JP2009186954A - Method of manufacturing image display apparatus - Google Patents

Method of manufacturing image display apparatus Download PDF

Info

Publication number
JP2009186954A
JP2009186954A JP2008096124A JP2008096124A JP2009186954A JP 2009186954 A JP2009186954 A JP 2009186954A JP 2008096124 A JP2008096124 A JP 2008096124A JP 2008096124 A JP2008096124 A JP 2008096124A JP 2009186954 A JP2009186954 A JP 2009186954A
Authority
JP
Japan
Prior art keywords
resin composition
image display
light
manufacturing
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096124A
Other languages
Japanese (ja)
Inventor
Kenji Kamiya
賢志 神谷
Yoshihisa Araya
由久 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2008096124A priority Critical patent/JP2009186954A/en
Publication of JP2009186954A publication Critical patent/JP2009186954A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a high-luminance and high-contrast display without display failure due to deformation of an image display part and to enough cure resin in a forming region of a light shielding part in manufacturing a thin type image display apparatus in which resin is interposed between a protective part having a light shielding part and the image display part. <P>SOLUTION: The method of manufacturing the image display apparatus includes a step of interposing a photo curable resin composition between a base having the image display part and the translucent protective part having the light shielding part, and performing photo-curing to form a resin cured material layer. As the photo curable resin composition, a resin composition used has a curing contraction percentage of 5% or less, a storage elastic modulus of 1.0×10<SP>7</SP>Pa or less at 25°C of a cured material, and light transmissivity of a visible light region of the resin cured material layer of ≥90%. Photo-curing is performed by applying light to the photo curable resin composition at least from the outer side surface of the forming surface of the light shielding part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば携帯電話等に用いられる液晶表示装置(LCD)等の画像表示装置の製造方法、特に、画像表示部上に透明な保護部を設けた画像表示装置の製造方法に関する。   The present invention relates to a method of manufacturing an image display device such as a liquid crystal display device (LCD) used for a mobile phone, for example, and more particularly to a method of manufacturing an image display device in which a transparent protective portion is provided on an image display portion.

従来、この種の画像表示装置としては、例えば図4に示すようなものが知られている。   Conventionally, as this type of image display device, for example, the one shown in FIG. 4 is known.

この液晶表示装置101は、液晶表示パネル102上に、例えば、ガラスやプラスチックスからなる透明な保護部103を有している。   The liquid crystal display device 101 has a transparent protective part 103 made of, for example, glass or plastic on a liquid crystal display panel 102.

この場合、液晶表示パネル102表面及び偏光板(図示せず)を保護するため、保護部103との間にスペーサ104を介在させることによって液晶表示パネル102と保護部103との間に空隙105が設けられている。   In this case, in order to protect the surface of the liquid crystal display panel 102 and the polarizing plate (not shown), a gap 104 is provided between the liquid crystal display panel 102 and the protective part 103 by interposing a spacer 104 between the protective part 103. Is provided.

しかし、液晶表示パネル102と保護部103との間の空隙105の存在により、光の散乱がおき、それに起因してコントラストや輝度が低下し、また空隙105の存在はパネルの薄型化の妨げとなっている。   However, the presence of the gap 105 between the liquid crystal display panel 102 and the protection unit 103 causes light scattering, resulting in a decrease in contrast and brightness, and the presence of the gap 105 hinders thinning of the panel. It has become.

このような問題に鑑み、液晶表示パネルと保護部との間の空隙に樹脂を充填することも提案されているが(例えば特許文献1)、樹脂硬化物の硬化収縮の際の応力によって液晶表示パネルの液晶を挟持する光学ガラス板に変形が生じ、液晶材料の配向乱れ等の表示不良の原因となっている。   In view of such problems, it has also been proposed to fill the gap between the liquid crystal display panel and the protective portion with a resin (for example, Patent Document 1). However, the liquid crystal display is caused by the stress during curing shrinkage of the cured resin. Deformation occurs in the optical glass plate that sandwiches the liquid crystal of the panel, causing display defects such as disordered alignment of the liquid crystal material.

また、この種の液晶表示装置101には、表示画像の輝度やコントラストを向上させるため、液晶表示パネル102の周囲の保護部103に所謂ブラックマトリクスと呼ばれる黒色枠状の遮光部(図示せず)が形成される。   Further, in this type of liquid crystal display device 101, a black frame-shaped light shielding portion (not shown) called a black matrix is formed in the protective portion 103 around the liquid crystal display panel 102 in order to improve the brightness and contrast of the display image. Is formed.

しかし、このような構成において、液晶表示パネル102と保護部103との間の空隙105に光硬化型樹脂組成物を充填して光硬化させようとすると、遮光部の形成領域にある光硬化型樹脂組成物は、光が十分に到達しないことにより未硬化となるおそれがある。   However, in such a configuration, if the space 105 between the liquid crystal display panel 102 and the protective portion 103 is filled with the photocurable resin composition and photocured, the photocurable type in the light shielding portion forming region is formed. The resin composition may become uncured due to insufficient light.

特開2005−55641号公報JP 2005-55641 A

本発明は、このような従来の技術の課題を考慮してなされたもので、その目的とするところは、遮光部を備えた保護部と画像表示部との間に樹脂を介在させた薄型の画像表示装置を製造するにあたり、画像表示部の変形に起因する表示不良を生じさせることなく、高輝度及び高コントラストの画像表示を可能とし、かつ、遮光部の形成領域の樹脂も十分に硬化させる技術を提供することにある。   The present invention has been made in consideration of such problems of the conventional technology, and the object of the present invention is to provide a thin type in which a resin is interposed between a protective part having a light shielding part and an image display part. When manufacturing an image display device, it is possible to display an image with high brightness and high contrast without causing a display defect due to deformation of the image display unit, and the resin in the formation region of the light shielding unit is also sufficiently cured. To provide technology.

上記目的を達成するため、画像表示部を有する基部と、遮光部を有する透光性の保護部との間に光硬化型樹脂組成物を介在させ、光硬化させて樹脂硬化物層を形成する工程を有する画像表示装置の製造方法であって、
光硬化型樹脂組成物として、硬化収縮率が5%以下、硬化物の25℃における貯蔵弾性率が1.0×107Pa以下、樹脂硬化物層の可視光領域の光透過率を90%以上とする樹脂組成物を使用し、
光硬化を、少なくとも遮光部の形成面の外方側面側から光硬化型樹脂組成物に光照射することにより行う画像表示装置の製造方法を提供する。
In order to achieve the above object, a photocurable resin composition is interposed between a base portion having an image display portion and a translucent protective portion having a light shielding portion, and photocured to form a cured resin layer. A method of manufacturing an image display device having a process,
The photocurable resin composition has a cure shrinkage of 5% or less, a storage modulus of the cured product at 25 ° C. of 1.0 × 10 7 Pa or less, and a light transmittance in the visible light region of the resin cured product layer of 90%. Using the resin composition as described above,
Provided is a method for manufacturing an image display device, in which photocuring is performed by irradiating a photocurable resin composition with light from at least the outer side surface of the light-shielding portion forming surface.

本発明では、画像表示部を、液晶表示パネルとすることもできる。   In the present invention, the image display unit may be a liquid crystal display panel.

本発明では、保護部を、アクリル樹脂からなるものとすることもできる。   In the present invention, the protective part may be made of an acrylic resin.

本発明では、保護部を、光学ガラスからなるものとすることもできる。   In the present invention, the protective part may be made of optical glass.

樹脂が硬化する際に蓄積される内部応力は、硬化後の貯蔵弾性率と硬化収縮率の積で近似できるところ、本発明によれば、硬化型樹脂組成物として、硬化収縮率が5%以下、硬化物の25℃における貯蔵弾性率が1.0×107Pa以下のものを使用するので、画像表示部と保護部との間の空隙に充填する樹脂が弾性率と硬化収縮率の好適な関係を有し、画像表示部及び保護部に対し、樹脂の硬化収縮時の応力の影響を最小限に抑えることができる。したがって、画像表示部及び保護部に歪みがほとんど生じない。その結果、表示不良のない高輝度及び高コントラストの画像表示が可能になる。 The internal stress accumulated when the resin is cured can be approximated by the product of the storage elastic modulus after curing and the curing shrinkage rate. According to the present invention, the curing shrinkage rate is 5% or less as the curable resin composition. Since the cured product having a storage elastic modulus at 25 ° C. of 1.0 × 10 7 Pa or less is used, the resin filled in the gap between the image display unit and the protective unit is suitable for the elastic modulus and the curing shrinkage rate. Thus, it is possible to minimize the influence of the stress at the time of curing and shrinkage of the resin on the image display portion and the protection portion. Therefore, almost no distortion occurs in the image display unit and the protection unit. As a result, it is possible to display an image with high luminance and high contrast without display defects.

特に、画像表示部が液晶表示パネルである場合には、液晶材料の配向乱れ等の表示不良を確実に防止して高品位の画像表示を行うことができる。   In particular, when the image display unit is a liquid crystal display panel, display defects such as disorder of alignment of the liquid crystal material can be reliably prevented and high-quality image display can be performed.

また、本発明によれば、画像表示部と保護部との間に樹脂硬化物が介在するので、衝撃に強くなる。   In addition, according to the present invention, since the cured resin is interposed between the image display unit and the protection unit, it is strong against impact.

加えて、画像表示部と保護部との間に空隙を設けていた従来例に比して薄型の画像表示装置を提供することが可能となる。   In addition, it is possible to provide a thin image display device as compared with the conventional example in which a gap is provided between the image display unit and the protection unit.

さらに、本発明によれば、画像表示部と保護部との間に介在させる硬化型樹脂組成物として光硬化型のものを使用し、その光硬化型樹脂組成物に対する光照射を、少なくとも遮光部の形成面の外方側面側から行うので、遮光部の形成領域にある光硬化型樹脂組成物が確実に光照射され、十分に硬化する。   Furthermore, according to the present invention, a photocurable resin composition is used as the curable resin composition interposed between the image display unit and the protective unit, and at least the light-shielding unit emits light to the photocurable resin composition. Therefore, the photocurable resin composition in the formation region of the light shielding part is surely irradiated with light and cured sufficiently.

以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components.

図1(a)〜(c)は、本発明に係る画像表示装置の製造方法の一つの実施形態の要部を示す断面工程図、図2は、同実施形態における画像表示装置の製造工程の要部を示す平面図である。   1A to 1C are cross-sectional process diagrams showing the main part of one embodiment of a method for manufacturing an image display device according to the present invention, and FIG. 2 shows a process for manufacturing the image display device in the same embodiment. It is a top view which shows the principal part.

図1に示すように、本実施形態では、図示しない駆動回路に接続され所定の画像表示を行う画像表示部を有する基部2と、保護部3とを樹脂硬化物層14により貼り合わせる。   As shown in FIG. 1, in the present embodiment, a base 2 having an image display unit that is connected to a drive circuit (not shown) and displays a predetermined image, and a protection unit 3 are bonded together by a cured resin layer 14.

ここで、画像表示装置としては、特に限定されるものではなく、種々のものに適用することができ、例えば、携帯電話、携帯ゲーム機器等の液晶表示装置があげられる。以下、液晶表示装置に適用する場合を例にとって本発明を説明する。   Here, the image display device is not particularly limited and can be applied to various types of devices, for example, liquid crystal display devices such as mobile phones and portable game devices. Hereinafter, the present invention will be described by taking the case of application to a liquid crystal display device as an example.

保護部3は、基部2と同程度の大きさの例えば矩形平板状の透光性部材4から形成されている。この透光性部材4としては、例えば、光学ガラスやプラスチック(アクリル樹脂等)を好適に用いることができる。   The protection part 3 is formed of a light-transmitting member 4 having, for example, a rectangular flat plate shape having the same size as the base part 2. As this translucent member 4, for example, optical glass or plastic (acrylic resin or the like) can be suitably used.

透光性部材4の一面側(基部2側)の液晶表示パネルの周縁に対応する領域には、例えば黒色枠状の遮光部5が設けられている。この遮光部5は、例えば印刷法によって形成することができる。   In a region corresponding to the peripheral edge of the liquid crystal display panel on the one surface side (base portion 2 side) of the translucent member 4, for example, a black frame-shaped light shielding portion 5 is provided. The light shielding portion 5 can be formed by, for example, a printing method.

一方、基部2は、例えば枠状のフレーム6を有し、このフレーム6の内側の領域に液晶表示パネル(画像表示部)8が取り付けられ、さらに、この液晶表示パネル8の装置背面側の部位にバックライト7が取り付けられている。   On the other hand, the base 2 has, for example, a frame-like frame 6, and a liquid crystal display panel (image display unit) 8 is attached to an inner area of the frame 6. A backlight 7 is attached to the main body.

また、図2に示すように、基部2のフレーム6の液晶表示パネル8側の面の周縁部には、複数のスペーサ9が所定の間隔をおいて断続的に設けられている。このスペーサ9の厚さは0.05〜1.5mm程度であり、これにより液晶表示パネル8と保護部3との表面間距離が1mm程度に保持される。   As shown in FIG. 2, a plurality of spacers 9 are intermittently provided at predetermined intervals on the peripheral edge of the surface of the frame 2 of the base 2 on the liquid crystal display panel 8 side. The spacer 9 has a thickness of about 0.05 to 1.5 mm, so that the distance between the surfaces of the liquid crystal display panel 8 and the protection unit 3 is maintained at about 1 mm.

また、本実施の形態では、特に基部2のフレーム6の貼り合わせ面6aと保護部3の遮光部5の貼り合わせ面5aとが平行になっている。   In the present embodiment, in particular, the bonding surface 6a of the frame 6 of the base portion 2 and the bonding surface 5a of the light shielding portion 5 of the protection portion 3 are parallel to each other.

このような構成において、本実施の形態では、まず、図1(a)に示すように、保護部3の遮光部5側に光硬化型樹脂組成物11を所定量滴下して、次いで保護部3を反転させて、保護部3と画像表示部8とを対向させる。次に、保護部3を基部2のスペーサ9上に配置し、図1(b)に示すように、樹脂組成物充填部12を形成する。   In such a configuration, in the present embodiment, first, as shown in FIG. 1A, a predetermined amount of the photocurable resin composition 11 is dropped on the light shielding portion 5 side of the protective portion 3, and then the protective portion. 3 is reversed so that the protection unit 3 and the image display unit 8 face each other. Next, the protection part 3 is arrange | positioned on the spacer 9 of the base 2, and the resin composition filling part 12 is formed as shown in FIG.1 (b).

ここで、光硬化型樹脂組成物11の滴下量は、樹脂組成物充填部12を硬化させた樹脂硬化物層14の厚みが50〜200μmとなるようにすることが好ましい。   Here, it is preferable that the dripping amount of the photocurable resin composition 11 is such that the thickness of the cured resin layer 14 obtained by curing the resin composition filling portion 12 is 50 to 200 μm.

光硬化型樹脂組成物11としては、その樹脂硬化物の貯蔵弾性率(25℃)を1×107Pa以下、好ましくは1×103〜1×106Paとし、樹脂硬化物の屈折率を好ましくは1.45以上1.55以下、より好ましくは1.51以上1.52以下とし、さらに、樹脂硬化物の厚さが100μmの場合の可視光領域の透過率を90%以上とするように調製したものを用いる。 As the photocurable resin composition 11, the storage elastic modulus (25 ° C.) of the resin cured product is 1 × 10 7 Pa or less, preferably 1 × 10 3 to 1 × 10 6 Pa, and the refractive index of the resin cured product. Is preferably 1.45 or more and 1.55 or less, more preferably 1.51 or more and 1.52 or less, and the transmittance in the visible light region is 90% or more when the thickness of the cured resin is 100 μm. The one prepared as described above is used.

一般に、硬化型樹脂組成物を構成する主要な樹脂成分としては共通でも、共に配合する樹脂成分あるいはモノマー成分等が異なると、それを硬化させた樹脂硬化物の貯蔵弾性率(25℃)が1×107Paを超える場合があるが、そのような樹脂硬化物を形成する樹脂組成物は、光硬化型樹脂組成物11としては用いない。 In general, even if the main resin component constituting the curable resin composition is common, if the resin component or monomer component blended together is different, the storage elastic modulus (25 ° C.) of the cured resin obtained by curing the resin component is 1 Although it may exceed 10 7 Pa, a resin composition that forms such a cured resin is not used as the photocurable resin composition 11.

また、この光硬化型樹脂組成物11は、硬化収縮率が、好ましくは5.0%以下、より好ましくは4.5%以下、特に好ましくは4.0%以下、さらに好ましくは0〜2%となるように調製したものとする。これにより、光硬化型樹脂組成物11が硬化する際に樹脂硬化物に蓄積される内部応力を低減させることができ、樹脂硬化物層14と液晶表示パネル8又は保護部3との界面に歪みができることを防止できる。したがって、光硬化型樹脂組成物11を液晶表示パネル8と保護部3との間に介在させ、その光硬化型樹脂組成物11を硬化させた場合に、樹脂硬化物層14と液晶表示パネル8又は保護部3との界面で生じる光の散乱を低減させることができ、表示画像の輝度を高めると共に、視認性を向上させることができる。   Further, the photocurable resin composition 11 has a curing shrinkage rate of preferably 5.0% or less, more preferably 4.5% or less, particularly preferably 4.0% or less, and further preferably 0 to 2%. It was prepared so that Thereby, when the photocurable resin composition 11 is cured, the internal stress accumulated in the cured resin can be reduced, and the interface between the cured resin layer 14 and the liquid crystal display panel 8 or the protection unit 3 is distorted. Can be prevented. Therefore, when the photocurable resin composition 11 is interposed between the liquid crystal display panel 8 and the protective portion 3 and the photocurable resin composition 11 is cured, the resin cured product layer 14 and the liquid crystal display panel 8 are used. Alternatively, light scattering generated at the interface with the protection unit 3 can be reduced, and the brightness of the display image can be increased and the visibility can be improved.

なお、樹脂組成物が硬化する際に樹脂硬化物に蓄積される内部応力の程度は、樹脂組成物を平板上に滴下し、それを硬化させて得られる樹脂硬化物の平均表面粗度によって評価することができる。例えば、樹脂組成物2mgをガラス板上又はアクリル板上に滴下し、それをUV照射により90%以上の硬化率で硬化させて得られる樹脂硬化物の平均表面粗度が6.0nm以下であれば、液晶表示パネル8と保護部3との間に硬化型樹脂組成物を介在させ、それを硬化させた場合にそれらの界面に生じる歪みが実用上無視できる。これに関し、本実施の態様で使用する光硬化型樹脂組成物11によれば、この平均表面粗度を6.0nm以下、好ましくは5.0nm以下、より好ましくは1〜3nmにすることができる。したがって、樹脂硬化物の界面に生じる歪みを実用上無視することができる。   The degree of internal stress accumulated in the cured resin when the resin composition is cured is evaluated by the average surface roughness of the cured resin obtained by dropping the resin composition on a flat plate and curing it. can do. For example, the average surface roughness of a cured resin obtained by dropping 2 mg of a resin composition on a glass plate or an acrylic plate and curing it with UV irradiation at a curing rate of 90% or more should be 6.0 nm or less. For example, when a curable resin composition is interposed between the liquid crystal display panel 8 and the protective part 3 and cured, the distortion generated at the interface between them can be ignored in practice. In this regard, according to the photocurable resin composition 11 used in this embodiment, the average surface roughness can be 6.0 nm or less, preferably 5.0 nm or less, more preferably 1 to 3 nm. . Therefore, the distortion generated at the interface of the cured resin can be ignored in practice.

ここで、ガラス板としては、液晶セルの液晶を挟持するガラス板や液晶セルの保護板として使用されているものを好ましく使用できる。また、アクリル板としては、液晶セルの保護板として使用されているものを好ましく使用できる。これらのガラス板やアクリル板の平均表面粗度は、通常、1.0nm以下である。   Here, as a glass plate, what is used as a glass plate which clamps the liquid crystal of a liquid crystal cell, or a protective plate of a liquid crystal cell can be used preferably. Moreover, as an acrylic board, what is used as a protective plate of a liquid crystal cell can be used preferably. The average surface roughness of these glass plates and acrylic plates is usually 1.0 nm or less.

このような樹脂組成物としては、例えば、ポリウレタンアクリレート、ポリイソプレン系アクリレート又はそのエステル化物、テルペン系水素添加樹脂、ブタジエン重合体等の1種以上のポリマーと、イソボルニルアクリレート、ジシクロペンテニルオキシエチルメタクリレート、2−ヒドロキシブチルメタクリレート等の1種以上のアクリレート系モノマーと、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン等の光重合開始剤とを含有する樹脂組成物を好適に用いることができる。   Examples of such a resin composition include one or more polymers such as polyurethane acrylate, polyisoprene acrylate or esterified product thereof, terpene hydrogenated resin, butadiene polymer, isobornyl acrylate, dicyclopentenyloxy, and the like. A resin composition containing one or more acrylate monomers such as ethyl methacrylate and 2-hydroxybutyl methacrylate and a photopolymerization initiator such as 1-hydroxy-cyclohexyl-phenyl-ketone can be suitably used.

なお、保護部3には、画像表示部8に対する紫外線保護の観点から紫外線領域をカットする機能が付与されていることが多い。そのため、光重合開始剤としては、可視光領域でも硬化できる光重合開始剤(例えば、商品名SpeedCureTPO、日本シイベルヘグナー(株)製等)を用いることが好ましい。   The protection unit 3 is often provided with a function of cutting the ultraviolet region from the viewpoint of protecting the image display unit 8 from ultraviolet rays. Therefore, as the photopolymerization initiator, it is preferable to use a photopolymerization initiator that can be cured even in the visible light region (for example, trade name SpeedCureTPO, manufactured by Nippon Shibel Hegner Co., Ltd.).

その後、図1(b)に示すように、透光性部材4を介して紫外線33を照射する。紫外線33の照射方向は、特に限定されることはないが、画像表示領域にある光硬化型樹脂組成物11のより均一な硬化を達成する観点からは、透光性部材4の表面に対して直交する方向とすることが好ましい。   Thereafter, as shown in FIG. 1B, the ultraviolet rays 33 are irradiated through the translucent member 4. Although the irradiation direction of the ultraviolet rays 33 is not particularly limited, from the viewpoint of achieving more uniform curing of the photocurable resin composition 11 in the image display area, the surface of the translucent member 4 is irradiated. Preferably, the directions are orthogonal.

また、本発明では上述の紫外線33の照射に加えて、例えば光ファイバー等からなる微細な照射部30を有するUV光照射装置31を用い、遮光部5の形成領域にある光硬化型樹脂組成物11、より具体的には遮光部5と基部2との間の光硬化型樹脂組成物11に対し、遮光部5の貼り合わせ面5a(即ち、遮光部の形成面)の外方側面側から、スペーサ9の間を通して紫外線32を直接照射する。   In the present invention, in addition to the irradiation of the ultraviolet ray 33 described above, a UV light irradiation device 31 having a fine irradiation portion 30 made of, for example, an optical fiber is used, and the photocurable resin composition 11 in the formation region of the light shielding portion 5 is used. More specifically, with respect to the photocurable resin composition 11 between the light shielding part 5 and the base part 2, from the outer side surface side of the bonding surface 5a of the light shielding part 5 (that is, the formation surface of the light shielding part), The ultraviolet rays 32 are directly irradiated between the spacers 9.

紫外線32の照射方向は、特に限定されることはなく、水平方向に対して0°以上90°未満とすることができるが、遮光部5の形成領域にある光硬化型樹脂組成物11のより均一な硬化を達成する観点からは、基部2のフレーム6の貼り合わせ面6aと保護部3の遮光部5の貼り合わせ面5aに対し、ほぼ平行に紫外線32を照射することが好ましい。   The irradiation direction of the ultraviolet rays 32 is not particularly limited and can be set to 0 ° or more and less than 90 ° with respect to the horizontal direction. However, the photocurable resin composition 11 in the region where the light-shielding portion 5 is formed is used. From the viewpoint of achieving uniform curing, it is preferable to irradiate ultraviolet rays 32 substantially parallel to the bonding surface 6a of the frame 6 of the base portion 2 and the bonding surface 5a of the light shielding portion 5 of the protection portion 3.

このような紫外線の照射を行うことにより、図1(c)に示すように、樹脂組成物充填部12を硬化させて樹脂硬化物層14とし、目的とする画像表示装置1を得る。   By irradiating such ultraviolet rays, as shown in FIG. 1C, the resin composition filling portion 12 is cured to form a cured resin layer 14, and the target image display device 1 is obtained.

こうして得られる画像表示装置1は、特定の光硬化型樹脂組成物11を使用することにより、画像表示部8および保護部3に対し、樹脂硬化収縮時の応力の影響を最小限に抑えることができるので、画像表示部8及び保護部3において歪みがほとんど発生せず、その結果、画像表示部8に変形が発生しないので、表示不良のない高輝度及び高コントラストの画像表示が可能になる。   The image display device 1 thus obtained can minimize the influence of stress at the time of resin curing shrinkage on the image display unit 8 and the protection unit 3 by using a specific photocurable resin composition 11. As a result, the image display unit 8 and the protection unit 3 are hardly distorted. As a result, the image display unit 8 is not deformed, so that high-luminance and high-contrast image display without display defects can be achieved.

さらに、光硬化型樹脂組成物11を硬化させた樹脂硬化物層14により、衝撃に強く、また、画像表示部と保護部との間に空隙を設けていた従来例に比して薄型の画像表示装置1を得ることができる。   Further, the cured resin layer 14 obtained by curing the photocurable resin composition 11 is resistant to impact and is thinner than the conventional example in which a gap is provided between the image display unit and the protection unit. The display device 1 can be obtained.

加えて、基部2のフレーム6と遮光部5との間に配置した光硬化型樹脂組成物11に対して遮光部5の貼り合わせ面5aの外方側面側からも光を照射するようにしたことから、遮光部5の形成領域の光硬化型樹脂組成物11も確実に光が照射され、十分に硬化する。   In addition, the light curable resin composition 11 disposed between the frame 6 of the base portion 2 and the light shielding portion 5 is also irradiated with light from the outer side surface side of the bonding surface 5a of the light shielding portion 5. For this reason, the photocurable resin composition 11 in the formation region of the light shielding portion 5 is also reliably irradiated with light and is sufficiently cured.

本発明は種々の態様をとることができる。例えば、図3に示すように、スペーサ9を省略して画像表示装置1を製造してもよい。この場合には、基部2上に、上述の光硬化型樹脂組成物11を塗布し、その上に保護部3を重ね、前述と同様に光硬化を行う。   The present invention can take various forms. For example, as shown in FIG. 3, the image display device 1 may be manufactured by omitting the spacer 9. In this case, the above-mentioned photocurable resin composition 11 is applied onto the base portion 2, the protective portion 3 is overlaid thereon, and photocuring is performed in the same manner as described above.

また、本発明は、上述した液晶表示装置のみならず、例えば、有機EL、プラズマディスプレイ装置等の種々のパネルディスプレイに適用することができる。   The present invention can be applied not only to the liquid crystal display device described above but also to various panel displays such as an organic EL and a plasma display device.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to a following example.

次の実施例樹脂組成物1〜4、比較例樹脂組成物1〜3を調製した。   The following Example resin compositions 1 to 4 and Comparative resin compositions 1 to 3 were prepared.

<実施例樹脂組成物1>
ポリウレタンアクリレート(商品名UV−3000B、日本合成化学工業(株)製)50重量部、イソボルニルアクリレート(商品名IBXA、大阪有機化学工業(株)製)30重量部、光重合開始剤(商品名IRGACURE184、チバ・スペシャリティ・ケミカルズ社製)3重量部、光重合開始剤(商品名SpeedCureTPO、日本シイベルヘグナー(株)製)1重量部を、混練機にて混練して実施例樹脂組成物1を調製した。
<Example resin composition 1>
Polyurethane acrylate (trade name UV-3000B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 50 parts by weight, isobornyl acrylate (trade name IBXA, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 30 parts by weight, photopolymerization initiator (commercial product) Example resin composition 1 was prepared by kneading 3 parts by weight of IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd., and 1 part by weight of a photopolymerization initiator (trade name SpeedCure TPO, manufactured by Nippon Siebel Hegner) with a kneader. Prepared.

<実施例樹脂組成物2>
ポリイソプレン重合物の無水マレイン酸付加物と2−ヒドロキシエチルメタクリレートとのエステル化物70重量部、ジシクロペンテニルオキシエチルメタクリレート30重量部、2−ヒドロキシブチルメタクリレート10重量部、テルペン系水素添加樹脂30重量部、ブタジエン重合体140重量部、光重合開始剤4重量部、可視光領域用光重合開始剤0.5重量部を混練機にて混練して実施例樹脂組成物2を調製した。
<Example resin composition 2>
70 parts by weight of esterified product of maleic anhydride adduct of polyisoprene polymer and 2-hydroxyethyl methacrylate, 30 parts by weight of dicyclopentenyloxyethyl methacrylate, 10 parts by weight of 2-hydroxybutyl methacrylate, 30 parts by weight of terpene-based hydrogenated resin Example resin composition 2 was prepared by kneading 140 parts by weight of a butadiene polymer, 4 parts by weight of a photopolymerization initiator, and 0.5 parts by weight of a photopolymerization initiator for visible light region in a kneader.

<実施例樹脂組成物3>
ポリイソプレン重合物の無水マレイン酸付加物と2−ヒドロキシエチルメタクリレートとのエステル化物100重量部、ジシクロペンテニルオキシエチルメタクリレート30重量部、2−ヒドロキシブチルメタクリレート10重量部、テルペン系水素添加樹脂30重量部、ブタジエン重合体210重量部、光重合開始剤7重量部、可視光領域用光重合開始剤1.5重量部を混練機にて混練して実施例樹脂組成物3を調製した。
<Example resin composition 3>
100 parts by weight of esterified product of maleic anhydride adduct of polyisoprene polymer and 2-hydroxyethyl methacrylate, 30 parts by weight of dicyclopentenyloxyethyl methacrylate, 10 parts by weight of 2-hydroxybutyl methacrylate, 30 parts by weight of terpene hydrogenated resin Example resin composition 3 was prepared by kneading 210 parts by weight of a butadiene polymer, 7 parts by weight of a photopolymerization initiator, and 1.5 parts by weight of a photopolymerization initiator for visible light region using a kneader.

<実施例樹脂組成物4>
ポリイソプレン重合物の無水マレイン酸付加物と2−ヒドロキシエチルメタクリレートとのエステル化物(商品名UC−203、(株)クラレ製)70重量部、ジシクロペンテニルオキシエチルメタクリレート(商品名FA512M、日立化成工業(株)製)30重量部、2−ヒドロキシブチルメタクリレート(商品名ライトエステルHOB、共栄社化学(株)製)10重量部、テルペン系水素添加樹脂(商品名クリアロンP−85、ヤスハラケミカル(株)製)30重量部、ブタジエン重合体(商品名Polyoil110、日本ゼオン(株)製)35重量部、光重合開始剤(商品名IRGACURE184D、チバ・スペシャリティ・ケミカルズ社製)5重量部、光重合開始剤(商品名SpeedCure TPO、日本シイベルヘグナー(株)製)2重量部を混練機にて混練して実施例樹脂組成物4を調製した。
<Example resin composition 4>
70 parts by weight of an esterified product of maleic anhydride adduct of polyisoprene polymer and 2-hydroxyethyl methacrylate (trade name UC-203, manufactured by Kuraray Co., Ltd.), dicyclopentenyloxyethyl methacrylate (trade name FA512M, Hitachi Chemical) 30 parts by weight of Kogyo Co., Ltd., 10 parts by weight of 2-hydroxybutyl methacrylate (trade name Light Ester HOB, manufactured by Kyoeisha Chemical Co., Ltd.), terpene-based hydrogenated resin (trade name Clearon P-85, Yasuhara Chemical Co., Ltd.) 30 parts by weight, 35 parts by weight of a butadiene polymer (trade name Polyoil 110, manufactured by Nippon Zeon Co., Ltd.), 5 parts by weight of a photopolymerization initiator (trade name IRGACURE 184D, manufactured by Ciba Specialty Chemicals), a photopolymerization initiator (Brand name SpeedCure TPO, Nippon Siber Hegner Example resin composition 4 was prepared by kneading 2 parts by weight with a kneader.

<比較例樹脂組成物1>
ポリブタジエンアクリレート(商品名TE−2000、日本曹達(株)製)50重量部、ヒドロキシルエチルメタクリレート(商品名ライトエステルHO、共栄社化学(株)製)20重量部、光重合開始剤(IRGACURE184、チバ・スペシャリティ・ケミカルズ社製)3重量部、光重合開始剤(商品名SpeedCureTPO、日本シイベルヘグナー(株)製)1重量部を混練機にて混練して比較例樹脂組成物1を調製した。
<Comparative Example Resin Composition 1>
50 parts by weight of polybutadiene acrylate (trade name TE-2000, manufactured by Nippon Soda Co., Ltd.), 20 parts by weight of hydroxylethyl methacrylate (trade name: Light Ester HO, manufactured by Kyoeisha Chemical Co., Ltd.), photopolymerization initiator (IRGACURE 184, Ciba A comparative resin composition 1 was prepared by kneading 3 parts by weight of Specialty Chemicals Co., Ltd. and 1 part by weight of a photopolymerization initiator (trade name SpeedCureTPO, manufactured by Nippon Siebel Hegner Co., Ltd.) with a kneader.

<比較例樹脂組成物2>
ポリウレタンアクリレート(商品名UV−3000B、日本合成化学工業(株)製)50重量部、トリシクロデカンジメタノールアクリレート(商品名NKエステルLC2、新中村化学工業(株)製)30重量部、光重合開始剤(IRGACURE184、チバ・スペシャリティ・ケミカルズ社製)3重量部、光重合開始剤(商品名SpeedCureTPO、日本シイベルヘグナー(株)製)1重量部を混練機にて混練して比較例樹脂組成物2を調製した。
<Comparative Example Resin Composition 2>
50 parts by weight of polyurethane acrylate (trade name UV-3000B, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), 30 parts by weight of tricyclodecane dimethanol acrylate (trade name NK ester LC2, manufactured by Shin-Nakamura Chemical Co., Ltd.), photopolymerization 3 parts by weight of an initiator (IRGACURE 184, manufactured by Ciba Specialty Chemicals) and 1 part by weight of a photopolymerization initiator (trade name SpeedCure TPO, manufactured by Nippon Siebel Hegner Co., Ltd.) were kneaded in a kneader to make a comparative resin composition 2 Was prepared.

<比較例樹脂組成物3>
ポリブタジエンアクリレート(商品名TE−2000、日本曹達(株)製)50重量部、イソボルニルアクリレート(商品名IBXA、大阪有機化学工業(株)製)20重量部、光重合開始剤(IRGACURE184、チバ・スペシャリティ・ケミカルズ社製)3重量部、光重合開始剤(商品名SpeedCureTPO、日本シイベルヘグナー(株)製)1重量部を混練機にて混練して比較例樹脂組成物3を調製した。
<Comparative Example Resin Composition 3>
50 parts by weight of polybutadiene acrylate (trade name TE-2000, manufactured by Nippon Soda Co., Ltd.), 20 parts by weight of isobornyl acrylate (trade name IBXA, manufactured by Osaka Organic Chemical Industry Co., Ltd.), photopolymerization initiator (IRGACURE 184, Ciba) -Comparative Example Resin Composition 3 was prepared by kneading 3 parts by weight of Specialty Chemicals Co., Ltd. and 1 part by weight of a photopolymerization initiator (trade name SpeedCure TPO, manufactured by Nippon Siebel Hegner Co., Ltd.) with a kneader.

実験例1
実施例樹脂組成物1〜4、比較例樹脂組成物1〜3を、厚さ100μmの白色のガラス板上に、所定の膜厚となるように滴下してUVコンベアにて搬送し、所定の厚さの樹脂硬化物を得、これを試料とした。
Experimental example 1
Example resin compositions 1 to 4 and comparative example resin compositions 1 to 3 were dropped onto a white glass plate having a thickness of 100 μm so as to have a predetermined film thickness, and conveyed by a UV conveyor. A resin cured product having a thickness was obtained and used as a sample.

各試料について、「光透過率」、「貯蔵弾性率」、「硬化収縮率」、「表面粗度の測定」を以下の通り測定した。これらの結果を表1に示す。   About each sample, "light transmittance", "storage elastic modulus", "curing shrinkage rate", and "measurement of surface roughness" were measured as follows. These results are shown in Table 1.

〔光透過率〕
各試料(樹脂硬化物の厚さ100μm)について、紫外可視分光光度計(日本分光(株)製V−560)によって可視光領域の透過率(%)を測定したところ、全て90%以上であった。
(Light transmittance)
When the transmittance (%) in the visible light region was measured for each sample (thickness of the resin cured product 100 μm) with an ultraviolet-visible spectrophotometer (V-560 manufactured by JASCO Corporation), all were 90% or more. It was.

〔貯蔵弾性率〕
各試料について、粘弾性測定装置(セイコーインスツルメンツ(株)製DMS6100
)を用い、測定周波数1Hzで貯蔵弾性率(Pa)(25℃)を測定した。
[Storage modulus]
For each sample, a viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.)
The storage elastic modulus (Pa) (25 ° C.) was measured at a measurement frequency of 1 Hz.

〔硬化収縮率〕
硬化収縮率(%)については、硬化前の樹脂液と硬化後の固体の比重を電子比重計(MIRAGE社製SD−120L)を用いて測定し、両者の比重差から次式により算出した。


[Curing shrinkage]
For the curing shrinkage (%), the specific gravity of the resin liquid before curing and the solid after curing was measured using an electronic hydrometer (SD-120L manufactured by MIRAGE), and was calculated from the difference between the specific gravities by the following equation.


Figure 2009186954
Figure 2009186954

〔表面粗度〕
各樹脂組成物について、それぞれ2mgを液晶セル用ガラス板に滴下し、UV硬化の際に生ずる内部応力により発生するガラス板表面の所定領域(2.93mm×2.20mm)の歪み(Ra:平均表面粗度)を、Zygo社製3次元非接触表面粗度測定計にて測定した。
[Surface roughness]
For each resin composition, 2 mg of each resin composition was dropped onto a glass plate for a liquid crystal cell, and a predetermined area (2.93 mm × 2.20 mm) strain (Ra: average) generated by internal stress generated during UV curing. Surface roughness) was measured with a three-dimensional non-contact surface roughness meter manufactured by Zygo.

Figure 2009186954
Figure 2009186954

表1から明らかなように、実施例樹脂組成物1〜4では貯蔵弾性率が4×103〜1×106Paであり、硬化収縮率が1.0〜4.5%であり、そのため、平均表面粗度Ra=1.5〜5.5nmで歪みがほとんどなく、良好な結果が得られた。これに対し、比較例樹脂組成物1(Ra=12.4nm)、比較例樹脂組成物2(Ra=36.5nm)、比較例樹脂組成物3(Ra=64.2nm)は、Raが大きく、樹脂が硬化する際の内部応力により、樹脂とガラス板との界面が歪んでいることが理解される。 As is clear from Table 1, in the example resin compositions 1 to 4, the storage elastic modulus is 4 × 10 3 to 1 × 10 6 Pa, and the curing shrinkage is 1.0 to 4.5%. The average surface roughness Ra was 1.5 to 5.5 nm and there was almost no distortion, and good results were obtained. In contrast, Comparative Example Resin Composition 1 (Ra = 12.4 nm), Comparative Example Resin Composition 2 (Ra = 36.5 nm), and Comparative Resin Composition 3 (Ra = 64.2 nm) have large Ra. It is understood that the interface between the resin and the glass plate is distorted by internal stress when the resin is cured.

実験例2:硬化率の測定
図1(a)で保護部3となるアクリル板に、実験例1で調製した実施例樹脂組成物1を0.2gほど滴下し、次いで、基部2となる液晶表示パネルと対向配置させて、液晶表示パネルとアクリル板との間に実施例樹脂組成物1を充填したものを合計3台作製した。このうち2台にはアクリル板として、その周縁領域に幅2mmの黒色インキ層からなる遮光部(ブラックマトリックス)5が形成されているものを使用し、他の1台は遮光部5が形成されていないものを使用した。
Experimental Example 2: Measurement of Curing Rate About 0.2 g of Example Resin Composition 1 prepared in Experimental Example 1 was dropped on the acrylic plate that becomes the protective part 3 in FIG. A total of three liquid crystal display panels filled with Example resin composition 1 were prepared between the liquid crystal display panel and the acrylic plate so as to face the display panel. Two of them are made of acrylic plates having a light shielding part (black matrix) 5 formed of a black ink layer having a width of 2 mm in the peripheral area, and the other one is provided with a light shielding part 5. I used something that was not.

次に、遮光部5が形成されたアクリル板を使用したもの1台について、アクリル板から10cmほど離れた箇所から、UVランプ(ウシオ電機製)を使って積算光量5000mJの紫外線を照射するとともに(正面照射)、フレーム6の周囲全体に渡って、黒色インキ層からなる遮光部5の外方側面側から(より具体的にはフレーム6の側面から3cmほど離れたところから)、光ファイバーを使って積算光量5000mJの紫外線を照射した(側面照射)。   Next, one unit using an acrylic plate on which the light-shielding part 5 is formed is irradiated with ultraviolet rays with an accumulated light amount of 5000 mJ using a UV lamp (manufactured by Ushio Electric) from a location about 10 cm away from the acrylic plate ( Front-facing), using the optical fiber from the outer side surface of the light-shielding portion 5 made of a black ink layer (more specifically, about 3 cm away from the side surface of the frame 6) over the entire periphery of the frame 6. Ultraviolet rays with an integrated light quantity of 5000 mJ were irradiated (side irradiation).

次に、残りの2台について、側面照射を行うことなく、上述と同様の正面照射のみ行った。   Next, only the front irradiation similar to the above was performed on the remaining two units without performing side irradiation.

こうして光照射した3台の画像表示装置のアクリル板を引き剥がし、アクリル板の中央部および遮光部5の直下について、樹脂組成物の硬化率を次のように測定した。その結果を表2に示す。   The acrylic plates of the three image display devices thus irradiated with light were peeled off, and the curing rate of the resin composition was measured as follows at the central portion of the acrylic plate and directly under the light shielding portion 5. The results are shown in Table 2.

樹脂組成物の硬化率の測定方法:
照射前の樹脂組成物と照射後の硬化物のそれぞれから、それらの硬化成分(モノマー、オリゴマー)を、樹脂組成物、硬化物が0.2wt%となる量のアセトニトリルを用いて抽出し、液体クロマトグラフィーで樹脂組成物における硬化成分のピーク強度I0 と、硬化物における硬化成分のピーク強度I1を求め、次式により硬化率を算出した。
Measuring method of curing rate of resin composition:
From each of the resin composition before irradiation and the cured product after irradiation, those cured components (monomer, oligomer) are extracted using acetonitrile in an amount that the resin composition and the cured product are 0.2 wt%, and liquid The peak intensity I 0 of the cured component in the resin composition and the peak intensity I 1 of the cured component in the cured product were obtained by chromatography, and the curing rate was calculated by the following formula.

Figure 2009186954
Figure 2009186954

Figure 2009186954
Figure 2009186954

表2の結果からわかるように、アクリル板に遮光部がある場合には、正面照射のみであると、アクリル板中央部は樹脂組成物の硬化率は高いものの、遮光部の直下の樹脂組成物の硬化率は必ずしも高くない。それに対し、正面照射と側面照射を併用すると、遮光部が形成されている場合であっても、遮光部の直下の樹脂組成物の硬化率を高めることができる。   As can be seen from the results of Table 2, when the acrylic plate has a light-shielding portion, the front side irradiation only has a high curing rate of the resin composition at the center of the acrylic plate, but the resin composition immediately below the light-shielding portion. The curing rate of is not necessarily high. On the other hand, when front irradiation and side irradiation are used in combination, the curing rate of the resin composition directly below the light shielding portion can be increased even when the light shielding portion is formed.

本発明は、液晶表示装置等の画像表示装置の製造に有用である。   The present invention is useful for manufacturing an image display device such as a liquid crystal display device.

本発明の一実施形態の製造方法の要部を示す断面工程図である。It is sectional process drawing which shows the principal part of the manufacturing method of one Embodiment of this invention. 同実施形態における製造工程の要部を示す平面図である。It is a top view which shows the principal part of the manufacturing process in the embodiment. 他の実施形態の製造方法の要部を示す断面工程図である。It is sectional process drawing which shows the principal part of the manufacturing method of other embodiment. 従来技術に係る画像表示装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the image display apparatus which concerns on a prior art.

符号の説明Explanation of symbols

1…画像表示装置
2…基部
3…保護部
4…透光性部材
5…遮光部
5a…遮光部の貼り合わせ面
6…フレーム
6a…フレームの貼り合わせ面
7…バックライト
8…液晶表示パネル(画像表示部)
11…光硬化型樹脂組成物
12…樹脂組成物充填部
14…樹脂硬化物層
32、33…紫外線
DESCRIPTION OF SYMBOLS 1 ... Image display apparatus 2 ... Base part 3 ... Protection part 4 ... Translucent member 5 ... Light-shielding part 5a ... Light-shielding part bonding surface 6 ... Frame 6a ... Frame bonding surface 7 ... Backlight 8 ... Liquid crystal display panel ( Image display)
DESCRIPTION OF SYMBOLS 11 ... Photocurable resin composition 12 ... Resin composition filling part 14 ... Resin hardened | cured material layer 32, 33 ... Ultraviolet

Claims (8)

画像表示部を有する基部と、遮光部を有する透光性の保護部との間に光硬化型樹脂組成物を介在させ、光硬化させて樹脂硬化物層を形成する工程を有する画像表示装置の製造方法であって、
光硬化型樹脂組成物として、硬化収縮率が5%以下、硬化物の25℃における貯蔵弾性率が1.0×107Pa以下、樹脂硬化物層の可視光領域の光透過率を90%以上とする樹脂組成物を使用し、
光硬化を、少なくとも遮光部の形成面の外方側面側から光硬化型樹脂組成物に光照射することにより行う画像表示装置の製造方法。
An image display apparatus comprising a step of interposing a photocurable resin composition between a base portion having an image display portion and a light-transmitting protective portion having a light-shielding portion and photocuring to form a cured resin layer. A manufacturing method comprising:
The photocurable resin composition has a cure shrinkage of 5% or less, a storage modulus of the cured product at 25 ° C. of 1.0 × 10 7 Pa or less, and a light transmittance in the visible light region of the resin cured product layer of 90%. Using the resin composition as described above,
A method for producing an image display device, wherein photocuring is performed by irradiating light to a photocurable resin composition at least from an outer side surface of a formation surface of a light shielding portion.
樹脂硬化物層の25℃における貯蔵弾性率が1×103〜1×106Paである請求項1記載の製造方法。 The method according to claim 1, wherein the cured resin layer has a storage elastic modulus at 25 ° C of 1 x 10 3 to 1 x 10 6 Pa. 光硬化型樹脂組成物の硬化収縮率が4.0%以下である請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the photocurable resin composition has a curing shrinkage of 4.0% or less. 樹脂硬化物層の厚みが50〜200μmである請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the cured resin layer has a thickness of 50 to 200 μm. 光硬化型樹脂組成物が、ポリウレタンアクリレート、ポリイソプレン系アクリレート又はそのエステル化物、テルペン系水素添加樹脂及びブタジエン重合体から選ばれる1種以上のポリマーと、イソボルニルアクリレート、ジシクロペンテニルオキシエチルメタクリレート及び2−ヒドロキシブチルメタクリレートから選ばれる1種以上のアクリレート系モノマーと、光重合開始剤とを含有する請求項1〜4のいずれかに記載の製造方法。   A photocurable resin composition comprising at least one polymer selected from polyurethane acrylate, polyisoprene acrylate or esterified product thereof, terpene hydrogenated resin, and butadiene polymer, isobornyl acrylate, dicyclopentenyloxyethyl methacrylate The manufacturing method in any one of Claims 1-4 containing the 1 or more types of acrylate-type monomer chosen from 2-hydroxybutylmethacrylate, and a photoinitiator. 画像表示部が、液晶表示パネルである請求項1〜5のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the image display unit is a liquid crystal display panel. 保護部が、アクリル樹脂からなる請求項1〜6のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the protective part is made of an acrylic resin. 保護部が、光学ガラスからなる請求項1〜6のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the protective part is made of optical glass.
JP2008096124A 2007-04-04 2008-04-02 Method of manufacturing image display apparatus Pending JP2009186954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096124A JP2009186954A (en) 2007-04-04 2008-04-02 Method of manufacturing image display apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007098907 2007-04-04
JP2008005097 2008-01-13
JP2008096124A JP2009186954A (en) 2007-04-04 2008-04-02 Method of manufacturing image display apparatus

Publications (1)

Publication Number Publication Date
JP2009186954A true JP2009186954A (en) 2009-08-20

Family

ID=41070225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096124A Pending JP2009186954A (en) 2007-04-04 2008-04-02 Method of manufacturing image display apparatus

Country Status (1)

Country Link
JP (1) JP2009186954A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057958A1 (en) 2011-10-21 2013-04-25 日本化薬株式会社 Method for producing optical member and use of ultraviolet ray cured resin composition for same
WO2013057959A1 (en) 2011-10-21 2013-04-25 日本化薬株式会社 Method for producing optical member and use of uv-curable resin composition therefor
JP2013144760A (en) * 2012-01-16 2013-07-25 Hitachi Chemical Co Ltd Liquid photocurable resin composition, optical member, image display and method for producing the same
WO2013111810A1 (en) * 2012-01-25 2013-08-01 デクセリアルズ株式会社 Image display device fabrication method
JP2013152339A (en) * 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2013151151A (en) * 2012-11-13 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2013156641A (en) * 2013-02-28 2013-08-15 Dexerials Corp Manufacturing method of image display device
JP2013184997A (en) * 2012-03-06 2013-09-19 Hitachi Chemical Co Ltd Liquid photocurable resin composition, image display device using the same, and method of manufacturing the same
JP5304922B1 (en) * 2012-05-09 2013-10-02 デクセリアルズ株式会社 Manufacturing method of image display device
WO2013168629A1 (en) * 2012-05-09 2013-11-14 デクセリアルズ株式会社 Image display device manufacturing method
JP5370706B1 (en) * 2012-12-14 2013-12-18 デクセリアルズ株式会社 Manufacturing method of image display device
JP2014094976A (en) * 2012-11-07 2014-05-22 Hitachi Chemical Co Ltd Method for manufacturing pressure-sensitive adhesive sheet for image display device
KR20140111283A (en) 2012-01-13 2014-09-18 닛뽄 가야쿠 가부시키가이샤 Optical members and ultraviolet curable adhesive used in manufacturing same
US8936839B2 (en) 2011-01-18 2015-01-20 Sharp Kabushiki Kaisha Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
WO2015033610A1 (en) * 2013-09-09 2015-03-12 日本化薬株式会社 Method for producing optical member and ultraviolet curable resin composition used in same
JP2015223711A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
JP2015223710A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
JP2015223715A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
JP2015223714A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
KR20160119783A (en) 2014-02-10 2016-10-14 닛뽄 가야쿠 가부시키가이샤 Ultraviolet-curable adhesive composition for touch panel, optical member production method using same, cured product, and touch panel
KR20170018828A (en) 2014-06-11 2017-02-20 닛뽄 가야쿠 가부시키가이샤 Uv-curable adhesive composition for touch panel, and product
US9663688B2 (en) 2012-03-21 2017-05-30 Nipponkayaku Kabushikikaisha Optical member and ultraviolet-curable adhesive to be used for producing the same
JP2017161919A (en) * 2017-04-21 2017-09-14 デクセリアルズ株式会社 Method for manufacturing image display device
KR20190032222A (en) 2017-09-19 2019-03-27 닛뽄 가야쿠 가부시키가이샤 Adhesive for display
JP2019148799A (en) * 2019-03-07 2019-09-05 デクセリアルズ株式会社 Method for manufacturing image display device
JP2019174812A (en) * 2019-04-24 2019-10-10 パイオニア株式会社 Light-emitting device
JP2021039357A (en) * 2019-03-07 2021-03-11 デクセリアルズ株式会社 Method for manufacturing image display device
JP2021039356A (en) * 2020-10-28 2021-03-11 パイオニア株式会社 Light-emitting device

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936839B2 (en) 2011-01-18 2015-01-20 Sharp Kabushiki Kaisha Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
WO2013057959A1 (en) 2011-10-21 2013-04-25 日本化薬株式会社 Method for producing optical member and use of uv-curable resin composition therefor
JP5411394B2 (en) * 2011-10-21 2014-02-12 日本化薬株式会社 Method for producing optical member and use of ultraviolet curable resin composition therefor
KR101802252B1 (en) 2011-10-21 2017-11-28 니폰 가야꾸 가부시끼가이샤 Method for producing optical member and use of ultraviolet ray cured resin composition for same
WO2013057958A1 (en) 2011-10-21 2013-04-25 日本化薬株式会社 Method for producing optical member and use of ultraviolet ray cured resin composition for same
JP2015221894A (en) * 2011-10-21 2015-12-10 日本化薬株式会社 Method for producing optical member and use of ultraviolet-curable resin composition for the same
JP2015206046A (en) * 2011-10-21 2015-11-19 日本化薬株式会社 Ultraviolet-curable resin composition
JP2015206045A (en) * 2011-10-21 2015-11-19 日本化薬株式会社 Ultraviolet-curable resin composition
JP2015206044A (en) * 2011-10-21 2015-11-19 日本化薬株式会社 Ultraviolet-curable resin composition
JP2015199962A (en) * 2011-10-21 2015-11-12 日本化薬株式会社 Ultraviolet-curable resin composition
US9182527B2 (en) 2011-10-21 2015-11-10 Nippon Kayaku Kabushiki Kaisha Method for producing optical member and use of UV-curable resin composition therefor
JP2014076661A (en) * 2011-10-21 2014-05-01 Nippon Kayaku Co Ltd Production method of optical member and use of ultraviolet ray-curable resin composition for the method
JP2015187734A (en) * 2011-10-21 2015-10-29 日本化薬株式会社 display device
JP2015157940A (en) * 2011-10-21 2015-09-03 日本化薬株式会社 Method for manufacturing optical member and use of ultraviolet-curable resin composition for the method
US10179445B2 (en) 2011-10-21 2019-01-15 Nippon Kayaku Kabushiki Kaisha Method for producing optical member and use of ultraviolet ray cured resin composition for same
KR20140111283A (en) 2012-01-13 2014-09-18 닛뽄 가야쿠 가부시키가이샤 Optical members and ultraviolet curable adhesive used in manufacturing same
JP2013144760A (en) * 2012-01-16 2013-07-25 Hitachi Chemical Co Ltd Liquid photocurable resin composition, optical member, image display and method for producing the same
US11738548B2 (en) 2012-01-25 2023-08-29 Dexerials Corporation Method of manufacturing image display device
US10843448B2 (en) 2012-01-25 2020-11-24 Dexerials Corporation Method of manufacturing image display device
WO2013111810A1 (en) * 2012-01-25 2013-08-01 デクセリアルズ株式会社 Image display device fabrication method
US10618267B2 (en) 2012-01-25 2020-04-14 Dexerials Corporation Method of manufacturing image display device
US10759156B2 (en) 2012-01-25 2020-09-01 Dexerials Corporation Method of manufacturing image display device
JP2013152339A (en) * 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2013184997A (en) * 2012-03-06 2013-09-19 Hitachi Chemical Co Ltd Liquid photocurable resin composition, image display device using the same, and method of manufacturing the same
US9663688B2 (en) 2012-03-21 2017-05-30 Nipponkayaku Kabushikikaisha Optical member and ultraviolet-curable adhesive to be used for producing the same
WO2013168532A1 (en) * 2012-05-09 2013-11-14 デクセリアルズ株式会社 Method for manufacturing image display device
KR101962550B1 (en) * 2012-05-09 2019-03-26 데쿠세리아루즈 가부시키가이샤 Image display device manufacturing method
WO2013168629A1 (en) * 2012-05-09 2013-11-14 デクセリアルズ株式会社 Image display device manufacturing method
JP5304922B1 (en) * 2012-05-09 2013-10-02 デクセリアルズ株式会社 Manufacturing method of image display device
JP2013254195A (en) * 2012-05-09 2013-12-19 Dexerials Corp Manufacturing method of image display device
JP2013254189A (en) * 2012-05-09 2013-12-19 Dexerials Corp Manufacturing method of image display device
US11945203B2 (en) 2012-05-09 2024-04-02 Dexerials Corporation Method of manufacturing image display apparatus
US10882293B2 (en) 2012-05-09 2021-01-05 Dexerials Corporation Method of manufacturing image display apparatus
KR101443550B1 (en) * 2012-05-09 2014-09-22 데쿠세리아루즈 가부시키가이샤 Method for manufacturing image display device
EP4184485A1 (en) * 2012-05-09 2023-05-24 Dexerials Corporation Method of manufacturing image display apparatus
KR20170038132A (en) * 2012-05-09 2017-04-05 데쿠세리아루즈 가부시키가이샤 Image display device manufacturing method
US11404617B2 (en) 2012-05-09 2022-08-02 Dexerials Corporation Method for manufacturing image display device
US9718264B2 (en) 2012-05-09 2017-08-01 Dexerials Corporation Method of manufacturing image display apparatus
JP2014123144A (en) * 2012-05-09 2014-07-03 Dexerials Corp Method for manufacturing image display apparatus
JP2014094976A (en) * 2012-11-07 2014-05-22 Hitachi Chemical Co Ltd Method for manufacturing pressure-sensitive adhesive sheet for image display device
JP2013151151A (en) * 2012-11-13 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
US11573440B2 (en) 2012-12-14 2023-02-07 Dexerials Corporation Method of manufacturing image display device
US9459475B2 (en) 2012-12-14 2016-10-04 Dexerials Corporation Method of manufacturing image display device
US10108034B2 (en) 2012-12-14 2018-10-23 Dexerials Corporation Method of manufacturing image display device
US10935826B2 (en) 2012-12-14 2021-03-02 Dexerials Corporation Method of manufacturing image display device
WO2014091768A1 (en) * 2012-12-14 2014-06-19 デクセリアルズ株式会社 Method for producing image display device
JP5370706B1 (en) * 2012-12-14 2013-12-18 デクセリアルズ株式会社 Manufacturing method of image display device
JP2013156641A (en) * 2013-02-28 2013-08-15 Dexerials Corp Manufacturing method of image display device
KR20160055134A (en) 2013-09-09 2016-05-17 닛뽄 가야쿠 가부시키가이샤 Method for producing optical member and ultraviolet curable resin composition used in same
CN105518764A (en) * 2013-09-09 2016-04-20 日本化药株式会社 Method for producing optical member and ultraviolet curable resin composition used in same
WO2015033610A1 (en) * 2013-09-09 2015-03-12 日本化薬株式会社 Method for producing optical member and ultraviolet curable resin composition used in same
KR20160119783A (en) 2014-02-10 2016-10-14 닛뽄 가야쿠 가부시키가이샤 Ultraviolet-curable adhesive composition for touch panel, optical member production method using same, cured product, and touch panel
JP2015223710A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
JP2015223714A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
JP2015223715A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
JP2015223711A (en) * 2014-05-26 2015-12-14 日立化成株式会社 Flexible transparent substrate
KR20170018828A (en) 2014-06-11 2017-02-20 닛뽄 가야쿠 가부시키가이샤 Uv-curable adhesive composition for touch panel, and product
JP2017161919A (en) * 2017-04-21 2017-09-14 デクセリアルズ株式会社 Method for manufacturing image display device
KR20190032222A (en) 2017-09-19 2019-03-27 닛뽄 가야쿠 가부시키가이샤 Adhesive for display
JP2019148799A (en) * 2019-03-07 2019-09-05 デクセリアルズ株式会社 Method for manufacturing image display device
JP2021039357A (en) * 2019-03-07 2021-03-11 デクセリアルズ株式会社 Method for manufacturing image display device
JP2019174812A (en) * 2019-04-24 2019-10-10 パイオニア株式会社 Light-emitting device
JP2021039356A (en) * 2020-10-28 2021-03-11 パイオニア株式会社 Light-emitting device
JP2022092623A (en) * 2020-10-28 2022-06-22 パイオニア株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JP4984083B2 (en) Manufacturing method of image display device
US11740501B2 (en) Image display device that can display high brightness and high contrast images and includes a cured resin layer
JP2009186954A (en) Method of manufacturing image display apparatus
JP5299544B2 (en) Manufacturing method of image display device
JP5343388B2 (en) Resin composition and display device
KR101702248B1 (en) Method for manufacturing image display
JP2019159338A (en) Resin composition and display device
JP2017076132A (en) Method for manufacturing image display device