JP2009186541A - 電気光学装置の製造方法、電気光学装置 - Google Patents

電気光学装置の製造方法、電気光学装置 Download PDF

Info

Publication number
JP2009186541A
JP2009186541A JP2008023572A JP2008023572A JP2009186541A JP 2009186541 A JP2009186541 A JP 2009186541A JP 2008023572 A JP2008023572 A JP 2008023572A JP 2008023572 A JP2008023572 A JP 2008023572A JP 2009186541 A JP2009186541 A JP 2009186541A
Authority
JP
Japan
Prior art keywords
conductive particles
acf
electro
terminal portion
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008023572A
Other languages
English (en)
Inventor
Munehide Nishiomote
宗英 西面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008023572A priority Critical patent/JP2009186541A/ja
Publication of JP2009186541A publication Critical patent/JP2009186541A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】外部接続端子の幅方向の両端側に、中央領域よりも粒径の大きな導電性粒子を確実に位置させることができることにより、接続後、両端部における導電性粒子を介した外部接続端子に対するFPCの端子部の電気的な接続が非接続となることを防止して、信頼性を向上させることのできる電気光学装置の製造方法を提供する。
【解決手段】外部接続端子102に対して、幅方向Hにおける一端10t1側及び他端10t2側に、幅方向Hの中央領域よりも粒径が大きい導電性粒子が位置するよう、それぞれ導電性粒子の粒径の異なる複数のACF1をそれぞれ塗布する塗布工程と、ACF1を介して、外部接続端子102と端子部113とを電気的に接続する接続工程と、を具備することを特徴とする。
【選択図】図7

Description

本発明は、電気光学パネルに形成された第1の端子部と、薄板状基板の第2の端子部とを電気的に接続する電気光学装置の製造方法、電気光学装置に関する。
周知のように、電気光学装置、例えば光透過型の液晶装置は、ガラス基板、石英基板等からなる2枚の基板間に液晶が介在されて構成された電気光学パネルである液晶パネルが実装ケース等に収容されて構成されている。
また、液晶装置は、液晶パネルの一方の基板に、例えば薄膜トランジスタ(Thin Film Transistor、以下、TFTと称す)等のスイッチング素子及び画素電極をマトリクス状に配置し、他方の基板に対向電極を配置して、両基板間に介在された液晶層による光学応答を画像信号に応じて変化させることで、画像表示を可能としている。
また、TFTを配置したTFT基板と、このTFT基板に相対して配置される対向基板とは、別々に製造される。TFT基板及び対向基板は、例えば石英基板上に、所定のパターンを有する半導体薄膜、絶縁性薄膜又は導電性薄膜を積層することによって構成される。半導体薄膜、絶縁性薄膜又は導電性薄膜は、層毎に各種膜の成膜工程とフォトリソグラフィ工程を繰り返すことによって形成されるのである。
このようにして形成されたTFT基板及び対向基板は、例えば液晶封入方式により、TFT基板と対向基板との間に液晶が介在される場合には、一部に切り欠きを有するよう略周状に塗布されたシール材を介して、パネル組立工程において高精度(例えばアライメント誤差1μ以内)に貼り合わされる。
次いでアライメントが施されてそれぞれ圧着硬化された後、シール材の一部に設けられた切り欠きを介して液晶が封入され、切り欠きが、熱等により硬化された封止材により封止される。
その後、例えばTFT基板が対向基板より平面視した状態で大きく形成されることによりTFT基板の対向基板が貼り合わされた面の一部に形成された張り出し部において、液晶パネルの一端と他端とを結ぶ幅方向に沿って設けられた外部接続端子に対し、プロジェクタ等の電子機器の外部回路と電気的に接続する、特定の長さを有する柔軟な図示しない薄板状基板であるフレキシブル配線基板(Flexible Printed Circuits、以下FPCと称す)の端子部が電気的に接続される。
尚、外部接続端子に対してFPCの端子部は、異方性導電フィルム(Anisotropic Conductive Film、以下、ACFと称す)や、異方性導電ペースト(Anisotropic Conductive Paste、以下、ACPと称す)等の異方性導電接着剤中の、例えば金属粒子等の導電性粒子を介して、熱圧着等により電気的に接続される。最後に、液晶パネルが実装ケース等に収容されることにより、液晶装置が形成される。
ここで、熱圧着を用いて、例えばACFを介して外部接続端子に対してFPCの端子部を接続する場合、TFT基板を構成する、例えば石英基板は、熱の付与に対し伸縮し難いものであるのに対し、FPCを構成する、例えばポリイミドは、熱の付与に対し伸縮する。
従って、熱圧着の際、例えば200℃の温度を付与して行うとFPCは伸張する。尚、FPCの端子部は、FPCが伸張している状態で外部接続端子に接続、固定される。固定後、常温までFPCの温度が下がると、FPCは収縮してしまう。即ち、熱圧着工程に伴いFPCは伸縮する。
このことから、収縮後、FPCが、幅方向の中央を支点としてTFT基板に対してパネルの厚さ方向上向きに反ってしまい、幅方向における一端側及び他端側(以下、両端側と称す)におけるFPCの端子部の外部接続端子に対する導電性粒子を介した電気的な接続が、圧着後、非接続となってしまうといった問題があった。
例えば、接続後の外部接続端子とFPCの端子部との間を、2μm(マイクロメートル)として、2μmの大きさの導電性粒子で接続する場合、両端側の端子間は、反りにより、例えば7μm離間して、2μmの導電性粒子では接続できなくなってしまう場合がある。
このような問題に鑑み、特許文献1には、幅方向における中央よりも、両端側に、粒径の大きな導電性粒子が位置するよう、1種類のACFを用いて、端子間を電気的に接続する構成が開示されている。
このような構成によれば、両端側に中央よりも粒径の大きな導電性粒子が位置していることから、外部接続端子に電気的に接続される端子部を有する部材が厚さ方向に反った際、導電性粒子を介した両端側における端子間の電気的な接続が非接続となってしまうことを防止することができる。
特開2004−71857号公報
ところで、端子間の接続に用いられるACFは、樹脂等の絶縁性接着材料中に複数の導電性粒子が拡散されたものがフィルムに塗布された後、設定サイズにカットされたものが用いられるのが一般的である。
ここで、特許文献1においては、設定サイズにカットされた1種類のACFにおいて、幅方向における中央よりも、両端部側に、粒径の大きな導電性粒子が位置するようACFが形成されているが、液晶パネルによっては、外部接続端子に塗布するACFの幅方向のサイズが、非常に小さいものも存在するため、この場合、1種類のACFにおいて、領域別に粒径の異なる導電性粒子を位置させることは非常に困難である。即ち、粒径の大きな導電性粒子が、中央領域に混ざってしまう場合がある。
また、特許文献1には、1種類のACFの両端に、中央よりも粒径の大きな導電性粒子をどのように位置させるかは何等開示されておらず、製造可能か否かが確かではない。尚、以上のことは、ACFに限らず、ACPであっても同様である他、他の異方性導電接着剤であっても同様である。
本発明は上記事情に着目してなされたものであり、外部接続端子の幅方向の両端側に、中央領域よりも粒径の大きな導電性粒子を確実に位置させることができることにより、接続後、両端部における導電性粒子を介した外部接続端子に対するFPCの端子部の電気的な接続が非接続となることを防止して、信頼性を向上させることのできる電気光学装置の製造方法、電気光学装置を提供することを目的とする。
上記目的を達成するために本発明に係る電気光学装置の製造方法は、電気光学パネルに対し該電気光学パネルの一端と他端とを結ぶ幅方向に沿って形成された第1の端子部と、薄板状基板の第2の端子部とを電気的に接続する電気光学装置の製造方法であって、前記第1の端子部と前記第2の端子部とのいずれかに対して、前記幅方向における前記一端側及び前記他端側に前記幅方向の中央領域よりも粒径が大きい導電性粒子が位置するよう、それぞれ前記導電性粒子の粒径が異なる複数の異方性導電接着剤をそれぞれ塗布する塗布工程と、前記異方性導電接着剤を介して、前記第1の端子部と前記第2の端子部とを電気的に接続する接続工程と、を具備することを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、幅方向における両端側に、幅方向の中央領域よりも大きな粒径の導電性粒子が位置するよう、それぞれ導電性粒子の粒径の異なる複数の異方性導電接着剤をそれぞれ塗布することから、両端側に、中央領域よりも粒径の大きな導電性粒子を確実に位置させることができる。このことにより、第1の端子部に対して、第2の端子部を電気的に接続した後、電気光学パネルに対して薄板状基板の両端側が反った際、第2の端子部の両端側における導電性粒子を介した第1の端子部に対する電気的な接続が非接続となってしまうことを、大きな粒径の導電性粒子により確実に防止することにより、電気光学装置の信頼性を向上させることができる。
また、前記塗布工程は、前記中央領域に第1の粒径の前記導電性粒子を有する第1の異方性導電接着剤を塗布する工程と、前記一端側及び前記他端側に、前記第1の粒径よりも大きな第2の粒径の前記導電性粒子を有する第2の異方性導電接着剤を塗布する工程とから構成されていることを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、中央領域に、第1の粒径の導電性粒子を有する第1の異方性導電接着剤を塗布し、両端側に、第1の粒径よりも大きな第2の粒径の導電性粒子を有する第2の異方性導電接着剤を塗布することから、両端側に、第1の粒径よりも大きな第2の粒径の導電性粒子を確実に位置させることができる。このことにより、第1の端子部に対して、第2の端子部を電気的に接続した後、電気光学パネルに対して薄板状基板の両端側が反った際、第2の端子部の両端側における導電性粒子を介した第1の端子部に対する電気的な接続が非接続となってしまうことを、第2の粒径の導電性粒子により確実に防止することにより、電気光学装置の信頼性を向上させることができる。
さらに、前記塗布工程は、前記中央領域から前記一端側及び前記他端側に向かうに従い、粒径が大きい導電性粒子が位置するように前記複数の異方性導電接着剤をそれぞれ塗布する工程であることを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、中央領域から、両端側に向かうに従い、粒径が大きい導電性粒子が位置するように、複数の異方性導電接着剤をそれぞれ塗布することから、両端側に向かうに従い、中央領域よりも粒径の大きく、反り量に応じた大きさを有する導電性粒子を、確実に位置させることができる。このことにより、第1の端子部に対して、第2の端子部を電気的に接続した後、電気光学パネルに対して薄板状基板の両端側が反った際、第2の端子部の中央領域よりも両端側における導電性粒子を介した第1の端子部に対する電気的な接続が非接続となってしまうことを、反り量に応じて両端側に向かうに従い粒径が大きくなる導電性粒子により確実に防止することにより、電気光学装置の信頼性を向上させることができる。
また、前記塗布工程は、前記導電性粒子の前記粒径の異なる前記異方性導電接着剤間が前記幅方向において接触するよう、前記異方性導電接着剤をそれぞれ塗布する工程であることを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、全面に確実に導電性粒子の粒径の異なる複数の異方性導電接着剤をそれぞれ塗布することができる。
さらに、前記塗布工程は、前記導電性粒子の前記粒径の異なる前記異方性導電接着剤間が前記幅方向において設定間隔離間するよう、前記異方性導電接着剤をそれぞれ塗布する工程であり、前記接着工程において、前記導電性粒子の前記粒径の異なる前記異方性導電接着剤間が接触することを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、異方性導電接着剤の塗布位置精度を許容して、確実に導電性粒子の粒径の異なる複数の異方性導電接着剤をそれぞれ塗布することができる。
また、前記塗布工程は、前記第1の端子部と前記第2の端子部とのいずれかに対して、全面に、前記第1の粒径の前記導電性粒子を有する第1の異方性導電接着剤を塗布する工程と、前記一端側及び前記他端側における前記第1の異方性導電接着剤上に、前記第1の粒径よりも大きな第2の粒径の前記導電性粒子を有する第2の異方性導電接着剤を塗布する工程とから構成されていることを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、異方性導電接着剤の塗布位置精度を許容して、容易に、中央領域に、第1の粒径の導電性粒子を有する第1の異方性導電接着剤を塗布できるとともに、両端側に、第1の粒径よりも大きな第2の粒径の導電性粒子を有する第2の異方性導電接着剤を塗布することができる。
さらに、前記塗布工程は、前記第1の端子部と前記第2の端子部とのいずれかに対して、全面に、前記第1の粒径の前記導電性粒子を有する第1の異方性導電接着剤を塗布する工程と、前記中央領域から前記一端側及び前記他端側に向かうに従い、粒径が大きい導電性粒子が位置するように、前記第1の異方性導電接着剤上に、前記複数の異方性導電接着剤をそれぞれ塗布する工程であることを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、異方性導電接着剤の塗布位置精度を許容して、容易に、中央領域から、両端側に向かうに従い、反り量に応じて、導電性粒子が、粒径が大きくなって位置していくよう異方性導電接着剤をそれぞれ塗布することができる。
また、前記接続工程は、熱圧着により行われることを特徴とする。
本発明によれば、第1の端子部に対して、第2の端子部を熱圧着により、電気的に接続した後、薄板状基板が伸縮することに起因して電気光学パネルに対して薄板状基板の両端側が反った際、第2の端子部の両端側における導電性粒子を介した第1の端子部に対する電気的な接続が非接続となってしまうことを、大きな粒径の導電性粒子により確実に防止することにより、電気光学装置の信頼性を向上させることができる。
本発明に係る電気光学装置は、請求項1〜8のいずれか1項に記載の電気光学装置の製造方法によって製造されたことを特徴とする。
本発明によれば、第1の端子部と第2の端子部とのいずれかに対して、幅方向における両端側に、幅方向の中央領域よりも大きな粒径の導電性粒子が位置するよう、導電性粒子の粒径の異なる複数の異方性導電接着剤がそれぞれ塗布されていることから、両端側に、中央領域よりも粒径の大きな導電性粒子が確実に位置される。このことにより、第1の端子部に対して、第2の端子部が電気的に接続された後、電気光学パネルに対して薄板状基板の両端側が反った際、第2の端子部の両端側における導電性粒子を介した第1の端子部に対する電気的な接続が非接続となってしまうことを、大きな粒径の導電性粒子により確実に防止されることにより、電気光学装置の信頼性を向上させることができる。
以下、図面を参照にして本発明の実施の形態を説明する。尚、以下に示す実施の形態において電気光学装置は、光透過型の液晶装置を例に挙げて説明する。よって、電気光学装置が具備する電気光学パネルは、液晶パネルを例に挙げて説明する。
また、液晶パネルにおいて対向配置される一対の基板の内、一方の基板は、素子基板(以下、TFT基板と称す)を、また他方の基板は、TFT基板に対向する対向基板を例に挙げて説明する。さらに、異方性導電接着剤は、上述したACFを例に挙げて説明する。
(第1実施の形態)
先ず、本実施の形態を示す製造方法によって製造される液晶装置の構成を図1、図2を用いて説明する。図1は、本実施の形態の製造方法によって製造される液晶装置における液晶パネルをFPCとともに示す平面図、図2は、図1中のII-II線に沿って切断した液晶パネルをFPCとともに示す断面図である。
図1、図2に示すように、液晶パネル100は、例えば、石英基板やガラス基板等を用いたTFT基板10と、該TFT基板10に対向配置される、例えばガラス基板や石英基板等を用いたTFT基板10よりも外形の小さい対向基板20との間の内部空間に、液晶50が介在されて構成される。対向配置されたTFT基板10と対向基板20とは、シール材52によって貼り合わされている。
TFT基板10の液晶50と接する領域に、液晶パネル100の表示領域40を構成するTFT基板10の表示領域10hが構成されている。また、TFT基板10の対向基板20に対向する対向面となる表面10f側における表示領域10hに、画素を構成するとともに、後述する対向電極21とともに液晶50に駆動電圧を印加する画素電極9aがマトリクス状に配置されている。
また、対向基板20の表面20f側における液晶50と接する領域に、液晶50に画素電極9aとともに駆動電圧を印加する対向電極21が設けられており、対向電極21の表示領域10hに対向する領域に、液晶パネル100の表示領域40を構成する対向基板20の表示領域20hが構成されている。
TFT基板10の画素電極9a上に、ラビング処理が施された配向膜16が設けられており、また、対向基板20上の全面に渡って形成された対向電極21上にも、ラビング処理が施された配向膜26が設けられている。各配向膜16、26は、例えば、ポリイミド膜等の透明な有機膜からなる。
また、TFT基板10の表示領域10hにおいては、複数本の図示しない走査線と複数本の図示しないデータ線とが交差するように配線され、走査線とデータ線とで区画された領域に画素電極9aがマトリクス状に配置される。そして、走査線とデータ線との各交差部分に対応して図示しない薄膜トランジスタ(TFT)が設けられ、このTFT毎に画素電極9aが電気的に接続されている。
TFTは走査線のON信号によってオンとなり、これにより、データ線に供給された画像信号が画素電極9aに供給される。この画素電極9aと対向基板20に設けられた対向電極21との間の電圧が液晶50に印加される。
対向基板20に、液晶パネル100の表示領域40を規定する額縁としての遮光膜53が設けられている。
液晶50がTFT基板10と対向基板20との間の空間に、既知の液晶注入方式で注入される場合、シール材52は、シール材52の1辺の一部において欠落して塗布されている。
シール材52の欠落した箇所は、該欠落した箇所から貼り合わされたTFT基板10及び対向基板20との間の空間において、シール材52により囲まれた領域に液晶50を注入するための切り欠きである液晶注入口108を構成している。液晶注入口108は、液晶注入後、封止材109によって封止される。
TFT基板10の表面10fにおいて、シール材52の外側の領域に、TFT基板10の図示しないデータ線に画像信号を所定のタイミングで供給して該データ線を駆動するドライバであるデータ線駆動回路101と外部回路との接続のための第1の端子部である外部接続端子102とが、液晶パネル100の一端を構成するTFT基板10の一端10t1と液晶パネル100の他端を構成するTFT基板10の他端10t2とを結ぶ幅方向Hに沿って一側面側に設けられている。
尚、外部接続端子102は、対向基板20に設けられていても構わない。また、外部接続端子102は、アルミニウム、ITO等の電気的な導通性を有する材料から構成されている。さらに、図1には、pin数が省略して示してあるが、外部接続端子102は、通常、100pin〜1000pin程度、液晶パネルによって必要に応じた数が設けられている。
外部接続端子102に、液晶パネル100を、図示しないプロジェクタ等の電子機器と電気的に接続する、特定の長さを有するFPC112の一端に構成された第2の端子部である端子部113(図5参照)が、後述する導電性粒子の粒径の異なる複数のACF1を介して、例えば圧着により電気的に接続されている。尚、ACF1の構成は、後述する。
端子部113は、銅にニッケル金メッキが形成されたものや、銅に金メッキが形成されたもの、銅にスズメッキが形成されたもの等から構成されている。尚、端子部113を構成する材料は、上述したものに限定されない。
FPC112の他端が電子機器における外部回路に接続されることにより、液晶パネル100と電子機器とは電気的に接続される。尚、ACF1を介した外部接続端子102とFPC112の端子部113との接続構成も後述する。
また、外部接続端子102と端子部113との電気的な接続を補強するため、FPC112と、TFT基板10の一側面との間には、幅方向Hに沿って直線状に、例えば光硬化型接着剤70が設けられている。
TFT基板10の表面10fにおいて、外部接続端子102が設けられたTFT基板10の一側面に隣接する各側面に沿って、TFT基板10の図示しない走査線及びゲート電極に、走査信号を所定のタイミングで供給することにより、ゲート電極を駆動するドライバである走査線駆動回路103、104が設けられている。走査線駆動回路103、104は、シール材52の内側の遮光膜53に対向する位置において、TFT基板10の表面10f上に形成されている。
また、TFT基板10の表面10f上に、データ線駆動回路101、走査線駆動回路103、104、外部接続端子102及び上下導通端子107を接続する配線105が、遮光膜53の3辺に対向して設けられている。
上下導通端子107は、シール材52のコーナー部の4箇所のTFT基板10上に形成されている。そして、TFT基板10と対向基板20相互間に、下端が上下導通端子107に接触し上端が対向電極21に接触する上下導通材106が設けられており、該上下導通材106によって、TFT基板10と対向基板20との間で電気的な導通がとられている。
また、TFT基板10の裏面10rに、カバーガラス30が貼着されている。同様に、対向基板20の裏面20rにも、カバーガラス31が貼着されている。
各カバーガラス30、31は、TFT基板10及び対向基板20の各裏面10r、20rの少なくとも各表示領域10h、20hに塵埃等が付着するのを防止するとともに、塵埃等を、各裏面10r、20rから離間させてデフォーカスすることで、塵埃等の像を目立たなくする機能を有する。
次に、このように構成された液晶装置の製造方法、具体的には、外部接続端子に対するFPCの端子部の接続方法を、図3〜図12を用いて示す。尚、外部接続端子に対するFPCの端子部の接続方法以外の液晶装置の製造方法は、周知であるため、その説明は省略する。
図3は、TFT基板上に外部接続端子が設けられた状態を概略的に示す断面図、図4は、図3の外部接続端子上に、2種類のACFを貼り付けた状態を概略的に示す断面図、図5は、図4のACFを介して、外部接続端子にFPCの端子部を貼り合わせた状態を概略的に示す断面図である。
また、図6は、図5の貼り合わせ状態から、FPCの端子部を、ACFを介して外部接続端子に圧着した状態を概略的に示す断面図、図7は、図6の圧着後、FPCの一端側及び他端側が厚さ方向上方に沿った状態を概略的に示す断面図である。
さらに、図8は、図4のACFが貼り付けられたTFT基板の一部を上方から概略的に見た部分平面図、図9は、図8の第1のACFと第2のACFとが幅方向において接触するよう貼り付けられた状態を概略的に示す部分平面図、図10は、図8の第1のACFと第2のACFとが幅方向において一部が平面視した状態で重なって接触するよう貼り付けられた状態を概略的に示す部分平面図である。
また、図11は、図8の第1のACFと第2のACFとが幅方向において設定間隔離間するよう貼り付けられた変形例の状態を概略的に示す部分平面図、図12は、図11の第1のACFと第2のACFとが圧着後、幅方向において接触する状態を概略的に示す部分断面図である。
また、以下、図3〜図8においては、図面を簡略化するため、外部接続端子の個数を、図1よりも減らして示している。さらに、以下において、図4〜図12においては、図面を簡略化するため、導電性粒子の個数を実際よりも減らして示している。また、図12においては、図面を簡略化するため、外部接続端子及びFPCの端子部は、省略して示している。
先ず、図3に示すようなTFT基板10の外部接続端子102上に、図4、図8に示すように、導電性粒子の粒径の異なる2種類の第1のACF1s、第2のACF1gを塗布する、即ち貼り付ける塗布工程を行う。
尚、第1のACF1sは、本実施の形態における第1の異方性導電接着剤を構成しており、第2のACF1gは、本実施の形態における第2の異方性導電接着剤を構成している。さらに、第1のACF1sと第2のACF1gとにより、上述したACF1を構成している。
また、第1のACF1sは、絶縁性接着材料2と、該絶縁性接着材料2中に拡散された、例えばニッケルや、金、銀、銅、アルミニウム、スズ、パラジウム、ITO、カーボンの金属粒子からなる第1の粒径、例えば2μmの粒径を有する導電性粒子3sとから主要部が構成されている。
さらに、第2のACF1gは、絶縁性接着材料2と、該絶縁性接着材料2中に拡散された、例えばニッケルや、金、銀、銅、アルミニウム、スズ、パラジウム、ITO、カーボンの金属粒子からなる、導電性粒子3sよりも粒子径の大きい第2の粒径、例えば7μmの粒径を有する導電性粒子3gとから主要部が構成されている。
ここで、塗布工程について、詳しく説明すると、先ず、図4、図8に示すように、外部接続端子102の幅方向Hの中央領域、例えば外部接続端子102のpin数を50pinとすると、15pin〜35pinの上に、第1の粒径の導電性粒子3sを有する第1のACF1sを貼り付ける。その結果、中央領域に、導電性粒子3sは位置する。尚、中央領域の位置は、上述のpin位置に限定されない。
次いで、図4、図8に示すように、外部接続端子102の幅方向Hの一端10t1側及び他端10t2側、例えば1pin〜14pin、36pin〜50pin上に、第1の粒径よりも大きな第2の粒径の導電性粒子3gを有する第2のACF1gを貼り付ける。その結果、一端10t1側及び他端10t2側の領域に、導電性粒子3gは位置する。尚、一端10t1側及び他端10t2側の位置は、上述のpin位置に限定されない。
この際、図9に示すように、幅方向Hにおいて、第1のACF1sと第2のACF1gとが接触するよう、各ACF1s、1gを貼り付ければ、外部接続端子102に対して、全面に確実に導電性粒子3s、3gの粒径の異なる2種類のACF1s、1gをそれぞれ貼り付けることができる。
尚、この貼り付けは、図10に示すように、第1のACF1sと第2のACF1gとが、幅方向Hにおいて、一部が重なるように行っても構わない。これは、ACFの貼り付け精度は、一般的に、100μm程度の誤差を有することから、一部が重なるように貼り付けを行うことにより、貼り付け後、第1のACF1sと第2のACF1gとが幅方向Hにおいて、接触しやすくなるためである。また、この場合、重なり部分は、厚さ方向Tにおいて他のACFの部位よりも厚くなることから、なるべく幅方向に小さく形成されることが好ましい。
さらに、図11に示すように、第1のACF1sと第2のACF1gとが、幅方向Hにおいて、設定間隔a離間するよう、第1のACF1sと第2のACF1gとを貼り付けても構わない。
この場合、第1のACF1sと第2のACF1gとの間に、貼り付け後、設定間隔aが形成されてしまうが、該設定間隔aは、図12に示すように、後述する接続工程における外部接続端子102に対するFPC112の端子部113の圧着後、第1のACF1sと第2のACF1gとが幅方向Hに広がって接触することによりなくなる。よって、各ACF貼り付けの際に設定される設定間隔aは、圧着によって、第1のACF1sと第2のACF1gとが幅方向Hにおいて接触可能な間隔に設定される。
このことによれば、外部接続端子102に対して、各ACF1s、1gの貼り付け精度を許容して、確実に導電性粒子の粒径の異なるACF1s、1gをそれぞれ貼り付けることができる。
図4、図8に示す塗布工程終了後、ACF1s、1gを介して、外部接続端子102に対してFPC112の端子部113を電気的に接続する接続工程を行う。
具体的には、先ず、図5に示すように、ACF1s、1gを介して、各外部接続端子102に対し、各端子部113がそれぞれ対向するよう、外部接続端子102に、FPC112を貼り合わせる。
次いで、図6に示すように、FPC112の厚さ方向Tの上方から、既知の圧着装置200を用いて、外部接続端子102に対して端子部113が近接するとともに、各ACF1s、1gを押し潰すよう、例えば200℃の温度で熱圧着を行う。その結果、外部接続端子102と端子部113とは、熱の付与により、FPC112は、幅方向Hに伸張している状態で、各導電性粒子3s、3gにより電気的に接続され、その後、絶縁性接着材料2が硬化することにより固定される。
熱圧着後、常温になるまで放置すると、FPC112は、幅方向Hに収縮する。その結果、FPC112の一端10t1側及び他端10t2側の部位は、厚さ方向Tの上方に、図7に示すように反り上がる。
この際、従来の同一粒径の導電性粒子を有するACFでは、FPC112の一端10t1側及び他端10t2側が反り上がることにより、該当部位における導電性粒子を介した外部接続端子102と端子部113との電気的な接続が非接続となってしまう。
ところが、本実施の形態においては、外部接続端子102の一端10t1側及び他端10t2側には、第1の粒径よりも大きい第2の粒径の導電性粒子3gを有するACF1gが貼り付けられているため、FPC112の反りにより、一端10t1側及び他端10t2側の端子部113と外部接続端子102との間が、例えば7μm離れたとしても、導電性粒子3gが7μmの粒径を有しておれば、反りに関わらず、端子部113と外部接続端子102との電気的な接続を維持することができる。
尚、図7においては、一対の外部接続端子102と端子部113との間は、1つの導電性粒子3gまたは導電性粒子3sにおいて電気的に接続されているが、実際は、各領域において、平面視した状態で、複数の導電性粒子3gまたは導電性粒子3sにおいて電気的に接続されている。
このように、本実施の形態においては、外部接続端子102に対して、FPC112の端子部113を、ACFを介して電気的に接続させる際、第1の粒径の導電性粒子3sを有する第1のACF1sを、外部接続端子102の幅方向Hの中央領域に貼り付け、第1の粒径よりも大きな第2の粒径の導電性粒子3gを有する第2のACF1gを、外部接続端子102の幅方向Hの一端10t1側及び他端10t2側に貼り付けると示した。即ち、外部接続端子102に、導電性粒子の粒径の異なる2種類のACF1s、1gを貼り付けると示した。
このことによれば、一端10t1側及び他端10t2側に、第1の粒径よりも大きな第2の粒径の導電性粒子3gを確実に位置させることができることにより、外部接続端子102に対して、端子部113を電気的に接続した後、FPC112の幅方向Hの一端10t1側及び他端10t2側が反った際、端子部113の幅方向Hの一端10t1側及び他端10t2側における導電性粒子を介した外部接続端子102に対する電気的な接続が非接続となってしまうことを、第2の粒径の導電性粒子3gにより確実に防止することにより、液晶装置の信頼性を向上させることができる。
尚、以下、変形例を、図13、図14を用いて示す。図13は、第1のACF及び第2のACFの貼り付け方法の変形例を示すTFT基板の一部を上方から概略的に見た部分平面図、図14は、厚さ方向において重ねられた第1のACF及び第2のACFが、圧着後、同一層となる状態を概略的に示す部分拡大断面図である。尚、図13においても、図面を簡略化するため、外部接続端子の個数を、図1よりも減らして示している。また、導電性粒子の個数も実際より減らして示している。
本実施の形態においては、外部接続端子102の中央領域に、第1のACF1sを貼り付けて中央領域に第1の粒径の導電性粒子3sを位置させ、一端10t1側及び他端10t2側に、第2のACF1gを貼り付けて、一端10t1側及び他端10t2側に、第1の粒径よりも粒径の大きい第2の粒径の導電性粒子3gを位置させると示した。
これに限らず、図13に示すように、先ず、外部接続端子102の幅方向の全面に、第1のACF1sを貼り付けた後、第1のACF1s上の一端10t1側及び他端10t2側に、第2のACF1gを貼り付けて、中央領域に第1の粒径の導電性粒子3sを位置させ、一端10t1側及び他端10t2側に、第1の粒径の導電性粒子3s及び第2の粒径の導電性粒子3gを位置させても構わない。
尚、この場合、第1のACF1s中の導電性粒子3sの密度、第2のACF1g中の導電性粒子3gの密度を、上述した本実施の形態よりも低くするとともに、絶縁性接着材料2を、上述した実施の形態よりも薄くする必要がある。
この場合、一端10t1側及び他端10t2側においては、貼り付け直後は、図14に示すように、ACFは、2層となるが、上述した圧着後は、絶縁性接着材料2は溶けるため、ACFは1層となる。
また、外部接続端子102の一端10t1側及び他端10t2側には、導電性粒子3sと導電性粒子3gとが混在するが、図14に示すように、導電性粒子3gの粒径は、導電性粒子3sの粒径よりも大きいため、導電性粒子3gのみにより、本実施の形態と同様に、一端10t1側及び他端10t2側の外部接続端子102と端子部113とは電気的に接続される。
以上のような構成によれば、外部接続端子102に対して、各ACF1s、1gの塗布位置精度を許容して、容易に、中央領域に、第1のACF1sを塗布できるとともに、一端10t1側及び他端10t2側に、第2のACF1gを塗布することができる。尚、その他の効果は、上述した第1実施の形態と同様である。
(第2実施の形態)
図15は、本実施の形態を示す液晶装置の製造方法における導電性粒子の粒径の異なる3種類のACFの貼り付け方法を示すTFT基板の一部を上方から概略的に見た部分平面図である。
この第2実施の形態の液晶装置の製造方法、液晶装置の構成は、上述した図1〜図14に示した第1実施の形態の液晶装置の製造方法、液晶装置と比して、外部接続端子に対してFPCの端子部を電気的に接続する際、導電性粒子の粒径の異なる3種類のACFを用いて行う点が異なる。よって、この相違点のみを説明し、第1実施の形態と同様の構成には同じ符号を付し、その説明は省略する。
尚、以下、図15においても、図面を簡略化するため、外部接続端子の個数を、図1よりも減らして示している。また、導電性粒子の個数も実際より減らして示している。
図15に示すように、本実施の形態においては、上述した塗布工程において、外部接続端子102に対し、幅方向Hの中央領域から、一端10t1側及び他端10t2側に向かうに従い、粒径が大きい導電性粒子が位置していくよう、3種類のACFをそれぞれ塗布する。
具体的には、図15に示すように、先ず、外部接続端子102の中央領域、例えば外部接続端子102のpin数が50pinの場合、15pin〜35pin上に、第1の粒径、例えば2μmの粒径の導電性粒子3sを有する第1のACF1sを塗布する。その結果、中央領域には、導電性粒子3sが位置する。尚、中央領域の位置は、上述したpin位置に限定されない。
次いで、外部接続端子102の一端10t1側及び他端10t2側、例えば、1pin〜9pin上、41pin〜50pin上に、第1のACF1sに対して、幅方向Hに離間して、第2の粒径、例えば7μmの導電性粒子3gを有する第2のACF1gを塗布する。その結果、一端10t1側及び他端10t2側には、導電性粒子3gが位置する。尚、一端10t1側及び他端10t2側の位置も、上述したpin位置に限定されない。
その後、幅方向において、第1のACF1sと第2のACF1gとの間、例えば10pin〜14pin上、36pin〜40pin上に、導電性粒子3sよりも粒径が大きく導電性粒子3gよりも粒径の小さい第3の粒径、例えば5μmの粒径の導電性粒子3mを有する第3のACF1mを塗布する。その結果、第1のACF1sと第2のACF1gとの間の領域には、導電性粒子3gが位置する。尚、第1のACF1sと第2のACF1gとの間の位置は、上述したpin位置に限定されない。
また、本実施の形態においては、第1のACF1sと第2のACF1gと第3のACF1mとにより、上述したACF1を構成している。
この際、上述した図9に示すように、幅方向Hにおいて、第3のACF1mと、第1のACF1s及び第2のACF1gとが接触するよう、第3のACF1mを貼り付けても良いし、上述した図10に示すように、第3のACF1mと、第1のACF1s及び第2のACF1gとが幅方向Hにおいて、一部が重なるように貼り付けても良いし、さらに、上述した図11に示すように、第3のACF1mと、第1のACF1s及び第2のACF1gとが、幅方向Hにおいて、設定間隔a離間するよう、第3のACF1mを貼り付けても構わない。
このような構成によれば、一端10t1側及び他端10t2側に向かうに従い、中央領域よりも粒径の大きな、FPC112の反り量に応じた大きさの導電性粒子を、確実に位置させることができる。
具体的には、図7に示すように、FPC112は、熱圧着後の収縮により、中央領域から幅方向Hの一端10t1側及び他端10t2側に向かうに従い、反り量が叙々に大きくなることから、反り量に応じた粒径を有する導電性粒子により、端子部113と外部接続端子102とは、電気的に接続される。
尚、この場合においても、一対の外部接続端子102と端子部113との間は、各領域において、平面視した状態で、複数の導電性粒子3gまたは導電性粒子3s、若しくは導電性粒子3mにおいて電気的に接続されている。
このことにより、外部接続端子102に対して、端子部113を電気的に接続した後、FPC112の一端10t1側及び他端10t2側が反った際、幅方向Hにおいて、FPC112の反り量に応じた粒径の導電性粒子が位置しているため、中央領域よりも一端10t1側及び他端10t2側における導電性粒子を介した外部接続端子102に対する電気的な接続が非接続となってしまうことを、一端10t1側及び他端10t2側に向かい粒径が大きくなる導電性粒子により、上述した第1実施の形態同様、確実に防止することにより、液晶装置の信頼性を向上させることができる。尚、その他の効果は、上述した第1実施の形態と同様である。
尚、以下、変形例を示す。本実施の形態においては、外部接続端子102に対して端子部113を、導電性粒子の粒径の異なる3種類のACF1s、1m、1gを用いて電気的に接続すると示したが、外部接続端子102に対し、幅方向Hの中央領域から、一端10t1側及び他端10t2側に向かうに従い、粒径が大きい導電性粒子が位置していくのであれば、導電性粒子の粒径の異なる4種類以上のACFを用いて電気的に接続しても良いということは勿論である。
また、以下、図16を用いて、別の変形例を示す。図16は、図15の第1〜第3のACFの貼り付け方法の変形例を示すTFT基板の一部を上方から概略的に見た部分平面図である。尚、以下、図16においても、図面を簡略化するため、外部接続端子の個数を、図1よりも減らして示している。また、導電性粒子の個数も実際より減らして示している。
本実施の形態においては、外部接続端子102に対し、幅方向Hの中央領域から、一端10t1側及び他端10t2側に向かうに従い、粒径が大きい導電性粒子が位置していくよう、3種類のACF1s、1m、1gをそれぞれ塗布すると示した。
これに限らず、図16に示すように、先ず、外部接続端子102の幅方向の全面に、第1のACF1sを貼り付けた後、第1のACF1s上の一端10t1側及び他端10t2側に、第2のACF1gを貼り付けて、第1のACF1s上の幅方向の中央領域と一端10t1側及び他端10t2側との間に、第3のACF1mを貼り付けても構わない。
即ち、中央領域に、第1の粒径の導電性粒子3sを位置させ、一端10t1側及び他端10t2側に、第1の粒径の導電性粒子3s及び第2の粒径の導電性粒子3gを位置させ、中央領域と一端10t1側及び他端10t2側との間に、第1の粒径の導電性粒子3s及び第3の粒径の導電性粒子3mを位置させても構わない。
尚、この場合も、第1のACF1s中の導電性粒子3sの密度、第2のACF1g中の導電性粒子3gの密度、第3のACF1m中の導電性粒子3mの密度を、上述した本実施の形態よりも低くするとともに、絶縁性接着材料2を、上述した実施の形態よりも薄くする必要がある。
また、この際も、上述した図9に示すように、幅方向Hにおいて、第3のACF1mと、第2のACF1gとが接触するよう、第3のACF1mを貼り付けても良いし、上述した図10に示すように、第3のACF1mと、第2のACF1gとが幅方向Hにおいて、一部が重なるように貼り付けても良いし、上述した図11に示すように、第1のACF1s上において、第3のACF1mと、第2のACF1gとが、幅方向Hにおいて、設定間隔a離間するよう、第3のACF1mを貼り付けても構わない。
この場合も、貼り付け直後は、上述した図14に示すように、ACFは、2層となるが、上述した圧着後は、絶縁性接着材料2は溶けるため、ACFは、1層となる。また、外部接続端子102の一端10t1側及び他端10t2側には、導電性粒子3sと導電性粒子3gとが混在し、中央領域と一端10t1側及び他端10t2側との間には、導電性粒子3sと導電性粒子3mとが混在するが、図14に示すように、導電性粒子3gまたは導電性粒子3mの粒径は、導電性粒子3sの粒径よりも大きいため、導電性粒子3gまたは導電性粒子3mのみにより、本実施の形態と同様に、一端10t1側及び他端10t2側、及び中央領域と一端10t1側及び他端10t2側との間の領域における外部接続端子102と端子部113とは電気的に接続される。
以上のような構成によれば、外部接続端子102に対して、各ACF1s、1m、1gの塗布位置精度を許容して、容易に、中央領域から、一端10t1側及び他端10t2側に向かうに従い、粒径が大きい導電性粒子が位置していくよう各ACF1s、1m、1gをそれぞれ塗布することができる。
尚、上述した第1、第2実施の形態においては、ACF1は、外部接続端子102に貼り付けると示したが、これに限らず、端子部113に貼り付けても構わないということは勿論である。
また、上述した第1、第2実施の形態においては、異方性導電接着剤は、ACFを例に挙げて示したが、これに限らず、ACPや、他の異方性導電接着剤であっても適用可能である。
さらに、上述した第1、第2実施の形態においては、導電性粒子は、金属粒子を例に挙げて示したが、樹脂粒子の回りに金属メッキが形成された、既知の樹脂コア粒子であっても構わないということは、云うまでもない。
また、液晶パネルは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上述した液晶パネルは、TFT(薄膜トランジスタ)等のアクティブ素子(能動素子)を用いたアクティブマトリクス方式の液晶表示モジュールを例に挙げて説明したが、これに限らず、TFD(薄膜ダイオード)等のアクティブ素子(能動素子)を用いたアクティブマトリクス方式の液晶表示モジュールであっても構わない。
さらに、本実施の形態においては、電気光学装置は、液晶装置を例に挙げて説明したが、本発明はこれに限定されず、エレクトロルミネッセンス装置、特に、有機エレクトロルミネッセンス装置、無機エレクトロルミネッセンス装置等や、プラズマディスプレイ装置、FED(Field Emission Display)装置、SED(Surface−Conduction Electron−Emitter Display)装置、LED(発光ダイオード)表示装置、電気泳動表示装置、薄型のブラウン管または液晶シャッター等を用いた装置などの各種の電気光学装置に適用できる。
また、電気光学装置は、半導体基板に素子を形成する表示用デバイス、例えばLCOS(Liquid Crystal On Silicon)等であっても構わない。LCOSでは、素子基板として単結晶シリコン基板を用い、画素や周辺回路に用いるスイッチング素子としてトランジスタを単結晶シリコン基板に形成する。また、画素には、反射型の画素電極を用い、画素電極の下層に画素の各素子を形成する。
また、電気光学装置は、片側の基板の同一層に、一対の電極が形成される表示用デバイス、例えばIPS(In-Plane Switching)や、片側の基板において、絶縁膜を介して一対の電極が形成される表示用デバイスFFS(Fringe Field Switching)等であっても構わない。
第1実施の形態の製造方法によって製造される液晶装置における液晶パネルをFPCとともに示す平面図。 図1中のII-II線に沿って切断した液晶パネルをFPCとともに示す断面図。 TFT基板上に外部接続端子が設けられた状態を概略的に示す断面図。 図3の外部接続端子上に、2種類のACFを貼り付けた状態を概略的に示す断面図。 図4のACFを介して、外部接続端子にFPCの端子部を貼り合わせた状態を概略的に示す断面図。 図5の貼り合わせ状態から、FPCの端子部を、ACFを介して外部接続端子に圧着した状態を概略的に示す断面図。 図6の圧着後、FPCの一端側及び他端側が厚さ方向上方に沿った状態を概略的に示す断面図。 図4のACFが貼り付けられたTFT基板の一部を上方から概略的に見た部分平面図。 図8の第1のACFと第2のACFとが幅方向において接触するよう貼り付けられた状態を概略的に示す部分平面図。 図8の第1のACFと第2のACFとが幅方向において一部が平面視した状態で重なって接触するよう貼り付けられた状態を概略的に示す部分平面図。 図8の第1のACFと第2のACFとが幅方向において設定間隔離間するよう貼り付けられた変形例の状態を概略的に示す部分平面図。 図11の第1のACFと第2のACFとが圧着後、幅方向において接触する状態を概略的に示す部分断面図。 第1のACF及び第2のACFの貼り付け方法の変形例を示すTFT基板の一部を上方から概略的に見た部分平面図。 厚さ方向において重ねられた第1のACF及び第2のACFが、圧着後、同一層となる状態を概略的に示す部分拡大断面図。 第2実施の形態を示す液晶装置の製造方法における導電性粒子の粒径の異なる3種類のACFの貼り付け方法を示すTFT基板の一部を上方から概略的に見た部分平面図。 図15の第1〜第3のACFの貼り付け方法の変形例を示すTFT基板の一部を上方から概略的に見た部分平面図。
符号の説明
1…ACF(異方性導電接着剤)、1s…第1のACF(第1の異方性導電接着剤)(異方性導電接着剤)、1g…第2のACF(第2の異方性導電接着剤)(異方性導電接着剤)、1m…第3のACF(異方性導電接着剤)、3g…導電性粒子、3m…導電性粒子、3s…導電性粒子、10t1…一端、10t2…他端、100…液晶パネル(電気光学パネル)、102…外部接続端子(第1の端子部)、112…FPC(薄板状基板)、113…端子部(第2の端子部)、a…設定間隔、H…幅方向。

Claims (9)

  1. 電気光学パネルに対し該電気光学パネルの一端と他端とを結ぶ幅方向に沿って形成された第1の端子部と、薄板状基板の第2の端子部とを電気的に接続する電気光学装置の製造方法であって、
    前記第1の端子部と前記第2の端子部とのいずれかに対して、前記幅方向における前記一端側及び前記他端側に前記幅方向の中央領域よりも粒径が大きい導電性粒子が位置するよう、それぞれ前記導電性粒子の粒径が異なる複数の異方性導電接着剤をそれぞれ塗布する塗布工程と、
    前記異方性導電接着剤を介して、前記第1の端子部と前記第2の端子部とを電気的に接続する接続工程と、
    を具備することを特徴とする電気光学装置の製造方法。
  2. 前記塗布工程は、前記中央領域に第1の粒径の前記導電性粒子を有する第1の異方性導電接着剤を塗布する工程と、前記一端側及び前記他端側に、前記第1の粒径よりも大きな第2の粒径の前記導電性粒子を有する第2の異方性導電接着剤を塗布する工程とから構成されていることを特徴とする請求項1に記載の電気光学装置の製造方法。
  3. 前記塗布工程は、前記中央領域から前記一端側及び前記他端側に向かうに従い、粒径が大きい導電性粒子が位置するように前記複数の異方性導電接着剤をそれぞれ塗布する工程であることを特徴とする請求項1に記載の電気光学装置の製造方法。
  4. 前記塗布工程は、前記導電性粒子の前記粒径の異なる前記異方性導電接着剤間が前記幅方向において接触するよう、前記異方性導電接着剤をそれぞれ塗布する工程であることを特徴とする請求項1〜3のいずれか1項に記載の電気光学装置の製造方法。
  5. 前記塗布工程は、前記導電性粒子の前記粒径の異なる前記異方性導電接着剤間が前記幅方向において設定間隔離間するよう、前記異方性導電接着剤をそれぞれ塗布する工程であり、
    前記接着工程において、前記導電性粒子の前記粒径の異なる前記異方性導電接着剤間が接触することを特徴とする請求項1〜3のいずれか1項に記載の電気光学装置の製造方法。
  6. 前記塗布工程は、前記第1の端子部と前記第2の端子部とのいずれかに対して、全面に、前記第1の粒径の前記導電性粒子を有する第1の異方性導電接着剤を塗布する工程と、前記一端側及び前記他端側における前記第1の異方性導電接着剤上に、前記第1の粒径よりも大きな第2の粒径の前記導電性粒子を有する第2の異方性導電接着剤を塗布する工程とから構成されていることを特徴とする請求項2に記載の電気光学装置の製造方法。
  7. 前記塗布工程は、前記第1の端子部と前記第2の端子部とのいずれかに対して、全面に、前記第1の粒径の前記導電性粒子を有する第1の異方性導電接着剤を塗布する工程と、前記中央領域から前記一端側及び前記他端側に向かうに従い、粒径が大きい導電性粒子が位置するように、前記第1の異方性導電接着剤上に、前記複数の異方性導電接着剤をそれぞれ塗布する工程であることを特徴とする請求項3〜5のいずれか1項に記載の電気光学装置の製造方法。
  8. 前記接続工程は、熱圧着により行われることを特徴とする請求項1〜7のいずれか1項に記載の電気光学装置の製造方法。
  9. 請求項1〜8のいずれか1項に記載の電気光学装置の製造方法によって製造されたことを特徴とする電気光学装置。
JP2008023572A 2008-02-04 2008-02-04 電気光学装置の製造方法、電気光学装置 Withdrawn JP2009186541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023572A JP2009186541A (ja) 2008-02-04 2008-02-04 電気光学装置の製造方法、電気光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023572A JP2009186541A (ja) 2008-02-04 2008-02-04 電気光学装置の製造方法、電気光学装置

Publications (1)

Publication Number Publication Date
JP2009186541A true JP2009186541A (ja) 2009-08-20

Family

ID=41069879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023572A Withdrawn JP2009186541A (ja) 2008-02-04 2008-02-04 電気光学装置の製造方法、電気光学装置

Country Status (1)

Country Link
JP (1) JP2009186541A (ja)

Similar Documents

Publication Publication Date Title
US8016181B2 (en) Method of producing electro-optical device using anisotropic conductive adhesive containing conductive particles to bond terminal portions and electro-optical device
KR101195688B1 (ko) 플렉시블 기판 및 전기 회로 구조체
US8319109B2 (en) Electro-optical device and electronic apparatus
JP4265757B2 (ja) 表示モジュールおよびその製造方法
JP2006194920A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
US20090208731A1 (en) Conductive adhesive film, method of producing conductive adhesive film, electronic apparatus including conductive adhesive film, and method of producing electronic apparatus including conductive adhesive film
US10136570B2 (en) Mounted substrate, mounted-substrate production method, and mounted-substrate production device
JP2006210809A (ja) 配線基板および実装構造体、電気光学装置および電子機器
JP5332219B2 (ja) 電気光学装置の製造方法
US7591651B2 (en) Substrate with helically curved terminals superimposed and connected to identical terminals on a second substrate
JP2007250825A (ja) 基板の接続構造及びその製造方法
JP2007227828A (ja) 電気光学装置、実装構造体、電気光学装置の製造方法及び電子機器
WO2017006856A1 (ja) 表示装置及び駆動回路部品の製造方法
JP2009186706A (ja) 電気光学装置の製造方法、電気光学装置
JP2009186541A (ja) 電気光学装置の製造方法、電気光学装置
JPH11258618A (ja) 液晶表示素子およびその製法
JP2002344097A (ja) 実装用基板及びこの基板を有する表示装置
WO2024031563A1 (zh) 显示面板、显示装置及拼接显示装置
JP4577375B2 (ja) 電気光学装置及び電子機器
JP2011192869A (ja) 実装構造体、電気光学装置、実装部品および実装構造体の製造方法
JP2008185801A (ja) 電気光学装置の製造方法及び電気光学装置並びに電子機器
JP2009167363A (ja) 異方性導電接着剤、電気光学装置
JP4779399B2 (ja) 電気光学装置、電気光学装置の製造方法、実装構造体及び電子機器
JP2021167891A (ja) 表示装置
JP2009300659A (ja) 表示装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405