JP2009193724A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2009193724A
JP2009193724A JP2008030836A JP2008030836A JP2009193724A JP 2009193724 A JP2009193724 A JP 2009193724A JP 2008030836 A JP2008030836 A JP 2008030836A JP 2008030836 A JP2008030836 A JP 2008030836A JP 2009193724 A JP2009193724 A JP 2009193724A
Authority
JP
Japan
Prior art keywords
flow path
cathode
gas flow
anode
path component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008030836A
Other languages
English (en)
Inventor
Toru Mizuno
透 水野
Seiji Sano
誠治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2008030836A priority Critical patent/JP2009193724A/ja
Publication of JP2009193724A publication Critical patent/JP2009193724A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】膜電極接合体とセパレータとの間に、反応ガス流路としての多孔体が介装された構造を有する燃料電池において、膜電極接合体に加わる機械的損傷を抑制する。
【解決手段】燃料電池100は、膜電極接合体10のアノードとセパレータ30aとの間および膜電極接合体10のカソードとセパレータ30cとの間に、それぞれ、燃料ガス流路構成部材20aおよび酸化剤ガス流路構成部材20cを備える。燃料ガス流路構成部材20aはアノードと対向する側の表面にアノードと接触するアノード接触部を有しており、酸化剤ガス流路構成部材はカソードと対向する側の表面にカソードと接触するカソード接触部を有している。燃料ガス流路構成部材20aおよび酸化剤ガス流路構成部材20cにおいて、アノード接触部およびカソード接触部は、それぞれ、アノード接触部の一部とカソード接触部の一部とが、膜電極接合体10を挟んで互いに対向する位置に配置される。
【選択図】図1

Description

本発明は、燃料電池に関するものである。
燃料ガス(例えば、水素)と酸化剤ガス(例えば、酸素)との電気化学反応によって発電する燃料電池がエネルギ源として注目されている。この燃料電池は、一般に、プロトン伝導性を有する電解質膜の両面に、それぞれ、ガス拡散電極(アノード、および、カソード)を接合してなる膜電極接合体を、セパレータ(集電部材)で挟持することによって構成される。
そして、従来、このような燃料電池に関し、膜電極接合体とセパレータとの間に、導電性、および、ガス拡散性を有する多孔体からなり、各ガス拡散電極に反応ガス(燃料ガス、および、酸化剤ガス)をそれぞれ供給するための流路(反応ガス流路)を構成する多孔体を介装することが提案されている(例えば、下記特許文献1参照)。
特開2005−197064号公報
ところで、上述した膜電極接合体とセパレータとの間に、反応ガス流路としての多孔体が介装された構造を有する燃料電池では、膜電極接合体と多孔体とをセパレータによって挟持する際には、膜電極接合体と多孔体との接触抵抗、および、多孔体とセパレータとの接触抵抗を低減するために、一般に、これらの積層方向に所定の押圧力が加えられる。そして、上述した多孔体は、膜電極接合体と対向する側の表面に、膜電極接合体の表面と接触する接触部と、接触部以外の、膜電極接合体の表面と接触しない非接触部とを有しており、また、膜電極接合体は、曲がりやすく、機械的強度が弱いため、一方の多孔体における接触部の少なくとも一部が、膜電極接合体を挟んで、他方の多孔体における接触部の少なくとも一部と互いに対向する位置関係にない場合には、上記膜電極接合体には、上記押圧力によって曲げ応力が作用し、機械的損傷が加わる場合がある。しかし、従来、上述した膜電極接合体に加わる機械的損傷については、考慮されていなかった。
本発明は、上述の課題を解決するためになされたものであり、膜電極接合体とセパレータとの間に、反応ガス流路としての多孔体が介装された構造を有する燃料電池において、膜電極接合体に加わる機械的損傷を抑制することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するために以下の形態又は適用例として実現することが可能である。
[適用例1]燃料電池であって、電解質膜の両面に、それぞれ、アノード、および、カソードを接合してなる膜電極接合体と、導電性、および、ガス拡散性を有する多孔体からなり、前記アノードの表面に積層され、前記アノードに供給すべき燃料ガスを流すための流路を構成する燃料ガス流路構成部材と、導電性、および、ガス拡散性を有する多孔体からなり、前記カソードの表面に積層され、前記カソードに供給すべき酸化剤ガスを流すための流路を構成する酸化剤ガス流路構成部材と、前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材の表面にそれぞれ積層され、前記膜電極接合体で発電された電力を集電する集電部材と、を備え、前記燃料ガス流路構成部材は、前記アノードと対向する側の表面に、前記アノードと接触するアノード接触部と、前記アノードと接触しないアノード非接触部と、を有しており、前記酸化剤ガス流路構成部材は、前記カソードと対向する側の表面に、前記カソードと接触するカソード接触部と、前記カソードと接触しないカソード非接触部と、を有しており、前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材において、前記アノード接触部、および、前記カソード接触部は、それぞれ、前記アノード接触部の少なくとも一部と前記カソード接触部の少なくとも一部とが、前記膜電極接合体を挟んで互いに対向する位置に配置されている、燃料電池。
適用例1の燃料電池では、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部は、それぞれ、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体を挟んで互いに対向する位置に配置されている。このため、膜電極接合体の両面に、それぞれ、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材を積層し、これらをセパレータによって挟持して、先に説明したように、積層方向に所定の押圧力を加えた場合に、この押圧力を、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とによって、互いに支持することができる。したがって、膜電極接合体には、上記押圧力による曲げ応力は作用しにくい。この結果、膜電極接合体に加わる機械的損傷を抑制することができる。
なお、本発明において、「多孔体」とは、導電性、および、ガス拡散性を有しており、ガスを流すことが可能であればよく、例えば、発泡金属の焼結体等の多数の細孔を有する多孔質部材や、エキスパンドメタルや、金属メッシュや、いわゆるメタルウールを部分的に溶接して、平板状に固結したもの等を適用可能である。ただし、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部を、それぞれ、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体を挟んで互いに対向する位置に配置する観点から、多孔体としては、アノード接触部、および、カソード接触部の配置を、所望の配置に設計可能なものが好ましく、発泡金属の焼結体等、アノード接触部、および、カソード接触部の配置を、所望の配置に設計することが容易でないものを単体で用いることは好ましくない。
また、上記多孔体は、単一の部材からなるものとしてもよいし、複数の部材を組み合わせてなるものとしてもよい。また、燃料ガス流路構成部材を構成する多孔体、および、酸化剤ガス流路構成部材を構成する多孔体は、互いに同一の部材からなるものとしてもよいし、互いに異なる部材からなるものとしてもよい。
[適用例2]適用例1記載の燃料電池であって、前記アノード接触部の前記アノードとの接触面、および、前記カソード接触部の前記カソードとの接触面は、それぞれ、第1の方向の長さと、前記第1の方向と直交する第2の方向の長さとが互いに異なる形状を有しており、前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材において、前記アノード接触部、および、前記カソード接触部は、それぞれ、積層方向から見たときに、前記アノード接触部と前記カソード接触部とが、前記膜電極接合体を挟んで互いに交差する位置に配置されている、燃料電池。
適用例2の燃料電池によって、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体を挟んで互いに対向するように、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材を、膜電極接合体のアノードの表面、および、膜電極接合体のカソードの表面にそれぞれ積層する際に、これらの積層位置の位置合わせを比較的容易に行うことができる。
[適用例3]適用例2記載の燃料電池であって、前記燃料ガス流路構成部材には、複数の前記アノード接触部が、それぞれ略同一方向に向きが揃った状態で、前記第1の方向に第1の間隔で配置されているとともに、前記第2の方向に第2の間隔で配置されており、
前記酸化剤ガス流路構成部材には、複数の前記カソード接触部が、それぞれ略同一方向に向きが揃った状態で、前記第1の方向に前記第2の間隔で配置されているとともに、前記第2の方向に前記第1の間隔で配置されている、燃料電池。
適用例3の燃料電池によって、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体を挟んで互いに対向するように、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材を、膜電極接合体のアノードの表面、および、膜電極接合体のカソードの表面にそれぞれ積層する際に、これらの積層位置の位置合わせを、さらに容易に行うことができる。
[適用例4]適用例3記載の燃料電池であって、前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材において、前記複数のアノード接触部、および、前記複数のカソード接触部は、前記複数のアノード接触部のそれぞれの一部と、前記複数のカソード接触部のそれぞれの一部とが、前記膜電極接合体を挟んで互いに対向する位置に配置されている、燃料電池。
適用例4の燃料電池では、複数のアノード接触部のそれぞれの一部と、複数のカソード接触部のそれぞれの一部とによって、先に説明した押圧力を互いに支持することができる。したがって、膜電極接合体のアノードと燃料ガス流路構成部材との接触抵抗の面内分布、および、膜電極接合体のカソードと酸化剤ガス流路構成部材との接触抵抗の面内分布を、それぞれ均一化することができる。
[適用例5]適用例1記載の燃料電池であって、前記燃料ガス流路構成部材は、導電性を有し、前記アノードの表面と当接する平板状の部材であって、該部材の表面に対して略垂直な方向に貫通する複数の貫通孔を有するアノード当接部材と、導電性、および、ガス拡散性を有し、前記アノード当接部材に積層された積層部材と、を備えており、前記酸化剤ガス流路構成部材は、導電性を有し、前記カソードの表面と当接する平板状の部材であって、該部材の表面に対して略垂直な方向に貫通する複数の貫通孔を有するカソード当接部材と、導電性、および、ガス拡散性を有し、前記カソード側平板部材に積層された積層部材と、を備えている、燃料電池。
なお、適用例5の燃料電池では、燃料ガスは、アノード当接部材に積層された積層部材中を流れ、アノード当接部材に形成された複数の貫通孔から、膜電極接合体のアノードにそれぞれ供給される。また、酸化剤ガスは、カソード当接部材に積層された積層部材中を流れ、カソード当接部材に形成された複数の貫通孔から、膜電極接合体のカソードにそれぞれ供給される。アノード当接部材、および、カソード当接部材は、互いに同一の部材からなるものとしてもよいし、互いに異なる部材からなるものとしてもよい。また、アノード当接部材に積層される積層部材、および、カソード当接部材に積層される積層部材は、互いに同一の部材からなるものとしてもよいし、互いに異なる部材からなるものとしてもよい。また、アノード当接部材、および、カソード当接部材にそれぞれ形成される複数の貫通孔の形状、数、および、配置は、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体を挟んで互いに対向する条件下で、任意に設定可能である。
そして、適用例5の燃料電池では、燃料ガス流路構成部材において、アノード当接部材に形成された貫通孔がアノード非接触部となり、アノード当接部材における、貫通孔以外の、膜電極接合体のアノードと当接する部位がアノード接触部となる。また、酸化剤ガス流路構成部材において、カソード当接部材に形成された貫通孔がカソード非接触部となり、カソード当接部材における、貫通孔以外の、膜電極接合体のカソードと当接する部位が、カソード接触部となる。つまり、適用例5の燃料電池では、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部は、それぞれ、連続的に繋がった状態で形成されている。したがって、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部が、それぞれ、連続的に繋がった状態で形成されていない場合よりも容易に、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体を挟んで互いに対向する位置に配置することができる。
本発明は、上述した種々の特徴を必ずしも全て備えている必要はなく、その一部を省略したり、適宜、組み合わせたりして構成することができる。また、本発明は、上述の燃料電池としての構成の他、燃料電池の製造方法の発明として構成することもできる。
以下、本発明の実施の形態について、実施例に基づき説明する。
A.第1実施例:
図1は、本発明の第1実施例としての燃料電池100の概略構成を示す説明図である。燃料電池100の分解斜視図を示した。
図示するように、本実施例の燃料電池100は、膜電極接合体10と、燃料ガス流路構成部材20aと、酸化剤ガス流路構成部材20cと、アノード側セパレータ30aと、カソード側セパレータ30cと、を備えている。そして、燃料電池100は、膜電極接合体10のアノード側の表面、および、カソード側の表面に、燃料ガス流路構成部材20a、および、酸化剤ガス流路構成部材20cをそれぞれ積層し、これらの積層体を、アノード側セパレータ30a、および、カソード側セパレータ30cで挟持することによって構成されている。そして、これらの積層方向には、膜電極接合体10と燃料ガス流路構成部材20aとの接触抵抗、燃料ガス流路構成部材20aとアノード側セパレータ30aとの接触抵抗、膜電極接合体10と酸化剤ガス流路構成部材20cとの接触抵抗、および、酸化剤ガス流路構成部材20cとカソード側セパレータ30cとの接触抵抗を低減するために、所定の押圧力が加えられている。
膜電極接合体10は、プロトン伝導性を有する電解質膜10mの一方の面に、アノードとして、アノード側触媒層10acと、アノード側ガス拡散層10adとを、この順に備えている。また、膜電極接合体10は、電解質膜10mの他方の面に、カソードとして、カソード側触媒層10ccと、カソード側ガス拡散層10cdとを、この順に備えている。本実施例では、電解質膜10mとして、例えば、ナフィオン(登録商標)等の固体高分子膜を用いるものとした。電解質膜10mとして、他の材料からなる電解質膜を用いるようにしてもよい。また、本実施例では、アノード側ガス拡散層10ad、および、カソード側ガス拡散層10cdとして、カーボンクロスを用いるものとした。アノード側ガス拡散層10ad、および、カソード側ガス拡散層10cdとして、カーボンクロスの代わりに、カーボンペーパ等、ガス拡散性、および、導電性を有する他の部材を用いるものとしてもよい。
燃料ガス流路構成部材20aは、膜電極接合体10のアノードに供給すべき燃料ガスとしての水素を流すための流路を構成する。また、酸化剤ガス流路構成部材20cは、膜電極接合体10のカソードに供給すべき酸化剤ガスとしての酸素を含む空気を流すための流路を構成する。本実施例では、燃料ガス流路構成部材20a、および、酸化剤ガス流路構成部材20cとして、互いに同一の構造を有するエキスパンドメタルを用いるものとした。ただし、燃料ガス流路構成部材20aとして用いられるエキスパンドメタルと、酸化剤ガス流路構成部材20cとして用いられるエキスパンドメタルとは、後述するように、膜電極接合体10の表面に積層するときの向きが互いに異なっている。なお、本実施例では、燃料ガスとしての水素、および、酸化剤ガスとしての酸素を含む空気は、燃料ガス流路構成部材20a、および、酸化剤ガス流路構成部材20cに、図示したx方向から、それぞれ供給されるものとした。これらガスの供給方向は、各ガスの流路抵抗、すなわち、圧力損失がなるべく小さくなるように設定することが好ましい。
図2は、エキスパンドメタルの構造を示す斜視図である。図示するように、本実施例におけるエキスパンドメタルでは、六角形の貫通孔が千鳥状、かつ、階段状に形成されている。このようなエキスパンドメタルを膜電極接合体10の各表面に積層した場合、図示は省略するが、各六角形の1辺を構成するエッジ部分が、それぞれ、膜電極接合体10の各表面と接触することになる。燃料ガス流路構成部材20aとしてのエキスパンドメタルの、膜電極接合体10のアノード側ガス拡散層10adと対向する側の面において、アノード側ガス拡散層10adと接触する部分は、本発明におけるアノード接触部に相当し、アノード接触部以外の、アノード側ガス拡散層10adと接触しない部分は、本発明におけるアノード非接触部に相当する。また、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルの、膜電極接合体10のカソード側ガス拡散層10cdと対向する側の面において、カソード側ガス拡散層10cdと接触する部分は、本発明におけるカソード接触部に相当し、カソード接触部以外の、カソード側ガス拡散層10cdと接触しない部分は、本発明におけるカソード非接触部に相当する。
図3は、エキスパンドメタルと膜電極接合体10における各ガス拡散層との接触部について示す説明図である。図3(a)に、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおけるカソード接触部CRcの接触面の形状、および、配列を示した。また、図3(b)に、燃料ガス流路構成部材20aとしてのエキスパンドメタルにおけるアノード接触部CRaの接触面の形状、および、配列を示した。また、図3(c)に、酸化剤ガス流路構成部材20c、および、燃料ガス流路構成部材20aを、それぞれ、膜電極接合体10のカソード側ガス拡散層10cd、および、アノード側ガス拡散層10adに積層させたときの、カソード接触部CRcとアノード接触部CRaとの位置関係を示した。
図3(a)に示したように、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおける複数のカソード接触部CRcの接触面は、それぞれ、図示したx方向の長さがd1、y方向の長さがd2(<d1)の矩形形状を有している。そして、これらは、カソード接触部CRcの長手方向がx方向に揃った状態で、千鳥状に配列されているとともに、x方向に間隔L1、y方向に間隔L2(>L1)で配列されている。
また、図3(b)に示したように、燃料ガス流路構成部材20aとしてのエキスパンドメタルにおける複数のアノード接触部CRaの接触面は、それぞれ、図示したx方向の長さがd2、y方向の長さがd1の矩形形状を有している。そして、これらは、アノード接触部CRaの長手方向がy方向に揃った状態で、千鳥状に配列されているとともに、x方向に間隔L2、y方向に間隔L1で配列されている。つまり、燃料ガス流路構成部材20aとしてのエキスパンドメタルは、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルを90度回転させた向きで、アノード側ガス拡散層10adに積層される。
そして、図3(c)中に破線の丸印で示したように、燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルは、複数のアノード接触部CRaのそれぞれの一部(ほぼ中央部)と複数のカソード接触部CRcのそれぞれの一部(ほぼ中央部)とが、膜電極接合体10を挟んで互いに直交して対向するように、膜電極接合体10のアノード側ガス拡散層10ad、および、膜電極接合体10のカソード側ガス拡散層10cdにそれぞれ積層されている。
本実施例において、上述したように、燃料ガス流路構成部材20aとしてのエキスパンドメタルが、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルを90度回転させた向きで、アノード側ガス拡散層10adに積層されるものとした理由は以下の通りである。
燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルを、同じ向き、例えば、アノード接触部CRa、および、カソード接触部CRcの長手方向が、図示したx方向や、y方向にともに揃った状態で、それぞれ、アノード側ガス拡散層10ad、および、カソード側ガス拡散層10cdに積層する場合、各積層位置のわずかなずれによって、複数のアノード接触部CRaのそれぞれの一部と複数のカソード接触部CRcのそれぞれの一部とが、膜電極接合体10を挟んで互いに対向する位置関係にならなくなる。すなわち、燃料ガス流路構成部材20aとしてのエキスパンドメタルにおけるアノード接触部CRaと、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおけるカソード非接触部とが、膜電極接合体10を挟んで互いに対向するとともに、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおけるカソード接触部CRcと、燃料ガス流路構成部材20aとしてのエキスパンドメタルにおけるアノード非接触部とが、膜電極接合体10を挟んで互いに対向する位置関係となる。そして、この場合、膜電極接合体10には、先に説明した積層方向に加えられた押圧力によって、曲げ応力が作用し、機械的損傷が加わる場合がある。
これに対して、本実施例では、燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルの積層位置がわずかにずれたとしても、複数のアノード接触部CRaのそれぞれの一部と複数のカソード接触部CRcのそれぞれの一部とが、膜電極接合体10を挟んで互いに直交して対向するように、膜電極接合体10のアノード側ガス拡散層10ad、および、膜電極接合体10のカソード側ガス拡散層10cdにそれぞれ積層することができる。
以上説明した第1実施例の燃料電池100によれば、燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおいて、アノード接触部CRa、および、カソード接触部CRcが、それぞれ、アノード接触部CRaの一部とカソード接触部CRcの一部とが、膜電極接合体10を挟んで互いに対向する位置に配置されている。このため、膜電極接合体10の両面に、それぞれ、燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルを積層し、これらをアノード側セパレータ30a、および、カソード側セパレータ30cによって挟持して、先に説明したように、積層方向に所定の押圧力を加えた場合に、この押圧力を、アノード接触部CRaの一部とカソード接触部CRcの一部とによって、互いに支持することができる。したがって、膜電極接合体10には、上記押圧力による曲げ応力は作用しにくい。この結果、膜電極接合体10に加わる機械的損傷を抑制することができる。
また、第1実施例の燃料電池100では、燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおいて、複数のアノード接触部CRaのそれぞれの一部(中央部)と複数のカソード接触部CRcのそれぞれの一部(中央部)とが、それぞれ、膜電極接合体10を挟んで互いに直交して対向する位置に配置されている。したがって、複数のアノード接触部のそれぞれの一部と、複数のカソード接触部のそれぞれの一部とによって、先に説明した押圧力を互いに支持することができる。したがって、膜電極接合体10のアノード側ガス拡散層10adと燃料ガス流路構成部材20aとしてのエキスパンドメタルとの接触抵抗の面内分布、および、膜電極接合体10のカソード側ガス拡散層10cdと酸化剤ガス流路構成部材20cとしてのエキスパンドメタルとの接触抵抗の面内分布を、それぞれ均一化することができる。
また、第1実施例の燃料電池100では、図3(a)に示したように、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルにおける複数のカソード接触部CRcの各接触面は、それぞれ、図示したx方向の長さがd1、y方向の長さがd2(<d1)の矩形形状を有している。そして、これらは、カソード接触部CRcの長手方向がx方向に揃った状態で、千鳥状に配列されているとともに、x方向に間隔L1、y方向に間隔L2(>L1)で配列されている。また、図3(b)に示したように、燃料ガス流路構成部材20aとしてのエキスパンドメタルにおける複数のアノード接触部CRaの各接触面は、それぞれ、図示したx方向の長さがd2、y方向の長さがd1の矩形形状を有している。そして、これらは、アノード接触部CRaの長手方向がy方向に揃った状態で、千鳥状に配列されているとともに、x方向に間隔L2、y方向に間隔L1で配列されている。したがって、アノード接触部CRaの一部とカソード接触部CRcの一部とが、膜電極接合体10を挟んで互いに対向するように、燃料ガス流路構成部材20aとしてのエキスパンドメタル、および、酸化剤ガス流路構成部材20cとしてのエキスパンドメタルを、膜電極接合体10のアノード側ガス拡散層10adの表面、および、膜電極接合体10のカソード側ガス拡散層10cdの表面にそれぞれ積層する際に、これらの積層位置の位置合わせを容易に行うことができる。
B.第2実施例:
図4は、本発明の第2実施例としての燃料電池100Aの概略構成を示す説明図である。燃料電池100Aの分解斜視図を示した。
図示するように、本実施例の燃料電池100Aは、膜電極接合体10と、燃料ガス流路構成部材20Aaと、酸化剤ガス流路構成部材20Acと、アノード側セパレータ30aと、カソード側セパレータ30cと、を備えている。そして、燃料電池100は、膜電極接合体10のアノード側の表面、および、カソード側の表面に、燃料ガス流路構成部材20Aa、および、酸化剤ガス流路構成部材20Acをそれぞれ積層し、これらの積層体を、アノード側セパレータ30a、および、カソード側セパレータ30cで挟持することによって構成されている。
なお、第2実施例の燃料電池100Aにおける膜電極接合体10と、アノード側セパレータ30aと、カソード側セパレータ30cとは、第1実施例の燃料電池100における膜電極接合体10と、アノード側セパレータ30aと、カソード側セパレータ30cと同じである。そして、第2実施例の燃料電池100Aにおける燃料ガス流路構成部材20Aa、および、酸化剤ガス流路構成部材20Acは、それぞれ、第1実施例の燃料電池100における燃料ガス流路構成部材20a、および、酸化剤ガス流路構成部材20cと異なっている。すなわち、本実施例の燃料電池100Aにおける燃料ガス流路構成部材20Aaは、導電性を有し、膜電極接合体10のアノード側ガス拡散層10adの表面と当接する平板状の部材であって、表面に対して垂直な方向に貫通する複数の貫通孔を有する平板状のアノード当接板20Aa1と、このアノード当接板20Aa1に積層された発泡金属焼結体20Aa2とからなる。また、酸化剤ガス流路構成部材20Acは、導電性を有し、膜電極接合体10のカソード側ガス拡散層10cdの表面と当接する平板状の部材であって、表面に対して垂直な方向に貫通する複数の貫通孔を有する平板状のカソード当接板20Ac1と、このカソード当接板20Ac1に積層された発泡金属焼結体20Ac2とからなる。
本実施例では、アノード当接板20Aa1、および、カソード当接板20Ac1として、それぞれ、ステンレス鋼製の平板を用いるものとした。アノード当接板20Aa1、および、カソード当接板20Ac1として、導電性を有する他の平板状の部材を用いるようにしてもよい。また、本実施例では、発泡金属焼結体20Aa2,20Ac2として、発泡チタン焼結体を用いるものとした。発泡金属焼結体20Aa2,20Ac2の代わりに、導電性、および、ガス拡散性を有する他の多孔体を用いるようにしてもよい。アノード当接板20Aa1、および、カソード当接板20Ac1は、それぞれ、本発明におけるアノード当接部材、および、カソード当接部材に相当する。また、発泡金属焼結体20Aa2,20Ac2は、導電性、および、ガス拡散性を有しており、それぞれ、本発明における積層部材に相当する。
図5は、アノード当接板20Aa1、および、カソード当接板20Ac1を示す説明図である。図5(a)に、アノード当接板20Aa1を、膜電極接合体10のアノード側から見た平面図を示した。また、図5(b)に、カソード当接板20Ac1を、膜電極接合体10のカソード側から見た平面図を示した。
図5(a)に示したように、アノード当接板20Aa1には、六角形の形状を有する複数の貫通孔20Aahがハニカム状に形成されている。そして、本実施例の燃料電池100Aでは、燃料ガスとしての水素は、アノード側の発泡金属焼結体20Aa2に供給され、発泡金属焼結体20Aa2中を拡散しつつ流れ、アノード当接板20Aa1に形成された各貫通孔20Aahから、膜電極接合体10のアノード側ガス拡散層10adに供給される。なお、アノード当接板20Aa1における複数の貫通孔20Aahは、それぞれ、本発明におけるアノード非接触部に相当する。また、アノード当接板20Aa1における複数の貫通孔20Aah以外の、膜電極接合体10のアノード側ガス拡散層10adと当接するハッチングが付された部位は、本発明におけるアノード接触部に相当する。
また、図5(b)に示したように、カソード当接板20Ac1にも、アノード当接板20Aa1と同様に、六角形の形状を有する複数の貫通孔20Achがハニカム状に形成されている。そして、本実施例の燃料電池100Aでは、酸化剤ガスとしての酸素を含む空気は、カソード側の発泡金属焼結体20Ac2に供給され、発泡金属焼結体20Ac2中を拡散しつつ流れ、カソード当接板20Ac1に形成された複数の貫通孔20Achから、膜電極接合体10のカソード側ガス拡散層10cdに供給される。なお、カソード当接板20Ac1における複数の貫通孔20Achは、本発明におけるカソード非接触部に相当する。また、カソード当接板20Ac1における複数の貫通孔20Ach以外の、膜電極接合体10のカソード側ガス拡散層10cdと当接するハッチングが付された部位は、本発明におけるカソード接触部に相当する。
つまり、本実施例の燃料電池100Aでは、燃料ガス流路構成部材20Aa、および、酸化剤ガス流路構成部材20Acにおいて、アノード接触部、および、カソード接触部は、それぞれ、連続的に繋がった状態で形成されている。したがって、燃料ガス流路構成部材20Aa、および、酸化剤ガス流路構成部材20Acにおいて、アノード接触部、および、カソード接触部が、それぞれ、連続的に繋がった状態で形成されていない場合よりも容易に、アノード接触部とカソード接触部とが、膜電極接合体10を挟んで互いに対向する位置に配置することができる。
以上説明した第2実施例の燃料電池100Aによれば、燃料ガス流路構成部材20Aaを構成するアノード当接板20Aa1、および、酸化剤ガス流路構成部材20cを構成するカソード当接板20Ac1が、連続的に繋がったアノード接触部、および、カソード接触部を、それぞれ備えており、アノード接触部とカソード接触部とが、膜電極接合体10を挟んで互いに対向する位置に配置されている。このため、膜電極接合体10の両面に、それぞれ、燃料ガス流路構成部材20Aa、および、酸化剤ガス流路構成部材20Acを積層し、これらをアノード側セパレータ30a、および、カソード側セパレータ30cによって挟持して、先に説明したように、積層方向に所定の押圧力を加えた場合に、この押圧力を、アノード接触部とカソード接触部とによって、互いに支持することができる。したがって、膜電極接合体10には、上記押圧力による曲げ応力は作用しにくい。この結果、膜電極接合体10に加わる機械的損傷を抑制することができる。
C.変形例:
以上、本発明のいくつかの実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形が可能である。
C1.変形例1:
上記第1実施例では、燃料ガス流路構成部材20a、および、酸化剤ガス流路構成部材20cとして、エキスパンドメタルを用いるものとしたが、本発明は、これに限られない。本発明は、一般に、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部が、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体10を挟んで互いに対向する位置に配置さればよく、エキスパンドメタルの代わりに、他の多孔体を用いるようにしてもよい。
図6は、第1の変形例としての酸化剤ガス流路構成部材20Bcを示す説明図である。図6(a)に、酸化剤ガス流路構成部材20Bcの平面図を示した。また、図6(b)に、図6(a)におけるA−A断面図を示した。
図6(a)に示したように、本変形例の酸化剤ガス流路構成部材20Bcは、金属メッシュからなる。そして、図示したように、x方向の複数の金属ワイヤMWx間の間隔と、y方向の複数の金属ワイヤMWy間の間隔とが互いに異なっている。このため、図6(a),(b)から分かるように、膜電極接合体10のカソード側ガス拡散層10cdと接触する複数のカソード接触部は、長手方向が同一方向に揃った状態で配列されることとなる。なお、図示は省略したが、本変形例の燃料ガス流路構成部材は、酸化剤ガス流路構成部材20Bcの向きを90度回転させたものである。したがって、本変形例の酸化剤ガス流路構成部材20Bc、および、燃料ガス流路構成部材を、燃料電池100に適用することによっても、第1実施例と同様に、膜電極接合体10に加わる機械的損傷を抑制することができる。
C2.変形例2:
図7は、第2の変形例としての酸化剤ガス流路構成部材20Ccを示す説明図である。図7(a)に、酸化剤ガス流路構成部材20Ccのプレス前の平面図を示した。また、図7(b)に、プレス後の、図7(a)におけるA−A断面図を示した。
図示するように、本変形例の酸化剤ガス流路構成部材20Ccは、x方向の幅とy方向の幅とが互いに異なる複数の貫通孔20Cchを千鳥状に配列して形成した金属製の平板を、波板状にプレス加工したものである。このような酸化剤ガス流路構成部材20Ccにおいても、膜電極接合体10のカソード側ガス拡散層10cdと接触する複数のカソード接触部は、長手方向が同一方向に揃った状態で配列されることとなる。なお、図示は省略したが、本変形例の燃料ガス流路構成部材は、酸化剤ガス流路構成部材20Ccの向きを90度回転させたものである。したがって、本変形例の酸化剤ガス流路構成部材20Cc、および、燃料ガス流路構成部材を、燃料電池100に適用することによっても、第1実施例と同様に、膜電極接合体10に加わる機械的損傷を抑制することができる。
C3.変形例3:
図8は、第3の変形例としての酸化剤ガス流路構成部材20Dcを示す説明図である。図示するように、本変形例の酸化剤ガス流路構成部材20Dcは、金属ワイヤMWを板状に並べて積層し、焼結したものである。このような酸化剤ガス流路構成部材20Dcにおいても、膜電極接合体10のカソード側ガス拡散層10cdと接触する複数のカソード接触部は、長手方向が同一方向に揃った状態で配列されることとなる。なお、図示は省略したが、本変形例の燃料ガス流路構成部材は、酸化剤ガス流路構成部材20Dcの向きを90度回転させたものである。したがって、本変形例の酸化剤ガス流路構成部材20Cc、および、燃料ガス流路構成部材を、燃料電池100に適用することによっても、第1実施例と同様に、膜電極接合体10に加わる機械的損傷を抑制することができる。
なお、上記第1実施例、および、変形例では、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部は、それぞれ、膜電極接合体10を挟んで互いに直交して対向する位置に配置されるものとしたが、本発明は、これに限られない。また、上記実施例、および、変形例では、燃料ガス流路構成部材における複数のアノード接触部、および、酸化剤ガス流路構成部材における複数のカソード接触部は、長手方向が同一方向に揃った状態で配列されるものとしたが、本発明は、これに限られない。燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、アノード接触部、および、カソード接触部が、膜電極接合体10を挟んで互いに交差して対向する位置に配置されるものとしてもよい。
また、図示、および、詳細な説明は省略するが、第1実施例の燃料電池100において、燃料ガス流路構成部材20a、および、酸化剤ガス流路構成部材20cとして、エキスパンドメタルの代わりに、いわゆるメタルウールを所定方向に引っ張って、繊維の方向が略同一方向に有意に揃った状態で、繊維同士を部分的に溶接して、平板状に固結したものを適用するようにしてもよい。ただし、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材において、燃料ガス流路構成部材、および、酸化剤ガス流路構成部材を、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体10を挟んで互いに対向する位置に配置する観点から、多孔体(燃料ガス流路構成部材、および、酸化剤ガス流路構成部材)としては、アノード接触部、および、カソード接触部の配置を、所望の配置に設計可能なものが好ましく、発泡金属の焼結体等、アノード接触部、および、カソード接触部の配置を、所望の配置に設計することが容易でないものを単体で用いることは好ましくない。
C4.変形例4:
上記第2実施例では、燃料ガス流路構成部材20Aa、および、酸化剤ガス流路構成部材20Acをそれぞれ構成するアノード当接板20Aa1、および、カソード当接板20Ac1に、それぞれ、六角形の形状を有する複数の貫通孔20Aah、および、貫通孔20Achがハニカム状に形成されているものとしたが、本発明はこれに限られない。アノード当接板20Aa1、および、カソード当接板20Ac1に、それぞれ形成される複数の貫通孔の形状、数、および、配置は、アノード接触部の少なくとも一部とカソード接触部の少なくとも一部とが、膜電極接合体10を挟んで互いに対向する条件下で、任意に設定可能である。
C5.変形例5:
上記実施例、および、変形例の燃料ガス流路構成部材、および、酸化剤ガス流路構成部材を、適宜、組み合わせて用いるようにしてもよい。
C6.変形例6:
上記実施例では、本発明の燃料電池について、単電池を一例として説明したが、本発明は、これに限られない。単電池を複数積層した燃料電池スタックに本発明を適用するようにしてもよい。
本発明の第1実施例としての燃料電池100の概略構成を示す説明図である。 エキスパンドメタルの構造を示す斜視図である。 エキスパンドメタルと膜電極接合体10における各ガス拡散層との接触部について示す説明図である。 本発明の第2実施例としての燃料電池100Aの概略構成を示す説明図である。 アノード当接板20Aa1およびカソード当接板20Ac1を示す説明図である。 第1の変形例としての酸化剤ガス流路構成部材20Bcを示す説明図である。 第2の変形例としての酸化剤ガス流路構成部材20Ccを示す説明図である。 第3の変形例としての酸化剤ガス流路構成部材20Dcを示す説明図である。
符号の説明
100,100A…燃料電池
10…膜電極接合体
10m…電解質膜
10ac…アノード側触媒層
10cc…カソード側触媒層
10ad…アノード側ガス拡散層
10cd…カソード側ガス拡散層
20a,20Aa…燃料ガス流路構成部材
CRa…アノード接触部
20c,20Ac,20Bc,20Dc…酸化剤ガス流路構成部材
CRc…カソード接触部
20Aa1…アノード当接板
20Ach…貫通孔
20Aa2…発泡金属焼結体
20Ac1…カソード当接板
20Ac2…発泡金属焼結体
20Aah…貫通孔
20Cch…貫通孔
30a…アノード側セパレータ
30c…カソード側セパレータ
MW,MWx、MWy…金属ワイヤ

Claims (5)

  1. 燃料電池であって、
    電解質膜の両面に、それぞれ、アノード、および、カソードを接合してなる膜電極接合体と、
    導電性、および、ガス拡散性を有する多孔体からなり、前記アノードの表面に積層され、前記アノードに供給すべき燃料ガスを流すための流路を構成する燃料ガス流路構成部材と、
    導電性、および、ガス拡散性を有する多孔体からなり、前記カソードの表面に積層され、前記カソードに供給すべき酸化剤ガスを流すための流路を構成する酸化剤ガス流路構成部材と、
    前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材の表面にそれぞれ積層され、前記膜電極接合体で発電された電力を集電する集電部材と、を備え、
    前記燃料ガス流路構成部材は、
    前記アノードと対向する側の表面に、前記アノードと接触するアノード接触部と、前記アノードと接触しないアノード非接触部と、を有しており、
    前記酸化剤ガス流路構成部材は、
    前記カソードと対向する側の表面に、前記カソードと接触するカソード接触部と、前記カソードと接触しないカソード非接触部と、を有しており、
    前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材において、前記アノード接触部、および、前記カソード接触部は、それぞれ、前記アノード接触部の少なくとも一部と前記カソード接触部の少なくとも一部とが、前記膜電極接合体を挟んで互いに対向する位置に配置されている、
    燃料電池。
  2. 請求項1記載の燃料電池であって、
    前記アノード接触部の前記アノードとの接触面、および、前記カソード接触部の前記カソードとの接触面は、それぞれ、第1の方向の長さと、前記第1の方向と直交する第2の方向の長さとが互いに異なる形状を有しており、
    前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材において、前記アノード接触部、および、前記カソード接触部は、それぞれ、積層方向から見たときに、前記アノード接触部と前記カソード接触部とが、前記膜電極接合体を挟んで互いに交差する位置に配置されている、
    燃料電池。
  3. 請求項2記載の燃料電池であって、
    前記燃料ガス流路構成部材には、複数の前記アノード接触部が、それぞれ略同一方向に向きが揃った状態で、前記第1の方向に第1の間隔で配置されているとともに、前記第2の方向に第2の間隔で配置されており、
    前記酸化剤ガス流路構成部材には、複数の前記カソード接触部が、それぞれ略同一方向に向きが揃った状態で、前記第1の方向に前記第2の間隔で配置されているとともに、前記第2の方向に前記第1の間隔で配置されている、
    燃料電池。
  4. 請求項3記載の燃料電池であって、
    前記燃料ガス流路構成部材、および、前記酸化剤ガス流路構成部材において、前記複数のアノード接触部、および、前記複数のカソード接触部は、前記複数のアノード接触部のそれぞれの一部と、前記複数のカソード接触部のそれぞれの一部とが、前記膜電極接合体を挟んで互いに対向する位置に配置されている、
    燃料電池。
  5. 請求項1記載の燃料電池であって、
    前記燃料ガス流路構成部材は、
    導電性を有し、前記アノードの表面と当接する平板状の部材であって、該部材の表面に対して略垂直な方向に貫通する複数の貫通孔を有するアノード当接部材と、
    導電性、および、ガス拡散性を有し、前記アノード当接部材に積層された積層部材と、を備えており、
    前記酸化剤ガス流路構成部材は、
    導電性を有し、前記カソードの表面と当接する平板状の部材であって、該部材の表面に対して略垂直な方向に貫通する複数の貫通孔を有するカソード当接部材と、
    導電性、および、ガス拡散性を有し、前記カソード側平板部材に積層された積層部材と、を備えている、
    燃料電池。
JP2008030836A 2008-02-12 2008-02-12 燃料電池 Withdrawn JP2009193724A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030836A JP2009193724A (ja) 2008-02-12 2008-02-12 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030836A JP2009193724A (ja) 2008-02-12 2008-02-12 燃料電池

Publications (1)

Publication Number Publication Date
JP2009193724A true JP2009193724A (ja) 2009-08-27

Family

ID=41075586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030836A Withdrawn JP2009193724A (ja) 2008-02-12 2008-02-12 燃料電池

Country Status (1)

Country Link
JP (1) JP2009193724A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125744A (ja) * 2011-12-13 2013-06-24 Hyundai Motor Co Ltd 燃料電池用多孔性分離板
JP2013149438A (ja) * 2012-01-18 2013-08-01 Toyota Motor Corp 燃料電池の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125744A (ja) * 2011-12-13 2013-06-24 Hyundai Motor Co Ltd 燃料電池用多孔性分離板
US9853299B2 (en) 2011-12-13 2017-12-26 Hyundai Motor Company Porous separator for fuel cell
JP2013149438A (ja) * 2012-01-18 2013-08-01 Toyota Motor Corp 燃料電池の製造方法

Similar Documents

Publication Publication Date Title
CA2653876C (en) Fuel cell having gas channel-forming member and method of producing the same
JP5226431B2 (ja) 燃料電池スタック
JP5298469B2 (ja) 燃料電池用ガス拡散電極
JP2008078071A (ja) 燃料電池スタック
JP2004087311A (ja) 燃料電池スタックおよび燃料電池スタック用金属製セパレータ
JP2007059187A (ja) 燃料電池
JP2007172953A (ja) 燃料電池
JP3696230B1 (ja) 燃料電池
JP4897928B2 (ja) 固体高分子形燃料電池および固体高分子形燃料電池用セパレータ
US20180090773A1 (en) Fuel cell stack
JP2006286494A (ja) 固体高分子形燃料電池
JP6027107B2 (ja) 燃料電池セル
JP2008513971A (ja) 接触抵抗が低いバイポーラプレートの用途用のグラファイト/金属箔/ポリマー基材積層体
JP2009193724A (ja) 燃料電池
JP5413056B2 (ja) 燃料電池用冷却層およびその製造方法ならびにそれを用いた燃料電池
JP2010225484A (ja) 燃料電池、および、燃料電池の製造方法
JP2007335251A (ja) 燃料電池用電極、膜電極接合体及び燃料電池用セル
JP5439740B2 (ja) 燃料電池および燃料電池スタック
JP2006066339A (ja) 燃料電池セル
KR101093706B1 (ko) 연료 전지 및 이에 사용되는 스택
JP5853782B2 (ja) 燃料電池
JP4440088B2 (ja) 燃料電池
JP2005268176A (ja) 燃料電池
JP2009277465A (ja) 高分子電解質形燃料電池スタック
JP2005190749A (ja) 燃料電池用膜電極接合体及びそれを用いた固体高分子形燃料電池

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510