JP2009175184A - 自動焦点調整装置及びその自動焦点調整方法 - Google Patents

自動焦点調整装置及びその自動焦点調整方法 Download PDF

Info

Publication number
JP2009175184A
JP2009175184A JP2008010740A JP2008010740A JP2009175184A JP 2009175184 A JP2009175184 A JP 2009175184A JP 2008010740 A JP2008010740 A JP 2008010740A JP 2008010740 A JP2008010740 A JP 2008010740A JP 2009175184 A JP2009175184 A JP 2009175184A
Authority
JP
Japan
Prior art keywords
focus
reliability
focus adjustment
value
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010740A
Other languages
English (en)
Other versions
JP5106143B2 (ja
Inventor
Kazuki Konishi
一樹 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008010740A priority Critical patent/JP5106143B2/ja
Publication of JP2009175184A publication Critical patent/JP2009175184A/ja
Application granted granted Critical
Publication of JP5106143B2 publication Critical patent/JP5106143B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

【課題】焦点調節手段を駆動する際に用いられるピント補正量の、個体による違いや撮影環境による違いを吸収することができる自動焦点調整装置を提供する。
【解決手段】撮像装置は、異なる特性を持つ複数の、被写体の特定の空間周波数を抽出するフィルタを用い、低域から高域まで複数のBPFでAF評価値の算出を行い、各々の信頼性を評価する。最も信頼性の高いものを選択し、選択されたBPFに対応するBP補正量(所定のずらし量)を採用する。あるいは、低域のBPFを用いるほど、BP補正量の個体差、被写体依存、光源依存などによる誤差が大きくなるので、撮像装置は、複数のBPFのAF評価値の算出を行い、各々の信頼性を評価する。信頼性が所定値以上のもののうち、最も高域の特性を持つBPFを選択し、選択されたBPFに対応するBP補正量(所定のずらし量)を採用する。
【選択図】図5

Description

本発明は、自動焦点調整装置、詳しくは撮影光学系により結像される被写体像を光電変換する撮像素子により取得される画像信号を使用して焦点調整を行う自動焦点調整装置及びその自動焦点調整方法に関する。
従来、この種の自動焦点調整装置として、光学系の諸収差が自動焦点調整に与える影響を解決するものが種々提案されている。
例えば、特許文献1には、撮像素子の受光面のうち、撮影画面上に設定された測距領域に対応する受光面の信号から、被写体の高周波成分を示す信号を抽出し、この抽出された信号に対して合焦位置を検出することが示されている。また、測距領域に対応する合焦位置に対し、測距領域の色情報を検出し、この検出した色情報およびフォーカスレンズの特性情報の少なくとも一方により決まる、所定の量だけずらした位置に、フォーカスレンズを駆動するように制御することが示されている。すなわち、被写体の測距領域内の色によって撮影光学系の収差がある場合、合焦位置検出に用いられる信号の高周波数成分が最大となる位置と、撮影画像の輝度信号の解像度が最大となる位置とが必ずしも一致しない。このため、特許文献1では、撮影光学系の特性に応じて決まる量だけ、ずらした位置にフォーカスレンズを移動させるようにしている。
また、特許文献2には、被写体像の焦点状態を検出する際、受光面上に形成される被写体像を標本化するサンプルピッチを、初期状態を含めて複数通りに選択することが示されている。また、特許文献3には、撮像素子で撮像された画像データから高周波成分を抽出する際、複数のフィルタを使い分けることが示されている。
特開2004−347665号公報 特開平11−14900号公報 特開2004−325517号公報
しかしながら、上記従来の自動焦点調整装置では、以下に掲げる問題があった。特許文献1に記載の自動焦点調整装置は、色検出情報およびフォーカスレンズの特性情報の少なくとも一方により決まる、所定の量だけずらした位置に、フォーカスレンズを駆動するように制御するだけである。このため、この所定のずらし量(ピント補正量)の個体による違いや撮影環境による違いを吸収することができなかった。この違いを吸収するためには、後述するように、なるべく高域の空間周波数を持つ被写体に対して焦点調節を行うことが有効であるが、後述する様々な理由により、被写体の持つ高域の空間周波数におけるフォーカスレンズ位置の特性を取得できない場合があった。
また、特許文献2には、被写体像を標本化するサンプルピッチが初期状態を含めて複数通りに選択できることや、特許文献3には、複数のフィルタを使い分けることが記載きさいされているが、そのことを用いた上記所定のずらし量を解決するものではなかった。
そこで、本発明は、焦点調節手段を駆動する際に用いられるピント補正量の、個体による違いや撮影環境による違いを吸収することができる自動焦点調整装置及びその自動焦点調整方法を提供することを目的とする。
上記目的を達成するために、本発明の自動焦点調整装置は、撮影光学系により結像される被写体像を光電変換して画像信号を得る撮像手段と、前記撮像手段によって光電変換される被写体像の焦点を調節する焦点調節手段と、異なる特性を持ち、被写体の特定の空間周波数成分を抽出する複数のフィルタを有し、前記焦点調節手段を駆動しながら、前記撮像手段によって得られた画像信号から合焦位置を検出する合焦位置検出手段とを有する自動焦点調整装置において、前記合焦位置検出手段は、前記各フィルタで評価値の算出を行う算出手段と、前記算出された各評価値の信頼性を計算する計算手段と、前記複数のフィルタのうち、前記計算された信頼性が所定値以上に高いものを選択する選択手段と、前記選択されたフィルタに対応するピント補正量だけ、前記撮像手段によって得られた画像信号が極大になる位置からずらした位置に、前記焦点調節手段を駆動する駆動手段とを有することを特徴とする。
本発明の自動焦点調整装置の自動焦点調整方法は、撮影光学系により結像される被写体像を光電変換して画像信号を得る撮像手段と、前記撮像手段によって光電変換される被写体像の焦点を調節する焦点調節手段と、異なる特性を持ち、被写体の特定の空間周波数成分を抽出する複数のフィルタを有し、前記焦点調節手段を駆動しながら、前記撮像手段によって得られた画像信号から合焦位置を検出する合焦位置検出手段とを有する自動焦点調整装置の自動焦点調整方法において、前記合焦位置検出手段が、前記各フィルタで評価値の算出を行うステップと、前記算出された各評価値の信頼性を計算するステップと、前記複数のフィルタのうち、前記計算された信頼性が所定値以上に高いものを選択するステップと、前記選択されたフィルタに対応するピント補正量だけ、前記撮像手段によって得られた画像信号が極大になる位置からずらした位置に、前記焦点調節手段を駆動するステップとを有することを特徴とする。
本発明の請求項1に係る自動焦点調整装置は、複数のフィルタのうち、信頼性が所定値以上に高いものを選択し、選択されたフィルタに対応するピント補正量だけ、撮像手段によって得られた画像信号が極大になる位置からずらした位置に焦点調節手段を駆動する。これにより、焦点調節手段を駆動する際に用いられるピント補正量の、個体による違いや撮影環境による違いを吸収することができる。従って、様々な個体や撮影環境において良好な自動焦点調整動作が可能となる。
請求項2に係る自動焦点調整装置は、複数のフィルタの評価値の算出を行い、各信頼性を計算し、その値が所定値以上のもののうち、最も高域の特性を持つフィルタを選択し、選択されたフィルタに対応するピント補正量を採用する。これにより、低域のフィルタを用いるほど、ピント補正量の個体差、被写体依存、光源依存などの誤差が大きくなることを回避できる。
請求項3に係る自動焦点調整装置は、複数のフィルタで評価値の算出を行い、各信頼性を計算し、その値の高いものを選択し、選択されたフィルタに対応するピント補正量を採用する。これにより、信頼性の高いフィルタを優先させることができる。
請求項4に係る自動焦点調整装置によれば、自動焦点調整が不能である場合でも、焦点調節手段を適当な位置に駆動することができる。
請求項5に係る自動焦点調整装置によれば、選択された信頼性が所定値以上の高い複数のBPFに対応するピント補正量として、より正確な量だけずらした位置に焦点調節手段を駆動することができる。
請求項6、7、8に係る自動焦点調整装置によれば、種々の方法を用いることができ、いずれの方法を採るかは、例えば撮影レンズ鏡筒の設計がある程度終了した段階で、個体ごとのピント補正量がどの程度ばらつくのかを検討して決定することが可能である。
請求項9に係る自動焦点調整装置によれば、正確な所定値を求めることができる。
本発明の焦点調整装置及びその焦点調整方法の実施形態について図面を参照しながら説明する。本実施形態の焦点調整装置は、撮像装置であるコンパクトタイプのデジタルカメラに適用される。
[第1の実施形態]
図1は第1の実施形態における撮像装置の構成を示すブロック図である。撮像装置1は、ズームレンズ群2、フォーカスレンズ群3、およびこれらからなる撮影光学系を透過する光束の量を制御する絞り4を有する。ズームレンズ群2、フォーカスレンズ群3、絞り4等を有する撮影レンズ鏡筒31の先端部には、焦点距離を変換するコンバージョンレンズを取り付けるための部材(図示せず)、およびコンバージョンレンズ取付け検出スイッチ34が設けられている。
固体撮像素子(以下、CCDという)5は、撮影光学系を透過した被写体像が結像し、これを光電変換して画像信号を得る。撮像回路6は、CCD5によって光電変換された電気信号を受け、各種の画像処理を施すことにより所定の画像信号を生成する。A/D変換回路7は、撮像回路6により生成されたアナログ画像信号をデジタル画像信号に変換する。
メモリ(VRAM)8は、A/D変換回路7の出力を受け、デジタル画像信号を一時的に記憶するバッファメモリ等である。D/A変換回路9は、このVRAM8に記憶された画像信号を読み出し、アナログ信号に変換するとともに、再生出力に適した画像信号に変換する。画像表示装置(以下、LCDという)10は、液晶表示装置(LCD)等からなり、この画像信号を表示する。
記憶用メモリ12は、半導体メモリ等であり、画像データを記憶する。圧縮伸長回路11は圧縮回路および伸長回路を有する。圧縮回路は、VRAM8に一時記憶された画像信号を読み出し、記憶用メモリ12の記憶に適するように、画像データに対して圧縮処理や符号化処理を施す。また、伸長回路は、記憶用メモリ12に記憶された画像データに対して、再生表示等に適するように、復号化処理や伸長処理等を施す。
AE処理回路13は、A/D変換回路7からの出力を受けて自動露出(AE)処理を行う。スキャンAF処理回路14は、A/D変換回路7からの出力を受けて自動焦点調節(AF)処理を行う。
CPU15は、演算用のメモリを内蔵し、撮像装置1の制御を行う。タイミングジェネレータ(以下、TGという)16は所定のタイミング信号を発生する。CCDドライバ17はCCD5を駆動する。絞り駆動モータ21は絞り4を駆動する。
第1モータ駆動回路18は絞り駆動モータ21を駆動する。フォーカス駆動モータ22はフォーカスレンズ群(以下、単にフォーカスレンズともいう)3を駆動する。フォーカスレンズ群3は請求項に記載の焦点調節手段に相当する。第2モータ駆動回路19はフォーカス駆動モータ22を駆動する。ズーム駆動モータ23はズームレンズ群2を駆動する。第3モータ駆動回路20はズーム駆動モータ23を駆動する。
操作スイッチ24は各種のスイッチ群からなる。EEPROM25は、各種制御を行うためのプログラムや、各種の動作を行わせるために使用するデータ等が予め記憶されている、電気的に書き換え可能な読み出し専用メモリである。
電池26は撮像装置1の電源である。スイッチング回路27はストロボ発光部28の閃光発光を制御する。表示素子29は、LED等であり、警告表示などを行う。スピーカ30は音声によるガイダンスや警告などを行う。AF補助光33はLEDなどの光源で構成される。AF補助光駆動回路32はAF補助光33を駆動する。
なお、画像データ等の記憶媒体である記憶用メモリ12として、フラッシュメモリ等の固定型の半導体メモリが用いられる。また、カード形状やスティック形状からなり、撮像装置に対して着脱自在に形成されるカード型フラッシュメモリ等の半導体メモリが用いられる。その他、ハードディスクやフレキシブルディスク等の磁気記憶媒体など、様々な形態のものが用いられる。
操作スイッチ24として、撮像装置1を起動させて電源供給を行うための主電源スイッチ、撮影動作等を開始させるレリーズスイッチ、再生動作を開始させる再生スイッチ、撮影光学系のズームレンズ群2を移動させてズームを行わせるズームスイッチ等がある。
レリーズスイッチは、撮影動作に先立って行われるAE処理、AF処理を開始させる指示信号を発生する第1ストローク(以下、SW1)と、実際の露光動作を開始させる指示信号を発生する第2ストローク(以下、SW2)との2段スイッチで構成される。
このように構成された撮像装置の動作を示す。まず、撮像装置1の撮影レンズ鏡筒31を透過した被写体光束は、絞り4によってその光量が調整された後、CCD5の受光面に結像する。この被写体像は、CCD5の光電変換により電気的な信号に変換され、撮像回路6に出力される。撮像回路6では、入力した信号に対して各種の信号処理が施され、所定の画像信号が生成される。
この画像信号は、A/D変換回路7に出力され、デジタル信号(画像データ)に変換された後、画像データはVRAM8に一時的に格納される。VRAM8に格納された画像データは、D/A変換回路9に出力される。D/A変換回路9でアナログ信号に変換され、表示に適した画像信号に変換された後、画像信号はLCD10に画像として表示される。
また、VRAM8に格納された画像データは、圧縮伸長回路11にも出力される。この圧縮伸長回路11内の圧縮回路によって圧縮処理が行われた後、記憶に適した画像データに変換され、記憶用メモリ12に記憶される。
また、例えば操作スイッチ24のうち、再生スイッチ(図示せず)が操作されてオン状態になると、再生動作が開始される。再生動作では、記憶用メモリ12に圧縮して記憶された画像データは圧縮伸長回路11に出力され、圧縮伸長回路11内の伸長回路において復号化処理や伸長処理等が施された後、VRAM8に出力されて一時的に記憶される。
さらに、この画像データは、D/A変換回路9に出力され、D/A変換回路9でアナログ信号に変換され、表示に適した画像信号に変換された後、画像信号はLCD10に画像として表示される。
他方、A/D変換回路7によってデジタル化された画像データは、VRAM8とは別にAE処理回路13およびスキャンAF処理回路14にも出力される。AE処理回路13では、入力したデジタル画像信号(画像データ)を受けると、一画面分の画像データの輝度値に対して累積加算等の演算処理が行われる。これにより、被写体の明るさに応じたAE評価値が算出される。このAE評価値はCPU15に出力される。
また、スキャンAF処理回路14では、入力したデジタル画像信号を受けると、画像データの高周波成分がハイパスフィルタ等を介して抽出され、さらに累積加算等の演算処理が行われ、高域側の輪郭成分量等に対応するAF評価値信号が算出される。このスキャンAF処理回路14は請求項に記載の算出手段に相当する。具体的に、スキャンAF処理回路14は、AF領域として指定された画面の一部分の領域に相当する画像データの高周波成分をハイパスフィルタ等を介して抽出し、更に累積加算等の演算処理を行う。これにより、高域側の輪郭成分量等に対応するAF評価値信号が算出される。このAF領域は、中央部分の一箇所である場合、中央部分とそれに隣接する複数箇所である場合、離散的に分布する複数箇所である場合などがある。
このように、スキャンAF処理回路14は、AF処理を行う過程において、CCD5によって生成された画像信号から所定の高周波成分を検出する高周波成分検出部の役割を担っている。
また、TG16からの所定のタイミング信号が、CPU15、撮像回路6、CCDドライバ17に出力されている。CPU15は、このタイミング信号に同期させて各種の制御を行う。撮像回路6は、TG16からのタイミング信号を受け、これに同期させて色信号の分離等の各種画像処理を行う。CCDドライバ17は、TG16のタイミング信号を受け、これに同期してCCD5を駆動する。
CPU15は、第1モータ駆動回路18、第2モータ駆動回路19および第3モータ駆動回路20をそれぞれ制御する。第1モータ駆動回路18、第2モータ駆動回路19および第3モータ駆動回路20は、絞り駆動モータ21、フォーカス駆動モータ22およびズーム駆動モータ23を介して、絞り4、フォーカスレンズ群3およびズームレンズ群2を駆動する。すなわち、CPU15は、AE処理回路13において算出されたAE評価値等に基づき、第1モータ駆動回路18を制御して絞り駆動モータ21を駆動し、絞り4の絞り量を適正に調整するAE制御を行う。また、CPU15は、スキャンAF処理回路14において算出されるAF評価値信号に基づき、第2モータ駆動回路19を制御してフォーカス駆動モータ22を駆動し、フォーカスレンズ群3を合焦位置に移動させるAF制御を行う。また、マニュアルフォーカスに設定されている場合、CPU15は、次のような動作を行う。すなわち、操作スイッチ24のうち、図示しないフォーカス駆動指示部材(フォーカス操作釦)が操作された際、CPU15は、その操作量に応じて、第2モータ駆動回路19を制御してフォーカス駆動モータ22を駆動し、フォーカスレンズ群3を移動させる。また、操作スイッチ24のうち、ズームスイッチ(図示せず)が操作された場合、CPU15は、これを受けて第3モータ駆動回路20を制御し、ズーム駆動モータ23を駆動し、ズームレンズ群2を移動させ、撮影光学系の変倍動作(ズーム動作)を行う。
図2は撮像装置の実際の撮影動作手順を示すフローチャートである。この制御プログラムはEEPROM25に格納されており、CPU15によって実行される。この撮影動作シーケンスは、撮像装置1の主電源スイッチがオン状態であり、かつ撮像装置1の動作モードが撮影(録画)モードにあるときに実行される。
まず、CPU15は、撮影レンズ鏡筒31を透過し、CCD5に結像した像をLCD10に画像として表示する(ステップS1)。すなわち、CCD5に結像した被写体像は、CCD5によって光電変換され、電気的な信号に変換された後、撮像回路6に出力される。撮像回路6で入力した信号に対して各種の信号処理が施され、所定の画像信号が生成された後、A/D変換回路7に出力される。A/D変換回路7で画像信号はデジタル信号(画像データ)に変換され、VRAM8に一時的に格納される。VRAM8に格納された画像データは、D/A変換回路9に出力されてアナログ信号に変換され、表示に適した画像信号に変換された後、LCD10に画像として表示される。
CPU15は、レリーズスイッチの状態を確認し、撮影者によってレリーズスイッチが操作され、SW1(レリーズスイッチの第1ストローク)がオン状態になるまで待つ(ステップS2)。SW1がオン状態になったことが確認されると、CPU15は、通常のAE処理を行う(ステップS3)。CPU15は、合焦位置を検出するためのスキャンAF処理を行う(ステップS4)。
図3はスキャンAF処理を説明する図である。スキャンAFは、CCD5によって生成された画像信号から出力される高周波成分が最も多くなるフォーカスレンズ群3の位置を求めることにより行われる。CPU15は、第2モータ駆動回路19を介してフォーカス駆動モータ22を制御し、フォーカスレンズ群3を、無限遠に相当する位置(図3の「A」位置)から、各々の撮影モードにおいて設定される至近距離に相当する位置(図3の「B」位置)まで駆動する。
そして、CPU15は、フォーカスレンズ群3を駆動しながら、スキャンAF処理回路14の出力(AF評価値信号)を取得し、フォーカスレンズ群3の駆動が終了した時点で取得したAF評価値信号から、それが最大になる位置(図3の「C」位置)を求める。さらに、CPU15は、BP補正量(ベストピント補正量)を求め、それを加味した位置にフォーカスレンズ群3を駆動する。このBP補正量(ベストピント補正量)の詳細については後述する。BP補正量(ベストピント補正量)は請求項に記載のピント補正量に相当する。
このスキャンAF処理回路14の出力の取得は、スキャンAFの高速化のために、全てのフォーカスレンズ群3の停止位置については行われず、所定ステップ毎に行われる。例えば、図3のa1、a2、a3点において、AF評価値信号が取得される。この場合、AF評価値信号が最大値となった点(ここでは、a2点)と、その前後の点(ここでは、a1、a3点)とから、合焦位置Cが計算によって求められる。この処理は、設定した全てのBPFについて行われる。ただし、この処理はシーケンシャルに行われるのではなく、フォーカスレンズ群3の各位置において、BPFごとのAF評価値が同時に取得される。
このように、補間計算を行い、AF評価値信号が最大値となる点(図3の合焦位置C)を求める前に、AF評価値信号の信頼性を評価する。本実施形態では、複数のBPFを用いてAF評価値を求めているので、そのいずれかの信頼性が十分である場合、CPU15は、AFOK表示を行う(ステップS5)。このAFOK表示は、表示素子(LED)29の点灯などにより行われると同時に、LCD10に緑の枠を表示することなどにより行われる。
一方、ステップS4で、全てのBPFで得られたAF評価値信号の信頼性が低い場合、CPU15は、AF評価値信号が最大値となる点を求める処理を行わず、ステップS5でAFNG表示を行う。このAFNG表示は、表示素子(LED)29の点滅表示などで行われると同時に、LCD10に黄色の枠を表示することなどにより行われる。
CPU15は、SW2(レリーズスイッチの第2ストローク)の確認を行い、SW2がオンになるまで待つ(ステップS6)。SW2がオンになっていた場合、CPU15は、実際の露光処理を実行する(ステップS7)。この後、CPU15はステップS1の処理に戻る。
ここで、ステップS5で行われるスキャンAF処理の詳細について説明する。特に、フォーカスレンズ群3を駆動しながら取得するAF評価値信号が最大になる位置に対するBP補正量(ベストピント補正量)を求め方、およびそれを加味した位置にフォーカスレンズ群3の駆動する方法に関して説明する。
一般に、光学系の球面収差などの収差が生じると、被写体の周波数に応じたピント位置が異なる。被写体の高域の空間周波数を抽出する、複数の異なる特性を持つフィルタを用いて、フォーカスレンズ群3を駆動しながらAF評価値信号を取得する。図4は複数の異なる特性を持つフィルタを用いた場合のAF評価値と合焦位置との関係を示すグラフである。図4において、符号eはナイキスト周波数の10%、符号fはナイキスト周波数の20%、符号gはナイキスト周波数の30%、符号hはナイキスト周波数の40%で、それぞれフィルタの透過率が最大となるような特性を持つBPFを示す。
図4に示すように、フィルタの周波数特性が異なると、AF評価値が最大となる位置が異なる。具体的に、BPFの透過率が最大となる周波数が高くなるほど、AF評価値が最大になる位置が、図中右側に、すなわち近いものにピントを合わせる側に分布している。この分布の仕方は、フォーカスレンズ群3を含む撮影レンズ鏡筒31の特性によるものであるので、必ずしも図4のようになるとは限らない。この分布の仕方が逆になる場合もある。また、フィルタ間でその差が小さく、ほとんど同じ位置にAF評価値が最大になる位置が分布する場合もある。また、AF評価値が最大になる位置の分布量は、撮影レンズ鏡筒の変倍に伴う焦点距離や撮影距離などによっても異なることがある。
従って、自動焦点調整動作を行う場合、なるべく高い周波数においてフィルタの透過率が最大となるものを用い、そのAF評価値が最大になる位置へフォーカスレンズ群3を駆動することが望ましい。これにより、撮影者が、見た目でベストのピント位置と感じるフォーカスレンズ群3の位置を得ることが可能になる。
これは、空間周波数の高い被写体と低い被写体とが混在する被写体を撮影した場合、次のようなことによる。すなわち、空間周波数の低い被写体については、多少ベストのピント位置からずれていても、像がボケていると感じないが、空間周波数の高い被写体の場合については、僅かなズレでも像がボケていると感じやすいからである。
しかし、高い周波数においてフィルタの透過率が最大となるBPFを用いた場合、得られるAF評価値信号の信頼性が十分でない場合が多い。その理由としては、次のようなことが挙げられる。
(1)高域の信号には、CCDや回路系において重畳されるノイズが含まれているので、偽の信号を発生させることがある。特に低照度では、この傾向が顕著になる。
(2)撮影者の手振れや、被写体が動くことにより、被写体の高い周波数成分が失われることがある。
(3)被写体の端部がある場合、必ず低い空間周波数成分は存在するが、被写体に細かいパターンが存在しない場合などでは、高い周波数成分自体が存在しないこともある。
このため、特許文献1のように、比較的低い周波数でフィルタの透過率が最大となるものを用い、そのAF評価値が最大になる位置からフォーカスレンズの特性情報により決まる所定の量だけずらした位置に、フォーカスレンズ群3を駆動する方法が採用されてきた。
しかし、この方法では、次のような問題があった。フォーカスレンズの特性情報により決まる所定の量には、個体差、被写体依存、光源依存などの誤差成分が存在する。従って、この誤差成分が大きな場合、十分な合焦精度を得ることができなかった。
そこで、本実施形態の自動焦点調整装置は、低域から高域までの異なる周波数特性を持つ複数のBPF用いてAF評価値の算出を行い、各々の信頼性を評価し、その値の高いものを選択する。さらに、自動焦点調整装置は、選択されたBPFに対応するBP補正量を求め、選択したBPFで求めたAF評価値のピーク位置からこのBP補正量分、ずらした位置へフォーカスレンズ群3を駆動する。これにより、様々な個体や環境下において良好な自動焦点調整動作を可能にしている。
図5はステップS4におけるスキャンAFの動作手順を示すフローチャートである。まず、CPU15は、AF評価値を取得するための異なる特性を持つ複数のBPFを設定する(ステップS11)。例えば、CPU15は、実際にAFを行う際に読み出されるCCD5の画素数により決定されるナイキスト周波数の50%、40%、30%、20%で、フィルタの透過率が最大となるような特性を持つBPFを設定する。
CPU15は、スキャン動作中の速度より速い速度でフォーカスレンズ群3をスキャン開始位置に移動する(ステップS12)。本実施形態では、スキャン開始位置は、設定されたスキャン範囲の一端に設定される。
CPU15は、撮影領域内に設定されたAF領域に対応する領域の各BPFにおいて求められるAF評価値と、フォーカスレンズ群3の位置とを、CPU15に内蔵された演算メモリ(図示せず)に記憶する(ステップS13)。
CPU15は、フォーカスレンズ群3の位置がスキャン終了位置にあるか否かを調べる(ステップS14)。本実施形態では、スキャン終了位置は、設定されたスキャン範囲の他端に設定される。スキャン終了位置にない場合、CPU15は、フォーカスレンズ群3を駆動して所定の方向へ所定量動かす(ステップS15)。この後、CPU15は、ステップS13の処理に戻る。
一方、ステップS14でスキャン終了位置にある場合、CPU15は、各々のBPFで取得されたAF評価値からその信頼性を計算する(ステップS16)。この処理の詳細については後述する。このステップS16の処理は請求項に記載の計算手段に相当する。CPU15は、ステップS16で求められた信頼性を評価し、その値が所定値以上のものの中から、信号の透過率が最大となる空間周波数が最も高いものを選択する(ステップS17)。このステップS17の処理は請求項に記載の選択手段に相当する。
CPU15は、選択されたBPFに関し、ステップS13で記憶したAF評価値とそのレンズ位置から、AF評価値が最大となる位置に対応するフォーカスレンズ群3のピーク位置を計算する(ステップS18)。さらに、ピーク位置の計算とともに、CPU15は、ステップS17で選択されたBPFに対応するBP補正量を求める。
このBP補正量は、図4に示すように、BPFの透過率が最大となる周波数が違うと、異なることが一般的である。また、撮影レンズ鏡筒の焦点距離や撮影距離などによっても異なることがある。そこで、使用するBPF毎に、次のようなBP補正量をデータとして記録媒体に記録している。この記録媒体としては、CPU15内蔵のメモリであってもよいし、EEPROM25であってもよいし、装着自在な外部メモリであってもよい。
また、撮影距離に関しては、例えば、無限遠、2m、50cmの3つの距離におけるBP補正量が記録されている。これら中間の距離におけるBP補正量はその両側の距離の値より補間される。具体的に、50cmと2mの間の距離L1のBP補正量H1は、2mと50cmのBP補正量を用いた数式(1)で求められる。
H1=LnLm(Hn−Hm)/(Lm−Ln)(1/L1)+Hn−Lm(Hn−Hm)/(Lm−Ln) …… (1)
但し、Lnは50cm、Lmは2m、Hnは50cmでのBP補正量、Hmは2mでのBP補正量である。
また、2mと無限遠の間の距離L2のBP補正量H2は、数式(2)で求められる。
H2=Lm(Hm−Hi)(1/L2)+Hi …… (2)
但し、Lmは2m、Hiは無限遠でのBP補正量、Hmは2mでのBP補正量である。
この計算で使用される距離は、自動焦点調整の結果から逆算される。
また、焦点距離に関しては、停止可能な全てのポジションにおけるBP補正量が記録される。但し、停止するポジションがあまりにも多い場合、その量を考慮していくつかのズームポジションをまとめて1つの値を持つことがある。例えば、0〜128のズームポジションに停止可能な場合、0〜8、9〜16、・・・、121〜128のように分割し、分割した単位ごとにBP補正量を持つようにしてもよい。
BP補正量を求める方法として、レンズ設計値から各焦点距離や各撮影距離について計算で求める方法や、実際に複数の個体のBP補正量を各焦点距離や各撮影距離について測定してその平均値を用いる方法や、個別に測定したその個体特有の値を用いる方法がある。このように、種々の方法を用いることができ、いずれの方法を採るかは、撮影レンズ鏡筒31の設計がある程度終了した段階で、個体ごとのBP補正量がどの程度ばらつくのかを検討して決定される。
BP補正量を求めた後、CPU15は、S18で求められたAF評価値が最大となる位置に対応するフォーカスレンズ群3のピーク位置と、S17で選択されたBPFに対応するBP補正量とから、フォーカスレンズ群3の駆動位置を求める。そして、CPU15は、その駆動位置へフォーカスレンズ群3を駆動する(ステップS19)。このステップS19の処理は請求項に記載の駆動手段に相当する。この後、CPU15は元のステップS5の処理に復帰する。
ここで、ステップS16で行われる、各々のBPFで取得されたAF評価値からその信頼性を計算する処理について説明する。図6はAF評価信号を示すグラフである。AF評価信号の形状は、遠近競合の状態である特殊な場合を除き、横軸にフォーカスレンズ位置、縦軸にAF評価値をとると、図6に示すような山状になる。
そこで、本実施形態においては、AF評価信号が山状になっているか否かを、AF評価信号の最大値と最小値の差、一定値以上の傾きで傾斜している部分の長さ、および傾斜している部分の勾配から判断することにより、AF評価信号の信頼性を計算する。
図6に示すように、山の頂上(A点)から傾斜していると認められるD点、E点を求め、D点とE点の幅を山の幅Lとし、A点とD点のAF評価値の差SL1と、A点とE点のAF評価値の差SL2との和SL1+SL2を山の勾配SLとしている。すなわち、SL=SL1+SL2である。
図7はステップS16におけるAF評価値の信頼性を計算する手順を示すフローチャートである。まず、CPU15は、スキャンAF処理回路14から出力されるAF評価値の最大値と最小値、および最大値を与えるスキャンポイントioを求める(ステップS31)。CPU15は、AF評価値の山の幅を表す変数L、および山の勾配を表す変数SLを、いずれも値0に初期化する(ステップS32)。
CPU15は、最大値を与えるスキャンポイントioが無限遠に相当する位置であるか否かを調べる(ステップS33)。無限遠に相当する位置でない場合、CPU15は、無限遠に相当する位置方向への単調減少を調べる(ステップS34)。一方、無限遠に相当する位置であった場合、この処理をスキップし、ステップS35の処理に進む。
ここで、ステップS34における無限遠に相当する位置方向への単調減少を調べる処理について説明する。図8はステップS34における無限遠方向への単調減少チェック処理手順を示すフローチャートである。まず、CPU15は、カウンタ変数iをioに初期化する(ステップS51)。CPU15は、カウンタ変数iにおけるAF評価値の値d[i]と、カウンタ変数iより1スキャンポイント分、無限遠寄りのスキャンポイントi−1におけるAF評価値の値d[i−1]とを比較する(ステップS52)。
値d[i]が値d[i−1]より大きい場合、CPU15は、無限遠方向への単調減少が生じていると判断し、AF評価値の山の幅を表す変数L、山の勾配を表す変数SLを、数式(3)に従って更新する(ステップS53)。
L = L+1
SL= SL+(d[i]−d[i−1]) …… (3)
CPU15は、カウンタ変数iをi=i−1として検出する点を1スキャンポイント分、無限遠側に移す(ステップS54)。
CPU15は、カウンタ変数iが無限遠相当の値(=0)になったか否かを判別する(ステップS55)。カウンタ変数iの値が「0」になっていない場合、CPU15はステップS52の処理に戻る。一方、カウンタ変数iの値が「0」、すなわち単調減少を検出する開始点が無限遠相当の位置に達した場合、CPU15は、無限遠方向の単調減少をチェックする処理を終了し、元のステップS35の処理に復帰する。
一方、ステップS52で、値d[i]が値d[i−1]以下である場合、CPU15は、無限遠方向への単調減少が生じていないと判断し、無限遠方向の単調減少をチェックする処理を終了し、元のステップS35の処理に復帰する。このようにして、i=ioから無限遠方向への単調減少のチェックが行われる。
無限遠方向への単調減少をチェックする処理が終了すると、CPU15は、最大値を与えるスキャンポイントioがスキャンAFを行う至近端に相当する位置か否かを調べる(ステップS35)。至近端に相当する位置でない場合、CPU15は、至近端に相当する位置方向への単調減少を調べる(ステップS36)。一方、至近端に相当する位置であった場合、CPU15は、S36の処理をスキップし、ステップS37の処理に進む。
ここで、ステップS36における至近端に相当する位置方向への単調減少を調べる処理について説明する。図9はステップS36における至近方向への単調減少チェック処理手順を示すフローチャートである。まず、CPU15は、カウンタ変数iをioに初期化する(ステップS61)。
CPU15は、カウンタ変数iにおけるAF評価値の値d[i]と、カウンタ変数iより1スキャンポイント分至近端よりのスキャンポイントi+1におけるAF評価値の値d[i+1]とを比較する(ステップS62)。
CPU15は、値d[i]が値d[i+1]より大きい場合、至近端方向への単調減少が生じていると判断し、AF評価値の山の幅を表す変数L、山の勾配を表す変数SLを数式(4)に従って更新する(ステップS63)。
L = L+1
SL= SL+(d[i]−d[i+1]) …… (4)
CPU15は、i=i+1として、検出をする点を1スキャンポイント分、至近端側に移す(ステップS64)。CPU15は、カウンタ変数iが至近端相当の値(=N)になったか否かを判別する(ステップS65)。カウンタ変数iの値がNに達していない場合、CPU15はステップS62の処理に戻る。一方、カウンタ変数iの値がN、すなわち単調減少を検出する開始点が至近端相当の位置に達した場合、CPU15は、至近端方向の単調減少をチェックする処理を終了し、元のステップS37の処理に復帰する。
一方、ステップS62で、値d[i]が値d[i+1]以下である場合、CPU15は、至近端方向への単調減少が生じていないと判断し、至近端方向の単調減少をチェックする処理を終了し、元のステップS37の処理に復帰する。このようにして、i=ioから至近端方向への単調減少のチェックが行われる。
S34、S36でそれぞれ無限遠方向、至近端方向への単調減少のチェックが終了すると、CPU15は、AF評価値の信頼性を判定するための諸係数を、それぞれのしきい値と比較し、全ての条件を満たした場合、AF評価値の信頼性があると判定する。
まず、CPU15は、AF評価値の最大値と最小値の差をその所定値と比較する(ステップS37)。その差が所定値より小さい場合、CPU15は、信頼性がないと判断し、信頼性=0とする(ステップS41)。この後、CPU15は元のステップS17の処理に復帰する。
一方、AF評価値の最大値と最小値の差が所定値以上である場合、CPU15は、一定値以上の傾きで傾斜している部分の長さLを、その所定値Loと比較する(ステップS38)。長さLが所定値Loより小さい場合、CPU15は、信頼性がないと判断し、信頼性=0とする(ステップS41)。この後、CPU15は元のステップS17の処理に復帰する。
また一方、長さLが所定値Lo以上である場合、CPU15は、傾斜している部分の傾斜の平均値SL/Lを、その所定値SLo/Loと比較する(ステップS39)。平均値SL/Lが所定値SLo/Loより小さい場合、CPU15は、信頼性がないと判断し、信頼性=0とする(ステップS41)。
平均値SL/Lが所定値SLo/Loであり、上記3つの条件を満たした場合、CPU15は、AF評価値の信頼性があると判定し、信頼性を求める(ステップS40)。
具体的に、CPU15は、これまでに求められた数値を用い、数式(5)に従って、信頼性の数値を求める。この数値として、AF評価値の最大値と最小値の差def_MaxMinとその所定値def_MaxMin0が用いられる。また、一定値以上の傾きで傾斜している部分の長さLとその所定値Loが用いられる。また、傾斜している部分の傾斜の平均値SL/Lとその所定値SLo/Loが用いられる。
信頼性 = (def_MaxMin/def_MaxMin0)(L/Lo){SL/L}/(SLo/Lo)}
=(def_MaxMin/def_MaxMin0)(SL/SLo) …… (5)
なお、この信頼性を計算する場合に使用する所定値def_MaxMin0、Lo、SLo/Loは、規定条件での測定結果である測定値によって定められる。この規定条件は、所定の距離および照度において、所定のコントラストで複数の異なる所定の線幅を有するチャートを用いて測定を行うことである。これにより、正確な所定値を求めることができる。上記の条件は合焦すべき最低条件であり、この条件において各BPFでAF評価値を取得し、その結果から信頼性を計算する場合に使用される所定値を求める。
このように、第1の実施形態の自動焦点調整装置によれば、BP補正量の、個体による違いや撮影環境による違いを吸収することができ、様々な個体や撮影環境において良好な自動焦点調整動作を行うことができる。
本実施形態の自動焦点調整装置では、異なる特性を持つ複数の被写体の高域の空間周波数を抽出するフィルタが用いられる。低域から高域まで複数のBPFでAF評価値の算出を行い、各々の信頼性を計算し、その値の高いものを選択し、選択されたBPFに対応するBP補正量を採用する。
また、低域のBPFを用いるほど、BP補正量の個体差、被写体依存、光源依存などの誤差は大きくなるので、複数のBPFのAF評価値の算出を行い、各々の信頼性を計算する。そして、その値が所定値以上のもののうち、最も高域の特性を持つBPFにより得られた情報を選択し、選択されたBPFに対応するBP補正量を採用する。
これにより、色検出情報やフォーカスレンズの特性情報により決まる所定の量だけずらした位置にフォーカスレンズを駆動する際に用いられるBP補正量の、個体による違いや撮影環境による違いを吸収することが可能となる。従って、様々な個体や環境下において良好な自動焦点調整動作が可能になる。
また、各BPFの信頼性を計算し、その値が所定値以上のものの中から、信号の透過率が最大となる空間周波数が最も高いものを選択するので、低域のBPFを用いるほど、BP補正量の個体差、被写体依存、光源依存などの誤差が大きくなることが回避される。
[第2の実施形態]
第2の実施形態の自動焦点調整装置は、前記第1の実施形態と比べ、信頼性が最も高いAF評価値を与えるBPFを選択する動作を行う点で異なる。前記第1の実施形態と同一の構成要素およびステップ処理については、同一の符号およびステップ番号を用いることで、その説明を省略あるいは簡単にする。
図10は第2の実施形態のステップS4におけるスキャンAFの動作手順を示すフローチャートである。まず、CPU15は、AF評価値を取得するための異なる特性を持つ複数のBPFを設定する(ステップS11)。前記第1の実施形態と同様、例えば、CPU15は、実際にAFを行う際に読み出されるCCD5の画素数により決定されるナイキスト周波数の50%、40%、30%、20%で、フィルタの透過率が最大となるような特性を持つBPFを設定する。
CPU15は、スキャン動作中の速度より速い速度でフォーカスレンズ群3をスキャン開始位置に移動する(ステップS12)。本実施形態では、スキャン開始位置は、設定されたスキャン範囲の一端に設定される。
CPU15は、撮影領域内に設定されたAF領域に対応する領域の各BPFにおいて求められるAF評価値と、フォーカスレンズ群3の位置とを、CPU15に内蔵された演算メモリ(図示せず)に記憶する(ステップS13)。
CPU15は、フォーカスレンズ群3の位置がスキャン終了位置にあるか否かを調べる(ステップS14)。本実施形態では、スキャン終了位置は、設定されたスキャン範囲の他端に設定される。スキャン終了位置にない場合、CPU15は、フォーカスレンズ群3を駆動して所定の方向へ所定量動かす(ステップS15)。この後、CPU15は、ステップS13の処理に戻る。
一方、ステップS14でスキャン終了位置にある場合、CPU15は、各々のBPFで取得されたAF評価値からその信頼性を計算する(ステップS16)。この処理の詳細については、前記第1の実施形態の図6〜図9で説明した処理と同じであるので、その説明を割愛する。
CPU15は、ステップS16で求められた全てのBPFで得られたAF評価値信号の信頼性が低いか否かを判別する(ステップS16A)。少なくとも1つのBPFで得られたAF評価値信号の信頼性が高い場合、CPU15は、ステップS16で求められた信頼性を評価し、その値が最大のものを選択する(ステップS17A)。もし、信頼性の数値が同じものが複数存在する場合、透過率が最大となる空間周波数が高い方のものを選択する。
CPU15は、選択されたBPFに関し、ステップS13で記憶したAF評価値とそのレンズ位置から、AF評価値が最大となる位置に対応するフォーカスレンズ群3のピーク位置を計算する(ステップS18)。さらに、ピーク位置の計算とともに、CPU15は、ステップS17Aで選択されたBPFに対応するBP補正量を求める。
BP補正量を求めた後、CPU15は、S18で求められたAF評価値が最大となる位置に対応するフォーカスレンズ群3のピーク位置と、S17Aで選択されたBPFに対応するBP補正量とから、フォーカスレンズ群3の駆動位置を求める。そして、CPU15は、その駆動位置へフォーカスレンズ群3を駆動する(ステップS19)。この後、CPU15は元のステップS5の処理に復帰する。
一方、ステップS16で求められた全てのBPFで得られたAF評価値信号の信頼性が低い場合(NGである場合)、AF評価値信号が最大値となる点(位置)を求める処理は行われない。すなわち、ステップS16で取得された各々のBPFにより取得されたAF評価値から計算された信頼性が全て所定値に満たない場合、CPU15はステップS16AからステップS16Bの処理に進む。すなわち、CPU15は、定点と呼ばれる、あらかじめ定められた自動焦点調整が不能な場合に駆動される位置へフォーカスレンズ群3を駆動する(ステップS16B)。これにより、自動焦点調整が不能である場合でも、焦点調節手段を適当な位置に駆動することができる。この後、CPU15は元のステップS5の処理に復帰する。この場合、前述したように、図2のステップS5でAFNG表示が行われる。
第2の実施形態の自動焦点調整装置は、AF評価値信号の信頼性の値が最大のものを選択し、もし、信頼性の数値が同じものが複数存在する場合、透過率が最大となる空間周波数が高い方のものを選択する。これにより、信頼性の高いBPFを優先させることができる。また、前記第1の実施形態と同様、BP補正量の個体による違いや撮影環境による違いを吸収することが可能となる。従って、様々な個体や環境下において良好な自動焦点調整動作が可能になる。また、前記第1の実施形態とは異なるBPFの選択が可能であり、BPFの選択の幅が広がる。
[第3の実施形態]
第3の実施形態の自動焦点調整装置は、前記第1、第2の実施形態と比べ、信頼性の値が所定値以上のBPFから得られたAF評価値のピーク位置を、そのBPFに対応するBP補正量分シフトし、そのシフトした値の平均値を用いる動作を行う点で異なる。前記第1の実施形態と同一の構成要素およびステップ処理については、同一の符号およびステップ番号を用いることで、その説明を省略あるいは簡単にする。
図11は第3の実施形態のステップS4におけるスキャンAFの動作手順を示すフローチャートである。まず、CPU15は、AF評価値を取得するための異なる特性を持つ複数のBPFを設定する(ステップS11)。前記第1の実施形態と同様、例えば、CPU15は、実際にAFを行う際に読み出されるCCD5の画素数により決定されるナイキスト周波数の50%、40%、30%、20%で、フィルタの透過率が最大となるような特性を持つBPFを設定する。
CPU15は、スキャン動作中の速度より速い速度でフォーカスレンズ群3をスキャン開始位置に移動する(ステップS12)。本実施形態では、スキャン開始位置は、設定されたスキャン範囲の一端に設定される。
CPU15は、撮影領域内に設定されたAF領域に対応する領域の各BPFにおいて求められるAF評価値と、フォーカスレンズ群3の位置とを、CPU15に内蔵された演算メモリ(図示せず)に記憶する(ステップS13)。
CPU15は、フォーカスレンズ群3の位置がスキャン終了位置にあるか否かを調べる(ステップS14)。本実施形態では、スキャン終了位置は、設定されたスキャン範囲の他端に設定される。スキャン終了位置にない場合、CPU15は、フォーカスレンズ群3を駆動して所定の方向へ所定量動かす(ステップS15)。この後、CPU15は、ステップS13の処理に戻る。
一方、ステップS14でスキャン終了位置にある場合、CPU15は、各々のBPFで取得されたAF評価値からその信頼性を計算する(ステップS16)。この処理の詳細については、前記第1の実施形態の図6〜図9で説明した処理と同じであるので、その説明を割愛する。
CPU15は、ステップS16で求められた全てのBPFで得られたAF評価値信号の信頼性が低いか否かを判別する(ステップS16A)。少なくとも1つのBPFで得られたAF評価値信号の信頼性が高い場合、CPU15は、ステップS16で求められた信頼性を評価し、その値が所定値以上のものを全て選択する(ステップS17B)。
CPU15は、選択されたものに関し、各々のBPFで得られたAF評価値のピークとなる位置を計算する(ステップS18A)。CPU15は、ステップS18Aで計算された全てのピーク位置に対し、そのBPFに対応するBP補正量分、ピーク位置をシフトする(ステップS18B)。さらに、CPU15は、そのシフトされた値の平均値とその標準偏差σを求める(ステップS18C)。
CPU15は、S17Bで選択されたもののうち、平均値とその標準偏差σとから規定される範囲内のもの、つまり数式(6)を満たすものを選択する(ステップS18D)。
平均値―σ ≦ シフトされた値 ≦ 平均値+σ …… (6)
CPU15は、ステップS18Dで選択されたものの平均値を求める(ステップS18E)。そして、CPU15は、その平均値の位置へフォーカスレンズ群3を駆動する(ステップS19)。この後、CPU15は元のステップS5の処理に復帰する。
ただし、標準偏差σがあまりにも大きい場合(所定値を越える場合)、透過率が最大となる空間周波数が最も高いもののBP補正量分シフトしたものを選択し、CPU15は、ステップS19でその位置へフォーカスレンズ群3を駆動する。
一方、ステップS16で求められた全てのBPFで得られたAF評価値信号の信頼性が低い場合(NGである場合)、AF評価値信号が最大値となる点(位置)を求める処理は行われない。すなわち、ステップS16で取得された各々のBPFにより取得されたAF評価値から計算された信頼性が全て所定値に満たない場合、CPU15はステップS16AからステップS16Bの処理に進む。すなわち、CPU15は、定点と呼ばれる、あらかじめ定められた自動焦点調整が不能な場合に駆動される位置へフォーカスレンズ群3を駆動する(ステップS16B)。これにより、自動焦点調整が不能である場合でも、焦点調節手段を適当な位置に駆動することができる。この後、CPU15は元のステップS5の処理に復帰する。この場合、前述したように、図2のステップS5でAFNG表示が行われる。
上記処理により、例えば、図12、図13で示すような動作が行われる。図12は図4と同様に複数の異なる特性を持つフィルタを用いた場合のAF評価値と合焦位置との関係を示すグラフである。図13は図12のAF評価値をそれぞれBP補正量分シフトした場合のAF評価値と合焦位置との関係を示すグラフである。
透過率が最大となる空間周波数が異なる複数のBPFで得られたAF評価値が図12のようになったとする。そして、符号gのBPFに対応するBP補正量が図中の値であった場合、符号gのBPFで得られたAF評価値は、そのBP補正量分シフトされ、符号g’で示されるようになる。同様に、符号e、f、hのBPFで得られたAF評価値も、各々のBP補正量分シフトした場合、図13の符号e’、f’、h’で示されるようになる。
それぞれのピーク位置をBP補正量分シフトした値(位置)は、符号e’、f’、g’のBPFでほぼ等しく、符号h’のBPFのみが値が多少異なっている。このため、平均値±σ内の範囲には、符号e’、f’、g’のBPFで得られたAF評価値をBP補正量分シフトした値が入り、符号h’のBPFで得られたAF評価値をBP補正量分シフトした値は入らない。よって、符号e’、f’、g’のBPFで得られたAF評価値をBP補正量分シフトした値の平均値を求め、CPU15は、その位置へフォーカスレンズ群3を駆動する。
このように、第3の実施形態の自動焦点調整装置は、選択された信頼性が所定値以上の高い複数のBPFに対応するBP補正量として、より正確な量だけずらした位置にフォーカスレンズを駆動することができる。
なお、本発明は、上記実施形態の構成に限られるものではなく、特許請求の範囲で示した機能、または本実施形態の構成が持つ機能が達成できる構成であればどのようなものであっても適用可能である。
例えば、前記第1、第2、第3の実施形態では、コンパクトタイプのデジタルカメラを例に説明したが、本発明はデジタルビデオカメラやデジタルSLR(一眼レフカメラ)にも適用可能である。
第1第2第3の実施形態における撮像装置の構成を示すブロック図である。 撮像装置の実際の撮影動作手順を示すフローチャートである。 スキャンAF処理を説明する図である。 複数の異なる特性を持つフィルタを用いた場合のAF評価値と合焦位置との関係を示すグラフである。 ステップS4におけるスキャンAFの動作手順を示すフローチャートである。 AF評価信号を示すグラフである。 ステップS16におけるAF評価値の信頼性を計算する手順を示すフローチャートである。 ステップS34における無限遠方向への単調減少チェック処理手順を示すフローチャートである。 ステップS36における至近方向への単調減少チェック処理手順を示すフローチャートである。 第2の実施形態のステップS4におけるスキャンAFの動作手順を示すフローチャートである。 第3の実施形態のステップS4におけるスキャンAFの動作手順を示すフローチャートである。 図4と同様に複数の異なる特性を持つフィルタを用いた場合のAF評価値と合焦位置との関係を示すグラフである。 図12のAF評価値をそれぞれBP補正量分シフトした場合のAF評価値と合焦位置との関係を示すグラフである。
符号の説明
1 撮像装置
3 フォーカスレンズ群
5 撮像素子
14 スキャンAF処理回路
15 CPU

Claims (10)

  1. 撮影光学系により結像される被写体像を光電変換して画像信号を得る撮像手段と、
    前記撮像手段によって光電変換される被写体像の焦点を調節する焦点調節手段と、
    異なる特性を持ち、被写体の特定の空間周波数成分を抽出する複数のフィルタを有し、前記焦点調節手段を駆動しながら、前記撮像手段によって得られた画像信号から合焦位置を検出する合焦位置検出手段とを有する自動焦点調整装置において、
    前記合焦位置検出手段は、
    前記各フィルタで評価値の算出を行う算出手段と、
    前記算出された各評価値の信頼性を計算する計算手段と、
    前記複数のフィルタのうち、前記計算された信頼性が所定値以上に高いものを選択する選択手段と、
    前記選択されたフィルタに対応するピント補正量だけ、前記撮像手段によって得られた画像信号が極大になる位置からずらした位置に、前記焦点調節手段を駆動する駆動手段とを有することを特徴とする自動焦点調整装置。
  2. 前記選択手段は、前記信頼性が所定値以上に高いものの中から、信号の透過率が最大となる空間周波数が最も高い周波数の特性を持つフィルタを選択することを特徴とする請求項1記載の自動焦点調整装置。
  3. 前記選択手段は、前記複数のフィルタのうち、前記信頼性が最も高いフィルタを選択することを特徴とする請求項1記載の自動焦点調整装置。
  4. 前記各信頼性を計算した結果、前記信頼性が所定値以上に高いものが存在しない場合、前記選択手段による選択を行わず、前記駆動手段は、前記焦点調節手段を定点に駆動することを特徴とする請求項1記載の自動焦点調整装置。
  5. 前記選択手段は、前記複数のフィルタのうち、前記信頼性が所定値以上のものを選択し、さらに、前記選択された各フィルタにおいて、前記撮像手段によって得られた画像信号が極大になる位置から、そのフィルタに対応するピント補正量だけずらした位置を求め、前記求められたずらした位置の平均値と標準偏差とから規定される範囲内のものを選択し、
    前記駆動手段は、前記選択されたものの平均値に前記焦点調節手段を駆動することを特徴とする請求項1記載の自動焦点調整装置。
  6. 前記各フィルタに対応するピント補正量は、各焦点距離または各撮影距離について、レンズ設計値から計算によって求められることを特徴とする請求項1記載の自動焦点調整装置。
  7. 前記フィルタに対応するピント補正量として、各焦点距離または各撮影距離について、複数の個体の前記ピント補正量を測定し、その平均値を用いることを特徴とする請求項1記載の自動焦点調整装置。
  8. 前記フィルタに対応するピント補正量として、個別に測定したその個体特有の値を用いることを特徴とする請求項1記載の自動焦点調整装置。
  9. 前記各フィルタで算出される評価値の信頼性を計算する場合に使用される所定値は、所定の距離および照度において、所定のコントラストで複数の異なる所定の線幅を有するチャートを用いて測定された前記評価値の測定結果から定められることを特徴とする請求項1記載の自動焦点調整装置。
  10. 撮影光学系により結像される被写体像を光電変換して画像信号を得る撮像手段と、前記撮像手段によって光電変換される被写体像の焦点を調節する焦点調節手段と、異なる特性を持ち、被写体の特定の空間周波数成分を抽出する複数のフィルタを有し、前記焦点調節手段を駆動しながら、前記撮像手段によって得られた画像信号から合焦位置を検出する合焦位置検出手段とを有する自動焦点調整装置の自動焦点調整方法において、
    前記合焦位置検出手段が、
    前記各フィルタで評価値の算出を行うステップと、
    前記算出された各評価値の信頼性を計算するステップと、
    前記複数のフィルタのうち、前記計算された信頼性が所定値以上に高いものを選択するステップと、
    前記選択されたフィルタに対応するピント補正量だけ、前記撮像手段によって得られた画像信号が極大になる位置からずらした位置に、前記焦点調節手段を駆動するステップとを有することを特徴とする自動焦点調整装置。
JP2008010740A 2008-01-21 2008-01-21 自動焦点調整装置及びその自動焦点調整方法 Expired - Fee Related JP5106143B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010740A JP5106143B2 (ja) 2008-01-21 2008-01-21 自動焦点調整装置及びその自動焦点調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010740A JP5106143B2 (ja) 2008-01-21 2008-01-21 自動焦点調整装置及びその自動焦点調整方法

Publications (2)

Publication Number Publication Date
JP2009175184A true JP2009175184A (ja) 2009-08-06
JP5106143B2 JP5106143B2 (ja) 2012-12-26

Family

ID=41030390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010740A Expired - Fee Related JP5106143B2 (ja) 2008-01-21 2008-01-21 自動焦点調整装置及びその自動焦点調整方法

Country Status (1)

Country Link
JP (1) JP5106143B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160925A (ja) * 2012-02-06 2013-08-19 Canon Inc 撮像装置およびフォーカス制御方法
EP2393280A3 (en) * 2010-03-23 2015-03-25 Samsung Electronics Co., Ltd. Imaging apparatus performing auto focusing function with plurality of band pass filters and auto focusing method applied to the same
JP2015094859A (ja) * 2013-11-12 2015-05-18 キヤノン株式会社 焦点調節装置、撮像装置、焦点調節方法、及びプログラム
CN105430270A (zh) * 2015-12-10 2016-03-23 浙江宇视科技有限公司 一种自动聚焦的方法和装置
US10025162B2 (en) 2014-05-01 2018-07-17 Canon Kabushiki Kaisha Focus adjustment device for correcting autofocus of focus lens using captured image signal to be recorded, method for controlling the same, and image capture apparatus
JP2019091067A (ja) * 2019-02-01 2019-06-13 キヤノン株式会社 レンズ部およびその制御方法
CN113156638A (zh) * 2021-02-26 2021-07-23 南昌欧菲光电技术有限公司 电路控制方法、装置、摄像头模组、终端设备及存储介质

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204181A (ja) * 1984-03-28 1985-10-15 Ricoh Co Ltd 自動合焦装置
JPS63172110A (ja) * 1987-01-12 1988-07-15 Canon Inc オートフォーカスカメラ
JPH021808A (ja) * 1988-06-10 1990-01-08 Canon Inc 焦点検出装置
JPH047510A (ja) * 1990-04-25 1992-01-10 Olympus Optical Co Ltd 自動合焦装置
JPH04190220A (ja) * 1990-11-22 1992-07-08 Asahi Optical Co Ltd カメラシステム
JPH06273663A (ja) * 1993-03-22 1994-09-30 Canon Inc 合焦情報検出装置
JPH09230227A (ja) * 1996-02-27 1997-09-05 Kyocera Corp オートフォーカスカメラ
JP2003015026A (ja) * 2001-07-02 2003-01-15 Konica Corp 画像処理方法及び画像処理装置
JP2003121913A (ja) * 2001-10-15 2003-04-23 Fuji Photo Film Co Ltd レンズ鏡胴、レンズ交換式カメラ並びにプログラム
JP2004101766A (ja) * 2002-09-06 2004-04-02 Canon Inc 焦点検出方法、焦点検出装置、及び撮像装置
JP2004282451A (ja) * 2003-03-17 2004-10-07 Hitachi Kokusai Electric Inc テレビジョンカメラ
JP2006243101A (ja) * 2005-03-01 2006-09-14 Ricoh Co Ltd 撮像装置および撮像方法
JP2006313229A (ja) * 2005-05-09 2006-11-16 Canon Inc 焦点調節装置、撮像装置、およびその制御方法
JP2006337855A (ja) * 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd 撮像装置のオートフォーカス制御装置
JP2007053482A (ja) * 2005-08-16 2007-03-01 Fujifilm Holdings Corp 撮像装置
JP2007121534A (ja) * 2005-10-26 2007-05-17 Canon Inc 光学機器および焦点調節方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204181A (ja) * 1984-03-28 1985-10-15 Ricoh Co Ltd 自動合焦装置
JPS63172110A (ja) * 1987-01-12 1988-07-15 Canon Inc オートフォーカスカメラ
JPH021808A (ja) * 1988-06-10 1990-01-08 Canon Inc 焦点検出装置
JPH047510A (ja) * 1990-04-25 1992-01-10 Olympus Optical Co Ltd 自動合焦装置
JPH04190220A (ja) * 1990-11-22 1992-07-08 Asahi Optical Co Ltd カメラシステム
JPH06273663A (ja) * 1993-03-22 1994-09-30 Canon Inc 合焦情報検出装置
JPH09230227A (ja) * 1996-02-27 1997-09-05 Kyocera Corp オートフォーカスカメラ
JP2003015026A (ja) * 2001-07-02 2003-01-15 Konica Corp 画像処理方法及び画像処理装置
JP2003121913A (ja) * 2001-10-15 2003-04-23 Fuji Photo Film Co Ltd レンズ鏡胴、レンズ交換式カメラ並びにプログラム
JP2004101766A (ja) * 2002-09-06 2004-04-02 Canon Inc 焦点検出方法、焦点検出装置、及び撮像装置
JP2004282451A (ja) * 2003-03-17 2004-10-07 Hitachi Kokusai Electric Inc テレビジョンカメラ
JP2006243101A (ja) * 2005-03-01 2006-09-14 Ricoh Co Ltd 撮像装置および撮像方法
JP2006313229A (ja) * 2005-05-09 2006-11-16 Canon Inc 焦点調節装置、撮像装置、およびその制御方法
JP2006337855A (ja) * 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd 撮像装置のオートフォーカス制御装置
JP2007053482A (ja) * 2005-08-16 2007-03-01 Fujifilm Holdings Corp 撮像装置
JP2007121534A (ja) * 2005-10-26 2007-05-17 Canon Inc 光学機器および焦点調節方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393280A3 (en) * 2010-03-23 2015-03-25 Samsung Electronics Co., Ltd. Imaging apparatus performing auto focusing function with plurality of band pass filters and auto focusing method applied to the same
JP2013160925A (ja) * 2012-02-06 2013-08-19 Canon Inc 撮像装置およびフォーカス制御方法
JP2015094859A (ja) * 2013-11-12 2015-05-18 キヤノン株式会社 焦点調節装置、撮像装置、焦点調節方法、及びプログラム
US11822211B2 (en) 2014-05-01 2023-11-21 Canon Kabushiki Kaisha Imaging optical system storing information on its aberration, imaging apparatus, and control method thereof
US11099459B2 (en) 2014-05-01 2021-08-24 Canon Kabushiki Kaisha Focus adjustment device and method capable of executing automatic focus detection, and imaging optical system storing information on aberrations thereof
US10025162B2 (en) 2014-05-01 2018-07-17 Canon Kabushiki Kaisha Focus adjustment device for correcting autofocus of focus lens using captured image signal to be recorded, method for controlling the same, and image capture apparatus
CN105430270B (zh) * 2015-12-10 2018-11-13 浙江宇视科技有限公司 一种自动聚焦的方法和装置
US20190068888A1 (en) * 2015-12-10 2019-02-28 Zhejiang Uniview Technologies Co., Ltd Auto-focusing
US10887505B2 (en) * 2015-12-10 2021-01-05 Zhejiang Uniview Technologies Co., Ltd Auto-focusing
WO2017097009A1 (zh) * 2015-12-10 2017-06-15 浙江宇视科技有限公司 自动聚焦
CN105430270A (zh) * 2015-12-10 2016-03-23 浙江宇视科技有限公司 一种自动聚焦的方法和装置
JP2019091067A (ja) * 2019-02-01 2019-06-13 キヤノン株式会社 レンズ部およびその制御方法
CN113156638A (zh) * 2021-02-26 2021-07-23 南昌欧菲光电技术有限公司 电路控制方法、装置、摄像头模组、终端设备及存储介质

Also Published As

Publication number Publication date
JP5106143B2 (ja) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4886210B2 (ja) 撮像装置
US9723208B2 (en) Image processing apparatus, method for controlling the same, and storage medium
US11223774B2 (en) Imaging apparatus, lens apparatus, and method for controlling the same
JP5106143B2 (ja) 自動焦点調整装置及びその自動焦点調整方法
JP4946337B2 (ja) オートフォーカス装置およびカメラ
JP6116277B2 (ja) 撮像装置及びその制御方法
JP3679693B2 (ja) オートフォーカスカメラ
JP6045254B2 (ja) 画像処理装置、その制御方法、および制御プログラム
WO2009057510A1 (en) Image capturing apparatus and control method therefor
JP2007192859A (ja) 合焦制御装置、及び撮像装置
JP2001042207A (ja) 電子カメラ
JP5173676B2 (ja) 自動焦点調整装置及びその制御方法
JP4235422B2 (ja) 焦点検出方法、焦点検出装置、及び撮像装置
JP2005157268A (ja) 撮像装置及びその制御方法及びプログラム及び記憶媒体
US9591205B2 (en) Focus control apparatus, optical apparatus, focus control method, and storage medium storing focus detection program
US7710492B2 (en) Imaging device and imaging method for performing automatic focus detection
JP4928104B2 (ja) 撮像装置及びその制御方法
US20150227023A1 (en) Focus control apparatus and control method therefor
JP5780752B2 (ja) 自動焦点調整装置及び自動焦点調整方法
JP5765935B2 (ja) 焦点調整装置及び方法
JP2014102290A (ja) 自動焦点調整装置
JP2004102130A (ja) 自動焦点調整装置、撮像装置、信頼性判定方法、プログラム、及び記憶媒体
JP5106146B2 (ja) 自動焦点調整装置
JP2009198975A (ja) 焦点調整装置およびその焦点調整方法
JP2010078681A (ja) 自動焦点調整装置および方法、並びにプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R151 Written notification of patent or utility model registration

Ref document number: 5106143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees