JP2017161919A - Method for manufacturing image display device - Google Patents

Method for manufacturing image display device Download PDF

Info

Publication number
JP2017161919A
JP2017161919A JP2017084802A JP2017084802A JP2017161919A JP 2017161919 A JP2017161919 A JP 2017161919A JP 2017084802 A JP2017084802 A JP 2017084802A JP 2017084802 A JP2017084802 A JP 2017084802A JP 2017161919 A JP2017161919 A JP 2017161919A
Authority
JP
Japan
Prior art keywords
light
shielding layer
image display
cover member
cured resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017084802A
Other languages
Japanese (ja)
Other versions
JP6495965B2 (en
Inventor
康一 小川
Koichi Ogawa
康一 小川
新家 由久
Yoshihisa Araya
由久 新家
林 直樹
Naoki Hayashi
直樹 林
豊田 倫由紀
Tomoyuki Toyoda
倫由紀 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017084802A priority Critical patent/JP6495965B2/en
Publication of JP2017161919A publication Critical patent/JP2017161919A/en
Application granted granted Critical
Publication of JP6495965B2 publication Critical patent/JP6495965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an image display device, in which a photo-curable resin composition between a light-shielding layer and an image display member can be sufficiently photo-cured without being eliminated from therebetween, and level difference between the light-shielding layer and a light-transmitting cover member surface can be canceled.SOLUTION: After a photo-curable resin composition 3 in a liquid state is once applied on a surface of a light-transmitting cover member 2 including a light-shielding layer 1, to thickness larger than thickness of the light-shielding layer 1, the photo-curable resin composition at least on the light-shielding layer 1 is irradiated with UV rays to be temporarily cured. Thereby, the light-transmitting curable resin layer between the light-shielding layer 1 and an image display member can be sufficiently photo-cured without being eliminated from therebetween, and moreover, level difference between the light-shielding layer 1 and a light-shielding layer side surface of the light-transmitting cover member 2 can be canceled.SELECTED DRAWING: Figure 1C

Description

本発明は、液晶表示パネル等の画像表示部材とその表面側に配される透明保護シート等の光透過性カバー部材とを、光透過性硬化樹脂層を介して接着・積層して画像表示装置を製造する方法に関する。   The present invention relates to an image display device in which an image display member such as a liquid crystal display panel and a light-transmitting cover member such as a transparent protective sheet disposed on the surface side are bonded and laminated via a light-transmitting cured resin layer. It relates to a method of manufacturing.

スマートフォーン等の情報端末に用いられている液晶表示パネル等の画像表示装置は、液晶表示パネルや有機ELパネル等の画像表示部材と光透過性カバー部材との間に、光硬化性樹脂組成物を配した後、その組成物に紫外線を照射して硬化させて光透過性硬化樹脂層とし、それにより画像表示部材と光透過性カバー部材とを接着・積層することにより製造されている(特許文献1)。   An image display device such as a liquid crystal display panel used for an information terminal such as a smart phone is a photocurable resin composition between an image display member such as a liquid crystal display panel or an organic EL panel and a light-transmitting cover member. The composition is manufactured by irradiating the composition with ultraviolet rays and curing it to form a light-transmitting cured resin layer, thereby bonding and laminating the image display member and the light-transmitting cover member (patent) Reference 1).

ところで、光透過性カバー部材の画像表示部側表面の周縁部には、表示画像の輝度やコントラスト向上のために遮光層が設けられているため、そのような遮光層と画像表示部材との間に挟まれた光硬化性樹脂組成物の硬化が十分に進行せず、そのため十分な接着力が得られず、光透過性カバー部材と画像表示部材との間の剥離や、その間隙への湿気の侵入により画像品質の低下等が生ずるということが懸念されている。   By the way, since a light shielding layer is provided on the periphery of the surface of the light transmissive cover member on the image display portion side in order to improve the brightness and contrast of the display image, the space between the light shielding layer and the image display member is not provided. Curing of the photocurable resin composition sandwiched between the layers does not proceed sufficiently, so that sufficient adhesive force cannot be obtained, peeling between the light-transmitting cover member and the image display member, and moisture in the gap There is a concern that degradation of image quality and the like may occur due to the intrusion.

そこで、光硬化性樹脂組成物に熱重合開始剤を配合して熱及び光硬化性樹脂組成物とし、遮光層が形成された光透過性カバー部材の表面に、この熱及び光硬化性樹脂組成物を塗布し、この塗布面を画像表示部材に重ね、紫外線を照射して光硬化させた後に、全体を加熱することにより遮光層と画像表示部材との間に挟まれた熱及び光硬化性樹脂組成物を熱硬化させることが提案されている(特許文献2)。   Therefore, a thermal polymerization initiator is blended with the photocurable resin composition to obtain a heat and photocurable resin composition, and the heat and photocurable resin composition is formed on the surface of the light transmissive cover member on which the light shielding layer is formed. After applying the product, the coated surface is overlapped on the image display member, and after being cured by irradiating with ultraviolet rays, the entire structure is heated to heat and light curable sandwiched between the light shielding layer and the image display member. It has been proposed to thermally cure a resin composition (Patent Document 2).

国際公開2010/027041号International Publication No. 2010/027041 国際公開2008/126860号International Publication No. 2008/126860

しかしながら、特許文献2の技術によれば、特許文献1で懸念された問題の解消は期待できるが、光重合開始剤に熱重合開始剤を同時に併用し、光重合プロセスに加えて熱重合プロセスとを実施しなければならないため、熱重合プロセスのための設備投資の負担が大きくなるという問題や、熱及び光硬化性樹脂組成物の保存安定性が低下するという問題があった。更に、熱及び光硬化性樹脂組成物が塗布された光透過性カバー部材と画像表示部材とに重ねる際、その段階では硬化プロセスを経ていないため、遮光層と光透過性カバー部材の表面との間から樹脂組成物が排除されてしまい、遮光層と光透過性カバー部材表面との間の段差がキャンセルされず、気泡の発生や光透過性カバーと樹脂の層間剥離という問題の発生も懸念されている。   However, according to the technology of Patent Document 2, it can be expected that the problems concerned in Patent Document 1 will be solved. However, a thermal polymerization initiator is used in combination with a photopolymerization initiator, and in addition to the photopolymerization process, Therefore, there is a problem that the burden of equipment investment for the thermal polymerization process is increased, and there is a problem that the storage stability of the heat and the photocurable resin composition is lowered. Further, when the light-transmitting cover member coated with the heat and photo-curable resin composition is overlaid on the image display member, since the curing process is not performed at that stage, the light shielding layer and the surface of the light-transmitting cover member The resin composition is excluded from the gap, the level difference between the light shielding layer and the light transmissive cover member surface is not canceled, and there is a concern about the generation of bubbles and the problem of delamination of the light transmissive cover and the resin. ing.

本発明の目的は、以上の従来の技術の問題点を解決することであり、遮光層と画像表示部材との間の光硬化性樹脂組成物を、そこから排除されることなく十分に光硬化させ且つ遮光層と光透過性カバー部材表面との間の段差をキャンセルすることができる画像表示装置の製造方法を提供する。   The object of the present invention is to solve the above-mentioned problems of the conventional technique, and the photocurable resin composition between the light shielding layer and the image display member is sufficiently photocured without being excluded therefrom. And a method of manufacturing an image display device capable of canceling a step between the light shielding layer and the surface of the light transmissive cover member.

本発明者は、液状の光硬化性樹脂組成物を、一旦、遮光層を含む光透過性カバー部材の表面に、遮光層の厚さより厚く塗布した後、遮光層上に位置する光硬化性樹脂組成物に対し、紫外線を照射して硬化率を高め、仮硬化させておくことにより、遮光層と画像表示部材との間の光透過性硬化樹脂層を、その間から排除することなく十分に光硬化させることができ、しかも遮光層と光透過性カバー部材の遮光層形成側表面との間の段差をキャンセルできることを見出し、本発明を完成させるに至った。   The inventor once applied a liquid photocurable resin composition to the surface of a light-transmitting cover member including a light-shielding layer so as to be thicker than the thickness of the light-shielding layer, and then the photocurable resin located on the light-shielding layer. By irradiating the composition with ultraviolet rays to increase the curing rate and pre-curing it, the light-transmitting cured resin layer between the light-shielding layer and the image display member is sufficiently light without being excluded from between them. The present invention has been completed by finding that it can be cured, and that a step between the light shielding layer and the light shielding layer forming side surface of the light-transmitting cover member can be canceled.

すなわち、本発明は、画像表示部材と、周縁部に遮光層が形成された光透過性カバー部材とが、液状の光硬化性樹脂組成物から形成された光透過性硬化樹脂層を介し、光透過性カバー部材の遮光層形成面が画像表示部材側に配置されるように積層された画像表示装置の製造方法において、以下の工程(A)〜(D)を有する製造方法を提供する。   That is, according to the present invention, an image display member and a light-transmitting cover member having a light-shielding layer formed on a peripheral portion are light-transmitted through a light-transmitting cured resin layer formed from a liquid photocurable resin composition. In the manufacturing method of the image display apparatus laminated | stacked so that the light shielding layer formation surface of a transparent cover member may be arrange | positioned at the image display member side, the manufacturing method which has the following processes (A)-(D) is provided.

<工程(A)>
液状の光硬化性樹脂組成物を、光透過性カバー部材の遮光層形成側表面又は画像表示部材の表面に、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さより厚く塗布する工程。
<Process (A)>
There is a step formed between the light shielding layer and the light shielding layer forming side surface of the light transmissive cover member on the light shielding layer forming side surface of the light transmissive cover member or the surface of the image display member. The process of applying thicker than the thickness of the light shielding layer so as to be canceled.

<工程(B)>
少なくとも遮光層上に位置する光硬化性樹脂組成物に対し紫外線を照射して仮硬化させ、遮光層上の仮硬化樹脂層の硬化率を30〜80%とする工程。
<Process (B)>
A step of irradiating the photocurable resin composition located on at least the light shielding layer with ultraviolet rays and temporarily curing the composition so that the curing rate of the temporarily cured resin layer on the light shielding layer is 30 to 80%.

<工程(C)>
画像表示部材に、遮光層と仮硬化樹脂層とが内側となるように光透過性カバー部材を貼り合わせる工程。
<Process (C)>
A step of bonding the light-transmitting cover member to the image display member so that the light shielding layer and the temporarily cured resin layer are on the inside.

<工程(D)>
画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に対し紫外線を照射して本硬化させ、遮光層上及び光透過性カバー部材上の両者の光透過性硬化樹脂層の硬化率を90%以上とし、画像表示部材と光透過性カバー部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程。
<Process (D)>
The temporary cured resin layer sandwiched between the image display member and the light transmissive cover member is irradiated with ultraviolet rays to be fully cured, and the light transmissive cured resin on both the light shielding layer and the light transmissive cover member. A step of obtaining an image display device by setting the curing rate of the layer to 90% or more and laminating an image display member and a light-transmitting cover member via a light-transmitting cured resin layer.

本発明の画像表示装置の製造方法においては、液状の光硬化性樹脂組成物を、遮光層を含む光透過性カバー部材の表面又は画像表示部材の表面に、遮光層の厚さより厚く塗布した後、少なくとも遮光層上に位置する光硬化性樹脂組成物に対し紫外線を照射して仮硬化させ、遮光層上の仮硬化樹脂層の硬化率を30〜80%とする。続いて、仮硬化樹脂層を介して画像表示部材と光透過性カバー部材とを積層した後に紫外線を照射して本硬化させて光透過性硬化樹脂層を形成する。このため、遮光層と画像表示部材との間の光透過性硬化樹脂層をその間から排除することなく十分に光硬化させ且つ遮光層と光透過性カバー部材の遮光層形成側表面との間の段差をキャンセルできる。   In the method for producing an image display device of the present invention, the liquid photocurable resin composition is applied to the surface of the light transmissive cover member including the light shielding layer or the surface of the image display member to be thicker than the thickness of the light shielding layer. Then, at least the photocurable resin composition located on the light shielding layer is irradiated with ultraviolet rays and temporarily cured, so that the curing rate of the temporarily cured resin layer on the light shielding layer is 30 to 80%. Then, after laminating | stacking an image display member and a light-transmitting cover member through a temporary-hardening resin layer, an ultraviolet-ray is irradiated and main-cured and a light-transmitting cured resin layer is formed. For this reason, the light-transmitting cured resin layer between the light-shielding layer and the image display member is sufficiently photocured without being excluded from between the light-shielding layer and the light-shielding layer forming side surface of the light-transmitting cover member. The step can be canceled.

図1Aは、本発明の画像表示装置の製造方法の工程(A)の説明図である。FIG. 1A is an explanatory diagram of step (A) of the method for manufacturing an image display device of the present invention. 図1Bは、本発明の画像表示装置の製造方法の工程(A)の説明図である。FIG. 1B is an explanatory diagram of the step (A) of the method for manufacturing the image display device of the present invention. 図1Cは、本発明の画像表示装置の製造方法の工程(B)の説明図である。FIG. 1C is an explanatory diagram of the step (B) of the method for manufacturing the image display device of the present invention. 図1Dは、本発明の画像表示装置の製造方法の工程(B)の説明図である。FIG. 1D is an explanatory diagram of a step (B) of the method for manufacturing the image display device of the present invention. 図1Eは、本発明の画像表示装置の製造方法の工程(C)の説明図である。FIG. 1E is an explanatory diagram of the step (C) of the method for manufacturing the image display device of the present invention. 図1Fは、本発明の画像表示装置の製造方法の工程(D)の説明図である。FIG. 1F is an explanatory diagram of a step (D) of the method for manufacturing the image display device of the present invention. 図1Gは、本発明の画像表示装置の製造方法の工程(D)の説明図である。FIG. 1G is an explanatory diagram of the step (D) of the manufacturing method of the image display device of the present invention. 図2Aは、本発明の画像表示装置の製造方法の工程(AA)の説明図である。FIG. 2A is an explanatory diagram of a process (AA) of the manufacturing method of the image display device of the present invention. 図2Bは、本発明の画像表示装置の製造方法の工程(BB)の説明図である。FIG. 2B is an explanatory diagram of a step (BB) of the method for manufacturing the image display device of the present invention. 図2Cは、本発明の画像表示装置の製造方法の工程(BB)の説明図である。FIG. 2C is an explanatory diagram of a step (BB) of the method for manufacturing the image display device of the present invention. 図2Dは、本発明の画像表示装置の製造方法の工程(CC)の説明図である。FIG. 2D is an explanatory diagram of a step (CC) of the method for manufacturing the image display device of the present invention. 図2Eは、本発明の画像表示装置の製造方法の工程(DD)の説明図である。FIG. 2E is an explanatory diagram of a step (DD) of the method for manufacturing the image display device of the present invention. 図2Fは、本発明の画像表示装置の製造方法の工程(DD)の説明図である。FIG. 2F is an explanatory diagram of a step (DD) of the method for manufacturing the image display device of the present invention. 図3は、光透過性硬化樹脂層の接着強度試験の説明図である。FIG. 3 is an explanatory diagram of an adhesive strength test of the light transmissive cured resin layer.

以下、工程(A)〜(D)を有する本発明の画像表示装置の製造方法を、図面を参照しながら工程毎に詳細に説明する。   Hereinafter, the manufacturing method of the image display apparatus of the present invention having steps (A) to (D) will be described in detail for each step with reference to the drawings.

<工程(A)(塗布工程)>
まず、図1Aに示すように、片面の周縁部に形成された遮光層1を有する光透過性カバー部材2を用意し、図1Bに示すように、光透過性カバー部材2の表面2aに、液状の光硬化性樹脂組成物3を、遮光層1と光透過性カバー部材2の遮光層形成側表面2aとで形成される段差4がキャンセルされるように、遮光層1の厚さより厚く塗布する。具体的には、遮光層1の表面も含め、光透過性カバー部材2の遮光層形成側表面2aの全面に光硬化性樹脂組成物3を平坦になるように塗布し、段差が生じないようにする。従って、光硬化性樹脂組成物3を、遮光層1の厚さの好ましくは1.2〜12.5倍、より好ましくは2.5〜4倍の厚さで塗布する。
<Process (A) (application process)>
First, as shown in FIG. 1A, a light-transmitting cover member 2 having a light shielding layer 1 formed on the peripheral edge of one side is prepared, and as shown in FIG. 1B, on the surface 2a of the light-transmitting cover member 2, The liquid photocurable resin composition 3 is applied thicker than the thickness of the light shielding layer 1 so that the step 4 formed between the light shielding layer 1 and the light shielding layer forming side surface 2a of the light transmissive cover member 2 is canceled. To do. Specifically, the photocurable resin composition 3 is applied to the entire surface of the light-shielding layer forming side surface 2a of the light-transmitting cover member 2 including the surface of the light-shielding layer 1 so that no step is generated. To. Therefore, the photocurable resin composition 3 is applied in a thickness of preferably 1.2 to 12.5 times, more preferably 2.5 to 4 times the thickness of the light shielding layer 1.

なお、この光硬化性樹脂組成物3の塗布は、必要な厚みが得られるように複数回行ってもよい。   In addition, you may perform application | coating of this photocurable resin composition 3 in multiple times so that required thickness may be obtained.

光透過性カバー部材2としては、画像表示部材に形成された画像が視認可能となるような光透過性があればよく、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられる。これらの材料には、片面又は両面ハードコート処理、反射防止処理などを施すことができる。光透過性カバー部材2の厚さや弾性などの物性は、使用目的に応じて適宜決定することができる。   The light transmissive cover member 2 only needs to be light transmissive so that an image formed on the image display member can be visually recognized, and plate-like materials such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, and polycarbonate. And sheet-like materials. These materials can be subjected to single-sided or double-sided hard coat treatment, antireflection treatment or the like. The physical properties such as thickness and elasticity of the light-transmitting cover member 2 can be appropriately determined according to the purpose of use.

遮光層1は、画像のコントラストを挙げるため等に設けられるものであり、黒色等に着色された塗料をスクリーン印刷法などで塗布し、乾燥・硬化させたものである。遮光層1の厚みとしては、通常5〜100μmであり、この厚みが段差4に相当する。   The light-shielding layer 1 is provided to increase the contrast of an image, and is formed by applying a paint colored black or the like by a screen printing method or the like, and drying and curing. The thickness of the light shielding layer 1 is usually 5 to 100 μm, and this thickness corresponds to the step 4.

本工程で使用する光硬化性樹脂組成物3の性状は液状である。液状のものを使用するので、遮光層1と光透過性カバー部材2の遮光層形成側表面2aとで形成される段差4をキャンセルできる。ここで、液状とは、コーンプレート型粘度計で0.01〜100Pa.s(25℃)の粘度を示すものである。   The property of the photocurable resin composition 3 used in this step is liquid. Since a liquid material is used, the step 4 formed by the light shielding layer 1 and the light shielding layer forming side surface 2a of the light transmissive cover member 2 can be canceled. Here, “liquid” means a cone plate viscometer of 0.01 to 100 Pa.s. It shows the viscosity of s (25 ° C.).

このような光硬化性樹脂組成物3は、アクリレート系オリゴマー成分(成分(イ))、アクリレート系モノマー成分(成分(ロ))、及び光重合開始剤(成分(ハ))を主成分として含有するものを好ましく例示することができる。   Such a photocurable resin composition 3 contains an acrylate oligomer component (component (I)), an acrylate monomer component (component (b)), and a photopolymerization initiator (component (c)) as main components. What can be preferably illustrated.

成分(イ)のアクリル系オリゴマーは、光硬化性樹脂組成物のベース材料として使用されている。好ましい具体例としては、ポリイソプレン、ポリウレタン、ポリブタジエン等を骨格に持つ(メタ)アクリレート系オリゴマーを挙げることができる。なお、本明細書において、“(メタ)アクリレート”という用語は、アクリレートとメタクリレートとを包含する。   The acrylic oligomer of component (a) is used as a base material for the photocurable resin composition. Preferable specific examples include (meth) acrylate oligomers having polyisoprene, polyurethane, polybutadiene or the like as a skeleton. In the present specification, the term “(meth) acrylate” includes acrylate and methacrylate.

ポリイソプレン骨格の(メタ)アクリレートオリゴマーの好ましい具体例としては、ポリイソプレン重合体の無水マレイン酸付加物と2−ヒドロキシエチルメタクリレートとのエステル化物(UC102(ポリスチレン換算分子量17000)、(株)クラレ;UC203(ポリスチレン換算分子量35000)、(株)クラレ;;UC−1(分子量約25000)、(株)クラレ)等を挙げることができる。   As a preferable specific example of the (meth) acrylate oligomer having a polyisoprene skeleton, an esterified product of a maleic anhydride adduct of polyisoprene polymer and 2-hydroxyethyl methacrylate (UC102 (polystyrene equivalent molecular weight 17000), Kuraray Co., Ltd .; UC203 (polystyrene equivalent molecular weight 35000), Kuraray Co., Ltd .; UC-1 (molecular weight of about 25000), Kuraray Co., Ltd.) and the like.

また、ポリウレタン骨格を持つ(メタ)アクリル系オリゴマーの好ましい具体例としては、脂肪族ウレタンアクリレート(EBECRYL230(分子量5000)、ダイセル・サイテック社;UA−1、ライトケミカル社)等を挙げることができる。   Specific examples of the (meth) acrylic oligomer having a polyurethane skeleton include aliphatic urethane acrylate (EBECRYL230 (molecular weight 5000), Daicel-Cytec; UA-1, Light Chemical).

ポリブタジエン骨格の(メタ)アクリレート系オリゴマーとしては、公知のものを採用することができる。   As the (meth) acrylate oligomer having a polybutadiene skeleton, a known one can be employed.

成分(ロ)のアクリル系モノマー成分は、画像表示装置の製造工程において、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するために反応性希釈剤として使用されている。このようなアクリル系モノマーとしては、2−ヒドロキシプロピルメタクリレート、ベンジルアクリレート、ジシクロペンテニルオキシエチルメタクリレート等を挙げることができる。   The acrylic monomer component (B) is used as a reactive diluent in the manufacturing process of the image display device in order to impart sufficient reactivity and coating properties to the photocurable resin composition. Examples of such acrylic monomers include 2-hydroxypropyl methacrylate, benzyl acrylate, dicyclopentenyloxyethyl methacrylate, and the like.

成分(ハ)の光重合開始剤としては、公知の光ラジカル重合開始剤を使用することができ、例えば、1−ヒドロキシ−シクロへキシルフェニルケトン(イルガキュア184、チバ・スペシャリティケミカルズ社)、2−ヒドロキシ−1−{4−[4−(2一ヒドロキシ−2−メチル−プロピロニル)ベンジル]フェニル}−2−メチル−1−プロパン−1−オン(イルガキュア127、チバ・スペシャリティケミカルズ社)、ベンゾフェノン、アセトフェノン等を挙げることができる。   As the photopolymerization initiator of component (c), a known radical photopolymerization initiator can be used. For example, 1-hydroxy-cyclohexyl phenyl ketone (Irgacure 184, Ciba Specialty Chemicals), 2- Hydroxy-1- {4- [4- (2-monohydroxy-2-methyl-propylonyl) benzyl] phenyl} -2-methyl-1-propan-1-one (Irgacure 127, Ciba Specialty Chemicals), benzophenone, Examples include acetophenone.

このような光重合開始剤は、アクリレート系オリゴマー(イ)及びモノマー(ロ)の合計100質量部に対し、少なすぎると紫外線照射時に硬化不足となり、多すぎると開裂によるアウトガスが増え発泡不具合の傾向があるので、好ましくは0.1〜5質量部、より好ましくは0.2〜3質量部である。   Such photopolymerization initiator is too hard to cure when irradiated with ultraviolet rays if the amount is too small relative to 100 parts by mass of the acrylate oligomer (ii) and monomer (ii), and if too large, outgassing due to cleavage increases and a tendency to foam defects. Therefore, it is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass.

また、光硬化性樹脂組成物3は、分子量の調整のために連鎖移動剤を含有することができる。例えば、2−メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2−エチルヘキシル、2,3−ジメチルカプト−1−プロパノール、α−メチルスチレンダイマーなどが挙げられる。   Moreover, the photocurable resin composition 3 can contain a chain transfer agent for adjusting the molecular weight. Examples thereof include 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethylcapto-1-propanol, and α-methylstyrene dimer.

また、光硬化性樹脂組成物3は、更に、必要に応じて、可塑剤成分(成分(ニ))、シランカップリング剤等の接着改善剤、酸化防止剤等の一般的な添加剤を含有することができる。   The photocurable resin composition 3 further contains general additives such as a plasticizer component (component (d)), an adhesion improver such as a silane coupling agent, and an antioxidant, if necessary. can do.

成分(ニ)の可塑剤成分は、硬化樹脂層に緩衝性を付与するとともに、光硬化性樹脂組成物の硬化収縮率を低減させるために使用され、紫外線の照射では成分(イ)のアクリレート系オリゴマー成分及び成分(ロ)のアクリレート系モノマー成分と反応しないものである。このような可塑剤成分は、固体の粘着付与剤(1)と液状オイル成分(2)とを含有する。   The component (d) plasticizer component is used to impart buffering properties to the cured resin layer and to reduce the curing shrinkage of the photocurable resin composition. It does not react with the acrylate monomer component of the oligomer component and component (b). Such a plasticizer component contains a solid tackifier (1) and a liquid oil component (2).

固形の粘着付与剤(1)としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂を挙げることができる。また、前述のアクリレート系モノマーを予め低分子ポリマー化した非反応性のオリゴマーも使用することができ、具体的には、ブチルアクリレートと2−ヘキシルアクリレートおよびアクリル酸の共重合体やシクロヘキシルアクリレートとメタクリル酸の共重合体等を挙げることができる。   Solid tackifiers (1) include terpene resins such as terpene resins, terpene phenol resins and hydrogenated terpene resins, natural rosins, polymerized rosins, rosin esters, rosin resins such as hydrogenated rosins, and terpene hydrogenated resins. Can be mentioned. In addition, non-reactive oligomers in which the above-mentioned acrylate monomers are preliminarily polymerized can also be used. Specifically, copolymers of butyl acrylate and 2-hexyl acrylate and acrylic acid, and cyclohexyl acrylate and methacrylic acid are used. Examples thereof include an acid copolymer.

液状オイル成分(2)としては、ポリプタジエン系オイル、又はポリイソプレン系オイル等を含有することができる。   As the liquid oil component (2), polyptadiene oil or polyisoprene oil can be contained.

光硬化性樹脂組成物3は、基本的には可塑剤成分(成分(ニ))を含有することは必須ではないが、本発明の効果を損なわない範囲で含有させても良い。従って、光硬化性樹脂組成物中に成分(イ)のアクリレート系オリゴマー成分と成分(ロ)のアクリル系モノマー成分との合計含有量は好ましくは25〜85質量%であるが、成分(ニ)の可塑剤成分の含有量は0〜65質量%の範囲である。   Although it is not essential for the photocurable resin composition 3 to contain a plasticizer component (component (d)), it may be contained within a range that does not impair the effects of the present invention. Therefore, the total content of the acrylate oligomer component (I) and the acrylic monomer component (B) in the photocurable resin composition is preferably 25 to 85% by mass, but the component (d) The content of the plasticizer component is in the range of 0 to 65% by mass.

<工程(B)(仮硬化工程)>
次に、図1Cに示すように、少なくとも遮光層1上に位置する光硬化性樹脂組成物3に対し紫外線を照射して仮硬化させることにより遮光層1上の仮硬化樹脂層5aの硬化率を高める。ここで、少なくとも遮光層1上に位置する光硬化性樹脂組成物3を液状から著しく流動しない状態に仮硬化させるのは、遮光層1と光透過性カバー部材2の遮光層形成側表面との間の段差をキャンセルするためである。また、塗布領域の外周を硬化させることで塗布形状を維持し、紫外線が照射されにくい遮光層1上の硬化状態を予め高めておくためである。
<Process (B) (temporary curing process)>
Next, as shown in FIG. 1C, the curing rate of the temporarily cured resin layer 5a on the light shielding layer 1 is obtained by irradiating at least the photocurable resin composition 3 located on the light shielding layer 1 with ultraviolet rays and temporarily curing the composition. To increase. Here, at least the photocurable resin composition 3 located on the light shielding layer 1 is temporarily cured from a liquid state so as not to flow significantly between the light shielding layer 1 and the light shielding layer forming surface of the light transmissive cover member 2. This is to cancel the step between them. Moreover, it is for hardening the outer periphery of an application | coating area | region to maintain an application | coating shape and to raise the hardening state on the light shielding layer 1 which is hard to be irradiated with an ultraviolet-ray previously.

このような仮硬化は、図1Cに示すように、例えば紫外線を減衰させる減衰板20を紫外線光源と光硬化性樹脂組成物3との間に設置しても良い。減衰板20は、例えば石英製の板状体で形成され、表面に凹凸が形成されている。この構成により、減衰板20を透過する紫外線が、減衰板20内で減衰すると共に、表面の凹凸で乱反射し、さらに減衰する。減衰板20表面の凹凸は、紫外線が乱反射することができる寸法と形状であれば良い。   For such temporary curing, as shown in FIG. 1C, for example, an attenuation plate 20 that attenuates ultraviolet rays may be disposed between the ultraviolet light source and the photocurable resin composition 3. The attenuation plate 20 is formed of, for example, a quartz plate-like body, and has an uneven surface. With this configuration, the ultraviolet rays that pass through the attenuation plate 20 are attenuated within the attenuation plate 20, are irregularly reflected by the surface irregularities, and are further attenuated. The unevenness | corrugation of the attenuation | damping board 20 should just be a dimension and shape which can reflect an ultraviolet ray irregularly.

また、仮硬化は、例えば光を遮蔽する遮蔽板を紫外線光源と光硬化性樹脂組成物3との間に設置し、パネル周縁部は露出、パネル主面部は遮蔽板によって遮蔽しても良い。また、紫外線の照射時間の一部期間に遮蔽板を設置するようにしても良い。   Moreover, temporary hardening may install the shielding board which shields light between an ultraviolet light source and the photocurable resin composition 3, for example, may expose a panel peripheral part and a panel main surface part with a shielding board. Further, a shielding plate may be provided during a part of the ultraviolet irradiation time.

遮光層1上の仮硬化樹脂層5aの硬化率(ゲル分率)は、好ましくは30〜80%、より好ましくは40〜70%となるようなレベルである。これにより、工程(D)の本硬化工程において、パネル主面部である光透過性カバー部材2上の光透過性硬化樹脂層7を完全硬化させる際、遮光層1上の光透過性硬化樹脂層7も完全硬化させることができる。ここで、完全硬化とは、後述するように硬化率が少なくとも90%となるように硬化した状態を意味する。   The curing rate (gel fraction) of the temporarily cured resin layer 5a on the light shielding layer 1 is preferably at a level such that it is 30 to 80%, more preferably 40 to 70%. Thereby, in the main curing step of the step (D), when the light-transmitting cured resin layer 7 on the light-transmitting cover member 2 that is the panel main surface portion is completely cured, the light-transmitting cured resin layer on the light shielding layer 1. 7 can also be fully cured. Here, complete curing means a state of curing so that the curing rate is at least 90% as described later.

また、光透過性カバー部材2表面の仮硬化樹脂層5bの硬化率は、好ましくは0〜80%、より好ましくは20〜70%である好ましい。仮硬化樹脂層の硬化率が80%を超えると、界面剥離が生じ易くなり、接着状態が悪くなる傾向にある。   Moreover, the curing rate of the temporarily cured resin layer 5b on the surface of the light-transmitting cover member 2 is preferably 0 to 80%, more preferably 20 to 70%. When the curing rate of the temporarily cured resin layer exceeds 80%, interfacial peeling tends to occur and the adhesion state tends to deteriorate.

また、遮光層1と光透過性カバー部材2との間から樹脂組成物が排除されるのを防ぐため、遮光層1上の仮硬化樹脂層5aの硬化率は、光透過性カバー部材2表面の仮硬化樹脂層5bの硬化率よりも高いことが好ましい。   Further, in order to prevent the resin composition from being excluded from between the light shielding layer 1 and the light transmissive cover member 2, the curing rate of the temporarily cured resin layer 5 a on the light shielding layer 1 is determined by the surface of the light transmissive cover member 2. It is preferable that the curing rate of the temporarily cured resin layer 5b is higher.

ここで、硬化率(ゲル分率)とは、紫外線照射前の光硬化性樹脂組成物3中の(メタ)アクリロイル基の存在量に対する紫外線照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。   Here, the curing rate (gel fraction) is the ratio of the abundance of (meth) acryloyl groups after UV irradiation to the abundance of (meth) acryloyl groups in the photocurable resin composition 3 before UV irradiation ( Consumption ratio) is defined as a numerical value, and the larger this value, the harder the curing.

なお、硬化率(ゲル分率)は、紫外線照射前の樹脂組成物層のFT−IR測定チャートにおけるベースラインからの1640〜1620cm−1の吸収ピーク高さ(X)と、紫外線照射後の樹脂組成物層のFT−IR測定チャートにおけるベースラインからの1640〜1620cm−1の吸収ピーク高さ(Y)とを、以下の数式(1)に代入することにより算出することができる。 The curing rate (gel fraction) is the absorption peak height (X) of 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the resin composition layer before ultraviolet irradiation, and the resin after ultraviolet irradiation. The absorption peak height (Y) of 1640 to 1620 cm −1 from the base line in the FT-IR measurement chart of the composition layer can be calculated by substituting into the following formula (1).

Figure 2017161919
Figure 2017161919

紫外線の照射に関し、遮光層1上の仮硬化樹脂層の硬化率(ゲル分率)が、好ましくは30〜80%、より好ましくは40〜70%となるように仮硬化させることができる限り、光源の種類、出力、累積光量などは特に制限はなく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。   Regarding the irradiation with ultraviolet rays, the curing rate (gel fraction) of the temporarily cured resin layer on the light shielding layer 1 is preferably 30 to 80%, more preferably 40 to 70%, so long as it can be temporarily cured. There are no particular restrictions on the type of light source, output, accumulated light quantity, etc., and known photo-radical polymerization process conditions of (meth) acrylate by ultraviolet irradiation can be employed.

また、紫外線照射条件に関し、上述の硬化率の範囲内において、図1Dに示すように、仮硬化樹脂層を天地逆転させても液だれや変形が生じないような条件の一つとして、粘度が20Pa・S以上(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)であることが好ましい。なお、仮硬化樹脂層を天地を逆転させない場合は、粘度が20Pa・S未満であっても構わない。   In addition, with respect to the ultraviolet irradiation conditions, within the above-described range of the curing rate, as shown in FIG. 1D, as one of the conditions in which dripping or deformation does not occur even if the temporarily cured resin layer is reversed upside down, the viscosity is It is preferably 20 Pa · S or more (cone plate rheometer, 25 ° C., cone and plate C35 / 2, rotation speed 10 rpm). In the case where the temporarily cured resin layer is not reversed upside down, the viscosity may be less than 20 Pa · S.

また、紫外線照射条件に関し、上述の硬化率の範囲内において、後述する工程(C)の貼り合わせ操作の際、仮硬化樹脂層5の表面のべとつき(タック性)を維持できるような条件を選択することが好ましい。そのようなべとつきを維持できるような条件をタッキング試験機(TAC−1000、レスカ社)を用いるプローブタック法(レスカ法:試料の粘着面を上にして置き、その上部からプローブを粘着面に押し付け、引き剥がす方法)により得られる測定数値で表現すると、30N/cm以上である(http://www.rhesca.co.jp/main/technical/technical.htmlの「粘着物質の物性測定法」参照)。 Further, regarding the ultraviolet irradiation condition, a condition is selected so that the stickiness (tackiness) of the surface of the temporarily cured resin layer 5 can be maintained during the bonding operation in the step (C) described later within the above-described range of the curing rate. It is preferable to do. Probe tack method using a tacking tester (TAC-1000, Reska Corporation) under conditions that allow such stickiness to be maintained (Reska method: Place the sample with the adhesive surface facing up, and press the probe against the adhesive surface from above. This is 30 N / cm 2 or more when expressed in terms of measurement values obtained by the “peeling method”. reference).

<工程(C)(貼り合わせ工程)>
次に、図1Eに示すように、画像表示部材6に、光透過性カバー部材2をその仮硬化樹脂層5側から貼り合わせる。貼り合わせは、公知の圧着装置を用いて、10℃〜80℃で加圧することにより行うことができる。
<Process (C) (bonding process)>
Next, as shown in FIG. 1E, the light-transmitting cover member 2 is bonded to the image display member 6 from the temporarily cured resin layer 5 side. Bonding can be performed by pressurizing at 10 ° C. to 80 ° C. using a known pressure bonding apparatus.

<工程(D)(本硬化工程)>
次に、図1Fに示すように、画像表示部材6と光透過性カバー部材2との間に挟持されている仮硬化樹脂層5に対し紫外線を照射して本硬化させる。さらに必要に応じて,光透過性カバー部材2の遮光層と画像表示部材6との間の樹脂層に紫外線を照射することにより、該樹脂層を本硬化させる。これにより、画像表示部材6と光透過性カバー部材2とを光透過性硬化樹脂層7を介して積層して画像表示装置10(図1G)を得る。
<Process (D) (main curing process)>
Next, as shown in FIG. 1F, the temporarily cured resin layer 5 sandwiched between the image display member 6 and the light-transmitting cover member 2 is irradiated with ultraviolet rays to be fully cured. Further, if necessary, the resin layer is permanently cured by irradiating the resin layer between the light shielding layer of the light-transmissive cover member 2 and the image display member 6 with ultraviolet rays. Thereby, the image display member 6 and the light transmissive cover member 2 are laminated via the light transmissive cured resin layer 7 to obtain the image display device 10 (FIG. 1G).

画像表示部材6としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。   Examples of the image display member 6 include a liquid crystal display panel, an organic EL display panel, a plasma display panel, and a touch panel. Here, the touch panel means an image display / input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.

また、本工程において本硬化させるのは、仮硬化樹脂層5を十分に硬化させて、画像表示部材6と光透過性カバー部材2とを接着し積層するためである。このような本硬化のレベルは、遮光層1上及び光透過性カバー部材2上の両者の光透過性硬化樹脂層7の硬化率(ゲル分率)が好ましくは90%以上、より好ましくは95%以上となるようなレベルである。   In addition, the main curing in this step is to sufficiently cure the temporarily cured resin layer 5 and bond and laminate the image display member 6 and the light-transmitting cover member 2. The main curing level is such that the curing rate (gel fraction) of the light-transmitting cured resin layer 7 on both the light-shielding layer 1 and the light-transmitting cover member 2 is preferably 90% or more, more preferably 95. It is a level which becomes more than%.

なお、光透過性硬化樹脂層7の光透過性のレベルは、画像表示部材6に形成された画像が視認可能となるような光透過性であればよい。   The light transmissive level of the light transmissive cured resin layer 7 may be light transmissive so that an image formed on the image display member 6 can be visually recognized.

以上、図1A〜図1Gでは、光透過性カバー部材の遮光層側形成表面に光硬化性樹脂組成物を塗布した例を説明したが、以下の図2A〜図2Fでは、画像表示部材表面に光硬化性樹脂組成物を塗布した例を説明する。なお、図1A〜図1Gと図2A〜図2Fとにおいて同じ図番は同一の構成要素を表している。   As mentioned above, although FIG. 1A-FIG. 1G demonstrated the example which apply | coated the photocurable resin composition to the light shielding layer side formation surface of a light-transmitting cover member, in the following FIG. 2A-FIG. The example which apply | coated the photocurable resin composition is demonstrated. 1A to 1G and FIGS. 2A to 2F indicate the same components.

<工程(AA)(塗布工程)>
まず、図2Aに示すように、画像表示部材6の表面に光硬化性樹脂組成物3を平坦になるように塗布する。この場合の塗布厚は、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さの好ましくは1.2〜12.5倍、より好ましくは2.5〜4倍の厚さで塗布する。
<Process (AA) (application process)>
First, as shown to FIG. 2A, the photocurable resin composition 3 is apply | coated to the surface of the image display member 6 so that it may become flat. The coating thickness in this case is preferably 1.2 to 12.5 times the thickness of the light shielding layer so that a step formed between the light shielding layer and the light shielding layer forming side surface of the light-transmitting cover member is canceled. More preferably, it is applied in a thickness of 2.5 to 4 times.

なお、この光硬化性樹脂組成物3の塗布は、必要な厚みが得られるように複数回行ってもよい。   In addition, you may perform application | coating of this photocurable resin composition 3 in multiple times so that required thickness may be obtained.

<工程(BB)(仮硬化工程)>
次に、図2Bに示すように、少なくとも遮光層1上に位置する光硬化性樹脂組成物3に対し紫外線を照射して仮硬化させる(図2C)。ここで、少なくとも遮光層1上に位置する画像表示部材6上の光硬化性樹脂組成物3を液状から著しく流動しない状態に仮硬化させるのは、遮光層1と光透過性カバー部材2の遮光層形成側表面との間の段差をキャンセルするためである。また、塗布領域の外周を硬化させることで塗布形状を維持し、紫外線が照射されにくい遮光層1上の硬化状態を予め高めておくためである。
<Process (BB) (temporary curing process)>
Next, as shown in FIG. 2B, at least the photocurable resin composition 3 positioned on the light shielding layer 1 is irradiated with ultraviolet rays to be temporarily cured (FIG. 2C). Here, at least the photocurable resin composition 3 on the image display member 6 positioned on the light shielding layer 1 is temporarily cured from a liquid state so as not to flow remarkably. The light shielding layer 1 and the light transmissive cover member 2 are shielded from light. This is to cancel the step between the surface on the layer forming side. Moreover, it is for hardening the outer periphery of an application | coating area | region to maintain an application | coating shape and to raise the hardening state on the light shielding layer 1 which is hard to be irradiated with an ultraviolet-ray previously.

このような仮硬化は、図2Bに示すように、例えば紫外線を減衰させる減衰板2を紫外線光源と光硬化性樹脂組成物3との間に設置することにより得ることができる。また、例えば光を遮蔽する遮蔽板を紫外線光源と光硬化性樹脂組成物3との間に設置し、パネル周縁部は露出、パネル主面部は遮蔽板によって遮蔽しても良い。また、紫外線の照射時間の一部期間に遮蔽板を設置するようにしても良い。   Such temporary curing can be obtained, for example, by installing an attenuation plate 2 that attenuates ultraviolet rays between the ultraviolet light source and the photocurable resin composition 3 as shown in FIG. 2B. Further, for example, a shielding plate that shields light may be installed between the ultraviolet light source and the photocurable resin composition 3 so that the peripheral portion of the panel is exposed and the main surface portion of the panel is shielded by the shielding plate. Further, a shielding plate may be provided during a part of the ultraviolet irradiation time.

遮光層1に対向する仮硬化樹脂層5aの硬化率(ゲル分率)は、好ましくは30〜80%、より好ましくは40〜70%となるようなレベルである。これにより、工程(D)の本硬化工程において、パネル主面部である光透過性カバー部材2上の光透過性硬化樹脂層7を完全硬化させる際、遮光層1上の光透過性硬化樹脂層7も完全硬化させることができる。   The curing rate (gel fraction) of the temporarily cured resin layer 5a facing the light shielding layer 1 is preferably 30 to 80%, more preferably 40 to 70%. Thereby, in the main curing step of the step (D), when the light-transmitting cured resin layer 7 on the light-transmitting cover member 2 that is the panel main surface portion is completely cured, the light-transmitting cured resin layer on the light shielding layer 1. 7 can also be fully cured.

また、光透過性カバー部材2表面に対向する仮硬化樹脂層5bの硬化率は、好ましくは0〜80%、より好ましくは20〜70%である好ましい。仮硬化樹脂層の硬化率が80%を超えると、界面剥離が生じ易くなり、接着状態が悪くなる傾向にある。   Moreover, the curing rate of the temporarily cured resin layer 5b facing the surface of the light-transmitting cover member 2 is preferably 0 to 80%, more preferably 20 to 70%. When the curing rate of the temporarily cured resin layer exceeds 80%, interfacial peeling tends to occur and the adhesion state tends to deteriorate.

また、遮光層1と光透過性カバー部材2との間から樹脂組成物が排除されるのを防ぐため、遮光層1上の仮硬化樹脂層5aの硬化率は、光透過性カバー部材2表面の仮硬化樹脂層5bの硬化率よりも高いことが好ましい。   Further, in order to prevent the resin composition from being excluded from between the light shielding layer 1 and the light transmissive cover member 2, the curing rate of the temporarily cured resin layer 5 a on the light shielding layer 1 is determined by the surface of the light transmissive cover member 2. It is preferable that the curing rate of the temporarily cured resin layer 5b is higher.

<工程(CC)(貼り合わせ工程)>
次に、図2Dに示すように、画像表示部材6の仮硬化樹脂層5に、光透過性カバー部材2をその遮光層1側から貼り合わせる。貼り合わせは、公知の圧着装置を用いて、10〜80℃で加圧することにより行うことができる。
<Process (CC) (bonding process)>
Next, as shown in FIG. 2D, the light-transmitting cover member 2 is bonded to the temporarily cured resin layer 5 of the image display member 6 from the light shielding layer 1 side. Bonding can be performed by applying pressure at 10 to 80 ° C. using a known pressure bonding apparatus.

<工程(DD)(本硬化工程)>
次に、図2Eに示すように、画像表示部材6と光透過性カバー部材2との間に挟持されている仮硬化樹脂層5に対し紫外線を照射して本硬化させる。さらに必要に応じて,光透過性カバー部材2の遮光層と画像表示部材6との間の樹脂層に紫外線を照射することにより,該樹脂層を本硬化させる。これにより、画像表示部材6と光透過性カバー部材2とを光透過性硬化樹脂層7を介して積層して画像表示装置10(図2F)を得る。
<Process (DD) (main curing process)>
Next, as shown in FIG. 2E, the temporarily cured resin layer 5 sandwiched between the image display member 6 and the light-transmitting cover member 2 is irradiated with ultraviolet rays to be fully cured. Further, if necessary, the resin layer is permanently cured by irradiating the resin layer between the light shielding layer of the light-transmitting cover member 2 and the image display member 6 with ultraviolet rays. Thereby, the image display member 6 and the light transmissive cover member 2 are laminated via the light transmissive cured resin layer 7 to obtain the image display device 10 (FIG. 2F).

画像表示部材6としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。   Examples of the image display member 6 include a liquid crystal display panel, an organic EL display panel, a plasma display panel, and a touch panel.

また、本工程において本硬化のレベルは、遮光層1上及び光透過性カバー部材2上の両者の光透過性硬化樹脂層7の硬化率(ゲル分率)が好ましくは90%以上、より好ましくは95%以上となるようなレベルである。   In this step, the level of the main curing is preferably 90% or more, more preferably the curing rate (gel fraction) of the light transmissive cured resin layer 7 on both the light shielding layer 1 and the light transmissive cover member 2. Is a level that is 95% or more.

なお、光透過性硬化樹脂層7の光透過性のレベルは、画像表示部材6に形成された画像が視認可能となるような光透過性であればよい。   The light transmissive level of the light transmissive cured resin layer 7 may be light transmissive so that an image formed on the image display member 6 can be visually recognized.

以上のように、本実施の形態の画像表示装置の製造方法によれば、光透過性硬化樹脂を遮光部が設けられた保護パネルに塗布した後、遮光部側から紫外光を照射し仮硬化させる際に、保護パネル周縁部を露出、パネル主面部を減衰部材や遮蔽部材によって紫外線の入射を制限することで、遮光部上の光透過性硬化樹脂の硬化反応率を高めることができる。その後、遮蔽部材を取り除いて、画像表示部材を貼り合わせ、保護パネル側から紫外光を照射することにより、保護パネルの周縁部の光透過性硬化樹脂の硬化率を、保護パネルの主面部上の硬化率と同等に高くすることができる。   As described above, according to the method of manufacturing the image display device of the present embodiment, after the light-transmitting curable resin is applied to the protective panel provided with the light shielding portion, the ultraviolet light is irradiated from the light shielding portion side and temporarily cured. In this case, the curing reaction rate of the light-transmitting curable resin on the light-shielding part can be increased by exposing the peripheral edge of the protective panel and limiting the incidence of ultraviolet rays on the panel main surface part by an attenuation member or a shielding member. Thereafter, the shielding member is removed, the image display member is bonded, and ultraviolet light is irradiated from the protective panel side, so that the curing rate of the light-transmitting curable resin at the peripheral portion of the protective panel is set on the main surface portion of the protective panel. It can be as high as the cure rate.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

<実験例1>
実施例1
(工程(A)(塗布工程))
まず、45(w)×80(l)×0.4(t)mmのサイズのガラス板を用意し、このガラス板の周縁部全域に、乾燥厚で40μmとなるように4mm幅の遮光層を、熱硬化タイプの黒色インク(MRXインキ、帝国インキ製造社)を用いて、スクリーン印刷法により塗布し、乾燥させることにより、遮光層付きガラス板を用意した。
<Experimental example 1>
Example 1
(Process (A) (Coating process))
First, a glass plate having a size of 45 (w) × 80 (l) × 0.4 (t) mm is prepared, and a light-shielding layer having a width of 4 mm is provided on the entire periphery of the glass plate so as to have a dry thickness of 40 μm. Was coated by a screen printing method using a thermosetting black ink (MRX ink, Teikoku Ink Manufacturing Co., Ltd.) and dried to prepare a glass plate with a light shielding layer.

また、ポリイソプレンの骨格を持つアクリル系オリゴマー(UC203、(株)クラレ)40質量部、ジシクロペンテニルオキシエチルメタクリレート(FA512M、日立化成工業(株))20質量部、ヒドロキシプロピルメタクリレート(HPMA、日本化成(株))3質量部、テトラヒドロフルフリルアクリレート(ライトエステルTHF、共栄社化学(株))15質量部、ラウリルアクリレート(ライトエステルL、共栄社化学社製)、ポリブタジエン重合体(Polyoil110、デグサ(株))20質量部、水添テルペン樹脂(P85、ヤスハラケミカル(株))45質量部、光重合開始剤(Irg184D、BASF(株))4質量部を均一に配合して光硬化性樹脂組成物を調整した。この光硬化性樹脂組成物は、硬化率0%から90%までの間で、3.4%の全硬化収縮率を示すものであった。また、この光硬化性樹脂組成物の粘度(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)は、約6000mPa・sであった。   In addition, 40 parts by mass of an acrylic oligomer having a polyisoprene skeleton (UC203, Kuraray Co., Ltd.), 20 parts by mass of dicyclopentenyloxyethyl methacrylate (FA512M, Hitachi Chemical Co., Ltd.), hydroxypropyl methacrylate (HPMA, Japan) Kasei Co., Ltd.) 3 parts by mass, tetrahydrofurfuryl acrylate (light ester THF, Kyoeisha Chemical Co., Ltd.) 15 parts by mass, lauryl acrylate (light ester L, manufactured by Kyoeisha Chemical Co., Ltd.), polybutadiene polymer (Polyoil 110, Degussa Co., Ltd.) )) 20 parts by mass, hydrogenated terpene resin (P85, Yasuhara Chemical Co., Ltd.) 45 parts by mass, and photopolymerization initiator (Irg184D, BASF Co., Ltd.) 4 parts by mass are uniformly blended to obtain a photocurable resin composition. It was adjusted. This photocurable resin composition exhibited a total cure shrinkage of 3.4% between a cure rate of 0% and 90%. Further, the viscosity (cone plate rheometer, 25 ° C., cone and plate C35 / 2, rotation speed 10 rpm) of the photocurable resin composition was about 6000 mPa · s.

次に、この光硬化性樹脂組成物を、樹脂用ディスペンサーを用いて遮光層付きガラス板の遮光層形成面の全面に吐出し、平均200μmの光硬化性樹脂組成物膜を形成した。この光硬化性樹脂組成物膜は、図1(B)のように遮光層のほぼ全域に跨るように形成されており、40μm厚の遮光層よりも160μmほど厚く形成されていた。   Next, this photocurable resin composition was discharged to the whole surface of the light shielding layer formation surface of the glass plate with a light shielding layer using the resin dispenser, and the photocurable resin composition film of an average of 200 micrometers was formed. As shown in FIG. 1B, this photocurable resin composition film was formed so as to straddle almost the entire area of the light shielding layer, and was thicker by about 160 μm than the 40 μm thick light shielding layer.

(工程(B)(仮硬化工程))
次に、遮蔽板を紫外線光源と光硬化性樹脂組成物との間に設置し、紫外線照射装置(LC−8、浜松ホトニクス製)を使って、光硬化性樹脂組成物膜を仮硬化させ、仮硬化樹脂層を形成した。FT−IR測定チャートにおけるベースラインからの1640〜1620cm−1の吸収ピーク高さを指標として求めた、紫外線照射後の光硬化性樹脂組成物膜、即ち、仮硬化樹脂層の硬化率は、遮光層上で約30%、光透過性カバー部材表面上で約0%であった。
(Process (B) (temporary curing process))
Next, a shielding plate is installed between the ultraviolet light source and the photocurable resin composition, and using an ultraviolet irradiation device (LC-8, manufactured by Hamamatsu Photonics), the photocurable resin composition film is temporarily cured, A temporarily cured resin layer was formed. The curing rate of the photocurable resin composition film after ultraviolet irradiation, that is, the temporarily cured resin layer, obtained by using the absorption peak height of 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart as an index is the light shielding property. About 30% on the layer and about 0% on the light transmissive cover member surface.

(工程(C)(貼り合わせ工程))
次に、40(W)×70(L)mmのサイズの液晶表示素子の偏光板が積層された面に、工程(B)で得たガラス板をその仮硬化樹脂層側が偏光板側となるように載置し、ガラス板側からゴムローラで加圧して、ガラス板を貼り付けた。貼り付けられた状態でガラス板側から液晶表示素子を目視観察した場合、遮光層の周囲に気泡は確認されなかった。
(Process (C) (bonding process))
Next, on the surface on which the polarizing plate of the liquid crystal display element having a size of 40 (W) × 70 (L) mm is laminated, the temporarily cured resin layer side of the glass plate obtained in the step (B) is the polarizing plate side. The glass plate was attached by pressing with a rubber roller from the glass plate side. When the liquid crystal display element was visually observed from the glass plate side in the attached state, no bubbles were observed around the light shielding layer.

(工程(D)(本硬化工程))
次に、この液晶表示素子に対し、ガラス板側から、紫外線照射装置(LC−8、浜松ホトニクス製)を使って紫外線(50mW/cm)を照射することにより、光透過性カバー部材上の光透過性硬化樹脂層の硬化率を95%以上に硬化させ、光透過性硬化樹脂層を形成した。遮光層上の光透過性硬化樹脂層の硬化率は約90%であった。これにより、液晶表示素子に、光透過性カバー部材としてのガラス板が光透過性硬化樹脂層を介して積層された液晶表示装置が得られた。
(Process (D) (Main curing process))
Next, the liquid crystal display element is irradiated with ultraviolet rays (50 mW / cm 2 ) from the glass plate side by using an ultraviolet irradiation device (LC-8, manufactured by Hamamatsu Photonics), so that the liquid crystal display element on the light-transmitting cover member. The curing rate of the light transmissive cured resin layer was cured to 95% or more to form a light transmissive cured resin layer. The curing rate of the light transmissive cured resin layer on the light shielding layer was about 90%. Thereby, the liquid crystal display device by which the glass plate as a light transmissive cover member was laminated | stacked on the liquid crystal display element through the light transmissive cured resin layer was obtained.

<評価>
実施例1の各工程における遮光層と画像表示部材との間からの光硬化性樹脂組成物の排除の有無を以下に説明するように目視観察した。また、液晶表示装置の接着状態の評価を以下に説明するように行った。
<Evaluation>
The presence or absence of exclusion of the photocurable resin composition from between the light shielding layer and the image display member in each step of Example 1 was visually observed as described below. Moreover, evaluation of the adhesion state of the liquid crystal display device was performed as described below.

(遮光層と画像表示部材との間からの光硬化性樹脂組成物の排除)
実施例1の各工程の結果物における遮光層と画像表示部材との間からの光硬化性樹脂組成物の排除の有無を、目視観察した。その結果、いずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。
(Exclusion of photocurable resin composition from between light shielding layer and image display member)
The presence or absence of exclusion of the photocurable resin composition from between the light shielding layer and the image display member in the result of each step of Example 1 was visually observed. As a result, the exclusion of the photocurable resin composition was not observed in the result of any step and the final liquid crystal display device.

(接着状態の評価)
液晶表示装置を作成する際に、図3に示すように、液晶表示素子に代えて40(W)×70(L)mmのサイズのガラスベース30を使用し、そのガラスベース30に対し、仮硬化樹脂層が形成されたガラス板31を、仮硬化樹脂層側から十文字に貼り合わせることによりガラス接合体を得た。そして、その下側に位置するガラスベース30を固定し、上側に位置するガラス板31を直上方向に引き剥がし、その剥離性状を目視観察し、以下の基準で接着状態を評価したところ、“A”評価であった。
ランク 基準
A: 凝集破壊が生じた場合
B: 凝集破壊と界面剥離とが混在している場合
C: 界面剥離が生じた場合
(Evaluation of adhesion state)
When producing a liquid crystal display device, a glass base 30 having a size of 40 (W) × 70 (L) mm is used instead of the liquid crystal display element, as shown in FIG. A glass joined body was obtained by pasting the glass plate 31 on which the cured resin layer was formed in a cross shape from the temporary cured resin layer side. And the glass base 30 located on the lower side is fixed, the glass plate 31 located on the upper side is peeled off in the directly upward direction, the peel property is visually observed, and the adhesion state is evaluated according to the following criteria. "Evaluation.
Rank Criteria A: When cohesive failure occurs B: When cohesive failure and interfacial debonding coexist C: When interfacial delamination occurs

実施例2
実施例1の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約50%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“A”評価であった。
Example 2
In the step (B) (preliminary curing step) of Example 1, a liquid crystal display device was obtained in the same manner as in Example 1 except that ultraviolet rays were irradiated so that the curing rate of the temporarily cured resin layer on the light shielding layer was about 50%. And the glass joined body for adhesive strength measurement was created. As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “A” evaluation.

実施例3
実施例1の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約70%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“A”評価であった。
Example 3
In the step (B) (preliminary curing step) of Example 1, a liquid crystal display device was obtained in the same manner as in Example 1 except that ultraviolet rays were irradiated so that the curing rate of the temporarily cured resin layer on the light shielding layer was about 70%. And the glass joined body for adhesive strength measurement was created. As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “A” evaluation.

実施例4
実施例1の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約80%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“B”評価であった。
Example 4
In the step (B) (preliminary curing step) of Example 1, the liquid crystal display device was the same as in Example 1 except that ultraviolet rays were applied so that the curing rate of the temporary cured resin layer on the light shielding layer was about 80%. And the glass joined body for adhesive strength measurement was created. As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “B” evaluation.

比較例1
実施例1の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約90%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。但し、接着状態は“C”評価であった。
Comparative Example 1
In the step (B) (preliminary curing step) of Example 1, a liquid crystal display device was obtained in the same manner as in Example 1 except that ultraviolet rays were irradiated so that the curing rate of the temporarily cured resin layer on the light shielding layer was about 90%. And the glass joined body for adhesive strength measurement was created. As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. However, the adhesion state was “C” evaluation.

比較例2
実施例1の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約10%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約80%であり、本硬化工程(工程(D))において光硬化性樹脂組成物の排除が観察された。また、接着状態は“A”評価であった。
Comparative Example 2
In the step (B) (preliminary curing step) of Example 1, the liquid crystal display device was the same as Example 1 except that the ultraviolet ray was irradiated so that the curing rate of the temporary cured resin layer on the light shielding layer was about 10%. And the glass joined body for adhesive strength measurement was created. As a result, the curing rate of the light-transmitting cured resin layer on the light shielding layer was about 80%, and the exclusion of the photocurable resin composition was observed in the main curing step (step (D)). The adhesion state was “A” evaluation.

Figure 2017161919
Figure 2017161919

表1の比較例1に示すように、工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率を約90%とした場合、遮光層上の硬化樹脂層において界面剥離が生じてしまい、接着状態は“C”評価であった。   As shown in Comparative Example 1 of Table 1, in the step (B) (temporary curing step), when the curing rate of the temporarily cured resin layer on the light shielding layer is about 90%, the interface in the cured resin layer on the light shielding layer is Peeling occurred and the adhesion state was “C” evaluation.

比較例2に示すように、工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率を約10%とした場合、工程(D)(本硬化工程)において、遮光層上及び光透過性カバー部材上の全面で、硬化率90%以上の完全硬化を得ることができなかった。また、遮光層と画像表示部材との間からの光硬化性樹脂組成物の排除が確認された。   As shown in Comparative Example 2, in the step (B) (temporary curing step), when the curing rate of the temporarily cured resin layer on the light shielding layer is about 10%, the light shielding is performed in the step (D) (main curing step). Complete curing with a curing rate of 90% or more could not be obtained on the entire surface of the layer and the light-transmitting cover member. Moreover, exclusion of the photocurable resin composition from between the light shielding layer and the image display member was confirmed.

一方、実施例1〜4に示すように、工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率を30〜80%とすることで、工程(D)(本硬化工程)において、遮光層上及び光透過性カバー部材上の全面で、硬化率90%以上の完全硬化を得ることができた。また、遮光層と画像表示部材との間からの光硬化性樹脂組成物の排除も確認されなかった。また、接着状態も実施例4を除き、全て“A”評価であった。   On the other hand, as shown in Examples 1 to 4, in the step (B) (temporary curing step), by setting the curing rate of the temporarily cured resin layer on the light shielding layer to 30 to 80%, the step (D) (main In the curing step), complete curing with a curing rate of 90% or more could be obtained on the entire surface of the light shielding layer and the light-transmitting cover member. Moreover, exclusion of the photocurable resin composition from between the light shielding layer and the image display member was not confirmed. Also, all the adhesion states except for Example 4 were “A” evaluations.

<実験例2>
実施例5
実施例1の工程(B)(仮硬化工程)において、表面に凹凸が形成されている石英製の減衰板を紫外線光源と光硬化性樹脂組成物との間に設置し、紫外線の入射に対し、保護パネル周縁部を露出し、パネル主面部を減衰板によって制限した。そして、遮光層上の仮硬化樹脂層の硬化率が約70%、光透過性カバー部材表面上の仮硬化樹脂層の硬化率が約20%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“A”評価であった。
<Experimental example 2>
Example 5
In the step (B) (preliminary curing step) of Example 1, a quartz attenuation plate having irregularities formed on the surface is placed between the ultraviolet light source and the photocurable resin composition, and against the incidence of ultraviolet rays. The peripheral edge of the protective panel was exposed, and the panel main surface was limited by an attenuation plate. The examples except that the ultraviolet rays were irradiated so that the curing rate of the temporarily cured resin layer on the light shielding layer was about 70% and the curing rate of the temporarily cured resin layer on the surface of the light-transmitting cover member was about 20%. As in Example 1, a liquid crystal display device and a glass bonded body for measuring adhesive strength were prepared. As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “A” evaluation.

実施例6
実施例5の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約70%、光透過性カバー部材表面上の仮硬化樹脂層の硬化率が約40%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“A”評価であった。
Example 6
In the step (B) (preliminary curing step) of Example 5, the curing rate of the temporary curing resin layer on the light shielding layer is about 70%, and the curing rate of the temporary curing resin layer on the surface of the light-transmitting cover member is about 40%. A liquid crystal display device and a glass joined body for measuring adhesive strength were prepared in the same manner as in Example 1 except that ultraviolet rays were irradiated so that As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “A” evaluation.

実施例7
実施例5の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約70%、光透過性カバー部材表面上の仮硬化樹脂層の硬化率が約60%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“B”評価であった。
Example 7
In the step (B) (preliminary curing step) of Example 5, the curing rate of the temporary curing resin layer on the light shielding layer is about 70%, and the curing rate of the temporary curing resin layer on the light-transmitting cover member surface is about 60%. A liquid crystal display device and a glass joined body for measuring adhesive strength were prepared in the same manner as in Example 1 except that ultraviolet rays were irradiated so that As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “B” evaluation.

実施例8
実施例5の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約70%、光透過性カバー部材表面上の仮硬化樹脂層の硬化率が約80%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“B”評価であった。
Example 8
In the step (B) (preliminary curing step) of Example 5, the curing rate of the temporary curing resin layer on the light shielding layer is about 70%, and the curing rate of the temporary curing resin layer on the light-transmitting cover member surface is about 80%. A liquid crystal display device and a glass joined body for measuring adhesive strength were prepared in the same manner as in Example 1 except that ultraviolet rays were irradiated so that As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. The adhesion state was “B” evaluation.

比較例3
実施例5の工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率が約70%、光透過性カバー部材表面上の仮硬化樹脂層の硬化率が約90%となるように紫外線を照射した以外は、実施例1と同様に液晶表示装置及び接着強度測定用のガラス接合体を作成した。その結果、遮光層上の光透過性硬化樹脂層の硬化率は約95%であり、各工程のいずれの工程の結果物並びに最終的な液晶表示装置にも光硬化性樹脂組成物の排除は観察されなかった。また、接着状態は“C”評価であった。
Comparative Example 3
In the step (B) (preliminary curing step) of Example 5, the curing rate of the temporary curing resin layer on the light shielding layer is about 70%, and the curing rate of the temporary curing resin layer on the light-transmitting cover member surface is about 90%. A liquid crystal display device and a glass joined body for measuring adhesive strength were prepared in the same manner as in Example 1 except that ultraviolet rays were irradiated so that As a result, the curing rate of the light-transmitting cured resin layer on the light-shielding layer is about 95%, and the photocurable resin composition is excluded from the result and the final liquid crystal display device of each process. Not observed. Further, the adhesion state was “C” evaluation.

Figure 2017161919
Figure 2017161919

表2の比較例3に示すように、工程(B)(仮硬化工程)において、光透過性カバー部材上の仮硬化樹脂層の硬化率が約90%の場合、光透過性カバー部材上の硬化樹脂層において、界面剥離が生じてしまい、接着状態が“C”であった。   As shown in Comparative Example 3 in Table 2, in the step (B) (temporary curing step), when the curing rate of the temporarily cured resin layer on the light transmissive cover member is about 90%, the light transmissive cover member In the cured resin layer, interface peeling occurred and the adhesion state was “C”.

一方、実施例5〜8に示すように、工程(B)(仮硬化工程)において、遮光層上の仮硬化樹脂層の硬化率を光透過性カバー部材上の仮硬化樹脂層の硬化率よりも高くすることで、工程(D)(本硬化工程)において、遮光層上及び光透過性カバー部材上の全面で、硬化率90%以上の完全硬化を得ることができた。また、遮光層と画像表示部材との間からの光硬化性樹脂組成物の排除も確認されなかった。また、接着状態も実施例8を除き、全て“A”評価であった。   On the other hand, as shown in Examples 5 to 8, in the step (B) (temporary curing step), the curing rate of the temporarily cured resin layer on the light shielding layer is determined from the curing rate of the temporarily cured resin layer on the light-transmitting cover member. In the step (D) (main curing step), complete curing with a curing rate of 90% or more could be obtained on the entire surface of the light shielding layer and the light-transmitting cover member. Moreover, exclusion of the photocurable resin composition from between the light shielding layer and the image display member was not confirmed. Moreover, all the adhesion states except for Example 8 were “A” evaluations.

本発明の画像表示装置の製造方法によれば、遮光層と画像表示部材との間の光透過性硬化樹脂層をその間から排除することなく十分に光硬化させ且つ光透過性カバー部材の遮光層形成側表面とで形成される段差をキャンセルできる。従って、本発明の製造方法は、タッチパネルを備えたスマートフォーンやタッチパッド等の情報端末の工業的製造に有用である。   According to the method for manufacturing an image display device of the present invention, the light-transmitting cured resin layer between the light-shielding layer and the image display member is sufficiently photocured without being excluded from between them, and the light-shielding layer of the light-transmitting cover member A step formed between the formation side surface and the formation side surface can be canceled. Therefore, the production method of the present invention is useful for industrial production of information terminals such as smart phones and touch pads provided with a touch panel.

1 遮光層
2 光透過性カバー部材
2a 光透過性カバー部材の遮光層形成側表面
3、3a、3b 光硬化性樹脂組成物
4 段差
5 仮硬化樹脂層
6 画像表示部材
7 光透過性硬化樹脂層
10 画像表示装置
20 減衰板
30 ガラスベース
31 ガラス板
DESCRIPTION OF SYMBOLS 1 Light-shielding layer 2 Light-transmitting cover member 2a Light-shielding layer formation side surface 3, 3a, 3b of light-transmitting cover member Step difference 5 Temporarily cured resin layer 6 Image display member 7 Light-transmitting cured resin layer DESCRIPTION OF SYMBOLS 10 Image display apparatus 20 Attenuation plate 30 Glass base 31 Glass plate

Claims (5)

画像表示部材と、周縁部に遮光層が形成された光透過性カバー部材とが、液状の光硬化性樹脂組成物から形成された光透過性硬化樹脂層を介し、光透過性カバー部材の遮光層形成面が画像表示部材側に配置されるように積層された画像表示装置の製造方法において、以下の工程(A)〜(D):
<工程(A)>
液状の光硬化性樹脂組成物を、光透過性カバー部材の遮光層形成側表面又は画像表示部材の表面に、遮光層と光透過性カバー部材の遮光層形成側表面とで形成される段差がキャンセルされるように、遮光層の厚さより厚く塗布する工程;
<工程(B)>
少なくとも遮光層上に位置する光硬化性樹脂組成物に対し紫外線を照射して仮硬化させ、遮光層上の仮硬化樹脂層の硬化率を30〜80%とする工程;
<工程(C)>
画像表示部材に、遮光層と仮硬化樹脂層とが内側となるように光透過性カバー部材を貼り合わせる工程;
<工程(D)>
画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に対し紫外線を照射して本硬化させ、遮光層上及び光透過性カバー部材上の両者の光透過性硬化樹脂層の硬化率を90%以上とし、画像表示部材と光透過性カバー部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程
を有する画像表示装置の製造方法。
The image display member and the light-transmitting cover member having a light-shielding layer formed on the peripheral portion are shielded from light by the light-transmitting cover member via the light-transmitting cured resin layer formed from the liquid photocurable resin composition. In the method for manufacturing an image display device laminated so that the layer forming surface is disposed on the image display member side, the following steps (A) to (D):
<Process (A)>
There is a step formed between the light shielding layer and the light shielding layer forming side surface of the light transmissive cover member on the light shielding layer forming side surface of the light transmissive cover member or the surface of the image display member. Applying more than the thickness of the light shielding layer so as to be canceled;
<Process (B)>
A step of irradiating at least the photocurable resin composition located on the light-shielding layer with ultraviolet rays to temporarily cure the cured resin layer on the light-shielding layer to a curing rate of 30 to 80%;
<Process (C)>
Bonding the light transmissive cover member to the image display member so that the light shielding layer and the temporarily cured resin layer are on the inside;
<Process (D)>
The temporary cured resin layer sandwiched between the image display member and the light transmissive cover member is irradiated with ultraviolet rays to be fully cured, and the light transmissive cured resin on both the light shielding layer and the light transmissive cover member. A method for manufacturing an image display device, comprising a step of obtaining an image display device by setting a curing rate of a layer to 90% or more and laminating an image display member and a light transmissive cover member via a light transmissive cured resin layer.
前記工程(B)において、光透過性カバー部材表面の仮硬化樹脂層の硬化率が、0〜80%である請求項1記載の画像表示装置の製造方法。   The method for manufacturing an image display device according to claim 1, wherein in the step (B), the curing rate of the temporarily cured resin layer on the surface of the light-transmitting cover member is 0 to 80%. 前記工程(B)において、遮光層上の仮硬化樹脂層の硬化率が、光透過性カバー部材表面の仮硬化樹脂層の硬化率よりも高い請求項1又は2記載の画像表示装置の製造方法。   The method for manufacturing an image display device according to claim 1, wherein in the step (B), the curing rate of the temporarily cured resin layer on the light shielding layer is higher than the curing rate of the temporarily cured resin layer on the surface of the light-transmitting cover member. . 前記工程(B)において、紫外線を遮蔽する遮蔽板又は紫外線を減衰させる減衰板を紫外線光源と光硬化性樹脂組成物との間に設置する請求項1記載の画像表示装置の製造方法。   The method for manufacturing an image display device according to claim 1, wherein, in the step (B), a shielding plate that shields ultraviolet rays or an attenuation plate that attenuates ultraviolet rays is installed between the ultraviolet light source and the photocurable resin composition. 光硬化性樹脂組成物は、アクリレート系オリゴマー成分、アクリル系モノマー成分、可塑剤成分及び光重合開始剤成分を含有し、可塑剤成分が、固形の粘着付与剤と液状オイル成分とを含有する請求項1乃至3のいずれか1項に記載の画像表示装置の製造方法。   The photocurable resin composition contains an acrylate oligomer component, an acrylic monomer component, a plasticizer component and a photopolymerization initiator component, and the plasticizer component contains a solid tackifier and a liquid oil component. Item 4. The method for manufacturing an image display device according to any one of Items 1 to 3.
JP2017084802A 2017-04-21 2017-04-21 Manufacturing method of image display device Active JP6495965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084802A JP6495965B2 (en) 2017-04-21 2017-04-21 Manufacturing method of image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084802A JP6495965B2 (en) 2017-04-21 2017-04-21 Manufacturing method of image display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012273685A Division JP6220123B2 (en) 2012-01-25 2012-12-14 Manufacturing method of image display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019041927A Division JP6786647B2 (en) 2019-03-07 2019-03-07 Manufacturing method of image display device

Publications (2)

Publication Number Publication Date
JP2017161919A true JP2017161919A (en) 2017-09-14
JP6495965B2 JP6495965B2 (en) 2019-04-03

Family

ID=59857839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084802A Active JP6495965B2 (en) 2017-04-21 2017-04-21 Manufacturing method of image display device

Country Status (1)

Country Link
JP (1) JP6495965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703544A (en) * 2018-09-27 2021-04-23 迪睿合株式会社 Optical device and method for manufacturing optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054168A1 (en) * 2007-10-22 2009-04-30 Sharp Kabushiki Kaisha Display device and method for production thereof
JP2009186960A (en) * 2007-07-17 2009-08-20 Sony Chemical & Information Device Corp Method of manufacturing image display
JP2009186954A (en) * 2007-04-04 2009-08-20 Sony Chemical & Information Device Corp Method of manufacturing image display apparatus
WO2011148990A1 (en) * 2010-05-26 2011-12-01 旭硝子株式会社 Transparent surface material having adhesive layer, display device, and manufacturing method for same
JP2012073533A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
JP2012219180A (en) * 2011-04-08 2012-11-12 Three M Innovative Properties Co Method for manufacturing image display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186954A (en) * 2007-04-04 2009-08-20 Sony Chemical & Information Device Corp Method of manufacturing image display apparatus
JP2009186960A (en) * 2007-07-17 2009-08-20 Sony Chemical & Information Device Corp Method of manufacturing image display
WO2009054168A1 (en) * 2007-10-22 2009-04-30 Sharp Kabushiki Kaisha Display device and method for production thereof
WO2011148990A1 (en) * 2010-05-26 2011-12-01 旭硝子株式会社 Transparent surface material having adhesive layer, display device, and manufacturing method for same
JP2012073533A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
JP2012219180A (en) * 2011-04-08 2012-11-12 Three M Innovative Properties Co Method for manufacturing image display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703544A (en) * 2018-09-27 2021-04-23 迪睿合株式会社 Optical device and method for manufacturing optical device
CN112703544B (en) * 2018-09-27 2024-03-08 迪睿合株式会社 Optical device and method for manufacturing optical device

Also Published As

Publication number Publication date
JP6495965B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
US11738548B2 (en) Method of manufacturing image display device
JP6220123B2 (en) Manufacturing method of image display device
JP5370706B1 (en) Manufacturing method of image display device
JP5138820B1 (en) Manufacturing method of image display device
JP5304960B1 (en) Manufacturing method of image display device
JP5218802B1 (en) Manufacturing method of image display device
JP6318671B2 (en) Manufacturing method of image display device
WO2019004020A1 (en) Method for producing image display device, photocurable resin composition and light-transmitting cured resin layer
JP2014081642A (en) Method for manufacturing image display apparatus
JP6495965B2 (en) Manufacturing method of image display device
JP5440725B2 (en) Manufacturing method of image display device
JP6786647B2 (en) Manufacturing method of image display device
JP6975834B2 (en) Manufacturing method of image display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6495965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250