In this way, a strong roadbed can be obtained by using it as a roadbed material. If gravel is used as coarse aggregate and sand and / or molten slag is used as fine aggregate, pipes can be more strongly protected than conventional sand, etc. by using as backfill material.
  • Example 1 ⁇ 0.00 0.20 0.60 0.95 44.7 ⁇ 2 0.00 0.25 0.70 1.00 42.4
  • Example 3 0.00 0.15 0.65 1.05 40.4 Actual ⁇ ⁇ ⁇ ⁇ Example ta ⁇ A

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Road Paving Structures (AREA)
  • Railway Tracks (AREA)

Abstract

A method of constructing a civil work bedding layer and a bedding material for civil work capable of solving a reclamation disposal problem by effectively utilizing ash produced at various places and also providing a stable bedding layer with excellent strength, the method characterized by comprising the step of forming a civil work bedding layer by laying down, at a bedding formed part, bedding materials for civil work at least added with ash containing a calcium oxide of 15 wt.% or more such as roadbed material, back-filling material, and backing material.

Description

明細書  Specification
土木下地層の施工方法おょぴ土木工事用下地材  Construction method of civil engineering foundation layer
技術分野  Technical field
本発明は、 土木下地層の施工方法および土木工事用下地材に関する。  The present invention relates to a construction method of a civil engineering foundation layer and a foundation material for civil engineering work.
背景技術  Background art
家庭等で排出されるゴミなどは、 一般に、 各自治体等のゴミ焼却場な どで焼却される。 そして、 この焼却によって発生した焼却灰は、 埋め立 て処分場で埋め立て処理されている。  Garbage discharged from households is generally incinerated at garbage incineration sites of local governments. And the incineration ash generated by this incineration is landfilled at a landfill.
しかしながら、 埋め立て処分地のスペースにも限界があり、 焼却灰を 埋め立てることなく、 有効利用する方法が望まれている。  However, there is a limit to the space at the landfill site, and there is a need for a method for effectively using incinerated ash without landfill.
また、 昨今は、 道路の補修時の掘削等によって発生したコンクリート 殻ゃァスフアルト殻を破砕したコンク リ一トの破砕物、 アスファルトの 破枠物、 再生クラッシャーラン等のリサイクル品などが、 下層路盤やそ の下部の路体を形成する土木工事用下地材を形成する下地層形成材料と して用いられているが、 これらの土木工事用下地材として用いられるコ ンクリートの破枠物、 アスファルトの破碎物、 再生クラッシャーラン等 のリサイクル品などは、 その粒度が規定されているものの、 その粒度分 布が広範囲のものであるので、 ダンプカー等で搬送中の振動で、 どう し ても粒度の細かいものと、 粒度の粗いものとが分離してしまい、 このリ サイクル品を用いて形成した路体ゃ下層路盤なども上層部分に粗い骨材、 下層部分に細かい骨材が多くなる。 したがって、 施工時の突き固めが不 十分であると、 大型自動車などが頻繁に通る道路では、 粗い骨材部分の 隙間が大きく、 路盤が安定せず、 経時的にこの隙間がつぶれて下層路盤 ゃ路体部分の沈下が起こるため、 轍ができやすく、 補修頻度が増すとい う問題がある。  In addition, recently, concrete crushed concrete as a result of excavation during road repairs, as well as crushed concrete crushed asphalt hulls, asphalt crushed frames, and recycled products such as reclaimed crusher runs, etc. Is used as a base layer forming material for civil engineering foundation material that forms the lower road body of concrete, but the concrete frame and asphalt crushed material used as the civil engineering foundation material However, although the particle size of recycled products such as reclaimed crusher runs is regulated, the particle size distribution is wide, so the vibration during transportation by a dump truck or the like may cause Coarse-grained materials are separated, and road bodies and lower subgrades made using this recycled product also have coarse aggregates in the upper layer and lower layers. It made many fine aggregate. Therefore, if the compaction during construction is not sufficient, the gap between the coarse aggregates will be large on roads where large vehicles and other vehicles pass frequently, and the roadbed will not be stable. There is a problem in that the road surface is settled, making it easier to make ruts and increasing the frequency of repairs.
本発明は、 上記のような事情に鑑みて、 各所で発生する灰を有効利用 して埋立処分問題を解決することができるとともに、 強度的に優れ、 安 定した下地層を得ることができる土木下地層の施工方法おょぴ土木工事 用下地材を提供することを目的としている。 発明の開示 In view of the above circumstances, the present invention can effectively solve the problem of landfill disposal by using ash generated in various places, and can obtain a stable underlayer excellent in strength and stable. The purpose of this method is to provide a base material for civil engineering work. Disclosure of the invention
本発明の土木下地層の施工方法において、 灰を他の土木工事用下地材 に添加するタイミングは、工場等で予め骨材等に添加するようにしても、 施工直前に添加するようにしても構わない。  In the construction method of the civil engineering foundation layer of the present invention, the timing of adding the ash to the other civil engineering foundation material may be such that the ash is added to the aggregate or the like in advance at a factory or the like or may be added immediately before the construction. I do not care.
本発明において、 土木工事用下地材とは、 土木構造物の表面材の下側 に配置されるものを意味し、 たとえば、 舗装道路の下地である路盤を形 成する路盤材、 擁壁などの背面に配設され裏込め材、 堀込配管施工時に 配管を埋め戻す際に、 配管回りに配設される埋め戻し材 (「巻き立て材 J あるいは 「クッション材」 とも言う) などが挙げられる。  In the present invention, the foundation material for civil engineering work means a material disposed below a surface material of a civil engineering structure, and includes, for example, a roadbed material, a retaining wall, and the like that form a roadbed that is a foundation of a pavement road. There are backfill materials provided on the back, and backfill materials (also referred to as “roll-up materials J” or “cushion materials”) that are provided around the pipes when backfilling the pipes during construction of excavated pipes.
また、 この土木工事用下地材を路盤材として用いる場合、 たとえば、 アスファルト舗装の下層路盤、コンク リ一ト舗装の路盤、駐車場の路盤、 グラウンドの路盤、 アスファルト舗装の上層路盤を形成することができ るが、 特に上層路盤形成用として好適に使用される。 さらに、 セメント を配合すれば、耐水性のある排水性舗装の路盤を形成することもできる。 本発明において、 灰は、 酸化カルシウムを 1 5重量%以上含んでいる ことが必須であり、 2 0重量%以上含んでいることが好ましいが、 その 理由は、 酸化カルシウムを含有していると、 酸化カルシウムの働きによ り、 経時的にこの下地材によって形成された下地層の強度が高まるが、 酸化カルシウムの含有量が 1 5重量%未満であると、 その効果が不十分 となるためである。  In addition, when this civil engineering construction base material is used as a roadbed material, for example, the lower roadbed of asphalt pavement, the roadbed of concrete pavement, the roadbed of parking lot, the roadbed of ground, and the upper roadbed of asphalt pavement can be formed. Although it can be used, it is particularly suitably used for forming the upper subgrade. In addition, cement can be used to form a water-resistant, drainage pavement base. In the present invention, it is essential that the ash contains 15% by weight or more of calcium oxide, and it is preferable that the ash contains 20% by weight or more. The effect of calcium oxide increases the strength of the underlayer formed by this underlayer over time, but if the content of calcium oxide is less than 15% by weight, the effect becomes insufficient. is there.
灰としては、 上記のように、 酸化カルシウムを 1 5重量%以上含んで いるものであれば、 特に限定されないが、 .特開 2 0 0 1— 1 3 2 9 3 0 号公報に記載の方法等によってダイォキシンや重金属等を分解や除去し、 無害化処理された灰 (以下、 「焙焼炉灰」 と記す) を用いることが好まし い。  The ash is not particularly limited as long as it contains 15% by weight or more of calcium oxide, as described above. The method described in Japanese Patent Application Laid-Open No. 2001-132930 It is preferable to use ash that has been detoxified by decomposing or removing dioxins and heavy metals, etc. (hereinafter referred to as “roasting furnace ash”).
灰の粒度は、 土木工事用下地材の用途によって適宜決定されるが、 た とえば、 アスファルト舗装等の上層路盤や下層路盤として使用する場合 には、 最少粒度品と、 中小粒度品と、 中大粒度品と、 最大粒度品とを略 同程度の割合で配合することが好ましい。 また、 透水性舗装の路盤とし て使用する場合には。 中粒度品と、 大粒度品とを同量程度配合するとと もにセメントを配合することが好ましい。 The particle size of the ash is appropriately determined depending on the use of the foundation material for civil engineering work.For example, when the ash is used as an upper roadbed or a lower roadbed such as asphalt pavement, a minimum particle size product, a medium / small particle size product, and a medium particle size It is preferable to mix the large particle size product and the maximum particle size product at substantially the same ratio. In addition, as a roadbed of permeable pavement When using. It is preferable to mix the medium-grained product and the large-grained product in the same amount, and to mix cement.
さらに、この土木工事用下地材を埋め戻し材として用いる場合、灰は、 Furthermore, when this civil engineering construction base material is used as a backfill material,
0. 6 mm以上 (好ましくは 0. 6 mm以上 2 mm以下) の塊状物と砂 との混合物が好適に用いられる。 すなわち、 灰が 0. 6 mm未満の粒径 であると、 埋め戻し材として必要とするクッション性を確保できなくな る恐れがある。 A mixture of a lump of 0.6 mm or more (preferably 0.6 mm or more and 2 mm or less) and sand is suitably used. That is, if the ash has a particle size of less than 0.6 mm, the cushioning property required as a backfill material may not be able to be secured.
埋め戻し材として用いる場合、 灰と砂との配合割合は、 特に限定され ないが、 3 : 1〜1 : 3程度が好ましい。  When used as a backfill material, the mixing ratio of ash and sand is not particularly limited, but is preferably about 3: 1 to 1: 3.
本発明の土木工事用下地材には、 用途に応じて、 軽量骨材やセメ ント 等のその他の添加材を添加するようにしても構わない。 たとえば、 セメ ントを配合するようにすると透水性舗装に用いる耐水性を備えた路盤を 形成することができる。  In the foundation material for civil engineering work of the present invention, other additives such as lightweight aggregate and cement may be added depending on the use. For example, if cement is added, a water-resistant roadbed used for permeable pavement can be formed.
本発明において、 粗骨材とは、 粒径 3 mm以上 40 mm以下、 好まし くは 5 mm以上で 1 5 mm以下のもの、 細骨材とは、 粒径 3 mm未満、 好ましくは 0. 1 mm以上 2mm以下のものを言う。  In the present invention, coarse aggregates have a particle size of 3 mm or more and 40 mm or less, preferably 5 mm or more and 15 mm or less, and fine aggregates have a particle size of less than 3 mm, preferably 0. It means the thing of 1 mm or more and 2 mm or less.
粗骨材おょぴ細骨材は、 特に限定されず、 たとえば、 粗骨材として、 砂利、 コンクリートの破砕物、 アスファルトの破砕物、 再生クラッシャ 一ラン等のリサイクル品、 溶融スラグなどが挙げられ、 細骨材として、 砂、 溶融スラグ等が挙げられ、 粗骨材となる大きい粒度ものと、 細骨材 となる細かい粒度のものとが混合した碎石でも構わないが、 路盤材料と して用いる場合には、 粗骨材として砂利、 細骨材として砂および Zまた はスラグを用いることが好ましい。  Coarse aggregates and fine aggregates are not particularly limited.Examples of coarse aggregates include gravel, crushed concrete, crushed asphalt, recycled products such as recycled crushers, and melted slag. Examples of fine aggregate include sand, molten slag, etc.Crushed stones composed of a mixture of large aggregates of coarse aggregate and fine aggregates of fine aggregate may be used. When used, it is preferable to use gravel as coarse aggregate and sand and Z or slag as fine aggregate.
灰と、 粗骨材と、 細骨材との配合比は、 路盤材料として用いる場合、、 容量比で、 1. 0〜2. 5 : 0. 5〜1. 5 : 0. 3〜1. 0の割合で 配合されていることが好ましく、 1. 5〜2. 5 : 0. 7 5〜: L . 2 5 : 0. 3〜0. 7がより好ましく、 2. 0 : 1. 0 : 0. 5がさらに好ま しい。  When used as a roadbed material, the mixing ratio of ash, coarse aggregate and fine aggregate is 1.0-2.5: 0.5-1.5: 0.3-1.3. It is preferably blended at a ratio of 0, 1.5 to 2.5: 0.75 to: L. 25: 0.3 to 0.7, more preferably, 2.0 to 1.0: 0.5 is even more preferred.
本発明の土木下地層の施工方法は、 従来埋立処分されていた灰を使用 しているので、 埋立処分が不要になる。 また、 灰が他の下地層形成材料 の表面に付着し、この灰が経時的に固化し、強固な下地層を形成できる。 灰と、 粗骨材と、 細骨材とが、 容量比で、 1 . 0〜 2 . 5 : 0 . 7 5 〜 1 . 5 : 0 . 3〜 1 . 0の割合で配合されているようにすれば、 灰が 水によって湿った状態になるため風などで飛散したりすることがなくな る。 The construction method of the civil engineering foundation layer of the present invention uses ash that has been conventionally landfilled. Landfill disposal is not required. Further, the ash adheres to the surface of another underlayer forming material, and this ash solidifies with time, so that a strong underlayer can be formed. It seems that ash, coarse aggregate and fine aggregate are blended in a volume ratio of 1.0 to 2.5: 0.75 to 1.5: 0.3 to 1.0. In this case, the ash will be moistened by water and will not be scattered by wind or the like.
本発明の土木工事用下地材は、 従来埋立処分されていた灰を使用して いるので、 埋立処分が不要になる。 また、 灰が経時的に固化し、 強固な 下地層を形成できる。  Since the ground material for civil engineering work of the present invention uses ash that has been conventionally disposed of in landfill, landfill disposal is not required. Also, the ash solidifies over time, and a strong underlayer can be formed.
また、 押し固めた場合、 互いの粒子がうまく細密充填されるように、、 灰と、 粗骨材と、 細骨材とを含むようにすることが好ましい。  Further, when compacted, it is preferable to include ash, coarse aggregate, and fine aggregate so that the particles can be finely packed with each other.
押し固めにより灰の中に含まれる酸化カルシウム同士が経時的に結合 された状態になり、 路盤材として用いた場合、 路盤強度が経時的に向上 し、 より強固な路盤を形成する。  When compacted, the calcium oxide contained in the ash becomes bonded with time, and when used as a roadbed material, the roadbed strength is improved over time and a stronger roadbed is formed.
配管を埋め込む場合、 押し固めの際に灰が押しつぶされ、 配管をうま く保護できるように、 粒径 0 . 6 m m以上の塊状の灰と砂との混合物と することが好ましい。  When embedding a pipe, it is preferable to use a mixture of massive ash and sand having a particle size of 0.6 mm or more so that the ash is crushed during compaction and the pipe is protected well.
さらに、 本発明の土木工事用下地材は、 風等により飛散しにくいよう に、 水を予め含んでいることが好ましい。  Further, it is preferable that the foundation material for civil engineering work of the present invention contains water in advance so as to be hardly scattered by wind or the like.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1、 は本発明にかかる土木工事用下地材の 1例である路盤材の製造 方法の 1つの実施の形態を説明する説明図であり、 図 2は、 本発明にか かる土木工事用下地材の他例である埋め戻し材の施工方法を説明する断 面図である。  FIG. 1 is an explanatory view illustrating one embodiment of a method of manufacturing a roadbed material which is an example of the foundation material for civil engineering according to the present invention, and FIG. 2 is a diagram illustrating the foundation for civil engineering according to the present invention. FIG. 6 is a cross-sectional view illustrating a method of applying a backfill material as another example of the material.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に、本発明の実施の形態を、図面を参照しつつ詳しく説明するが、 本発明はこの実施の形態に限定されるものではない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these embodiments.
図 1に示すように、 本発明の土木工事用下地材としての路盤材 1は、 焙焼炉灰等の酸化カルシウム (石灰) を含む灰 2と、 砂利等の粗骨材 3 と、 溶融スラグや砂等の細骨材 4とが容¾比で 1 · 5〜2. 5 : 0. 7 5〜1. 2 5 : 0. 3〜0. 7の割合となるように、混合機 5に供給し、 混合機 5中で均一混合するとともに、 全体の 5〜 7重量%の水 6加えて 得ることができる。 As shown in FIG. 1, a roadbed material 1 as a foundation material for civil engineering work according to the present invention includes a ash 2 containing calcium oxide (lime) such as a roasting furnace ash, and a coarse aggregate 3 And the fine aggregates 4 such as molten slag and sand have a volume ratio of 1.5-2.5: 0.75-1.5.25: 0.3-0.7. It can be obtained by supplying the mixture to the mixer 5, mixing uniformly in the mixer 5, and adding 5 to 7% by weight of water 6.
そして、 この路盤材 1は、路盤形成部に敷設するとともに、ローラー、 振動コンパクタ一、 ランマ一等の押し固め機器を用いて押し固めること によって、 路盤を形成することができる。  The roadbed material 1 can be formed by laying the roadbed material in a roadbed forming portion and compacting the compacted material using a compacting device such as a roller, a vibration compactor, a rammer, or the like.
この路盤材 1は、 以上のように、 構成されているので、 以下のような 優れた効果を備えている。  Since the roadbed material 1 is configured as described above, it has the following excellent effects.
(1) 廃棄されるべき灰 2を用いるようにしたので、 灰 2の埋立処分 が不要になり、 灰の処分コス トを低減できる。  (1) Since ash 2 to be discarded is used, landfill disposal of ash 2 is not required, and ash disposal costs can be reduced.
(2) 長時間放置しても材料が固化しないので、 施工時間に制約を受 けない。  (2) Since the material does not solidify even if left for a long time, there is no restriction on the construction time.
(3) 押し固めによって路盤強度が得られ、 その後固化するので突貫 性に優れている。  (3) The roadbed strength is obtained by compaction and then solidified, so it has excellent pierceability.
(4) 従来の粒状路盤施工におけるグレーダー施工だけでなく、 フィ ニッシヤー等による施工も可能になり、 不陸性能に優れているので、 機 械施工における平坦性に富み、 人力施工にも適している。  (4) Not only grader construction in conventional granular subgrade construction, but also construction with a finisher, etc. is possible, and it has excellent non-landing performance, so it is rich in flatness in machine construction and suitable for human-powered construction .
(5) 吸水性を備えているので、 セメントを配合し転圧するだけで、 路盤表面排水層として用いることができ、 ヒー トアイランド等の防止を 図ることもできる。  (5) Since it is water-absorbing, it can be used as a roadbed surface drainage layer by simply mixing cement and compacting it, and can also prevent heat islands and the like.
( 6 ) 予め加水してあるので、施工の際、灰 2等の粒子の飛散がなく、 施工性に優れている。  (6) Since water is added in advance, there is no scattering of particles such as ash 2 during construction, and the workability is excellent.
そして、この路盤材 1を用いて得られた路盤は、灰 2と、粗骨材 3と、 細骨材 4とを含むので、 押し固めた場合、 互いの粒子がうまく細密充填 される。 したがって、 強固な路盤を得ることができる。 しかも、 押し固 めにより灰の中に含まれる酸化カルシウム同士が結合された状態になり、 より強固なものになる。 また、 押し固めのみで固化し、 モルタル化して いないので、 路面補修時等の路盤掘削も容易に行うことができるととも に、 路盤材として再利用も図れる。 The roadbed obtained by using the roadbed material 1 includes the ash 2, the coarse aggregate 3, and the fine aggregate 4, so that when compacted, the particles are finely packed with each other. Therefore, a solid roadbed can be obtained. In addition, the compaction causes the calcium oxides contained in the ash to be in a state of being bonded to each other, which makes the ash stronger. In addition, since it is solidified only by compaction and not mortar, it is possible to easily excavate the roadbed when repairing road surfaces. In addition, it can be reused as roadbed material.
図 2に示すように、本発明の土木工事用下地としての埋め戻し材 7は、 粒径 0. 6 mm以上の塊状の灰と、 平均粒径砂とが、 容量比で 1 : 1の 割合で混合されていて、 地面 Gを掘削して形成された掘削溝 8内に敷設 された配管 9の周囲に充填し、 押し固めたのち、 埋め戻し材 7の上部に 砂利 (図示せず)、 土を入れさらに押し固めた後、 アスファルト舗装等を 施すようになつている。  As shown in FIG. 2, the backfill material 7 as a foundation for civil engineering work according to the present invention has a volume ratio of lump of ash having a particle size of 0.6 mm or more and sand having an average particle size of 1: 1. After filling the area around the pipe 9 laid in the excavation groove 8 formed by excavating the ground G, compacting it, and gravel (not shown) on the top of the backfill material 7, After putting the soil and compacting it, asphalt pavement is applied.
すなわち、 上記の埋め戻し材 7を用いれば、 埋め戻し材 7中に、 粒径 0. 6 mm以上の塊状の灰が含まれているので、 押し固めの際に灰が押 しつぶされ、配管 9を傷つけたりすることなく、緻密化される。そして、 灰の作用により埋め戻し材 7が経時的に固化し、 配管 9をしつかり と保 護する。 すなわち、 従来の砂のみの埋め戻し材に比べ、 道路上からかか る加重により配管 9が破損したりすることをより確実に防止することが できる。  In other words, if the above-mentioned backfill material 7 is used, since the backfill material 7 contains massive ash with a particle size of 0.6 mm or more, the ash is crushed during compaction and piping 9 is densified without damaging it. Then, the backfill material 7 solidifies with time due to the action of the ash, and the pipe 9 is tightly protected. That is, it is possible to more reliably prevent the pipe 9 from being damaged by the load applied on the road as compared with the conventional backfill material made of only sand.
本発明は、 上記の実施の形態に限定されない。 たとえば、 上記の実施 の形態では、 予め灰と、 骨材等のその他の下地層形成材料とが、 予め混 合されていたが、 施工現場で、 混合するようにしても構わない。  The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the ash and the other material for forming the underlayer such as the aggregate are mixed in advance, but may be mixed at the construction site.
以下に、 本発明の具体的な実施例を詳しく説明する。  Hereinafter, specific examples of the present invention will be described in detail.
(実施例 1 )  (Example 1)
材料全体に 5重量%〜 7重量%の割合で加水した状態で、焙焼炉灰と、 砂利 (粒径 3 mm〜 1 2mm) と、 スラグ (粒径 2 mm以下) とを容量 比で 2. 0 : 1. 0 : 0. 5の割合で撹拌混合し、 土木工事用下地材と しての路盤材料 Aを得た。  In a state where 5% to 7% by weight of water is added to the whole material, the roasting furnace ash, gravel (particle diameter: 3 mm to 12 mm), and slag (particle diameter: 2 mm or less) are mixed in a volume ratio of 2%. 0: 1.0: 0.5 was mixed by stirring to obtain a roadbed material A as a base material for civil engineering work.
なお、 焙焼炉灰の成分は、 以下の表 1の通りであった。  The components of the roasting furnace ash were as shown in Table 1 below.
つぎに、 再生クラッシャーラン (R C— 40) を用いて厚み 2 0 0 m mの下層路盤を形成したのち、 この下層路盤の上に、 上記のようにして 得られた路盤材料 Aを敷きつめ、 振動コンパクタ一で押し固め、 厚み 1 50 mmの上層路盤を形成した。  Next, after forming a lower subgrade having a thickness of 200 mm using a reclaimed crusher run (RC-40), the subgrade material A obtained as described above is spread over the lower subgrade, and the vibration compactor is used. To form an upper subgrade with a thickness of 150 mm.
そして、 この上層路盤を形成した直後に、 上層路盤上に 1 トン, 2 ト ン, 3 トンの载荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地 盤反力係数を求めた。 Immediately after forming this upper subgrade, 1 ton and 2 tons are placed on the upper subgrade. The subsidence amount was measured by applying a load of 3 tons to the ground, and the ground reaction coefficient was obtained from the results.
(実施例 2 )  (Example 2)
スラグに代えて砂 (粒径 2 m m以下) を用いた以外は、 実施例 1 と同 様にして土木工事用下地材としての路盤材料 Bを得た。  Subbase material B was obtained as a base material for civil engineering work in the same manner as in Example 1, except that sand (particle size: 2 mm or less) was used instead of slag.
そして、 この路盤材料 Bを用いて実施例 1と同様にして上層路盤を形 成した直後に、 上層路盤上に 1 トン, 2 トン, 3 トンの载荷盤荷重をかけ 沈下量をそれぞれ測定し、 その結果から地盤反力係数を求めた。  Immediately after the upper subgrade was formed using this subbase material B in the same manner as in Example 1, 1 ton, 2 ton, and 3 ton load loads were applied to the upper subbase, and the settlement amounts were measured. The ground reaction force coefficient was obtained from the result.
(実施例 3 )  (Example 3)
実施例 1の上層路盤上に散水したのち、 1 5時間後に上層路盤上に 1 トン, 2 トン, 3 トン載荷盤荷重をかけ沈下量を測定し、 その結果から地 盤反力係数を求めた。  Example 1 After sprinkling water on the upper subgrade, 1 ton, 2 tons and 3 tons of load were applied to the upper subgrade 15 hours later to measure the amount of settlement, and the ground reaction force coefficient was determined from the results. .
(実施例 4 )  (Example 4)
実施例 2の上層路盤上に散水したのち、 1 5時間後に上層路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、 その 結果から地盤反力係数を求めた。  Example 2 After water sprinkling on the upper subgrade, a load of 1 ton, 2 tons and 3 tons was applied to the upper subgrade 15 hours later, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results. Was.
(実施例 5 )  (Example 5)
振動コンパクタ一に代えて 4 トンローラーで路盤材料 Aを押し固めた 以外は、 実施例 1 と同様にして上層路盤を形成し、 その直後に上層路盤 上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、 その結果から地盤反力係数を求めた。  The upper subgrade was formed in the same manner as in Example 1, except that the roadbed material A was compacted with a 4 ton roller instead of the vibration compactor. Immediately after that, 1 ton, 2 ton and 3 ton were loaded on the upper subgrade. The amount of settlement was measured by applying a load to the ground, and the ground reaction force coefficient was determined from the results.
(実施例 6 )  (Example 6)
振動コンパクタ一に代えて 4 トンローラーで路盤材料 Bを押し固めた 以外は、 実施例 2と同様にして上層路盤を形成し、 その直後に上層路盤 上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、 その結果から地盤反力係数を求めた。  An upper subgrade was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 4 ton roller in place of the vibration compactor. Immediately after that, 1 ton, 2 tons, and 3 tons were loaded on the upper subbase. The amount of settlement was measured by applying a load to the ground, and the ground reaction force coefficient was determined from the results.
(実施例 7 )  (Example 7)
振動コンパクタ一に代えて 4 トンローラーで路盤材料 Aを押し固めた 以外は、 実施例 1 と同様にして上層路盤を形成し、 1 5時間後に上層路 盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定 し、 その結果から地盤反力係数を求めた。 An upper roadbed was formed in the same manner as in Example 1 except that the roadbed material A was compacted with a 4 ton roller instead of the vibration compactor. Loads of 1 ton, 2 tons, and 3 tons were applied to the board, and the settlement was measured.
(実施例 8 )  (Example 8)
振動コンパクタ一に代えて 4 トンローラーで路盤材料 Bを押し固めた 以外は、 実施例 2と同様にして上層路盤を形成し、 1 5時間後に上層路 盤上に 1 トン, 2 トン, 3 トンの载荷盤荷重をかけ沈下量をそれぞれ測定 し、 その結果から地盤反力係数を求めた。  An upper roadbed was formed in the same manner as in Example 2 except that the roadbed material B was compacted with a 4 ton roller in place of the vibration compactor, and 1 ton, 2 tons, and 3 tons were placed on the upper roadbed 15 hours later. The subsidence amount was measured by applying the load on the ground, and the ground reaction force coefficient was determined from the results.
(実施例 9 )  (Example 9)
振動コンパクタ一に代えて 4 トンローラーで路盤材料 Aを押し固めた 以外は、 実施例 1 と同様にして上層路盤を形成し、 上層路盤上に散水し たのち、 1 5時間後に上層路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重 をかけ沈下量をそれぞれ測定し、 その結果から地盤反力係数を求めた。  An upper subgrade was formed in the same manner as in Example 1 except that the subbase material A was compacted with a 4 ton roller instead of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was replaced on the upper subbase. The subsidence amount was measured by applying a loading load of 1 ton, 2 tons, and 3 tons, and the ground reaction force coefficient was obtained from the results.
(実施例 1 0 )  (Example 10)
振動コンパクタ一に代えて 4 トンローラーで路盤材料 Bを押し固めた 以外は、 実施例 2と同様にして上層路盤を形成し、 上層路盤上に散水し たのち、 1 5時間後に上層路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重 をかけ沈下量をそれぞれ測定し、 その結果から地盤反力係数を求めた。  The upper subgrade was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 4 ton roller instead of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was replaced on the upper subbase. The subsidence amount was measured by applying a loading load of 1 ton, 2 tons, and 3 tons, and the ground reaction force coefficient was obtained from the results.
(実施例 1 1 )  (Example 11)
振動コンパクタ一に代えて 1 0 トンローラーで路盤材料 Aを押し固め た以外は、 実施例 1 と同様にして上層路盤を形成し、 その直後に上層路 盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定 し、 その結果から地盤反力係数を求めた。  An upper subgrade was formed in the same manner as in Example 1 except that the subgrade material A was compacted with a 10 ton roller in place of the vibration compactor, and immediately thereafter, 1 ton, 2 tons, and 3 tons on the upper subgrade. The subsidence amount was measured by applying the loading load of, and the ground reaction force coefficient was calculated from the results.
(実施例 1 2 )  (Example 12)
振動コンパクタ一に代えて 1 0 トンローラーで路盤材料 Bを押し固め た以外は、 実施例 2と同様にして上層路盤を形成し、 その直後に上層路 盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定 し、 その結果から地盤反力係数を求めた。  An upper subbase was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 10 ton roller in place of the vibration compactor. Immediately thereafter, 1 ton, 2 tons, and 3 tons were placed on the upper subbase. The subsidence amount was measured by applying the loading load of, and the ground reaction force coefficient was calculated from the results.
(実施例 1 3 )  (Example 13)
振動コンパクタ一に代えて 1 0 トンローラーで路盤材料 Aを押し固め た以外は、 実施例 1 と同様にして上層路盤を形成し、 1 5時間後に上層 路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測 定し、 その結果から地盤反力係数を求めた。 Press and compact roadbed material A with 10 ton roller instead of vibration compactor Otherwise, the upper subgrade was formed in the same manner as in Example 1, and after 15 hours, 1 ton, 2 ton, and 3 ton loading substrate loads were applied to the upper subgrade, and the settlement amounts were measured. The ground reaction force coefficient was determined.
(実施例 1 4 )  (Example 14)
振動コンパクタ一に代えて 1 0 トンローラーで路盤材料 Bを押し固め た以外は、 実施例 2と同様にして上層路盤を形成し、 1 5時間後に上層 路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測 定し、 その結果から地盤反力係数を求めた。  An upper roadbed was formed in the same manner as in Example 2 except that the roadbed material B was compacted with a 10-ton roller instead of the vibration compactor, and 1 ton, 2 tons, and 3 tons were placed on the upper roadbed 15 hours later. The subsidence amount was measured by applying the load of the loading board, and the ground reaction force coefficient was calculated from the results.
(実施例 1 5 )  (Example 15)
振動コンパクタ一に代えて 1 0 トンローラーで路盤材料 Aを押し固め た以外は、 実施例 1 と同様にして上層路盤を形成し、 上層路盤上に散水 したのち、 1 5時間後に上層路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷 重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。  An upper subbase was formed in the same manner as in Example 1 except that the subbase material A was compacted with a 10-ton roller in place of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was put on the upper subbase. The loadings of 1 ton, 2 tons and 3 tons were applied, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results.
(実施例 1 6 )  (Example 16)
振動コンパクタ一に代えて 1 0 トンローラーで路盤材料 Bを押し固め た以外は、 実施例 2と同様にして上層路盤を形成し、 上層路盤上に散水 したのち、 1 5時間後に上層路盤上に 1 トン, 2 トン, 3 トンの載荷盤荷 重をかけ沈下量をそれぞれ測定し、その結果から地盤反力係数を求めた。  An upper subgrade was formed in the same manner as in Example 2 except that the subbase material B was compacted with a 10-ton roller in place of the vibration compactor, and water was sprayed on the upper subbase, and after 15 hours, the upper subbase was replaced on the upper subbase. The loadings of 1 ton, 2 tons and 3 tons were applied, and the amount of settlement was measured, and the ground reaction coefficient was calculated from the results.
(比較例 1 )  (Comparative Example 1)
路盤材料 Aに代えて粒調砕石 (M— 3 0 ) を用いた以外は、 実施例 5 と同様にして上層路盤を形成し、 形成直後に上層路盤上に 1 トン, 2 ト ン, 3 トンの載荷盤荷重をかけ沈下量をそれぞれ測定し、その結果から地 盤反力係数を求めた。  An upper subgrade was formed in the same manner as in Example 5 except that granulated crushed stone (M-30) was used in place of subbase material A. Immediately after formation, 1 ton, 2 ton, and 3 ton were placed on the upper subgrade. The subsidence amount was measured by applying the load on the ground, and the ground reaction force coefficient was calculated from the results.
上記実施例 1〜 1 6および比較例 1, 2で求めた沈下量および地盤反 力係数を表 2に示す。 なお、 平板載荷試験における地盤反力係数は、 直 径 3 0 c mの載荷盤 (載荷盤面積 A = 7 0 6 . 5 c m 2 ) に油圧ジャッ キにより荷重をかけ、 載荷盤の沈下量を記録し、 その結果から以下の式 により求めることができる。 Table 2 shows the settlement amount and ground reaction coefficient obtained in Examples 1 to 16 and Comparative Examples 1 and 2. The ground reaction force coefficient in the plate loading test was calculated by applying a load to a loading board with a diameter of 30 cm (loading board area A = 706.5 cm 2 ) using a hydraulic jack and recording the sinking amount of the loading board. Then, from the result, it can be obtained by the following equation.
地盤反力係数 (kgf/cm3 ) =荷重強さ (kgf/cm2 ) Z沈下量 (cm) 3 t荷重の場合の荷重強さ = 3 0 0 Okgf÷ 7 0 6. 5 cm2 = 4. 2 6 4 kgf/cm2 Ground reaction force coefficient (kgf / cm 3 ) = Load strength (kgf / cm 2 ) Z settlement amount (cm) Load strength at 3 t load = 3 0 Okgf ÷ 7 0 6.5 cm 2 = 4.2 6 4 kgf / cm 2
表 2から、 本発明の路盤材料を用いれば、 押し固め機器の種類に関係 なく、 平板載荷試験の上層路盤として要求される強固な路盤をえられる ことがよく分かる。 また、 路盤形成後散水し、 1 5時間放置した方がよ り強度が上がることがよく解る。  Table 2 clearly shows that the use of the roadbed material of the present invention can provide a strong roadbed required as the upper layer roadbed for the flat plate loading test, regardless of the type of compacting equipment. It is also clear that sprinkling water after forming the roadbed and leaving it for 15 hours increases the strength.
また、「社団法人 地盤工学会」発行の地盤調査方法によると地盤反力 係数を算定する地盤の沈下量が、 コンク リー ト舗装道路、 鉄道、 空港滑 走路が 1. 2 5 mm、 アスファルト舗装道路が 2. 5 mm, タンク基礎 が 5. Ommと規定されている。 この規定沈下量を 3 tの荷重強さにお ける地盤反力係数 K 3 0 (kgf/cm3) であらわすと、 コンク リート舗装 道路、 鉄道、 空港滑走路の地盤反力係数が 3 4. 0 kgf/cm3以上、 ァス フアルト舗装道路が 1 7. Okgf/cm3以上あればよいことになる。 According to the ground survey method published by the Japanese Geotechnical Society, the amount of ground subsidence for calculating the ground reaction coefficient is 1.2 mm for concrete paved roads, railways and airport runways, and asphalt paved roads. Is 2.5 mm and the tank base is 5. Omm. When expressed this provision subsidence in 3 t of the load intensity to your Keru subgrade reaction coefficient K 3 0 (kgf / cm 3 ), concrete paved roads, railways, ground reaction force coefficient airport runway 3 4. 0 kgf / cm 3 or more, and asphalt paved road 1 7. Okgf / cm 3 or more.
したがって、 上記実施例 1〜 1 6のように、 本発明の土木工事用下地 材を路盤材料として用いれば、 アスファルト舗装だけでなく、 コンクリ ート舗装道路、 鉄道、 空港滑走路にも有効な路盤を形成できることがよ くわかる。  Therefore, as in the above Examples 1 to 16, when the foundation material for civil engineering work of the present invention is used as a roadbed material, the roadbed is effective not only for asphalt pavement but also for concrete paved roads, railways, and airport runways. It can be clearly seen that a can be formed.
(実施例 1 7)  (Example 17)
表 3に示すように、 粒径 2mm〜 5 mm, 粒径 3 mm〜: L 0mm, 粒 径 5mm〜 1 5 mm, 粒径 1 5mm〜 2 5 mm, 粒径 2 0 mn!〜 3 0m mの 5種類の砂利を用い、 焙焼炉灰と、 砂利と、 砂との比を表 3 示す ように変化させて路盤材料をそれぞれ得た。 そして、 得られた路盤材料 を用いて実施例 5と同様にして上層路盤を形成し、 平板載荷試験を実施 してその結果を表 3に併せて示した。  As shown in Table 3, particle size 2mm ~ 5mm, particle size 3mm ~: L 0mm, particle size 5mm ~ 15mm, particle size 15mm ~ 25mm, particle size 20mn! Roadbed materials were obtained by using five types of gravel of up to 30 mm and varying the ratio of roasting furnace ash, gravel, and sand as shown in Table 3. Using the obtained subbase material, an upper subbase was formed in the same manner as in Example 5, a flat plate loading test was performed, and the results are shown in Table 3.
表 3から、 路盤材料を、 灰と 3 mn!〜 1 0 mm程度の粒径の粗骨材と 細骨材とを灰:砂利:砂が 2. 0 : 1. 0 : 0. 5の配合割合とすれば、 より高強度の路盤を形成できることがわかる。  From Table 3, the roadbed material is ash and 3 mn! Higher strength roadbed can be formed if coarse and fine aggregates with a particle size of about 10 mm are mixed in a ratio of ash: gravel: sand of 2.0: 1.0: 0.5. I understand.
(実施例 1 8)  (Example 18)
上記路盤材料 Aに 5 0 k g/m3となるようにセメ ントを混合し、 路 盤材料 cを得た。 So that 5 0 kg / m 3 in the roadbed material A mixture of cement, road Board material c was obtained.
(実施例 1 9)  (Example 19)
上記路盤材料 Aに 1 0 0 k g /m3となるようにセメントを混合し、 路盤材料 Dを得た。 Cement was mixed with the roadbed material A so as to be 100 kg / m 3, and a roadbed material D was obtained.
(実施例 2 0)  (Example 20)
上記路盤材料 Bに 5 0 k gZm3となるようにセメントを混合し、 路 盤材料 Eを得た。 Cement mixed such that the 5 0 k gZm 3 above roadbed material B, to obtain a road board material E.
(実施例 2 1 )  (Example 21)
上記路盤材料 Bに 1 0 0 k g/m3となるようにセメントを混合し、 路盤材料 Fを得た。 The roadbed material B was mixed with cement so as to be 100 kg / m 3 to obtain a roadbed material F.
上記実施例 1 8〜 2 1で得た路盤材料 C〜Fを用いて上記実施例 5と 同様にして上層路盤を形成した。 そして、 水を散水後 7日養生後、 1 4 日養生後の一軸圧縮強度を測定し、 その結果を表 4に示した。  Using the roadbed materials C to F obtained in Examples 18 to 21 described above, an upper layer roadbed was formed in the same manner as in Example 5 above. The uniaxial compressive strength was measured 7 days after watering and 14 days after curing. The results are shown in Table 4.
表 4から、 路盤材料中にセメントをさらに配合するようにすれば、 レ ディミクスコンクリートのように、 型枠を組んだりすることなく、 敷き 均して押し固め装置で押し固めるだけで、 十分な強度を備えた路盤を形 成できることが解る。 しかも、 施工時点では、 セメントに水を加えてい ないので、 レディミクスコンクリートのように施工時間がかかり過ぎる と固化するという問題もなく、 施工性に優れていることがわかる。  According to Table 4, if cement is further added to the roadbed material, it is enough to spread and compact with a compacting device without forming a formwork as in the case of ready-mixed concrete. It can be seen that a roadbed with strength can be formed. In addition, since water was not added to the cement at the time of construction, there is no problem of solidification if the construction time is too long as in the case of ready-mix concrete, indicating that the workability is excellent.
産業上の利用分野  Industrial applications
本発明にかかる土木下地層の施工方法は、 以上のように、 下地層形成 材料中に酸化カルシウムを 1 5重量%以上含む灰を添加するようにした ので、 灰が経時的に固化するとともに、 骨材等の他の下地層形成材料の 連結材として働き、 安定した強固な下地層を形成することができる。  As described above, in the method for constructing a civil engineering underlayer according to the present invention, as the ash containing 15% by weight or more of calcium oxide is added to the underlayer forming material, the ash solidifies with time, It acts as a linking material for other underlayer forming materials such as aggregate, and can form a stable and strong underlayer.
また、 水を含ませた状態で下地形成部に土木工事用下地材を敷設する ようにすれば、 灰が風等で飛散せず、 施工現場の作業環境を良好に保つ ことができる。 また、 灰を密に充填し、 より強固な下地層を形成するこ とができる。  In addition, if the foundation material for civil engineering work is laid on the foundation formation part with water, the ash will not be scattered by wind and the like, and the work environment at the construction site can be maintained well. Further, the ash can be densely filled to form a stronger underlayer.
本発明にかかる土木工事用下地材は、 以上のように、 従来埋め立て処 分等されていた焼却灰等の灰を成分中に含んでいるので、 灰のリサイク ルを図ることができ、 従来の灰の埋立処分地等が不要になるとともに、 灰の処分コス トを低減できる。 また、 従来の下地材の使用を減らすこと ができ、 材料コス トも低減される。 しかも、 灰が 1 5重量%以上の酸化 カルシウムを含んでいるので、所定の部分に敷設し、押し固めるだけで、 経時的に強固な下地層を形成することができる。 また、 モルタル化しな いため、 補修時等に掘削を容易に行うことができるとともに、 再利用も 可能である。 さらに、 従来のコンクリートのように施工時間がかかると 固化したり、 アスファルトのように冷えて固まったりすることがない。 したがって、 時間的な制約を受けることなく強固な下地層を容易に得る ことができる。 As described above, the foundation material for civil engineering work according to the present invention Since ash such as incinerated ash is included in the components, ash can be recycled, eliminating the need for conventional ash landfill sites and reducing ash disposal costs. it can. In addition, the use of conventional base materials can be reduced, and material costs are also reduced. Moreover, since the ash contains 15% by weight or more of calcium oxide, a strong underlayer can be formed with time only by laying in a predetermined portion and compacting it. In addition, since mortar is not used, excavation can be easily performed at the time of repair, etc., and reuse is also possible. Furthermore, unlike conventional concrete, it does not solidify when the construction time is long, nor does it harden as cold as asphalt. Therefore, a strong underlayer can be easily obtained without being restricted by time.
また、 灰と、 粗骨材と、 細骨材とが、 容量比で、 1. 0〜2. 5 : 0. 75〜 1. 5 : 0. 3〜 1. 0の割合で配合されているようにすれば、 路盤材として用いることによって、 強固な路盤を得ることができる。 粗骨材として砂利を用い、 細骨材として砂および/または溶融スラグ を用いるようにすれば、 埋め戻し材として用いることによって、 従来の 砂等に比べ、 配管を強固に保護することができる。  Ash, coarse aggregate, and fine aggregate are blended in a volume ratio of 1.0 to 2.5: 0.75 to 1.5: 0.3 to 1.0. In this way, a strong roadbed can be obtained by using it as a roadbed material. If gravel is used as coarse aggregate and sand and / or molten slag is used as fine aggregate, pipes can be more strongly protected than conventional sand, etc. by using as backfill material.
灰に加水しておけば、 施工の際、 灰 2等の粒子の飛散がなく、 施工性 に優れたものとなる。 By adding water to the ash, there is no scattering of particles such as ash 2 during construction, and the workability is excellent.
【表 1 】 【table 1 】
Figure imgf000015_0001
Figure imgf000015_0001
単位 重量% Unit weight%
【表 2 】 [Table 2]
沈 下 量 ( m m ) 地盤反力係数 何 ¾ 0 荷重 1 荷重 2 荷直 3 ( gi/cm ) t t t t  Subsidence amount (mm) Ground reaction force coefficient What ¾ 0 Load 1 Load 2 Load 3 (gi / cm) t t t t
t±r -kh- 実施例 1丄 0.00 0.20 0.60 0.95 44.7 旲 2 0.00 0.25 0.70 1.00 42.4 実施例 3 0.00 0.15 0.65 1.05 40.4 実 ι±τ她例 ta\ A  t ± r -kh- Example 1 丄 0.00 0.20 0.60 0.95 44.7 旲 2 0.00 0.25 0.70 1.00 42.4 Example 3 0.00 0.15 0.65 1.05 40.4 Actual ι ± τ 她 Example ta \ A
4 0.00 0.20 0.65 1.12 37.9 実施例 5 0.00 0.18 0.45 1.05 40.4 果施例 6 0.00 0.25 0.55 1.09 38.9 ι^ tat n  4 0.00 0.20 0.65 1.12 37.9 Example 5 0.00 0.18 0.45 1.05 40.4 Example 6 0.00 0.25 0.55 1.09 38.9 ι ^ tat n
芙施例 7 0.00 0.20 0.52 1.05 40.4 o u.uu Ό .20 U. bU l. Uo 39.3 失她 y 0.00 0.18 0.72 1.03 41丄. o 実施例 10 0.00 0.15 0.55 1.05 40.4 実施例 11 0.00 0.28 0.50 0.89 47.7 実施例 12 0.00 0.28 0.57 0.98 43.3 実施例 13 0.00 0.22 0.48 0.84 50.5 実施例' 14 0.00 0.18 0.50 0.98 43.3 実施例 15 0.00 0.25 0.52 0.91 46.6 実施例 16 0.00 0.25 0.57 1.08 39.3 比較例 1 0.00 0.70 1.40 2.10 20.2 ΐ Fushi 7 0.00 0.20 0.52 1.05 40.4 o u.uu Ό .20 U.bU l.Uo 39.3 Failure y 0.00 0.18 0.72 1.03 41 丄 .o Example 10 0.00 0.15 0.55 1.05 40.4 Example 11 0.00 0.28 0.50 0.89 47.7 Example 12 0.00 0.28 0.57 0.98 43.3 Example 13 0.00 0.22 0.48 0.84 50.5 Example '14 0.00 0.18 0.50 0.98 43.3 Example 15 0.00 0.25 0.52 0.91 46.6 Example 16 0.00 0.25 0.57 1.08 39.3 Comparative example 1 0.00 0.70 1.40 2.10 20.2 ΐ
Figure imgf000016_0001
Figure imgf000016_0001
【 S挲】SZl/Z0df/X3d ん 0 : 1.5 : 1.0 ~ 5 0.00 0.80 丄.95 o.Uo 13.9 【S 挲】 SZl / Z0df / X3d 0: 1.5: 1.0 to 5 0.00 0.80 丄 .95 o.Uo 13.9
ん 0 : 丄 .0 : 1.0 o~ 1U 0.00 0.65 1.30 Δ.ου 18.5 ん U : 1 o0: 丄 .0: 1.0 o ~ 1U 0.00 0.65 1.30 Δ.ου 18.5 U: 1 o
.0 : 1.U u.uu U.yo l 1.oU Δ. ΟΌ 14. y  .0: 1.U u.uu U.yo l 1.oU Δ. ΟΌ 14. y
2.0 : 1.5 : 1.0 15-25 0.00 1.00 1.85 2.87 14.8  2.0: 1.5: 1.0 15-25 0.00 1.00 1.85 2.87 14.8
2.0 : 1.5 : 1.0 20〜30 0.00 1.05 2.05 3.05 13.9  2.0: 1.5: 1.0 20-30 0.00 1.05 2.05 3.05 13.9
【表 4】 [Table 4]
7 曰 1 4 曰 7 says 1 4 says
路盤材料 C 966KN/cm2 = 9.9kgf/cm2 1440KN/cm2 = 14.7kgf/cm2 路盤材料 D 1656KN/cm2= 16.7kgf/cm2 2550KN/cm2 = 26.0kgf/cm2 路盤材料 E 1017KN/cm2 = 10.4kgf/cm2 1203KN/cm2= 12.3kgf/cm2 路盤材料 F 2770KN/cm2 = 28.3kgf/cm2 3130KN/cm2 = 31.9kgf/cm2 Roadbed material C 966KN / cm2 = 9.9kgf / cm2 1440KN / cm2 = 14.7kgf / cm2 roadbed material D 1656KN / cm 2 = 16.7kgf / cm2 2550KN / cm2 = 26.0kgf / cm2 roadbed material E 1017KN / cm2 = 10.4kgf / cm 2 1203KN / cm 2 = 12.3kgf / cm 2 Roadbed material F 2770KN / cm2 = 28.3kgf / cm 2 3130KN / cm2 = 31.9kgf / cm2

Claims

請求の範囲 The scope of the claims
1. 酸化カルシウムを 1 5重量%以上含有する灰を少なく とも添加 した土木工事用下地材を下地形成部に敷設し土木下地層を形成すること を特徴とする土木下地層の施工方法。  1. A method for constructing a civil engineering foundation layer, comprising laying a foundation material for civil engineering work containing at least ash containing at least 15% by weight of calcium oxide on a foundation formation part to form a civil engineering foundation layer.
2. 水を含ませた状態で下地形成部に土木工事用下地材を敷設する 請求の範囲第 1項に記載の土木下地層の施工方法。  2. The method for constructing a civil engineering foundation layer according to claim 1, wherein a foundation material for civil engineering work is laid on the foundation formation part with water.
3.. 下地形成部が路盤部である請求の範囲第 1項または請求の範囲 第 2項に記載の土木下地層の施工方法。  3. The method according to claim 1 or claim 2, wherein the ground forming portion is a roadbed portion.
4. 酸化カルシウムを 1 5重量%以上含有する灰と骨材とを少なく とも含む土木工事用下地材。  4. Substrates for civil engineering work that contain at least ash and aggregate containing at least 15% by weight of calcium oxide.
5. 灰と、 粗骨材と、 細骨材とが、 容量比で、 1. 0〜 2. 5 : 0. 7 5〜 1. 5 : 0. 3〜 1. 0の割合で配合されている請求の範囲第 4 項に記載の土木工事用下地材。  5. Ash, coarse aggregate, and fine aggregate are mixed at a volume ratio of 1.0 to 2.5: 0.75 to 1.5: 0.3 to 1.0. The foundation material for civil engineering work according to claim 4.
6. 粗骨材が砂利であって、 細骨材が砂および または溶融スラグで ある請求の範囲第 5項に記載の土木工事用下地材。  6. The base material for civil engineering work according to claim 5, wherein the coarse aggregate is gravel, and the fine aggregate is sand and / or molten slag.
7. 灰が粒径 0. 6 mm以上の塊状になっていて、 この粒径 0.6 m m以上の塊状灰と砂とを含む請求の範囲第 4項に記載の土木工事用下地 材。  7. The foundation material for civil engineering work according to claim 4, wherein the ash is in the form of a lump having a particle diameter of 0.6 mm or more, and the lump contains a lump of ash having a particle diameter of 0.6 mm or more and sand.
8. 水を予め含む請求の範囲第 4項〜請求の範囲第 7項のいずれか に記載の土木工事用下地材。  8. The foundation material for civil engineering work according to any one of claims 4 to 7, which contains water in advance.
PCT/JP2002/012566 2001-12-07 2002-11-29 Method of constructing civil work bedding layer and bedding material for civil work WO2003048457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002349659A AU2002349659A1 (en) 2001-12-07 2002-11-29 Method of constructing civil work bedding layer and bedding material for civil work

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001373640 2001-12-07
JP2001-373640 2001-12-07
JP2002189692A JP3769521B2 (en) 2001-12-07 2002-06-28 Civil engineering groundwork, civil engineering methods using this civil engineering groundwork
JP2002-189692 2002-06-28

Publications (1)

Publication Number Publication Date
WO2003048457A1 true WO2003048457A1 (en) 2003-06-12

Family

ID=26624929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012566 WO2003048457A1 (en) 2001-12-07 2002-11-29 Method of constructing civil work bedding layer and bedding material for civil work

Country Status (4)

Country Link
JP (1) JP3769521B2 (en)
CN (1) CN1599826A (en)
AU (1) AU2002349659A1 (en)
WO (1) WO2003048457A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103266642B (en) * 2013-06-14 2015-09-30 中交天航滨海环保浚航工程有限公司 A kind of open type collection stock tank relay hydraulic reclamation pumping station system and construction method thereof
JP2023038435A (en) * 2021-09-07 2023-03-17 株式会社番匠伊藤組 Underground heat accumulation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JPH11236256A (en) * 1998-02-25 1999-08-31 Taiheiyo Cement Corp Solidifying material for roadbed material and roadbed material using the same
JP2000257007A (en) * 1999-03-05 2000-09-19 Tokyo Hoso Kogyo Stabilized subgrade and pavement structure
WO2001012352A1 (en) * 1999-08-10 2001-02-22 Sumitomo Metal Industries, Ltd. Method for treating hazardous material
JP2001130945A (en) * 2000-09-21 2001-05-15 Engan Kankyo Kaihatsu Shigen Riyou Center:Kk Hydrated hardened body utilizing steelmaking slag
JP2001205241A (en) * 2000-01-26 2001-07-31 Nagasaki Prefecture Method for solidifying incineration ash
JP2001205219A (en) * 2000-01-26 2001-07-31 Nkk Corp Method for treating alkaline fly ash
JP2001207402A (en) * 2000-01-26 2001-08-03 Taiheiyo Cement Corp Concrete paving
JP2001259597A (en) * 2000-03-16 2001-09-25 Mitsubishi Materials Corp Method for solidification of fly ash
JP2001295212A (en) * 2000-04-10 2001-10-26 Taiheiyo Cement Corp Concrete pavement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JPH11236256A (en) * 1998-02-25 1999-08-31 Taiheiyo Cement Corp Solidifying material for roadbed material and roadbed material using the same
JP2000257007A (en) * 1999-03-05 2000-09-19 Tokyo Hoso Kogyo Stabilized subgrade and pavement structure
WO2001012352A1 (en) * 1999-08-10 2001-02-22 Sumitomo Metal Industries, Ltd. Method for treating hazardous material
JP2001205241A (en) * 2000-01-26 2001-07-31 Nagasaki Prefecture Method for solidifying incineration ash
JP2001205219A (en) * 2000-01-26 2001-07-31 Nkk Corp Method for treating alkaline fly ash
JP2001207402A (en) * 2000-01-26 2001-08-03 Taiheiyo Cement Corp Concrete paving
JP2001259597A (en) * 2000-03-16 2001-09-25 Mitsubishi Materials Corp Method for solidification of fly ash
JP2001295212A (en) * 2000-04-10 2001-10-26 Taiheiyo Cement Corp Concrete pavement
JP2001130945A (en) * 2000-09-21 2001-05-15 Engan Kankyo Kaihatsu Shigen Riyou Center:Kk Hydrated hardened body utilizing steelmaking slag

Also Published As

Publication number Publication date
AU2002349659A1 (en) 2003-06-17
JP3769521B2 (en) 2006-04-26
CN1599826A (en) 2005-03-23
JP2003232003A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
Taha et al. An overview of waste materials recycling in the Sultanate of Oman
KR100921334B1 (en) Environment-conscious embankment material using high-volume industrial waste and manufacturing method thereby
JP4696851B2 (en) Simple paving slag and simple paving body, civil engineering slag and civil engineering construction body
CN111041916A (en) Roadbed construction method by solidifying earthwork
EP1084301B1 (en) A method of stabilising the ground in road construction work
JP3144321B2 (en) Fluidization method
JP3364228B2 (en) Drilling opening filling method
WO2007026977A1 (en) Soil rock layer's composition, constructing method thereof and road construction method thereby
JP2012229376A (en) Wet sand of coal ash and various construction methods utilizing the wet sand of coal ash
WO2007043021A1 (en) Catalyzed mixture for supporting and foundation courses of civil and road works, of the type providing high stabilitty and allowing immediate use thereof
JP3769521B2 (en) Civil engineering groundwork, civil engineering methods using this civil engineering groundwork
JPH10227003A (en) Construction of base course
JP2007131805A (en) Improved ground material
JP3694495B2 (en) Roadbed material or backfill filler
JPH05287723A (en) Method for constructing foundation ground of road, etc., onto poor subsoil
KR101372163B1 (en) Structure on soft ground using a compensated foundation and improved surface layer and construction method for the compensated foundation
JP3996837B2 (en) Improvement method for soft ground
Abdel-Halim et al. Rehabilitation of the spillway of Sama El-Serhan dam in Jordan, using roller compacted concrete
JP2764645B2 (en) Effective use of construction surplus soil
JPH05132942A (en) Backfilling material and backfilling method
JP2001193071A (en) Lightweight filling method
JP2854427B2 (en) Road pavement method
JP7415231B2 (en) Ground covering material and its manufacturing method
JP3230147B2 (en) Fluidized soil construction structure and its construction method
JP2001139947A (en) Method for recycling dug soil and roadbed material produced thereby and used for road

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028241290

Country of ref document: CN

122 Ep: pct application non-entry in european phase