JP2009191787A - Fuel property determining device and catalyst deterioration diagnosing device equipped with it - Google Patents

Fuel property determining device and catalyst deterioration diagnosing device equipped with it Download PDF

Info

Publication number
JP2009191787A
JP2009191787A JP2008034720A JP2008034720A JP2009191787A JP 2009191787 A JP2009191787 A JP 2009191787A JP 2008034720 A JP2008034720 A JP 2008034720A JP 2008034720 A JP2008034720 A JP 2008034720A JP 2009191787 A JP2009191787 A JP 2009191787A
Authority
JP
Japan
Prior art keywords
air
catalyst
fuel ratio
fuel
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008034720A
Other languages
Japanese (ja)
Other versions
JP5260978B2 (en
Inventor
Koichi Kimura
光壱 木村
Toru Kidokoro
徹 木所
Yutaka Sawada
裕 澤田
Yasushi Iwasaki
靖志 岩▲崎▼
Koichi Kitaura
浩一 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008034720A priority Critical patent/JP5260978B2/en
Publication of JP2009191787A publication Critical patent/JP2009191787A/en
Application granted granted Critical
Publication of JP5260978B2 publication Critical patent/JP5260978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel property determining device of high precision and reliability and a catalyst deterioration diagnosing device equipped with it. <P>SOLUTION: The fuel property determining device actively changes and controls an air-fuel ratio to a rich side or a lean side whenever the air-fuel ratio detected by a post-catalyst air-fuel sensor on a catalyst downstream side turns around to the lean side or the rich side and estimates a sulfur concentration of fuel based on a rich time TR and a lean time TL at that time. The fuel property determining device corrects a measured value of an oxygen storage capacity based on the rich time TR and the lean time TL and diagnoses catalyst deterioration while eliminating sulfur affection. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の使用燃料の燃料性状を判定する燃料性状判定装置及びこれを備えた触媒劣化診断装置に係り、特に、内燃機関の使用燃料の硫黄濃度を推定可能な燃料性状判定装置及びこれを備えた触媒劣化診断装置に関する。   The present invention relates to a fuel property determination device for determining the fuel property of fuel used in an internal combustion engine and a catalyst deterioration diagnosis device equipped with the fuel property determination device, and more particularly to a fuel property determination device capable of estimating the sulfur concentration of fuel used in an internal combustion engine and The present invention relates to a catalyst deterioration diagnosis apparatus provided with this.

例えば車両用の内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(O2ストレージ能)を有するものがあり、これは、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸着保持し、触媒流入排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸着保持された酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少振れてしまっても、三元触媒による酸素の吸蔵・放出作用により、そのような空燃比ずれを吸収することができる。 For example, in an internal combustion engine for a vehicle, a catalyst for purifying exhaust gas is installed in the exhaust system. Some of these catalysts have an oxygen storage capacity (O 2 storage capacity). This is because when the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, the exhaust gas becomes lean. Excess oxygen present in the gas is adsorbed and held, and when the air-fuel ratio of the catalyst inflow exhaust gas becomes smaller than the stoichiometric, that is, becomes rich, the adsorbed and held oxygen is released. For example, in a gasoline engine, air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric. However, such an air-fuel ratio shift can be absorbed by the oxygen storage / release action of the three-way catalyst.

ところで、触媒が劣化すると触媒の浄化効率が低下する。一方、触媒の劣化度と酸素吸蔵能の低下度との間にはともに貴金属を介する反応であるため相関関係がある。よって、酸素吸蔵能が低下したことを検出することで触媒が劣化したことを検出することができる。一般的には、燃焼室内の混合気ひいては触媒に流入する排気ガスの空燃比を強制的にリッチ又はリーンに切り替えるアクティブ空燃比制御を行い、このアクティブ空燃比制御の実行に伴って触媒の酸素吸蔵容量を計測し、触媒の劣化を診断する方法(所謂Cmax法)が採用される。   By the way, when the catalyst deteriorates, the purification efficiency of the catalyst decreases. On the other hand, there is a correlation between the degree of deterioration of the catalyst and the degree of reduction of the oxygen storage capacity because they are reactions through noble metals. Therefore, it is possible to detect that the catalyst has deteriorated by detecting that the oxygen storage capacity has decreased. In general, active air-fuel ratio control for forcibly switching the air-fuel ratio of the air-fuel mixture in the combustion chamber and thus the exhaust gas flowing into the catalyst to rich or lean is performed, and the oxygen storage of the catalyst is performed as the active air-fuel ratio control is executed. A method of measuring the capacity and diagnosing catalyst deterioration (so-called Cmax method) is employed.

特開2003−83145号公報JP 2003-83145 A

一方、使用地域等によっては燃料中に硫黄(S)が比較的高濃度で含まれていることがある。このような燃料が給油された場合、硫黄成分が触媒に蓄積して触媒の性能が低下する被毒(S被毒)が発生する。S被毒が発生すると、触媒の酸素吸放出反応が妨げられて触媒の見掛け上の酸素吸蔵容量が低下する。しかしながら、硫黄濃度の低い燃料が再給油されると被毒状態はやがて解消される。S被毒による触媒の性能低下は一時的なものである。よって触媒の劣化診断においては、かかるS被毒による一時的劣化を、本来診断すべき恒久的劣化であると誤って診断しないようにする必要がある。とりわけ、正常と劣化との境目(クライテリア)付近にありながらなお正常である触媒について、誤って劣化と誤診断してしまわないようにする必要がある。   On the other hand, sulfur (S) may be contained in the fuel at a relatively high concentration depending on the region of use. When such fuel is supplied, poisoning (S poisoning) occurs in which sulfur components accumulate in the catalyst and the performance of the catalyst decreases. When S poisoning occurs, the oxygen storage / release reaction of the catalyst is hindered, and the apparent oxygen storage capacity of the catalyst decreases. However, if the fuel with a low sulfur concentration is refueled, the poisoning state will eventually be resolved. The performance degradation of the catalyst due to S poisoning is temporary. Therefore, in the deterioration diagnosis of the catalyst, it is necessary not to mistakenly diagnose the temporary deterioration due to the S poisoning as permanent deterioration that should be diagnosed. In particular, it is necessary to prevent a catalyst that is still normal while being in the vicinity of the boundary between normality and deterioration (criteria) from being erroneously diagnosed as deterioration.

かかる誤診断を防止するためには、燃料性状、特に燃料中の硫黄濃度を推定ないし判定するのが好適である。かかる推定ないし判定を行えば、燃料が高硫黄濃度であると判定したときに触媒劣化診断を中止するなど必要な措置を執ることができ、誤診断を未然に防止できるからである。   In order to prevent such a misdiagnosis, it is preferable to estimate or determine the fuel properties, particularly the sulfur concentration in the fuel. This is because if such estimation or determination is performed, necessary measures such as stopping the catalyst deterioration diagnosis can be taken when it is determined that the fuel has a high sulfur concentration, and erroneous diagnosis can be prevented in advance.

かかる燃料性状判定について、特許文献1には、三元触媒の下流側に設置されたO2センサの出力最大値(リッチ側出力最大値)が所定値以下のとき三元触媒が硫黄被毒していると判定する技術が開示されている。これは、燃料であるガソリン中の硫黄含有量が多いほど下流側O2センサの出力最大値が小さいという性質を利用したものである。   Regarding such fuel property determination, Patent Document 1 discloses that the three-way catalyst is poisoned with sulfur when the maximum output value (rich side output maximum value) of the O2 sensor installed on the downstream side of the three-way catalyst is equal to or less than a predetermined value. A technique for determining that the image is present is disclosed. This utilizes the property that the maximum output value of the downstream O2 sensor is smaller as the sulfur content in gasoline as fuel is larger.

しかし、下流O2センサの出力最大値のみに着目したやり方だと、下流O2センサの製造ばらつき等により正確な燃料性状判定を行えなくなる可能性があり、精度や信頼性の点で改善の余地が残る。   However, if the method focuses only on the maximum output value of the downstream O2 sensor, there is a possibility that accurate fuel property determination cannot be performed due to manufacturing variations of the downstream O2 sensor, and there remains room for improvement in terms of accuracy and reliability. .

そこで、本発明はこのような実情に鑑みてなされたもので、その目的は、精度及び信頼性の高い燃料性状判定装置及びこれを備えた触媒劣化診断装置を提供することにある。   Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a highly accurate and reliable fuel property determination device and a catalyst deterioration diagnosis device including the same.

本発明の一形態によれば、
内燃機関の排気通路に設けられた触媒と、
前記触媒の下流側に設けられた触媒後空燃比センサと、
前記触媒後空燃比センサによって検出された空燃比がリーン側又はリッチ側に反転する毎に空燃比をリッチ側又はリーン側にアクティブに切替制御するアクティブ空燃比制御手段と、
前記アクティブ空燃比制御手段によって空燃比がリッチ側に切り替えられているときのリッチ時間と、前記アクティブ空燃比制御手段によって空燃比がリーン側に切り替えられているときのリーン時間とに基づき、燃料の硫黄濃度を推定する硫黄濃度推定手段と
を備えたことを特徴とする燃料性状判定装置が提供される。
According to one aspect of the invention,
A catalyst provided in the exhaust passage of the internal combustion engine;
A post-catalyst air-fuel ratio sensor provided downstream of the catalyst;
Active air-fuel ratio control means for actively switching the air-fuel ratio to the rich side or the lean side every time the air-fuel ratio detected by the post-catalyst air-fuel ratio sensor is reversed to the lean side or the rich side;
Based on the rich time when the air-fuel ratio is switched to the rich side by the active air-fuel ratio control means and the lean time when the air-fuel ratio is switched to the lean side by the active air-fuel ratio control means, There is provided a fuel property judgment device comprising a sulfur concentration estimation means for estimating a sulfur concentration.

これによれば、空燃比がリッチ側に切り替えられているときのリッチ時間と空燃比がリーン側に切り替えられているときのリーン時間とに基づき燃料の硫黄濃度を推定するので、触媒下流側の触媒後空燃比センサの出力絶対値のみに頼らずに燃料の硫黄濃度を推定できる。よって、触媒後空燃比センサの製造ばらつき等に影響を受けづらくなり、精度及び信頼性の高い燃料性状判定を実施することができる。   According to this, the sulfur concentration of the fuel is estimated based on the rich time when the air-fuel ratio is switched to the rich side and the lean time when the air-fuel ratio is switched to the lean side. The sulfur concentration of the fuel can be estimated without relying only on the output absolute value of the post-catalyst air-fuel ratio sensor. Therefore, it becomes difficult to be influenced by manufacturing variation of the post-catalyst air-fuel ratio sensor, and the fuel property determination with high accuracy and reliability can be performed.

好ましくは、前記硫黄濃度推定手段は、前記リッチ時間と前記リーン時間との比に基づいて燃料の硫黄濃度を推定する。当該比は燃料の硫黄濃度に相関する値であるので、当該比に基づいて燃料の硫黄濃度を推定するのが好適である。   Preferably, the sulfur concentration estimating means estimates the sulfur concentration of the fuel based on a ratio between the rich time and the lean time. Since the ratio is a value that correlates with the sulfur concentration of the fuel, it is preferable to estimate the sulfur concentration of the fuel based on the ratio.

本発明の他の形態によれば、
前記燃料性状判定装置を備えた触媒劣化診断装置であって、
前記アクティブ空燃比制御手段による空燃比の切替制御に伴って前記触媒の酸素吸蔵容量を計測する計測手段と、
前記リッチ時間及び前記リーン時間に基づき、前記計測手段によって計測された酸素吸蔵容量の値を補正する補正手段と
を備えたことを特徴とする触媒劣化診断装置が提供される。
According to another aspect of the invention,
A catalyst deterioration diagnosis device comprising the fuel property determination device,
Measuring means for measuring the oxygen storage capacity of the catalyst in accordance with air-fuel ratio switching control by the active air-fuel ratio control means;
There is provided a catalyst deterioration diagnosis device comprising: a correction unit that corrects the value of the oxygen storage capacity measured by the measurement unit based on the rich time and the lean time.

これにより、酸素吸蔵容量計測値を燃料の硫黄濃度が低いときに得られるような値に補正した上で触媒劣化診断を実行でき、硫黄影響を排除して誤診断を未然に防止できる。   Thereby, the catalyst deterioration diagnosis can be executed after correcting the measured value of the oxygen storage capacity to a value obtained when the sulfur concentration of the fuel is low, and the influence of sulfur can be eliminated to prevent erroneous diagnosis.

好ましくは、前記補正手段は、前記硫黄濃度推定手段によって推定された硫黄濃度が所定値より大きいとき、前記酸素吸蔵容量計測値を、前記硫黄濃度が前記所定値以下のときに得られるような値に補正する。   Preferably, the correction means obtains the oxygen storage capacity measurement value when the sulfur concentration estimated by the sulfur concentration estimation means is greater than a predetermined value, and a value obtained when the sulfur concentration is less than or equal to the predetermined value. To correct.

好ましくは、前記補正手段は、前記リッチ時間及び前記リーン時間の比に応じた補正量を前記酸素吸蔵容量計測値に乗算又は加算することにより補正を行う。   Preferably, the correction unit performs the correction by multiplying or adding the correction amount corresponding to the ratio of the rich time and the lean time to the oxygen storage capacity measurement value.

本発明によれば、精度及び信頼性の高い燃料性状判定装置及びこれを備えた触媒劣化診断装置を提供できるという、優れた効果が発揮される。   According to the present invention, it is possible to provide an excellent effect that a highly accurate and reliable fuel property determination device and a catalyst deterioration diagnosis device including the same can be provided.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は車両用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。   FIG. 1 is a schematic diagram showing the configuration of the present embodiment. As shown in the figure, the internal combustion engine 1 generates power by burning a mixture of fuel and air inside a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. To do. The internal combustion engine 1 is a vehicular multi-cylinder engine (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.

内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。   In the cylinder head of the internal combustion engine 1, an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port are provided for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが組み込まれている。なお吸気ポート、サージタンク8及び吸気管13により吸気通路が形成される。   The intake port of each cylinder is connected to a surge tank 8 serving as an intake air collecting chamber via a branch pipe for each cylinder. An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13. An air flow meter 5 for detecting the intake air amount and an electronically controlled throttle valve 10 are incorporated in the intake pipe 13 in order from the upstream side. An intake passage is formed by the intake port, the surge tank 8 and the intake pipe 13.

吸気通路、特に吸気ポート内に燃料を噴射するインジェクタ(燃料噴射弁)12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。   An injector (fuel injection valve) 12 that injects fuel into the intake passage, particularly into the intake port, is provided for each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されており、排気管6には、酸素吸蔵能を有する三元触媒からなる触媒11,19が直列に取り付けられている。なお排気ポート、枝管及び排気管6により排気通路が形成される。上流触媒11の上流側と下流側とにそれぞれ排気ガスの空燃比を検出するための空燃比センサ、即ち触媒前空燃比センサ17及び触媒後空燃比センサ18が設置されている。触媒前空燃比センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒後空燃比センサ18は所謂O2センサからなり、理論空燃比を境に出力値が急変する特性を持つ。なお触媒後空燃比センサ18は上流触媒11と下流触媒19の間に設置されている。 On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder, and the exhaust pipe 6 has catalysts 11, 19 made of a three-way catalyst having an oxygen storage capacity. Are attached in series. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 6. Air-fuel ratio sensors for detecting the air-fuel ratio of exhaust gas, that is, a pre-catalyst air-fuel ratio sensor 17 and a post-catalyst air-fuel ratio sensor 18 are installed on the upstream side and the downstream side of the upstream catalyst 11, respectively. The pre-catalyst air-fuel ratio sensor 17 is a so-called wide-area air-fuel ratio sensor, can continuously detect an air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio. On the other hand, the post-catalyst air-fuel ratio sensor 18 is a so-called O 2 sensor and has a characteristic that the output value changes suddenly at the theoretical air-fuel ratio. The post-catalyst air-fuel ratio sensor 18 is installed between the upstream catalyst 11 and the downstream catalyst 19.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前空燃比センサ17、触媒後空燃比センサ18のほか、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. In addition to the air flow meter 5, the pre-catalyst air-fuel ratio sensor 17, and the post-catalyst air-fuel ratio sensor 18, the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the internal combustion engine 1, an accelerator opening, as shown in the figure. The accelerator opening sensor 15 for detecting the above and other various sensors are electrically connected via an A / D converter or the like (not shown). The ECU 20 controls the ignition plug 7, the throttle valve 10, the injector 12, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

触媒11,19は、これに流入する排気ガスの空燃比A/Fが理論空燃比(ストイキ、例えばA/Fs=14.6)のときにNOx ,HCおよびCOを同時に高効率で浄化する。そしてこれに対応して、ECU20は、内燃機関の通常運転時、燃焼室3内の混合気ひいては上流触媒11に流入する排気ガスの空燃比(触媒前空燃比)A/Ffrが理論空燃比に一致するように、空燃比を制御する。具体的にはECU20は、理論空燃比に等しい目標空燃比A/Ftを設定すると共に、触媒前空燃比センサ17により検出された触媒前空燃比A/Ffrが目標空燃比A/Ftに一致するように、インジェクタ12から噴射される燃料噴射量をフィードバック制御する。これにより触媒11に流入する排気ガスの空燃比は理論空燃比近傍に保たれ、触媒11において最大の浄化性能が発揮されるようになる。   The catalysts 11 and 19 simultaneously purify NOx, HC and CO with high efficiency when the air-fuel ratio A / F of the exhaust gas flowing into the catalysts 11 and 19 is the stoichiometric air-fuel ratio (stoichiometric, for example, A / Fs = 14.6). Correspondingly, during normal operation of the internal combustion engine, the ECU 20 sets the air-fuel ratio (pre-catalyst air-fuel ratio) A / Ffr of the air-fuel mixture in the combustion chamber 3 and the exhaust gas flowing into the upstream catalyst 11 to the stoichiometric air-fuel ratio. The air-fuel ratio is controlled so as to match. Specifically, the ECU 20 sets a target air-fuel ratio A / Ft equal to the theoretical air-fuel ratio, and the pre-catalyst air-fuel ratio A / Ffr detected by the pre-catalyst air-fuel ratio sensor 17 matches the target air-fuel ratio A / Ft. As described above, the amount of fuel injected from the injector 12 is feedback-controlled. As a result, the air-fuel ratio of the exhaust gas flowing into the catalyst 11 is kept in the vicinity of the theoretical air-fuel ratio, and the maximum purification performance is exhibited in the catalyst 11.

ここで上流触媒11についてより詳細に説明する。なお以下の説明は下流触媒19にも同様に当てはまる。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で保持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸収放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeO2やジルコニアからなる。例えば、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリッチであると、触媒成分32の周囲に存在する酸素吸蔵成分に吸蔵されていた酸素が放出され、この結果、放出された酸素によりHCおよびCOといった未燃成分が酸化され、浄化される。逆に、触媒成分32及びコート材31の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元浄化される。 Here, the upstream catalyst 11 will be described in more detail. The following description applies to the downstream catalyst 19 as well. As shown in FIG. 2, in the catalyst 11, a coating material 31 is coated on the surface of a carrier base material (not shown), and the coating material 31 is held in a state in which a large number of particulate catalyst components 32 are dispersedly arranged. The catalyst 11 is exposed inside. The catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point for reacting exhaust gas components such as NOx, HC and CO. On the other hand, the coating material 31 plays the role of a promoter that promotes the reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas. The oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. For example, if the atmosphere gas of the catalyst component 32 and the coating material 31 is richer than the stoichiometric air-fuel ratio, the oxygen stored in the oxygen storage component present around the catalyst component 32 is released, and as a result, the released oxygen As a result, unburned components such as HC and CO are oxidized and purified. On the contrary, when the atmosphere gas of the catalyst component 32 and the coating material 31 is leaner than the stoichiometric air-fuel ratio, the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmosphere gas, and as a result, NOx is reduced and purified. The

このような酸素吸放出作用により、通常の空燃比制御の際に触媒前空燃比A/Ffrが理論空燃比に対し多少ばらついたとしても、NOx、HCおよびCOといった三つの排気ガス成分を同時浄化することができる。よって通常の空燃比制御において、触媒前空燃比A/Ffrを敢えて理論空燃比を中心に微小振動させ、酸素の吸放出を繰り返させることにより排ガス浄化を行うことも可能である。   By such an oxygen absorption / release action, even if the pre-catalyst air-fuel ratio A / Ffr slightly varies from the stoichiometric air-fuel ratio during normal air-fuel ratio control, three exhaust gas components such as NOx, HC and CO are simultaneously purified. can do. Therefore, in normal air-fuel ratio control, it is also possible to purify the exhaust gas by making the pre-catalyst air-fuel ratio A / Ffr oscillate minutely around the theoretical air-fuel ratio and repeating the absorption and release of oxygen.

ところで、新品状態の触媒11では前述したように細かい粒子状の触媒成分32が多数均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率の低下を引き起こし、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。   By the way, in the catalyst 11 in the new state, as described above, a large number of fine particulate catalyst components 32 are uniformly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). In this case, the contact probability between the exhaust gas and the catalyst component 32 is lowered, and the purification rate is lowered. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.

このように、触媒11の劣化度と触媒11の持つ酸素吸蔵能の低下度とは相関関係にある。そこで本実施形態では、特にエミッションへの影響が大きい上流触媒11の酸素吸蔵能を検出することにより、上流触媒11の劣化度を検出することとしている。ここで、触媒11の酸素吸蔵能は、現状の触媒11が吸蔵し得る最大酸素量である酸素吸蔵容量(OSC;O2 Strage Capacity、単位はg)の大きさによって表される。 Thus, the degree of deterioration of the catalyst 11 and the degree of decrease in the oxygen storage capacity of the catalyst 11 are in a correlation. Therefore, in the present embodiment, the deterioration degree of the upstream catalyst 11 is detected by detecting the oxygen storage capacity of the upstream catalyst 11 that has a particularly large influence on the emission. Here, the oxygen storage capacity of the catalyst 11 is represented by the size of the oxygen storage capacity (OSC; O 2 Strage Capacity, the unit is g), which is the maximum amount of oxygen that the current catalyst 11 can store.

本実施形態の触媒劣化診断は前述のCmax法によるものを基本とする。そして触媒11の劣化診断に際しては、ECU20によりアクティブ空燃比制御が実行される。アクティブ空燃比制御において、混合気の空燃比ひいては触媒前空燃比A/Ffrは、所定の中心空燃比A/Fcを境にリッチ側及びリーン側にアクティブに(強制的に)交互に切り替えられる。なおリッチ側に切り替えられているときの空燃比をリッチ空燃比A/Fr、リーン側に切り替えられているときの空燃比をリーン空燃比A/Flと称す。このアクティブ空燃比制御によって触媒前空燃比A/Ffrがリッチ側又はリーン側に切り替えられている最中に触媒の酸素吸蔵容量OSCが計測される。   The catalyst deterioration diagnosis of the present embodiment is basically based on the Cmax method described above. When the deterioration diagnosis of the catalyst 11 is performed, the active air-fuel ratio control is executed by the ECU 20. In the active air-fuel ratio control, the air-fuel ratio of the air-fuel mixture, and thus the pre-catalyst air-fuel ratio A / Ffr, is switched alternately (forcedly) to the rich side and the lean side at a predetermined center air-fuel ratio A / Fc. The air-fuel ratio when switched to the rich side is referred to as rich air-fuel ratio A / Fr, and the air-fuel ratio when switched to the lean side is referred to as lean air-fuel ratio A / Fl. While the pre-catalyst air-fuel ratio A / Ffr is switched to the rich side or the lean side by this active air-fuel ratio control, the oxygen storage capacity OSC of the catalyst is measured.

触媒11の劣化診断は、内燃機関1の定常運転時で且つ触媒11が活性温度域にあるときに実行される。触媒11の温度(触媒床温)の計測については、温度センサを用いて直接検出してもよいが、本実施形態の場合内燃機関の運転状態から推定することとしている。例えばECU20は、エアフローメータ5によって検出される吸入空気量Gaに基づいて、予め設定されたマップを利用し、触媒11の温度Tcを推定する。なお、吸入空気量Ga以外のパラメータ、例えばエンジン回転速度Ne(rpm)などを触媒温度推定に用いるパラメータに含めてもよい。   The deterioration diagnosis of the catalyst 11 is executed during steady operation of the internal combustion engine 1 and when the catalyst 11 is in the active temperature range. Measurement of the temperature of the catalyst 11 (catalyst bed temperature) may be detected directly using a temperature sensor, but in the present embodiment, it is estimated from the operating state of the internal combustion engine. For example, the ECU 20 estimates the temperature Tc of the catalyst 11 using a preset map based on the intake air amount Ga detected by the air flow meter 5. It should be noted that parameters other than the intake air amount Ga, for example, the engine rotational speed Ne (rpm) may be included in the parameters used for the catalyst temperature estimation.

図3(A),(B)にはそれぞれ、アクティブ空燃比制御実行時における触媒前空燃比センサ17及び触媒後空燃比センサ18の出力が実線で示されている。また、図3(A)には、ECU20内部で発生される目標空燃比A/Ftが破線で示されている。触媒前空燃比センサ17及び触媒後空燃比センサ18の出力値はそれぞれ触媒前空燃比A/Ffr及び触媒後空燃比A/Frrの値に対応する。   3A and 3B, the outputs of the pre-catalyst air-fuel ratio sensor 17 and the post-catalyst air-fuel ratio sensor 18 when the active air-fuel ratio control is executed are indicated by solid lines. In FIG. 3A, the target air-fuel ratio A / Ft generated inside the ECU 20 is indicated by a broken line. The output values of the pre-catalyst air-fuel ratio sensor 17 and the post-catalyst air-fuel ratio sensor 18 correspond to the values of the pre-catalyst air-fuel ratio A / Ffr and the post-catalyst air-fuel ratio A / Frr, respectively.

図3(A)に示されるように、目標空燃比A/Ftは、中心空燃比としての理論空燃比(ストイキ)A/Fsを中心として、そこからリッチ側に所定の振幅(リッチ振幅Ar、Ar>0)だけ離れた空燃比(リッチ空燃比A/Fr)と、そこからリーン側に所定の振幅(リーン振幅Al、Al>0)だけ離れた空燃比(リーン空燃比A/Fl)とに強制的に、且つ交互に切り替えられる。そしてこの目標空燃比A/Ftの切り替えに追従して、実際値としての触媒前空燃比A/Ffrも、目標空燃比A/Ftに対し僅かな時間遅れを伴って切り替わる。このことから目標空燃比A/Ftと触媒前空燃比A/Ffrとは時間遅れがあること以外等価であることが理解されよう。   As shown in FIG. 3A, the target air-fuel ratio A / Ft is centered on the stoichiometric air-fuel ratio (stoichiometric) A / Fs as the center air-fuel ratio, and a predetermined amplitude (rich amplitude Ar, An air-fuel ratio (rich air-fuel ratio A / Fr) separated by Ar> 0), and an air-fuel ratio (lean air-fuel ratio A / Fl) separated from it by a predetermined amplitude (lean amplitude Al, Al> 0) Forcibly and alternately. Following the switching of the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ffr as an actual value is also switched with a slight time delay with respect to the target air-fuel ratio A / Ft. From this, it will be understood that the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ffr are equivalent except that there is a time delay.

図示例においてリッチ振幅Arとリーン振幅Alとは等しい。例えば理論空燃比A/Fs=14.6、リッチ空燃比A/Fr=14.1、リーン空燃比A/Fl=15.1、リッチ振幅Ar=リーン振幅Al=0.5である。通常の空燃比制御の場合に比べ、アクティブ空燃比制御の場合は空燃比の振り幅が大きく、即ちリッチ振幅Arとリーン振幅Alとの値は大きい。   In the illustrated example, the rich amplitude Ar and the lean amplitude Al are equal. For example, theoretical air fuel ratio A / Fs = 14.6, rich air fuel ratio A / Fr = 14.1, lean air fuel ratio A / Fl = 15.1, rich amplitude Ar = lean amplitude Al = 0.5. Compared with the normal air-fuel ratio control, the active air-fuel ratio control has a larger amplitude of the air-fuel ratio, that is, the values of the rich amplitude Ar and the lean amplitude Al are larger.

ところで、目標空燃比A/Ftが切り替えられるタイミングは、触媒後空燃比センサ18の出力がリッチからリーンに、又はリーンからリッチに切り替わるタイミングである。ここで図示されるように触媒後空燃比センサ18の出力電圧は理論空燃比A/Fsを境に急変し、触媒後空燃比A/Frrが理論空燃比A/Fsより小さいリッチ側の空燃比であるときその出力電圧がリッチ判定値VR以上となり、触媒後空燃比A/Frrが理論空燃比A/Fsより大きいリーン側の空燃比であるときその出力電圧がリーン判定値VL以下となる。ここでVR>VLであり、例えばVR=0.59(V)、VL=0.21(V)である。   By the way, the timing at which the target air-fuel ratio A / Ft is switched is the timing at which the output of the post-catalyst air-fuel ratio sensor 18 is switched from rich to lean, or from lean to rich. As shown in the drawing, the output voltage of the post-catalyst air-fuel ratio sensor 18 changes suddenly at the stoichiometric air-fuel ratio A / Fs, and the rich-side air-fuel ratio is smaller than the stoichiometric air-fuel ratio A / Fs. The output voltage becomes greater than or equal to the rich determination value VR. When the post-catalyst air-fuel ratio A / Frr is the lean air-fuel ratio greater than the theoretical air-fuel ratio A / Fs, the output voltage becomes less than the lean determination value VL. Here, VR> VL, for example, VR = 0.59 (V) and VL = 0.21 (V).

図3(A),(B)に示されるように、触媒後空燃比センサ18の出力電圧がリッチ側の値からリーン側に変化してリーン判定値VLに等しくなった時(時刻t1)、目標空燃比A/Ftはリーン空燃比A/Flからリッチ空燃比A/Frに切り替えられる。その後、触媒後空燃比センサ18の出力電圧がリーン側の値からリッチ側に変化してリッチ判定値VRに等しくなった時(時刻t2)、目標空燃比A/Ftはリッチ空燃比A/Frからリーン空燃比A/Flに切り替えられる。このように、触媒後空燃比センサ18によって検出された触媒後空燃比A/Frrがリーン側又はリッチ側に反転する毎に空燃比がリッチ側又はリーン側にアクティブに切替制御される。   As shown in FIGS. 3A and 3B, when the output voltage of the post-catalyst air-fuel ratio sensor 18 changes from the rich side value to the lean side and becomes equal to the lean determination value VL (time t1), The target air-fuel ratio A / Ft is switched from the lean air-fuel ratio A / Fl to the rich air-fuel ratio A / Fr. Thereafter, when the output voltage of the post-catalyst air-fuel ratio sensor 18 changes from the lean value to the rich side and becomes equal to the rich determination value VR (time t2), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A / Fr. To a lean air-fuel ratio A / Fl. In this way, every time the post-catalyst air-fuel ratio A / Frr detected by the post-catalyst air-fuel ratio sensor 18 is reversed to the lean side or the rich side, the air-fuel ratio is actively switched to the rich side or the lean side.

このような空燃比変化を行うアクティブ空燃比制御を実行しつつ、次のようにして触媒11の酸素吸蔵容量OSCが計測され、触媒11の劣化が判定される。   While performing the active air-fuel ratio control that performs such an air-fuel ratio change, the oxygen storage capacity OSC of the catalyst 11 is measured as follows, and the deterioration of the catalyst 11 is determined.

図3を参照して、時刻t1より前では目標空燃比A/Ftがリーン空燃比A/Flとされ、触媒11にはリーンガスが流入されている。このとき触媒11では酸素を吸収し続けているが、一杯に酸素を吸収した時点でそれ以上酸素を吸収できなくなり、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frrがリーン側に変化し、触媒後空燃比センサ18の出力電圧がリーン判定値VLに達した時点(t1)で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられ、或いは反転される。   Referring to FIG. 3, the target air-fuel ratio A / Ft is set to the lean air-fuel ratio A / Fl before time t1, and the lean gas flows into the catalyst 11. At this time, the catalyst 11 continues to absorb oxygen, but when it fully absorbs oxygen, it can no longer absorb oxygen, and the lean gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Frr changes to the lean side, and when the output voltage of the post-catalyst air-fuel ratio sensor 18 reaches the lean determination value VL (t1), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A. Switched to / Fr or inverted.

そして今度は触媒11にリッチガスが流入されることとなる。このとき触媒11では、それまで吸蔵されていた酸素が放出され続ける。よって触媒11の下流側にはほぼ理論空燃比A/Fsの排気ガスが流出し、触媒後空燃比A/Frrがリッチにならないことから、触媒後空燃比センサ18の出力は反転しない。触媒11から酸素が放出され続けるとやがて触媒11からは全ての吸蔵酸素が放出され尽くし、その時点でそれ以上酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後空燃比A/Frrがリッチ側に変化し、触媒後空燃比センサ18の出力電圧がリッチ判定値VRに達した時点(t2)で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。   This time, rich gas flows into the catalyst 11. At this time, the oxygen stored in the catalyst 11 continues to be released from the catalyst 11. Therefore, the exhaust gas of the theoretical air-fuel ratio A / Fs flows out to the downstream side of the catalyst 11 and the post-catalyst air-fuel ratio A / Frr does not become rich, so the output of the post-catalyst air-fuel ratio sensor 18 is not reversed. When oxygen is continuously released from the catalyst 11, all the stored oxygen is eventually released from the catalyst 11, and at that time, oxygen can no longer be released, and rich gas flows through the catalyst 11 and flows downstream of the catalyst 11. When this happens, the post-catalyst air-fuel ratio A / Frr changes to the rich side, and the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A when the output voltage of the post-catalyst air-fuel ratio sensor 18 reaches the rich determination value VR (t2). / Fl.

酸素吸蔵容量OSCが大きいほど、酸素を吸収或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は目標空燃比A/Ftの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほど目標空燃比A/Ftの反転周期は短くなる。   The larger the oxygen storage capacity OSC, the longer the time during which oxygen can be absorbed or released. That is, when the catalyst is not deteriorated, the inversion cycle of the target air-fuel ratio A / Ft (for example, the time from t1 to t2) becomes longer, and the inversion cycle of the target air-fuel ratio A / Ft becomes shorter as the deterioration of the catalyst proceeds. .

そこで、このことを利用して酸素吸蔵容量OSCが以下のようにして計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffrがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t11から、次に目標空燃比A/Ftが反転する時点t2まで、次式(1)により、所定の微小時間毎の酸素吸蔵容量dOSC(酸素吸蔵容量の瞬時値)が算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが時刻t11から時刻t2まで積算される。こうしてこの酸素放出サイクルにおける酸素吸蔵容量即ち放出酸素量が計測される。   Therefore, using this fact, the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ffr as the actual value is slightly delayed with the rich air-fuel ratio A / Fr. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ffr reaches the theoretical air-fuel ratio A / Fs to the time t2 when the target air-fuel ratio A / Ft next reverses, the following equation (1) An oxygen storage capacity dOSC (instantaneous value of the oxygen storage capacity) is calculated, and the oxygen storage capacity dOSC for each minute time is integrated from time t11 to time t2. Thus, the oxygen storage capacity, that is, the amount of released oxygen in this oxygen release cycle is measured.

Figure 2009191787
Figure 2009191787

ここで、Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。Kは空気に含まれる酸素割合(約0.23)を表す定数である。   Here, Q is a fuel injection amount. When the air-fuel ratio difference ΔA / F is multiplied by the fuel injection amount Q, an air amount that is insufficient or excessive with respect to the stoichiometry can be calculated. K is a constant representing the proportion of oxygen contained in air (about 0.23).

基本的には、この1回で計測された酸素吸蔵容量OSCを用い、これを所定の劣化判定値OSCsと比較し、酸素吸蔵容量OSCが劣化判定値OSCsを超えていれば正常、酸素吸蔵容量OSCが劣化判定値OSCs以下ならば劣化、というように触媒の劣化を判定できる。しかしながら、本実施形態では精度を向上させるため、目標空燃比A/Ftがリーン側となっている酸素吸蔵サイクルでも同様に酸素吸蔵容量(この場合吸蔵酸素量)を計測し、これら酸素吸蔵容量の平均値を1吸放出サイクルに係る1単位の酸素吸蔵容量として計測している。そしてさらに、吸放出サイクルを複数回繰り返し、複数単位の酸素吸蔵容量の値を得、その平均値を最終的な酸素吸蔵容量計測値としている。   Basically, the oxygen storage capacity OSC measured at one time is used and compared with a predetermined deterioration judgment value OSCs. If the oxygen storage capacity OSC exceeds the deterioration judgment value OSCs, the oxygen storage capacity is normal. If the OSC is equal to or lower than the deterioration determination value OSCs, the deterioration of the catalyst can be determined such as deterioration. However, in this embodiment, in order to improve the accuracy, the oxygen storage capacity (the stored oxygen amount in this case) is also measured in the oxygen storage cycle in which the target air-fuel ratio A / Ft is on the lean side. The average value is measured as an oxygen storage capacity of one unit related to one absorption / release cycle. Further, the absorption / release cycle is repeated a plurality of times to obtain a value of oxygen storage capacity of a plurality of units, and the average value is used as the final oxygen storage capacity measurement value.

酸素吸蔵サイクルにおける酸素吸蔵容量(酸素吸蔵量)の計測については、図4に示すように、時刻t2で目標空燃比A/Ftがリーン空燃比A/Flに切り替えられた後、触媒前空燃比A/Ffrが理論空燃比A/Fsに達した時点t21から、次に目標空燃比A/Ftがリッチ側に反転する時点t3まで、前式(1)により微小時間毎の酸素吸蔵容量dOSCが算出され、且つこの微小時間毎の酸素吸蔵容量dOSCが積算される。こうしてこの酸素吸蔵サイクルにおける酸素吸蔵容量OSC即ち吸蔵酸素量(図4のOSC2)が計測される。酸素放出サイクルの酸素吸蔵容量OSC1と酸素吸蔵サイクルの酸素吸蔵容量OSC2とはほぼ等しい値となるのが理想的である。   Regarding the measurement of the oxygen storage capacity (oxygen storage amount) in the oxygen storage cycle, as shown in FIG. 4, after the target air-fuel ratio A / Ft is switched to the lean air-fuel ratio A / Fl at time t2, the pre-catalyst air-fuel ratio is measured. From time t21 when A / Ffr reaches the theoretical air-fuel ratio A / Fs to time t3 when the target air-fuel ratio A / Ft reverses to the rich side next, the oxygen storage capacity dOSC for each minute time is calculated from the previous equation (1). The calculated oxygen storage capacity dOSC for each minute time is integrated. Thus, the oxygen storage capacity OSC, that is, the amount of stored oxygen (OSC2 in FIG. 4) in this oxygen storage cycle is measured. Ideally, the oxygen storage capacity OSC1 of the oxygen release cycle and the oxygen storage capacity OSC2 of the oxygen storage cycle are substantially equal to each other.

次に、この酸素吸蔵容量計測値を用いて触媒の劣化判定がなされる。即ち、酸素吸蔵容量計測値OSCが所定の劣化判定値OSCsと比較され、酸素吸蔵容量計測値OSCが劣化判定値OSCsより大きければ触媒は正常、酸素吸蔵容量計測値OSCが劣化判定値OSCs以下ならば触媒は劣化と判定される。なお、触媒が劣化と判定された場合、その事実をユーザに知らせるため、チェックランプ等の警告装置を起動させるのが好ましい。以上が触媒劣化診断の基本的な内容である。   Next, the deterioration of the catalyst is determined using the measured oxygen storage capacity. That is, the oxygen storage capacity measurement value OSC is compared with the predetermined deterioration determination value OSCs. If the oxygen storage capacity measurement value OSC is larger than the deterioration determination value OSCs, the catalyst is normal, and if the oxygen storage capacity measurement value OSC is less than or equal to the deterioration determination value OSCs. The catalyst is judged to be deteriorated. When it is determined that the catalyst is deteriorated, it is preferable to activate a warning device such as a check lamp in order to notify the user of the fact. The above is the basic content of the catalyst deterioration diagnosis.

次に、本実施形態における燃料性状判定、特に燃料の硫黄濃度の推定について説明する。   Next, the fuel property determination in this embodiment, particularly the estimation of the sulfur concentration of the fuel will be described.

本発明者らは、アクティブ空燃比制御中の触媒前空燃比センサ17と触媒後空燃比センサ18との出力変化が燃料の硫黄濃度によってどのように変わるかを調べた。ここで予め使用が予定されている硫黄濃度が低い燃料、即ち硫黄濃度が所定値以下の燃料を通常燃料という。また硫黄濃度が当該所定値よりも大きい燃料を高硫黄燃料という。   The present inventors investigated how the output changes of the pre-catalyst air-fuel ratio sensor 17 and the post-catalyst air-fuel ratio sensor 18 during active air-fuel ratio control change depending on the sulfur concentration of the fuel. Here, a fuel having a low sulfur concentration scheduled to be used in advance, that is, a fuel having a sulfur concentration equal to or lower than a predetermined value is referred to as a normal fuel. A fuel having a sulfur concentration higher than the predetermined value is referred to as a high sulfur fuel.

空燃比が理論空燃比よりもリッチ側に切り替えられているときの時間、具体的には目標空燃比A/Ftがリッチ空燃比A/Frに設定されているときの時間をリッチ時間TRという。このリッチ時間TRは図3に示すt1〜t2の期間に相当する。また空燃比が理論空燃比よりもリーン側に切り替えられているときの時間、具体的には目標空燃比A/Ftがリーン空燃比A/Flに設定されているときの時間をリーン時間TLという。このリーン時間TLは図3に示すt2〜t3の期間に相当する。これらリッチ時間TRとリーン時間TLとの比を時間比Hといい、ここではH=TR/TLで定義する。   The time when the air-fuel ratio is switched to the richer side than the stoichiometric air-fuel ratio, specifically, the time when the target air-fuel ratio A / Ft is set to the rich air-fuel ratio A / Fr is referred to as a rich time TR. The rich time TR corresponds to the period from t1 to t2 shown in FIG. Further, the time when the air-fuel ratio is switched to the lean side from the stoichiometric air-fuel ratio, specifically, the time when the target air-fuel ratio A / Ft is set to the lean air-fuel ratio A / Fl is referred to as a lean time TL. . This lean time TL corresponds to the period from t2 to t3 shown in FIG. The ratio between the rich time TR and the lean time TL is referred to as a time ratio H, which is defined as H = TR / TL.

試験結果によれば、図3に示すように、通常燃料の場合のリーン時間TLと高硫黄燃料の場合のリーン時間TL’とはそれほど変わらないが、通常燃料の場合のリッチ時間TRと高硫黄燃料の場合のリッチ時間TR’との間には相違が見られ、高硫黄燃料の場合のリッチ時間TR’は通常燃料の場合のリッチ時間TRより顕著に短くなる傾向にあることが判明した。従って、通常燃料の場合より高硫黄燃料の場合の方が時間比Hの値が小さくなる。このように時間比Hは燃料の硫黄濃度に相関する値であるので、硫黄濃度を表すパラメータとしてリッチ時間TRとリーン時間TL、ひいては時間比Hを用いることにより、燃料の硫黄濃度の推定が可能である。   According to the test results, as shown in FIG. 3, the lean time TL for the normal fuel and the lean time TL ′ for the high sulfur fuel are not so different, but the rich time TR and the high sulfur for the normal fuel are not. It was found that there is a difference between the rich time TR ′ in the case of fuel and the rich time TR ′ in the case of high sulfur fuel tends to be significantly shorter than the rich time TR in the case of normal fuel. Therefore, the time ratio H is smaller in the case of high sulfur fuel than in the case of normal fuel. Since the time ratio H is a value that correlates with the sulfur concentration of the fuel in this way, the sulfur concentration of the fuel can be estimated by using the rich time TR and the lean time TL as a parameter representing the sulfur concentration, and hence the time ratio H. It is.

図5には燃料の硫黄濃度と時間比Hの関係を示す。図中白丸で示すように、時間比Hは燃料の硫黄濃度が高くなるほど小さくなる傾向にある。よって時間比Hに関する所定のしきい値Hsを定め、時間比Hがこのしきい値Hsを下回ったときに燃料が高硫黄燃料であると判定することができる。そしてかかる判定時、触媒劣化診断を中止するなど必要な措置を執ることにより、触媒劣化診断における誤診断を未然に防止することができる。   FIG. 5 shows the relationship between the fuel sulfur concentration and the time ratio H. As indicated by white circles in the figure, the time ratio H tends to decrease as the sulfur concentration of the fuel increases. Therefore, a predetermined threshold value Hs relating to the time ratio H is set, and when the time ratio H falls below the threshold value Hs, it can be determined that the fuel is a high sulfur fuel. At the time of such determination, by taking necessary measures such as canceling the catalyst deterioration diagnosis, it is possible to prevent erroneous diagnosis in the catalyst deterioration diagnosis.

なお、リッチ時間TR及びリーン時間TLが燃料硫黄濃度によって上述のように影響を受ける理由は次の通りと考えられる。まず空燃比がリーンで触媒に酸素が吸蔵されるときには、単にリーンガス中の酸素が触媒の酸素吸蔵成分に吸着されるメカニズムである。一方、高硫黄燃料であると、触媒の酸素吸蔵成分に硫黄成分が吸着され、その分酸素吸着量が減り、リーン時間TLは通常燃料時よりも若干小さくなる。しかしながら、硫黄の影響によって触媒中の反応速度即ち酸素吸着速度がそれほど低下させられる訳ではない。よって通常燃料から高硫黄燃料に変更した場合のリーン時間TLの低下代もそれほど大きくはならない。よって酸素吸蔵サイクルにおいて計測される酸素吸蔵容量OSCの値もそれほど低下しない。   The reason why the rich time TR and the lean time TL are affected by the fuel sulfur concentration as described above is considered as follows. First, when the air-fuel ratio is lean and oxygen is stored in the catalyst, this is simply a mechanism in which oxygen in the lean gas is adsorbed by the oxygen storage component of the catalyst. On the other hand, in the case of high-sulfur fuel, the sulfur component is adsorbed on the oxygen storage component of the catalyst, the amount of oxygen adsorption decreases accordingly, and the lean time TL becomes slightly shorter than that of normal fuel. However, the reaction rate in the catalyst, that is, the oxygen adsorption rate is not reduced so much by the influence of sulfur. Therefore, the reduction amount of the lean time TL when changing from the normal fuel to the high sulfur fuel is not so large. Therefore, the value of the oxygen storage capacity OSC measured in the oxygen storage cycle does not decrease so much.

ところが、空燃比がリッチで触媒から酸素が放出されるときには、触媒の酸素吸蔵成分に吸着された酸素が、貴金属からなる触媒成分32を介してリッチガスによって引き出され、且つリッチガスと反応するメカニズムである。一方、高硫黄燃料であると、触媒成分32及び酸素吸蔵成分が硫黄化合物によって被毒され、触媒成分32を介する反応速度及び酸素放出速度が顕著に低下し、反応で消費されなかったリッチガスが早いタイミングから触媒をすり抜けるようになる。よって通常燃料から高硫黄燃料に変更した場合のリッチ時間TRの低下代は大きく、酸素放出サイクルにおいて計測される酸素吸蔵容量OSCの値も大きく低下することになる。   However, when the air-fuel ratio is rich and oxygen is released from the catalyst, the oxygen adsorbed by the oxygen storage component of the catalyst is extracted by the rich gas via the catalyst component 32 made of noble metal and reacts with the rich gas. . On the other hand, in the case of a high sulfur fuel, the catalyst component 32 and the oxygen storage component are poisoned by the sulfur compound, the reaction rate and the oxygen release rate through the catalyst component 32 are remarkably reduced, and the rich gas not consumed in the reaction is fast. The catalyst will slip through the timing. Therefore, when the normal fuel is changed to the high sulfur fuel, the reduction time of the rich time TR is large, and the value of the oxygen storage capacity OSC measured in the oxygen release cycle is also greatly reduced.

以下、図6を参照しつつ、本実施形態における燃料性状判定処理の内容を説明する。図示するルーチンはECU20により所定周期(例えば16msec毎)で繰り返し実行される。   Hereinafter, the content of the fuel property determination process in the present embodiment will be described with reference to FIG. The illustrated routine is repeatedly executed by the ECU 20 at a predetermined cycle (for example, every 16 msec).

まずステップS101において、燃料性状判定処理をするのに適した前提条件が成立しているか否かが判断される。例えば、吸入空気量Ga及びエンジン回転速度Neの変動幅が所定範囲内であるなど、エンジンが定常運転状態にあり、且つ触媒11及び触媒前後空燃比センサ17,18が所定の活性温度に達していれば、前提条件成立となる。なお前提条件についてはこの例に限られない。前提条件が成立していない場合には処理が終了され、他方、前提条件が成立している場合にはステップS102に進む。   First, in step S101, it is determined whether or not a precondition suitable for performing the fuel property determination process is satisfied. For example, the fluctuation range of the intake air amount Ga and the engine rotation speed Ne is within a predetermined range, and the engine is in a steady operation state, and the catalyst 11 and the catalyst front-rear air-fuel ratio sensors 17 and 18 have reached a predetermined activation temperature. If so, the precondition is satisfied. Note that the precondition is not limited to this example. If the precondition is not satisfied, the process is terminated. On the other hand, if the precondition is satisfied, the process proceeds to step S102.

ステップS102では、前述の如きアクティブ空燃比制御が実行されると共に、このアクティブ空燃比制御中のリッチ時間TR及びリーン時間TLがそれぞれ計測、取得される。この場合、リッチ制御とリーン制御とを繰り返し行ってリッチ時間TR及びリーン時間TLを複数ずつ計測し、これらリッチ時間TR及びリーン時間TLの平均値を最終値とするのが好ましい。   In step S102, the active air-fuel ratio control as described above is executed, and the rich time TR and the lean time TL during the active air-fuel ratio control are measured and acquired, respectively. In this case, it is preferable that the rich time TR and the lean time TL are measured plural times by repeatedly performing the rich control and the lean control, and the average value of the rich time TR and the lean time TL is set as the final value.

次に、ステップS103において、これらリッチ時間TR及びリーン時間TLの比である時間比H=TR/TLが算出されると共に、この時間比Hが所定のしきい値Hsと比較される。   Next, in step S103, a time ratio H = TR / TL, which is a ratio of the rich time TR and the lean time TL, is calculated, and the time ratio H is compared with a predetermined threshold value Hs.

時間比Hがしきい値Hs以上のとき、ステップS104において、硫黄濃度が所定値以下の通常燃料が使用されていると判断され、処理が終了される。他方、時間比Hがしきい値Hsより小さいとき、ステップS105において、硫黄濃度が所定値より大きい高硫黄燃料が使用されていると判断され、処理が終了される。   When the time ratio H is equal to or greater than the threshold value Hs, it is determined in step S104 that normal fuel having a sulfur concentration equal to or less than a predetermined value is used, and the process is terminated. On the other hand, when the time ratio H is smaller than the threshold value Hs, it is determined in step S105 that a high sulfur fuel having a sulfur concentration larger than a predetermined value is used, and the process is terminated.

なお、この例では燃料を硫黄濃度が低いものと高いものとで二段階に区別するようにしたが、時間比Hに応じて無段階に区別するようにしてもよい。またリッチ時間TR及びリーン時間TLの比は前記時間比Hの逆数であるTL/TRを用いてもよい。この場合TL/TRが小さいほど燃料の硫黄濃度が高いと判定することになる。これらの変形例は後述する触媒劣化診断にも適用可能である。   In this example, the fuel is classified into two steps according to whether the sulfur concentration is low or high. However, the fuel may be distinguished steplessly according to the time ratio H. The ratio of the rich time TR and the lean time TL may be TL / TR which is the reciprocal of the time ratio H. In this case, the smaller the TL / TR, the higher the sulfur concentration of the fuel. These modifications can also be applied to catalyst deterioration diagnosis described later.

次に、図7を参照しつつ、本実施形態における触媒劣化診断処理の内容を説明する。図示するルーチンはECU20により所定周期(例えば16msec毎)で繰り返し実行される。   Next, the content of the catalyst deterioration diagnosis process in the present embodiment will be described with reference to FIG. The illustrated routine is repeatedly executed by the ECU 20 at a predetermined cycle (for example, every 16 msec).

まずステップS201では前記ステップS101同様に前提条件成立の有無が判断される。前提条件が成立していない場合には処理が終了され、前提条件が成立している場合にはステップS202に進む。   First, in step S201, whether or not the precondition is satisfied is determined as in step S101. If the precondition is not satisfied, the process is terminated. If the precondition is satisfied, the process proceeds to step S202.

ステップS202では、前記ステップS102同様にアクティブ空燃比制御が実行されると共にリッチ時間TR及びリーン時間TLが計測される。またこれに併せて、酸素吸蔵容量OSCの値が計測される。つまりリッチ時間TR及びリーン時間TLの計測と、酸素吸蔵容量OSCの計測とが同時に実行されることになる。   In step S202, active air-fuel ratio control is executed as in step S102, and the rich time TR and lean time TL are measured. At the same time, the value of the oxygen storage capacity OSC is measured. That is, the measurement of the rich time TR and the lean time TL and the measurement of the oxygen storage capacity OSC are performed simultaneously.

ステップS203では、前記ステップS103同様に時間比H=TR/TLが算出されると共に、この時間比Hが所定のしきい値Hsと比較される。時間比Hがしきい値Hs以上のときには、ステップS204において、硫黄濃度が所定値以下の通常燃料が使用されていると判断される。   In step S203, the time ratio H = TR / TL is calculated as in step S103, and the time ratio H is compared with a predetermined threshold value Hs. When the time ratio H is equal to or greater than the threshold value Hs, it is determined in step S204 that normal fuel having a sulfur concentration equal to or less than a predetermined value is being used.

他方、時間比Hがしきい値Hsより小さいときには、ステップS205において、硫黄濃度が所定値より大きい高硫黄燃料が使用されていると判断される。そしてステップS206において、酸素吸蔵容量計測値OSCに対し、時間比Hに基づく補正(燃料補正という)が実施される。即ちここでは燃料の硫黄濃度が高いと判定したとき、触媒劣化診断を中止するのではなく、酸素吸蔵容量計測値OSCを通常燃料の時に得られるような値に補正した上で(図5の破線円参照)触媒劣化診断を行うようにしている。こうすることで診断頻度をより多く確保できると共に、硫黄による影響を排除して誤診断を防止できる。   On the other hand, when the time ratio H is smaller than the threshold value Hs, it is determined in step S205 that a high sulfur fuel having a sulfur concentration larger than a predetermined value is being used. In step S206, the oxygen storage capacity measurement value OSC is corrected based on the time ratio H (referred to as fuel correction). That is, when it is determined that the sulfur concentration of the fuel is high, the catalyst deterioration diagnosis is not stopped, but the oxygen storage capacity measurement value OSC is corrected to a value that can be obtained when the fuel is normal (the broken line in FIG. 5). (Refer to circle) Diagnosis of catalyst deterioration is performed. In this way, more diagnostic frequency can be secured, and the influence of sulfur can be eliminated to prevent misdiagnosis.

なお、時間比Hと燃料の硫黄濃度とは互いに相関関係にあるので、時間比Hに基づき燃料の硫黄濃度を算出し、この硫黄濃度に基づき酸素吸蔵容量計測値OSCを補正してもよい。この場合にも、リッチ時間TRとリーン時間TLに基づき補正を行っていることに変わりはない。   Since the time ratio H and the sulfur concentration of the fuel are correlated with each other, the sulfur concentration of the fuel may be calculated based on the time ratio H, and the oxygen storage capacity measurement value OSC may be corrected based on the sulfur concentration. In this case, the correction is still performed based on the rich time TR and the lean time TL.

補正方法については、例えば酸素吸蔵容量計測値OSCに補正係数Bを乗算する方法と、酸素吸蔵容量計測値OSCに補正加算値Dを加算する方法とがある。なおこれら補正係数Bと補正加算値Dとを総じて補正量という。前者の方法を採用する場合、例えば図8に示すような、時間比Hと補正係数Bとの関係を定めたマップ(関数でもよい。以下同様。)を予め実験的に作成し、ECU20に記憶しておく。そして実際に得られた時間比Hから補正係数Bを算出し、この補正係数Bを酸素吸蔵容量計測値OSCに乗じて補正後の酸素吸蔵容量OSCを求める。図8に示すマップを用いる場合、H≧HsのときB=1.0で実質的に補正はなされず、H<Hsのとき一定の補正係数B=B1(>1.0)が酸素吸蔵容量計測値OSCに乗じられて補正が行われる。   The correction method includes, for example, a method of multiplying the oxygen storage capacity measurement value OSC by the correction coefficient B and a method of adding the correction addition value D to the oxygen storage capacity measurement value OSC. The correction coefficient B and the correction addition value D are collectively referred to as a correction amount. When the former method is adopted, for example, a map (function may be used. The same applies hereinafter) that defines the relationship between the time ratio H and the correction coefficient B as shown in FIG. Keep it. Then, the correction coefficient B is calculated from the actually obtained time ratio H, and the corrected oxygen storage capacity OSC is obtained by multiplying the correction coefficient B by the oxygen storage capacity measurement value OSC. When the map shown in FIG. 8 is used, when H ≧ Hs, B = 1.0 is not substantially corrected, and when H <Hs, a constant correction coefficient B = B1 (> 1.0) is an oxygen storage capacity. Correction is performed by multiplying the measured value OSC.

このマップの代わりに、図9に示すようなマップを用いてもよい。この場合、H≧HsのときB=1.0である点は同じであり、他方、H<Hsのときには時間比Hが小なるほど(つまり燃料の硫黄濃度が高くなるほど)大きくなる補正係数Bが用いられる。   Instead of this map, a map as shown in FIG. 9 may be used. In this case, the point that B = 1.0 is the same when H ≧ Hs. On the other hand, when H <Hs, the correction coefficient B increases as the time ratio H decreases (that is, the fuel sulfur concentration increases). Used.

一方、後者の補正加算値Dを加算する方法を採用する場合、例えば図10に示すようなマップを用いて補正加算値Dを算出することができる。ここではH≧HsのときD=0で実質的に補正はなされず、H<Hsのとき一定の補正加算値D=D1(>0)が酸素吸蔵容量計測値OSCに加算されて補正が行われる。   On the other hand, when the latter method of adding the correction addition value D is employed, the correction addition value D can be calculated using, for example, a map as shown in FIG. Here, when H ≧ Hs, D = 0 is not substantially corrected, and when H <Hs, a constant correction addition value D = D1 (> 0) is added to the oxygen storage capacity measurement value OSC to perform correction. Is called.

このマップの代わりに、図11に示すようなマップを用いてもよい。この場合、H≧HsのときD=0である点は同じであり、他方、H<Hsのときには時間比Hが小なるほど(つまり燃料の硫黄濃度が高くなるほど)大きくなる補正加算値Dが用いられる。   Instead of this map, a map as shown in FIG. 11 may be used. In this case, the point that D = 0 is the same when H ≧ Hs. On the other hand, when H <Hs, the corrected addition value D is used which increases as the time ratio H decreases (that is, as the fuel sulfur concentration increases). It is done.

さて、図7に戻って、ステップS204又はS206の後はステップS207に進み、酸素吸蔵容量計測値OSC(ステップS206を経た場合は補正後の値)が所定の劣化判定値OSCsと比較される。   Now, referring back to FIG. 7, after step S204 or S206, the process proceeds to step S207, where the oxygen storage capacity measurement value OSC (or the corrected value after step S206) is compared with a predetermined deterioration determination value OSCs.

OSC>OSCsならば、ステップS208にて触媒11は正常と判定され、OSC≦OSCsならば触媒11は劣化と判定される。触媒劣化と判定されたときにはユーザに触媒の交換を促すため、チェックランプ等の警告装置が作動させられ、同時に触媒劣化に対応した診断コードがECU20に記憶される。   If OSC> OSCs, the catalyst 11 is determined to be normal in step S208, and if OSC ≦ OSCs, the catalyst 11 is determined to be degraded. When it is determined that the catalyst has deteriorated, a warning device such as a check lamp is activated to prompt the user to replace the catalyst, and at the same time, a diagnostic code corresponding to the catalyst deterioration is stored in the ECU 20.

好ましくは、触媒の正常・劣化に拘わらず、ステップS205で高硫黄燃料使用中と判定されたときにも、チェックランプ等の警告装置が作動させられる。これはユーザに燃料の交換や触媒の硫黄被毒再生を促すためである。ECU20には高硫黄燃料使用に対応した診断コードが記憶される。例えば触媒正常時に高硫黄燃料使用による警告がなされたとき、ユーザがディーラーに車両を搬送すると、ディーラーでは診断コードに基づきその事実を確認できる。そして触媒を交換せず、しかしながら燃料交換と触媒の硫黄被毒再生を行って(或いはユーザにこれらを行うよう指示して)エンジン及び触媒を元の正常な状態に復帰させることができる。   Preferably, regardless of whether the catalyst is normal or deteriorated, a warning device such as a check lamp is also activated when it is determined in step S205 that the high sulfur fuel is being used. This is for urging the user to replace the fuel or to regenerate the catalyst with sulfur poisoning. The ECU 20 stores a diagnostic code corresponding to the use of high sulfur fuel. For example, when a warning is given due to the use of high sulfur fuel when the catalyst is normal, when the user transports the vehicle to the dealer, the dealer can confirm the fact based on the diagnostic code. Then, without replacing the catalyst, however, the engine and the catalyst can be returned to their original normal state by performing fuel replacement and sulfur poisoning regeneration of the catalyst (or instructing the user to perform these).

このように本実施形態によれば、空燃比がリッチ側に切り替えられているときのリッチ時間TRと空燃比がリーン側に切り替えられているときのリーン時間TLとに基づき燃料の硫黄濃度を推定するので、触媒下流側の触媒後空燃比センサ18の出力絶対値のみに頼らずに燃料の硫黄濃度を推定できる。よって、触媒後空燃比センサ18の製造ばらつき等に影響を受けづらくなり、硫黄濃度を正確に推定し且つ精度及び信頼性の高い燃料性状判定を実施することができる。また、燃料の硫黄濃度推定に際して触媒の酸素吸蔵容量を計測する必要がないので、簡便な方法で燃料性状判定を実施することができる。さらに、リッチ時間TR及びリーン時間TL、又はこれらに基づいて推定された燃料の硫黄濃度に基づいて酸素吸蔵容量計測値を補正し、この補正された酸素吸蔵容量計測値に基づいて触媒劣化診断を実行するので、硫黄影響のない酸素吸蔵容量の値に基づいて触媒劣化診断を実行できる。よって誤診断を未然に防止できると共に、診断を中止する場合に比べて診断頻度をより多く確保することができる。   As described above, according to the present embodiment, the sulfur concentration of the fuel is estimated based on the rich time TR when the air-fuel ratio is switched to the rich side and the lean time TL when the air-fuel ratio is switched to the lean side. Therefore, the sulfur concentration of the fuel can be estimated without relying only on the output absolute value of the post-catalyst air-fuel ratio sensor 18 on the downstream side of the catalyst. Therefore, it becomes difficult to be influenced by manufacturing variations of the post-catalyst air-fuel ratio sensor 18 and the like, and it is possible to accurately estimate the sulfur concentration and perform highly accurate and reliable fuel property determination. Further, since it is not necessary to measure the oxygen storage capacity of the catalyst when estimating the sulfur concentration of the fuel, the fuel property can be determined by a simple method. Further, the oxygen storage capacity measurement value is corrected based on the rich time TR and the lean time TL, or the sulfur concentration of the fuel estimated based on these, and the catalyst deterioration diagnosis is performed based on the corrected oxygen storage capacity measurement value. Since it performs, a catalyst deterioration diagnosis can be performed based on the value of the oxygen storage capacity without the influence of sulfur. Therefore, misdiagnosis can be prevented in advance, and more diagnosis frequency can be secured as compared with the case where the diagnosis is stopped.

以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば、内燃機関の用途や形式は任意であり、例えば車両用以外であってもよいし、直噴式等であってもよい。触媒後空燃比センサに触媒前空燃比センサと同様の広域空燃比センサを用いてもよいし、触媒前空燃比センサに触媒後空燃比センサと同様のO2センサを用いてもよい。これら広域空燃比センサやO2センサを含め、広く、排気空燃比を検出するセンサを空燃比センサということとする。 Although the embodiment of the present invention has been described in detail above, various other embodiments of the present invention are conceivable. For example, the use and type of the internal combustion engine are arbitrary, and may be other than for vehicles, for example, a direct injection type or the like. A wide-area air-fuel ratio sensor similar to the pre-catalyst air-fuel ratio sensor may be used as the post-catalyst air-fuel ratio sensor, or an O 2 sensor similar to the post-catalyst air-fuel ratio sensor may be used as the pre-catalyst air-fuel ratio sensor. A wide range of sensors that detect the exhaust air-fuel ratio, including these wide-range air-fuel ratio sensors and O 2 sensors, are referred to as air-fuel ratio sensors.

本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The present invention includes all modifications, applications, and equivalents included in the spirit of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明の実施形態の構成を示す概略図である。It is the schematic which shows the structure of embodiment of this invention. 触媒の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a catalyst. アクティブ空燃比制御を説明するためのタイムチャートである。It is a time chart for demonstrating active air fuel ratio control. 図3と同様のタイムチャートであり、酸素吸蔵容量の計測方法を説明するための図である。FIG. 4 is a time chart similar to FIG. 3 for illustrating a method for measuring the oxygen storage capacity. 燃料の硫黄濃度と時間比の関係を示すグラフである。It is a graph which shows the relationship between the sulfur concentration of fuel, and time ratio. 燃料性状判定処理のフローチャートである。It is a flowchart of a fuel property determination process. 触媒劣化診断処理のフローチャートである。It is a flowchart of a catalyst deterioration diagnosis process. 補正係数算出マップの一例を示す。An example of a correction coefficient calculation map is shown. 補正係数算出マップの他の例を示す。The other example of a correction coefficient calculation map is shown. 補正加算値算出マップの一例を示す。An example of a correction addition value calculation map is shown. 補正加算値算出マップの他の例を示す。The other example of a correction addition value calculation map is shown.

符号の説明Explanation of symbols

1 内燃機関
6 排気管
11 上流触媒
12 インジェクタ
17 触媒前空燃比センサ
18 触媒後空燃比センサ
19 下流触媒
20 電子制御ユニット(ECU)
TR リッチ時間
TL リーン時間
H 時間比
OSC 酸素吸蔵容量
B 補正係数
D 補正加算値
1 Internal combustion engine 6 Exhaust pipe 11 Upstream catalyst 12 Injector 17 Pre-catalyst air-fuel ratio sensor 18 Post-catalyst air-fuel ratio sensor 19 Downstream catalyst 20 Electronic control unit (ECU)
TR Rich time TL Lean time H Time ratio OSC Oxygen storage capacity B Correction coefficient D Correction addition value

Claims (5)

内燃機関の排気通路に設けられた触媒と、
前記触媒の下流側に設けられた触媒後空燃比センサと、
前記触媒後空燃比センサによって検出された空燃比がリーン側又はリッチ側に反転する毎に空燃比をリッチ側又はリーン側にアクティブに切替制御するアクティブ空燃比制御手段と、
前記アクティブ空燃比制御手段によって空燃比がリッチ側に切り替えられているときのリッチ時間と、前記アクティブ空燃比制御手段によって空燃比がリーン側に切り替えられているときのリーン時間とに基づき、燃料の硫黄濃度を推定する硫黄濃度推定手段と
を備えたことを特徴とする燃料性状判定装置。
A catalyst provided in the exhaust passage of the internal combustion engine;
A post-catalyst air-fuel ratio sensor provided downstream of the catalyst;
Active air-fuel ratio control means for actively switching the air-fuel ratio to the rich side or the lean side every time the air-fuel ratio detected by the post-catalyst air-fuel ratio sensor is reversed to the lean side or the rich side;
Based on the rich time when the air-fuel ratio is switched to the rich side by the active air-fuel ratio control means and the lean time when the air-fuel ratio is switched to the lean side by the active air-fuel ratio control means, A fuel property judging device comprising: a sulfur concentration estimating means for estimating a sulfur concentration.
前記硫黄濃度推定手段は、前記リッチ時間と前記リーン時間との比に基づいて燃料の硫黄濃度を推定する
ことを特徴とする請求項1記載の燃料性状判定装置。
The fuel property determination device according to claim 1, wherein the sulfur concentration estimation unit estimates a sulfur concentration of the fuel based on a ratio between the rich time and the lean time.
請求項1記載の燃料性状判定装置を備えた触媒劣化診断装置であって、
前記アクティブ空燃比制御手段による空燃比の切替制御に伴って前記触媒の酸素吸蔵容量を計測する計測手段と、
前記リッチ時間及び前記リーン時間に基づき、前記計測手段によって計測された酸素吸蔵容量の値を補正する補正手段と
を備えたことを特徴とする触媒劣化診断装置。
A catalyst deterioration diagnosis device comprising the fuel property determination device according to claim 1,
Measuring means for measuring the oxygen storage capacity of the catalyst in accordance with air-fuel ratio switching control by the active air-fuel ratio control means;
A catalyst deterioration diagnosis apparatus comprising: a correction unit that corrects the value of the oxygen storage capacity measured by the measurement unit based on the rich time and the lean time.
前記補正手段は、前記硫黄濃度推定手段によって推定された硫黄濃度が所定値より大きいとき、前記酸素吸蔵容量計測値を、前記硫黄濃度が前記所定値以下のときに得られるような値に補正する
ことを特徴とする請求項3記載の触媒劣化診断装置。
The correction means corrects the measured oxygen storage capacity to a value obtained when the sulfur concentration is less than or equal to the predetermined value when the sulfur concentration estimated by the sulfur concentration estimation means is greater than a predetermined value. The catalyst deterioration diagnosis device according to claim 3.
前記補正手段は、前記リッチ時間及び前記リーン時間の比に応じた補正量を前記酸素吸蔵容量計測値に乗算又は加算することにより補正を行う
ことを特徴とする請求項3又は4に記載の触媒劣化診断装置。
5. The catalyst according to claim 3, wherein the correction unit performs correction by multiplying or adding the correction amount according to a ratio of the rich time and the lean time to the oxygen storage capacity measurement value. Deterioration diagnostic device.
JP2008034720A 2008-02-15 2008-02-15 Fuel property determination device and catalyst deterioration diagnosis device provided with the same Expired - Fee Related JP5260978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034720A JP5260978B2 (en) 2008-02-15 2008-02-15 Fuel property determination device and catalyst deterioration diagnosis device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034720A JP5260978B2 (en) 2008-02-15 2008-02-15 Fuel property determination device and catalyst deterioration diagnosis device provided with the same

Publications (2)

Publication Number Publication Date
JP2009191787A true JP2009191787A (en) 2009-08-27
JP5260978B2 JP5260978B2 (en) 2013-08-14

Family

ID=41074018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034720A Expired - Fee Related JP5260978B2 (en) 2008-02-15 2008-02-15 Fuel property determination device and catalyst deterioration diagnosis device provided with the same

Country Status (1)

Country Link
JP (1) JP5260978B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125257A1 (en) * 2010-04-07 2011-10-13 Udトラックス株式会社 Exhaust purification device for engine
JP5293885B2 (en) * 2010-04-23 2013-09-18 トヨタ自動車株式会社 Catalyst abnormality diagnosis device
US8984861B2 (en) 2012-03-27 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst deterioration diagnosis method, method for purification of exhaust gas using the diagnosis method, catalyst deterioration diagnosis apparatus, and apparatus for purification of exhaust gas using the diagnosis apparatus
DE102015216590A1 (en) * 2015-08-31 2017-03-02 Volkswagen Aktiengesellschaft Method and device for detecting an operation of an internal combustion engine with a sulfur-containing fuel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112282933B (en) * 2020-09-30 2021-11-05 北汽福田汽车股份有限公司 Vehicle fuel oil sulfur content monitoring method, device, equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230915A (en) * 1988-07-20 1990-02-01 Toyota Motor Corp Catalyst degradation judging device for internal combustion engine
JP2003148136A (en) * 2001-11-13 2003-05-21 Toyota Motor Corp Deterioration determining device for exhaust purification catalyst
JP2006291773A (en) * 2005-04-07 2006-10-26 Toyota Central Res & Dev Lab Inc Catalyst deterioration detection device, engine control device and method thereof
JP2007100556A (en) * 2005-10-03 2007-04-19 Aisan Ind Co Ltd Catalyst deterioration detecting device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230915A (en) * 1988-07-20 1990-02-01 Toyota Motor Corp Catalyst degradation judging device for internal combustion engine
JP2003148136A (en) * 2001-11-13 2003-05-21 Toyota Motor Corp Deterioration determining device for exhaust purification catalyst
JP2006291773A (en) * 2005-04-07 2006-10-26 Toyota Central Res & Dev Lab Inc Catalyst deterioration detection device, engine control device and method thereof
JP2007100556A (en) * 2005-10-03 2007-04-19 Aisan Ind Co Ltd Catalyst deterioration detecting device of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125257A1 (en) * 2010-04-07 2011-10-13 Udトラックス株式会社 Exhaust purification device for engine
JP2011220158A (en) * 2010-04-07 2011-11-04 Ud Trucks Corp Exhaust emission control device for engine
CN102884290A (en) * 2010-04-07 2013-01-16 优迪卡汽车株式会社 Exhaust purification device for engine
US8850799B2 (en) 2010-04-07 2014-10-07 Ud Trucks Corporation Exhaust purification apparatus for engine
JP5293885B2 (en) * 2010-04-23 2013-09-18 トヨタ自動車株式会社 Catalyst abnormality diagnosis device
US8683856B2 (en) 2010-04-23 2014-04-01 Toyota Jidosha Kabushiki Kaisha Catalyst abnormality diagnosis apparatus
US8984861B2 (en) 2012-03-27 2015-03-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst deterioration diagnosis method, method for purification of exhaust gas using the diagnosis method, catalyst deterioration diagnosis apparatus, and apparatus for purification of exhaust gas using the diagnosis apparatus
DE102015216590A1 (en) * 2015-08-31 2017-03-02 Volkswagen Aktiengesellschaft Method and device for detecting an operation of an internal combustion engine with a sulfur-containing fuel

Also Published As

Publication number Publication date
JP5260978B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5062529B2 (en) Apparatus and method for diagnosing catalyst degradation
JP5273297B2 (en) Catalyst abnormality diagnosis device
JP2008215315A (en) DETERIORATION DIAGNOSIS DEVICE FOR NOx CATALYST
JP2008215261A (en) Deterioration diagnosis device and deterioration diagnosis method for catalyst
JP2009138604A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2010185371A (en) Catalyst deterioration diagnostic device
WO2010119554A1 (en) Device for diagnosing catalyst abnormality
JP5260978B2 (en) Fuel property determination device and catalyst deterioration diagnosis device provided with the same
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP4761223B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5212826B2 (en) Catalyst abnormality diagnosis device
JP2010159701A (en) Catalyst deterioration diagnostic device
JP2008175134A (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2009127597A (en) Catalyst degradation diagnostic device
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP2012219803A (en) Fuel property determining device and catalyst abnormality diagnostic device
JP2010255490A (en) Catalyst abnormality diagnostic device
JP4853792B2 (en) Catalyst deterioration diagnosis device
JP2012031761A (en) Catalyst abnormality diagnostic device
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2009121414A (en) Catalyst deterioration diagnosing device for internal combustion engine
JP2009215924A (en) Fuel property determination device and catalyst deterioration diagnostic device having the same
JP2010168923A (en) Catalyst degradation diagnostic device
JP2009091921A (en) Catalyst deterioration diagnosis device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5260978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees