JP2009170639A - 窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法 - Google Patents

窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法 Download PDF

Info

Publication number
JP2009170639A
JP2009170639A JP2008006762A JP2008006762A JP2009170639A JP 2009170639 A JP2009170639 A JP 2009170639A JP 2008006762 A JP2008006762 A JP 2008006762A JP 2008006762 A JP2008006762 A JP 2008006762A JP 2009170639 A JP2009170639 A JP 2009170639A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor laser
laser chip
crack
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006762A
Other languages
English (en)
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Consumer Electronics Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008006762A priority Critical patent/JP2009170639A/ja
Priority to US12/353,386 priority patent/US7787510B2/en
Publication of JP2009170639A publication Critical patent/JP2009170639A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0021Degradation or life time measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1017Waveguide having a void for insertion of materials to change optical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Abstract

【課題】窒化物半導体レーザチップ内の歪みによる応力を緩和し、信頼性の向上を図った窒化物半導体レーザチップ及びその製造方法や、窒化物半導体レーザ素子を提供することを目的とする。
【解決手段】本発明による窒化物半導体レーザチップ1は、共振器端面に平行となるクラックCが少なくとも一本形成されている。レーザチップ1内にクラックCを形成することによって歪みによる応力を緩和し、これによって信頼性の高いレーザチップを得ることができる。
【選択図】図1

Description

本発明は窒化物半導体レーザチップと当該窒化物半導体レーザチップを実装した窒化物半導体レーザ素子に関するものである。また、窒化物半導体レーザチップの製造方法に関するものである。
III族元素とV元素とから成る所謂III−V族半導体である窒化物半導体(例えば、AlN、GaN、InN、AlGaN、InGaNなど)は、そのバンド構造より青や青紫の光を発する発光素子としての利用が期待され、既に発光ダイオードやレーザ素子などに利用されている。
例えば、GaN(Inを微量に添加する場合を含む)とInGaNを交互に積層することで形成される多重量子井戸構造の活性層を備える窒化物半導体レーザチップが得られており、その発光の安定性から様々な素子に用いられている(特許文献1参照)。
特開2007−273901号公報
しかしながら、GaNとInGaNとの間に格子不整合が生じる問題がある。これは、InGaNが、同じウルツ鉱型構造であるが格子定数の異なるGaN(a軸が3.16Å)とInN(a軸が3.54Å)との混晶であることに起因しており、<0001>軸方向に成長を行う場合に、Inの組成比によって活性層内の結晶格子の不整合が大きくなる。この場合、結晶に導入される歪みによる応力が大きくなり、例えばピエゾ電界により電子及び正孔が空間的に分離される問題や、多量の欠陥が導入されるなどの様々な問題が生じる。そして、これらの問題によって発光特性の低下や発熱量の増大が促進され、破壊されやすくなるためにレーザ素子の信頼性が低下するという問題が生じていた。また、活性層だけでなく、他の層(例えば、AlGaNを用いた層など)においても同様の格子不整合の問題が発生し得る。
そこで本発明は、窒化物半導体レーザチップ内の歪みによる応力を緩和し、信頼性の向上を図った窒化物半導体レーザチップ及びその製造方法や、窒化物半導体レーザ素子を提供することを目的とする。
上記目的を達成するために、本発明の窒化物半導体レーザチップは、基板と、当該基板の主面上に設けられるとともに窒化物半導体から成る層が備えられる積層構造と、を備える窒化物半導体レーザチップにおいて、前記積層構造に少なくとも1本のクラックが形成されることを特徴とする。
また、上記構成の窒化物半導体レーザチップにおいて、前記クラックが、前記基板の主面に対して垂直な平板状になるとともに、前記積層構造の一方の端部から他方の端部に到達するように形成されることとしても構わない。
また、上記構成の窒化物半導体レーザチップにおいて、前記クラックが、前記積層構造内において発生する光が往復する方向と略垂直となるように形成されることとしても構わない。
このように構成することによって、レーザ発振させて生じる光が、クラックによって屈折したり、反射したりすることを抑制することが可能となる。したがって、光出力の低下を抑制し、より信頼性を向上させることが可能となる。
また、上記構成の窒化物半導体レーザチップにおいて、前記クラックが、1本または2本であることとしても構わない。
このように構成することによって、より確実にクラックを形成することによる信頼性の改善効果を得ることができるようになる。即ち、クラックを1本または2本とすると、高い確率で、クラックを形成しない同様のレーザチップと比べて信頼性を高くすることができるようになる。
また、上記構成の窒化物半導体レーザチップにおいて、前記積層構造が、AlGaNから成るAl添加層を備えるものであるとともに、当該Al添加層のAl組成が、6%以上8%以下であることとしても構わない。また、前記積層構造の、前記基板の主面と垂直な方向の厚みが、2μm以上6μm以下であることとしても構わない。
このように構成することによって、積層構造を基板に形成することによって効率よくクラックが形成されることとなる。そのため、クラックを導入するための特別な工程を要しないこととなり、容易にクラックを形成することが可能となる。
また、本発明の窒化物半導体レーザ素子は、上記のレーザチップを備えることを特徴とする。
また、本発明の窒化物半導体レーザチップの製造方法は、基板の主面上に窒化物半導体から成る層を備える積層構造を形成するとともに、当該積層構造を形成する際に少なくとも一つのクラックを前記積層構造に形成することを特徴とする。
このように構成することによって、クラックを形成する工程を特に要することなく、積層構造を形成する際にクラックを形成することが可能となる。そのため、工程を増加させることなく信頼性の改善を図った窒化物半導体レーザチップを容易に得ることが可能となる。
本発明における窒化物半導体レーザチップでは、積層構造中にクラックが形成される構成とすることによって、結晶格子の歪みによる応力を緩和することを可能としている。したがって、クラックが形成されていない窒化物半導体のレーザチップと比べて、信頼性を高くすることが可能となる。
<レーザチップの構成>
最初に、本発明における窒化物半導体レーザチップの構成について図1を用いて説明する。図1は、本発明の実施形態における窒化物半導体レーザチップの構成を示す模式的な平面図及び断面図である。ここで、図1(a)は窒化物半導体レーザチップの模式的な平面図を示しており、図1(b)は、図1(a)のA−A断面を示した模式的な断面図を示している。
図1(a)及び図1(b)に示すように、本実施形態におけるレーザチップ1は、基板2の{0001}面上に、下方から上方に向かって、n型クラッド層3、活性層4、光ガイド層5、キャップ層6、p型クラッド層7及びコンタクト層8の各層が積層されている。これらの各層はエピタキシャル成長して積層されており、本例の場合、下地の結晶の方位関係を継承した結晶が成長している。なお、以下において結晶の方位関係を用いて説明を行う場合、これらの結晶の方位関係を指すものとする。
また、p型クラッド層7の一部は、<0001>方向と略平行な方向に突出するとともに、突出した部分が<1−100>方向と略平行な方向に延在している。また、p型クラッド層7の突出した部分の上面にコンタクト層8が設けられ、このコンタクト層8の上面にオーミック電極9が形成されている。そして、これらの突出した部分が電流通路部(リッジ部10)となる。また、p型クラッド層7の突出していない部分、即ち、リッジ部10以外の部分の上面には電流ブロック層11が形成されている。
リッジ部10の上面及び電流ブロック層11の上面の一部にはパッド電極12が形成されており、基板2の下面にはn側電極13が形成されている。また、図示していないが、光が出射または反射される共振器端面(<1−100>方向と略垂直な端面)には保護膜が形成されている。
さらに、本実施形態におけるレーザチップ1では、<1−100>方向と略垂直となる面を有するクラックCが形成されている。換言すると、クラックCは<11−20>方向と略平行な方向と、<0001>方向と略平行な方向と、に延在する平板状となる。また、図1はクラックCがレーザチップ1に対して2本形成された場合について示している。また、このクラックCは窒化物半導体から成る各層3〜8にわたって形成されている。また、クラックCの構成の詳細については後述する。
なお、図1ではパッド電極12によってリッジ部10の一部が覆われ、共振器端面近傍のリッジ部10が覆われない構成としているが、リッジ部10全体が覆われる構成としても構わない。また、保護膜が、例えばSiO2やTiO2、Al23、AlN、ZrO2などから成るものとして、反射側の端面に形成される保護膜の反射率が、出射側の端面に形成される保護膜の反射率より高くなるように構成されることとしても構わない。
<レーザチップの作製方法>
(ウエハの作製方法)
次に、レーザチップの作製方法について図面を参照して説明する。最初に、図2を用いて、本発明の実施形態における窒化物半導体レーザチップを作製するためのウエハの作製方法の一例について説明する。図2は、ウエハの作製方法の一例を示す模式的な断面図であり、図1に示したレーザチップの断面と同様の断面を示すものとする。
まず、図2(a)に示すように、{0001}を成長面(主面)とした、厚さ約100μmのn型GaN基板を作製する。そして、基板2の{0001}面上に、n型AlGaNから成る厚さ約1.5μmのn型クラッド層3を積層する。そして、このn型クラッド層3の上面に活性層4を積層する。活性層4は、図3の活性層の構成を示す模式的な断面図に示すように、アンドープのInGaNから成る厚さ約3.2nmの井戸層4aと、アンドープのGaNから成る厚さ約20nmの障壁層4bと、を交互に複数層積層することによって形成した多重量子井戸構造であるものとする。ここで、図3においては、井戸層4aを三層、障壁層4bを四層積層した場合について示している。
また、この多重量子井戸構造となる活性層4の上に、アンドープのInGaNから成る厚さ約75nmの光ガイド層5を積層し、この光ガイド層5の上にアンドープのAlGaNから成る厚さ約20nmキャップ層6を積層する。このキャップ層6の上面には、p型AlGaNから成る厚さ約500nmのp型クラッド層7を積層する。そして、このp型クラッド層7の上にアンドープのInGaNから成る厚さ約3nmのコンタクト層8を積層する。なお、図2(a)は、以上に説明した各層3〜8を基板2の成長面に積層した状態について示している。
また、以上の窒化物半導体から成る各層3〜8を積層する工程は、例えば、MOCVD(Metal Organic Chemical Vapor Deposition)法などを用いて行われる。そして、窒化物半導体から成る各層3〜8を積層するとともに積層を行う装置から取り出す際に、上述したようなクラックCが形成されていることを確認することができる。そのため、クラックCは窒化物半導体の各層3〜8の成長プロセスの最中、または、各層3〜8の成長プロセスを終了しようとする降温時に形成されることとなる。どちらの場合であっても、窒化物半導体から成る各層3〜8を作製するプロセスにおいてクラックCが形成される。
そして、コンタクト層8の上面に、厚さ約1nmのPt層と厚さ約30nmのPd層とから成るp側オーミック電極9を形成し、このp側オーミック電極9の上に厚さ約230nmのSiO2層14を形成する。このように各層を形成し、図2(b)に示すような構造を得る。
次に、リッジ部10を形成するために図2(b)に示す構造をエッチングする。このとき、幅約1.5μmであるとともに<1−100>方向に延びたストライプ状のフォトレジスト(不図示)を、リッジ部10を形成する予定の部分に形成する。そして、CF4系のガスを用いてRIE法によるエッチングを行なう。すると、フォトレジストを形成した部分のSiO2層14及びオーミック電極9のみが残り、フォトレジストを形成していない部分のSiO2層14及びオーミック電極9は除去される。
そして、フォトレジストを除去し、Cl2やSiCl4などの塩素系のガスを用いたRIE法によるエッチングを行なう。このとき、SiO2層14をマスクとして、SiO2層14が形成されていない部分のコンタクト層8及びp型クラッド層7をエッチングする。そして、p型クラッド層7が約80nm残った状態となったときにエッチングを停止し、マスクとして用いたSiO2層14を除去する。すると、図2(c)に示すような、p型クラッド層7の一部が突出し、そのp型クラッド層7の突出した部分の上にコンタクト層8、オーミック電極9が順に形成されたリッジ部10を備える構造が得られる。
次に、図2(c)に示した構造の上に厚さ約180nmのSiO2層を形成し、フォトレジストをリッジ部10以外の部分に形成されたSiO2層の上に形成する。そして、CF4系のガスを用いたRIE法によるエッチングを行ない、リッジ部10上に形成されたSiO2層を除去することでSiO2層から成る電流ブロック層11を形成する。これによって、図2(d)に示すような構造が得られる。
また、図2(d)に示した構造に対して、電流ブロック層11で囲まれたリッジ部10を覆うように、厚さ約30nmのTi層と厚さ約140nmのPd層と厚さ約2400nmのAu層とを順に形成して成る厚さ約3μmのパッド電極12を複数形成する。そして、基板2の成長面と反対側の面に、厚さ約6nmのAl層と、厚さ約10nmのPd層と、厚さ約600nmのAu層とを基板2側から順に形成した構成から成るn側電極13を形成することによって、図4に示すようなウエハ20が得られる。図4は、ウエハの構成について示す模式的な平面図及び断面図である。なお、図4(a)に示す平面図は図1(a)と同様の平面について示したものであり、図4(b)に示す断面図は、図1(b)と同様の断面について示したものである。
図4に示すように、ウエハ20にはリッジ部10が複数形成されており、それぞれ<1−100>方向に延在して一続きとなる形状となる。また、パッド電極12は各リッジ部10に沿って複数形成されており、このウエハ20が劈開及び分割されることで、図1に示すようなレーザチップ1が得られる。なお、一例として、パッド電極12がレーザチップ毎に一つずつ形成されるように予め分断されている場合について示したが、パッド電極12が各リッジ部10に沿って一続きとなるように形成されることとしても構わない。
なお、以上説明したウエハ作製方法において、窒化物半導体から成る各層3〜8の形成にMOCVD法を用いる場合を一例として挙げたが、MBE(Molecular Beam Epitaxy)法や、HVPE(Hydride Vapor Phase Epitaxy)法や、その他の方法を用いても構わない。また、各電極層9,12,13の形成に、スパッタリングや蒸着などの形成方法を用いることとしても構わなく、蒸着として、電子ビーム蒸着を用いても構わないし、抵抗加熱蒸着を用いても構わない。また、SiO2層14や電流ブロック層11の形成に、PECVD(Plasma Enhanced Chemical Vapor Deposition)法やスパッタ法などの方法を用いても構わない。
また、図4(a)では簡単のためにウエハ20を四角形のものとして示しているが、結晶方位を特定するためのオリエンテーションフラット面や切り欠き部を含む略円形の基板を用いて作製されるものとしても構わない。あるいは、完全な円形の基板を用いて作製されるものとしても構わない。
また、基板2の厚さを100μmとしたが、ハンドリングを容易にするために400μm程度の厚さにして積層を開始することとしても構わない。この場合、遅くともn側電極13を形成する前までに研磨等を行い、基板2を100μm程度の厚さとなるまで薄くすることとしても構わない。また、窒化物半導体から成る各層3〜8を基板2に積層する際に基板2の厚みを十分厚くしておくことは、後述するクラックCを適正に形成する場合においても効果がある。
(ウエハの分断方法)
次に、図4に示したウエハ20を劈開及び分割して図1に示したレーザチップ1を得る方法について、図5を用いて説明する。図5は、バー及びチップの構成について示す模式的な平面図である。図5(a)、(b)に示す平面図は、図1(a)に示す平面と同様の平面について示したものである。
図5(a)に示すように、まず、図4に示すウエハ20を<11−20>方向に沿って劈開し、バー30を得る。このとき、バー30は劈開されることによって2つの端面({1−100}面と略平行な面)が形成され、これらの端面が共振器端面となる。また、バー30は複数のレーザチップが<11−20>方向に一列に整列する構成となる。
また、得られたバー30の共振器端面には、例えば、SiO2やTiO2、Al23、AlN、ZrO2などから成る保護膜が形成される。そして、いずれか一方の端面に形成する保護膜を、例えば10層程度の多数の層から成るものとして反射率を高くするとともに、いずれか一方の端面に形成する保護膜を、例えば1層程度の少数の層から成るものとして反射率を低くする。そして、図5(b)に示すように、得られたバー30を<1−100>方向に沿って分割することでレーザチップ1が得られる。
なお、ウエハ20からバー30への劈開及びバー30からチップ1への分割において、それぞれの劈開方向及び分割方向に沿った溝をウエハ20またはバー30に形成するとともに、この溝に沿って劈開及び分割を行なうこととしても構わない。また、この溝は実線状であっても破線状であっても構わないし、ダイヤモンドポイントやレーザを用いて形成することとしても構わない。また、ウエハ20やバー30の、パッド電極12や電流ブロック層11が形成される方の面に溝を形成することとしても構わないし、n側電極13が形成される方の面に形成することとしても構わない。
(レーザ素子)
次に、図1に示すレーザチップ1を備えたレーザ素子の一例について図6を用いて説明する。図6は、レーザ素子の一例を示す模式的な斜視図である。図6に示すように、レーザ素子40は、レーザチップ1がはんだによって接続及び固定(マウント)されるサブマウント43と、サブマウント43と接続するヒートシンク42と、ヒートシンク42が所定の面に接続されるステム41と、ステム41の所定の面と所定の面の反対側の面とを貫通するとともにステム41と絶縁されて設けられるピン44a、44bと、一方のピン44aとレーザチップ1のパッド電極12とを電気的に接続するワイヤ45aと、他方のピン44bとサブマウント43とを電気的に接続するワイヤ45bと、を備えている。
また、レーザ素子40の構成をわかりやすく表示するため図示していないが、ステム41の所定の面に接続されるとともに、レーザチップ1と、サブマウント43と、ヒートシンク42と、ピン44a、44bにおけるステム41の所定の面から突出する一部と、ワイヤ45a、45bと、を封止するキャップを備える。
そして、この2本のピン44a、44bを介してレーザチップ1に電流が供給されることで発振し、レーザチップ1からレーザ光が出射される。また、キャップには出射されるレーザ光に対して透明な物質から成る窓が備えられており、この窓を透過してレーザ光が出射される。
なお、図6に示すレーザ素子40の構成は一例に過ぎず、本発明の実施形態におけるレーザ素子はこの構成に限られるものではない。例えば、フォトダイオードなどから成り出射される光の出力を検出する検出部を備えるとともに、検出結果を電源装置にフィードバックすることでレーザチップ1から一定量の光が出力されるような構成としても構わない。また、ピンを3本にするとともに1本を検出部とレーザチップ1との共通のピンとして用いて、残りの2本がレーザチップと検出部とにそれぞれ接続される構成としても構わない。
<クラックの構成>
本発明の実施形態におけるレーザチップ1は、図1(a)に示したように、レーザチップ1内にクラックCが形成される。以下では、このクラックCについての説明を行う。まず、図7を用いてクラックの構成について説明する。図7は、クラックの構成を示す模式的な断面図である。また、図7は、図2(a)と同様の構成について示しており、<0001>方向を上下方向、<1−100>方向を左右方向として表示している。即ち、図7は図2(a)と略垂直な断面について示すものとなる。
上述したように、クラックCは窒化物半導体から成る各層3〜8を積層させた後に形成の有無が確認される。このとき、図7に示すようにクラックCの下端は基板まで到達するものとなる。そして、図1(a)に示すように、<11−20>方向に沿ってレーザチップ1の一方の端部から他方の端部に到達するようにクラックCが形成される。即ち、上述したようにクラックCは共振器端面に対して略平行となる平板状の形状となる。
また、このクラックCの<1−100>方向の幅、即ち平板の厚さに相当する部分の長さは、<0001>方向に対して変動する場合があるが、およそ0.1μm〜2μmの大きさであり、微細なものとなる。
このクラックCが形成されたレーザチップ1を実装した窒化物半導体レーザ素子の動作試験の結果を図8に示す。図8は、本発明の実施形態における窒化物半導体レーザ素子の動作試験の結果を示すグラフであり、形成されるクラックの本数を横軸、スロープ効率及び信頼性を縦軸として、相対的な結果について示したものである。図8中、白抜きの丸はスロープ効率についてプロットしたものを示しており、白抜きの四角は信頼性についてプロットしたものを示している。ここで、信頼性とはMTTF(Mean Time To Failure)を示している。本例では、出力を10mW、動作温度を75℃とした場合において67%のレーザ素子が不具合なく動作することを保証する時間を示している。
図8に示すように、形成されるクラックCの本数の増加に伴い、スロープ効率が低下する。即ち、発光効率は形成されるクラックCの本数が多いほど低下することとなる。しかしながら、クラックCを1、2本形成する程度であれば、クラックCを形成しない場合よりも信頼性を向上させることが可能となる。より具体的には、発光効率の低下により信頼性が悪化する程度よりも、クラックCを導入することによって可能となる、歪に起因する応力の緩和によって、信頼性が改善される効果の程度の方を、より大きくすることができるため、結果として信頼性を向上させることが可能となる。
したがって、クラックCを少なくとも1本、好ましくは1または2本形成する構成とすることによって、クラックCを形成しない場合に比して信頼性を向上させることが可能となる。特に、図8において最も信頼性が向上しているクラックCを1本形成した場合においては、信頼性を5000時間とすることが可能となった。
なお、図8に示すグラフは一例であり、2本より多くクラックCを形成した場合の信頼性が、クラックCを形成しない場合の信頼性よりも良好となる場合もあり得る。ただし、クラックCを1本、または2本とした方が、より確実に信頼性を改善する効果を得ることができるため好ましい。
また、クラックCが<0001>方向において基板2まで到達する例について示しているが、完全に基板2まで到達しない場合であって構わない。完全に基板2まで到達しない場合であっても、歪みによる応力を緩和する効果を得ることができる。
また、上述した窒化物半導体の結晶構造はウルツ鉱型構造であり、六回対称の構造となる。そのため、{0001}面内において、劈開方向である<11−20>方向で表現される等価な方向が60°毎に合計六方向存在することなる。したがって、これらの等価な方向においてもクラックCが形成されやすく、場合によっては共振器端面と略平行とならない方向にクラックCが形成されることが生じる。また、共振器端面と略平行なクラックCと、60°ずれた方向のクラックと、が交互に発生することにより、全体として共振器端面と60°以外の角度を成すジグザグのクラックが形成されることもある。
これらのクラックが形成されたとしても、上述した歪を緩和する効果を得ることは可能である。ただし、クラックが、光が往復する<1−100>方向と略垂直な面ではなくなるため、クラックにおいて意図しない屈折や反射などが生じるおそれがある。したがって、図1(a)に示すような、光が往復する<1−100>方向と略垂直な面を有するクラックCが形成されていることが好ましい。
一方、クラックCと60°ずれたクラックとが混合されてジグザグのクラックが形成されるような場合であったとしても、例えば、光が主に往復する部分ではクラックの面が<1−100>と略垂直となる場合がある。このような場合は、クラックの全体が<1−100>と略垂直でなかったとしても信頼性改善の効果を得ることができる。
また、本発明の適用は、青や紫外の波長のレーザ光を出力する窒化物半導体レーザ素子に限られない。例えば、活性層4の井戸層4aにおけるInGaNのIn組成が大きく緑の波長の光を出力する窒化物半導体レーザ素子にも適用することができる。
<クラックの形成方法>
また、上述したクラックを効率よく形成する方法の具体例について以下に説明する。まず、n型クラッド層3やp型クラッド層7に用いるAlGaNのAl組成について説明する。
Al組成を変化させると、AlGaNのa軸の長さや熱膨張係数などの特性を変化させることができる。そのため、形成されるクラックCの密度の制御を行うことが可能となる。本例の場合では、例えば6%から8%の間の値とすると好ましい。また、7%程度の値とするとさらに好ましい。なお、このAl組成はX線回折の測定結果に基づいて確認を行った。具体的には、(0006)対称面における回折を測定し、その結果に基づいて結晶格子の大きさを算出するとともにAl組成を確認した。
また、基板2上に成長させる窒化物半導体から成る各層3〜8の厚さや基板2の厚さを選択することにより、結晶中に生じる応力や応力への耐性を制御し、効率よくクラックCを形成することも可能である。例えば、基板2上に積層させる窒化物半導体から成る各層3〜8の全体の厚さを調整することによって、クラックCの密度を制御する方法がある。この場合、例えば全体の厚さを2μm〜6μm程度とすると好ましい。また、3.0μm〜5.0μm程度の値とするとさらに好ましい。また、これらの厚さとする場合、窒化物半導体から成る各層3〜8を積層する際の基板2の厚さを90μm以上とすると好ましい。
以上の方法を採用することによって、クラックCを形成するための特別な作業工程を増やすことなく、クラックCを形成することが可能となる。特に、厚さなどのパラメータを制御するだけであるため、容易にクラックCを形成することが可能となる。したがって、信頼性の高い窒化物半導体レーザチップ1を簡易な方法で得ることができるようになる。
なお、以上説明したパラメータについては一例に過ぎず、これ以外のパラメータを調整することによってクラックCを形成することとしても構わない。例えば、窒化物半導体から成る各層3〜8を積層する際の温度や、基板2に用いる材料や結晶性を適宜選択することによってクラックCを形成することとしても構わない。また、各層3〜8の積層後や、その後の他のプロセス後において所定の温度でアニール処理を行い、クラックCを形成しても構わない。
また、共振器端面と略平行な方向となるクラックCを優先的に形成する具体的な方法として、例えば、<1−100>方向に延在する欠陥密度が高い領域が複数形成された基板を用いる方法がある。このような基板は、例えばELOG(Epitaxial Lateral Over Growth)法などの方法を用いて作製することができる。この基板を用いてレーザチップ1を作製すると、<1−100>方向と略垂直な方向となるクラックCを容易に形成することができる。なお、このような基板を用いる場合、欠陥密度が高い領域の直上となる部分を避けてリッジ部10を形成することとしても構わない。
また、クラックCが形成されていない窒化物半導体から成る各層3〜8に、所定の処理(例えば、各種ビームの照射や、応力の印加などの処理)を用いてクラックCを形成することとしても構わない。また、基板2に対して所定の処理(例えば、クラックCを形成する部分の結晶を変質させるなどの処理)を行い、意図的にクラックCが形成されやすい場所を作るとともに、クラックCの形成される位置を制御しても構わない。これらの方法では上述した方法に比べて工程が増えることとなるが、クラックCの制御をより精密に行うことが可能となる。
本発明は、窒化物半導体レーザチップやその製造方法、窒化物半導体レーザチップを備える窒化物半導体レーザ素子に関するものである。また、窒化物半導体基板上に窒化物半導体を積層することによって作製される半導体レーザチップなどに適用すると好適である。
は、本発明の実施形態における窒化物半導体レーザチップの構成を示す模式的な平面図及び断面図である。 は、ウエハの作製方法の一例を示す模式的な断面図である。 は、活性層の構成について示す模式的な断面図である。 は、ウエハの構成について示す模式的な平面図及び断面図である。 は、バー及びチップの構成について示す模式的な平面図である。 は、窒化物半導体レーザ素子の一例を示す模式的な斜視図である。 は、クラックの構成を示す模式的な断面図である。 は、本発明の実施形態における窒化物半導体レーザ素子の動作試験の結果を示すグラフである。
符号の説明
1 レーザチップ
2 基板
3 n型クラッド層
4 活性層
4a 井戸層
4b 障壁層
5 光ガイド層
6 キャップ層
7 p型クラッド層
8 コンタクト層
9 p側オーミック電極
10 リッジ部
11 電流ブロック層
12 パッド電極
13 n側電極
14 SiO2
20 ウエハ
30 バー
40 窒化物半導体レーザ素子
41 ステム
42 ヒートシンク
43 サブマウント
44a、44b ピン
45a、45b ワイヤ

Claims (8)

  1. 基板と、当該基板の主面上に設けられるとともに窒化物半導体から成る層が備えられる積層構造と、を備える窒化物半導体レーザチップにおいて、
    前記積層構造に少なくとも1本のクラックが形成されることを特徴とする窒化物半導体レーザチップ。
  2. 前記クラックが、前記基板の主面に対して垂直な平板状になるとともに、前記積層構造の一方の端部から他方の端部に到達するように形成されることを特徴とする請求項1に記載の窒化物半導体レーザチップ。
  3. 前記クラックが、前記積層構造内において発生する光が往復する方向と略垂直となるように形成されることを特徴とする請求項2に記載の窒化物半導体レーザチップ。
  4. 前記クラックが、1本または2本であることを特徴とする請求項1〜請求項3のいずれかに記載の窒化物半導体レーザチップ
  5. 前記積層構造が、AlGaNから成るAl添加層を備えるものであるとともに、当該Al添加層のAl組成が、6%以上8%以下であることを特徴とする請求項1〜請求項4のいずれかに記載の窒化物半導体レーザチップ。
  6. 前記積層構造の、前記基板の主面と垂直な方向の厚みが、2μm以上6μm以下であることを特徴とする請求項1〜請求項5のいずれかに記載の窒化物半導体レーザチップ。
  7. 請求項1〜請求項6のいずれかに記載のレーザチップを備えることを特徴とする窒化物半導体レーザ素子。
  8. 基板の主面上に窒化物半導体から成る層を備える積層構造を形成するとともに、当該積層構造を形成する際に少なくとも一つのクラックを前記積層構造に形成することを特徴とする窒化物半導体レーザチップの製造方法。
JP2008006762A 2008-01-16 2008-01-16 窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法 Pending JP2009170639A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008006762A JP2009170639A (ja) 2008-01-16 2008-01-16 窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法
US12/353,386 US7787510B2 (en) 2008-01-16 2009-01-14 Nitride semiconductor laser chip, nitride semiconductor laser device, and manufacturing method of nitride semiconductor laser chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006762A JP2009170639A (ja) 2008-01-16 2008-01-16 窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法

Publications (1)

Publication Number Publication Date
JP2009170639A true JP2009170639A (ja) 2009-07-30

Family

ID=40850579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006762A Pending JP2009170639A (ja) 2008-01-16 2008-01-16 窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法

Country Status (2)

Country Link
US (1) US7787510B2 (ja)
JP (1) JP2009170639A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080283854A1 (en) * 2007-05-01 2008-11-20 The Regents Of The University Of California Light emitting diode device layer structure using an indium gallium nitride contact layer
US20140203287A1 (en) * 2012-07-21 2014-07-24 Invenlux Limited Nitride light-emitting device with current-blocking mechanism and method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195813A (ja) * 1997-12-26 1999-07-21 Toshiba Electronic Engineering Corp 窒化ガリウム系半導体素子
JP2003264345A (ja) * 2002-03-11 2003-09-19 Sharp Corp 窒化物半導体発光素子
JP2007201379A (ja) * 2006-01-30 2007-08-09 Hamamatsu Photonics Kk 化合物半導体基板、その製造方法及び半導体デバイス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661824B2 (en) * 2000-02-18 2003-12-09 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and method for fabricating the same
US6812496B2 (en) * 2002-01-10 2004-11-02 Sharp Kabushiki Kaisha Group III nitride semiconductor laser device
US7462882B2 (en) * 2003-04-24 2008-12-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus
TWI347054B (en) * 2003-07-11 2011-08-11 Nichia Corp Nitride semiconductor laser device and method of manufacturing the nitride semiconductor laser device
JP4390640B2 (ja) * 2003-07-31 2009-12-24 シャープ株式会社 窒化物半導体レーザ素子、窒化物半導体発光素子、窒化物半導体ウェハおよびそれらの製造方法
JP2005150692A (ja) * 2003-10-21 2005-06-09 Sharp Corp 半導体レーザ装置
JP4963060B2 (ja) * 2005-11-30 2012-06-27 シャープ株式会社 窒化物系半導体レーザ素子及びその製造方法
US20070221932A1 (en) * 2006-03-22 2007-09-27 Sanyo Electric Co., Ltd. Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device
JP2007273901A (ja) 2006-03-31 2007-10-18 Mitsubishi Electric Corp 半導体発光素子
JP5378651B2 (ja) * 2007-01-31 2013-12-25 日本オクラロ株式会社 半導体レーザ素子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195813A (ja) * 1997-12-26 1999-07-21 Toshiba Electronic Engineering Corp 窒化ガリウム系半導体素子
JP2003264345A (ja) * 2002-03-11 2003-09-19 Sharp Corp 窒化物半導体発光素子
JP2007201379A (ja) * 2006-01-30 2007-08-09 Hamamatsu Photonics Kk 化合物半導体基板、その製造方法及び半導体デバイス

Also Published As

Publication number Publication date
US7787510B2 (en) 2010-08-31
US20090180507A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US8750343B2 (en) Nitride-based semiconductor light-emitting device, nitride-based semiconductor laser device, nitride-based semiconductor light-emitting diode, method of manufacturing the same, and method of forming nitride-based semiconductor layer
JP4572270B2 (ja) 窒化物半導体素子およびその製造方法
JP4169821B2 (ja) 発光ダイオード
JP2009081374A (ja) 半導体発光素子
WO2009081762A1 (ja) 窒化物系半導体発光ダイオード、窒化物系半導体レーザ素子およびそれらの製造方法ならびに窒化物系半導体層の形成方法
JP2008109066A (ja) 発光素子
JP5232993B2 (ja) 窒化物系半導体発光素子およびその製造方法
JP5298889B2 (ja) 窒化物半導体素子
JP2010109147A (ja) 発光素子およびその製造方法
US9935428B2 (en) Semiconductor light-emitting element and method for manufacturing the same
JP2009004524A (ja) 窒化物系半導体レーザ素子及び窒化物系半導体レーザ素子の作製方法
US20110013659A1 (en) Semiconductor laser device and method of manufacturing the same
JP2011091251A (ja) 窒化物半導体発光素子
JP4959644B2 (ja) 半導体レーザ素子、半導体ウェハおよび半導体レーザ素子の製造方法
US7787510B2 (en) Nitride semiconductor laser chip, nitride semiconductor laser device, and manufacturing method of nitride semiconductor laser chip
WO2018020793A1 (ja) 半導体発光素子および半導体発光素子の製造方法
JP4960777B2 (ja) 端面発光型半導体レーザチップ
JP4890509B2 (ja) 半導体発光素子の製造方法
JP5079613B2 (ja) 窒化物系半導体レーザ素子およびその製造方法
JPH10303493A (ja) 窒化物半導体レーザ素子
JP4964027B2 (ja) 窒化物系半導体レーザ素子の作製方法
JP5245031B2 (ja) 窒化物系半導体層の形成方法
JP2013074278A (ja) 窒化物半導体基板及びその製造方法、並びにそれを用いた窒化物半導体発光素子
JP2010129581A (ja) 窒化物系半導体レーザ素子及びその作製方法
JP5277762B2 (ja) 窒化物半導体レーザ素子の製造方法及び窒化物半導体レーザ素子

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717