JP2009160865A - 液体吐出装置、及び、液体吐出方法 - Google Patents

液体吐出装置、及び、液体吐出方法 Download PDF

Info

Publication number
JP2009160865A
JP2009160865A JP2008002021A JP2008002021A JP2009160865A JP 2009160865 A JP2009160865 A JP 2009160865A JP 2008002021 A JP2008002021 A JP 2008002021A JP 2008002021 A JP2008002021 A JP 2008002021A JP 2009160865 A JP2009160865 A JP 2009160865A
Authority
JP
Japan
Prior art keywords
potential
pressure chamber
liquid
ejection
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008002021A
Other languages
English (en)
Inventor
Kinya Ozawa
欣也 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008002021A priority Critical patent/JP2009160865A/ja
Publication of JP2009160865A publication Critical patent/JP2009160865A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高粘度液体について、吐出を安定化させる。
【解決手段】
液体吐出装置は、圧力室の容積を変化させるための動作をする素子と、ノズルから液体を吐出させるべく基準容積の圧力室の容積を変化させて前記基準容積に戻す一連の動作を素子に行わせる吐出パルスを繰り返し生成する吐出パルス生成部とを備える。液体は、粘度が6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内である。吐出パルスは、液体を前記ノズルから吐出させるべく、圧力室を収縮させる動作を素子に行わせる吐出部分と、吐出部分よりも後に生成され、収縮状態の圧力室を基準容積まで膨張させるための動作を前記素子に行わせる膨張部分であって、生成期間が圧力室における固有振動周期の1/3以下に定められた膨張部分とを有する。
【選択図】図8

Description

本発明は、液体吐出装置、及び、液体吐出方法に関する。
インクジェットプリンタ等の液体吐出装置には、インクの吐出後に、収縮状態の圧力室を膨張させるものがある(例えば、特許文献1を参照)。圧力室を膨張させる理由は、インクの吐出後において、圧力室内のインクの残留振動を速やかに収束させるためである。この観点から、吐出パルスにおける圧力室を膨張させるための部分は、その生成期間が圧力室の固有振動周期よりも長く定められている。
特開平9−52360号公報
近年、インクジェット技術を利用して、一般的なインクよりも粘度の高い液体を吐出する試みがなされている。そして、一般的に用いられている波形の吐出パルスでこのような粘度の高い液体を吐出させると、液体の吐出周波数を高くするほどに液体の吐出が不安定になるという問題が生じることが判った。例えば、液体滴の飛行曲がりが生じたり、吐出量の不足が生じたりすることが判った。
本発明は、このような事情に鑑みてなされたものであり、その目的は、一般的なインクよりも粘度の高い液体について、吐出を安定化させることにある。
前記目的を達成するための主たる発明は、
(A)液体の供給部とノズルのそれぞれに連通された圧力室と、
(B)前記圧力室の容積を変化させるための動作をする素子と、
(C)前記ノズルから前記液体を吐出させるべく基準容積の圧力室の容積を変化させて前記基準容積に戻す一連の動作を前記素子に行わせる吐出パルスを繰り返し生成する、吐出パルス生成部と、
を備え、
(D)前記液体は、
粘度が6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内であり、
(E)前記吐出パルスは、
前記液体を前記ノズルから吐出させるべく、前記圧力室を収縮させる動作を前記素子に行わせる吐出部分と、
前記吐出部分よりも後に生成され、収縮状態の前記圧力室を前記基準容積まで膨張させるための動作を前記素子に行わせる膨張部分であって、生成期間が前記圧力室における固有振動周期の1/3以下に定められた膨張部分とを有する、
(F)液体吐出装置である。
本発明の他の特徴は、本明細書、及び添付図面の記載により、明らかにする。
本明細書の記載、及び添付図面の記載により、少なくとも次のことが明らかにされる。
すなわち、(A)液体の供給部とノズルのそれぞれに連通された圧力室と、(B)前記圧力室の容積を変化させるための動作をする素子と、(C)前記ノズルから前記液体を吐出させるべく基準容積の圧力室の容積を変化させて前記基準容積に戻す一連の動作を前記素子に行わせる吐出パルスを繰り返し生成する、吐出パルス生成部と、を備え、(D)前記液体は、粘度が6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内であり、(E)前記吐出パルスは、前記液体を前記ノズルから吐出させるべく、前記圧力室を収縮させる動作を前記素子に行わせる吐出部分と、前記吐出部分よりも後に生成され、収縮状態の前記圧力室を前記基準容積まで膨張させるための動作を前記素子に行わせる膨張部分であって、生成期間が前記圧力室における固有振動周期の1/3以下に定められた膨張部分とを有する、(F)液体吐出装置を実現できることが明らかにされる。
このような液体吐出装置によれば、膨張部分に伴う素子の動作によって圧力室が膨張すると、圧力室内における負圧の度合いが高くなり、液体の供給部側から圧力室側に向けて液体を流入させることができる。その結果、6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内の粘度を有する液体について、吐出を安定化させることができる。
かかる液体吐出装置であって、前記膨張部分は、その生成期間が、前記圧力室における固有振動周期の1/4以下に定められていることが好ましい。
このような液体吐出装置によれば、6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内の粘度を有する液体について、吐出を安定化させることができる。
かかる液体吐出装置であって、前記膨張部分は、その生成期間が、メニスカスの形状を維持し得る時間以上に定められていることが好ましい。
このような液体吐出装置によれば、6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内の粘度を有する液体について、吐出を安定化させることができる。
かかる液体吐出装置であって、前記素子は、前記吐出パルスにおける電位の変化パターンに応じた変形により、前記圧力室の容積を変化させるものであることが好ましい。
このような液体吐出装置によれば、圧力室の膨張や収縮を電位の変化パターンに応じて精度良く制御できる。
かかる液体吐出装置であって、前記吐出部分は、前記吐出パルスにおける最高電位と最低電位の一方から他方まで電位を変化させる部分であり、前記膨張部分は、前記吐出パルスにおける最高電位と最低電位の他方から前記基準容積に対応する基準電位まで電位を変化させる部分であることが好ましい。
このような液体吐出装置によれば、液体の吐出周波数を高めることが容易である。
かかる液体吐出装置であって、前記吐出パルスは、前記吐出部分の終端と前記膨張部分の始端とを接続する、前記吐出部分の終端電位で一定の定電位部分を有することが好ましい。
このような液体吐出装置によれば、圧力室の膨張開始タイミングを定電位部分の長さで調整することができ、吐出をより安定化させることができる。
かかる液体吐出装置であって、前記基準電位は、前記吐出パルスにおける最高電位と最低電位の他方から、前記吐出パルスの最高電位と最低電位の差の20%以上であって50%以下の範囲に定められていることが好ましい。
このような液体吐出装置によれば、液滴の吐出速度を確保しつつ、圧力室への液体の供給不足を抑制できる。
また、次の液体吐出方法を実現できることも明らかにされる。
すなわち、液体の供給部とノズルのそれぞれに連通された圧力室内を満たし、粘度が6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内の液体を、前記圧力室の容積を変化させる素子を動作させることにより、前記ノズルから吐出させる液体吐出方法であって、基準容積の前記圧力室を膨張させるステップと、前記液体を前記ノズルから吐出させるべく、膨張状態の前記圧力室を前記基準容積よりも小さな容積まで収縮させるステップと、収縮状態の前記圧力室を、前記圧力室における固有振動周期の1/3以下の期間で、前記基準容積まで膨張させるステップと、を行う液体吐出方法を実現できることも明らかにされる。
===第1実施形態===
<印刷システムについて>
図1に例示した印刷システムは、プリンタ1と、コンピュータCPとを有する。プリンタ1は液体吐出装置に相当し、用紙、布、フィルム等の媒体に向けて、液体の一種であるインクを吐出する。媒体は、液体が吐出される対象となる対象物である。コンピュータCPは、プリンタ1と通信可能に接続されている。プリンタ1に画像を印刷させるため、コンピュータCPは、その画像に応じた印刷データをプリンタ1に送信する。
===プリンタ1の概要===
プリンタ1は、用紙搬送機構10、キャリッジ移動機構20、駆動信号生成回路30、ヘッドユニット40、検出器群50、及び、プリンタ側コントローラ60を有する。
用紙搬送機構10は、用紙を搬送方向に搬送させる。キャリッジ移動機構20は、ヘッドユニット40を所定の移動方向(例えば紙幅方向)に移動させる。駆動信号生成回路30は、駆動信号COMを生成する。この駆動信号COMは、用紙への印刷時にヘッドHD(ピエゾ素子433,図2Aを参照)へ印加されるものであり、図4に一例を示すように、吐出パルスPSを含む一連の信号である。ここで、吐出パルスPSとは、ヘッドHDから滴状のインクを吐出させるために、ピエゾ素子433に所定の動作を行わせる電位の変化パターンである。駆動信号COMが吐出パルスPSを含むことから、駆動信号生成回路30は、吐出パルス生成部に相当する。なお、駆動信号生成回路30の構成や吐出パルスPSについては、後で説明する。ヘッドユニット40は、ヘッドHDとヘッド制御部HCとを有する。ヘッドHDは、インクを用紙に向けて吐出させる。ヘッド制御部HCは、プリンタ側コントローラ60からのヘッド制御信号に基づき、ヘッドHDを制御する。なお、ヘッドHDについては後で説明する。検出器群50は、プリンタ1の状況を監視する複数の検出器によって構成される。これらの検出器による検出結果は、プリンタ側コントローラ60に出力される。プリンタ側コントローラ60は、プリンタ1における全体的な制御を行う。このプリンタ側コントローラ60についても後で説明する。
===プリンタ1の要部===
<ヘッドHDについて>
図2Aに示すように、ヘッドHDは、ケース41と、流路ユニット42と、ピエゾ素子ユニット43とを有する。ケース41は、ピエゾ素子ユニット43を収容して固定するための収容空部411が内部に設けられた箱体状である。このケース41は、例えば樹脂材によって作製される。そして、ケース41の先端面には、流路ユニット42が接合されている。
流路ユニット42は、流路形成基板421と、ノズルプレート422と、振動板423とを有する。そして、流路形成基板421における一方の表面にはノズルプレート422が接合され、他方の表面には振動板423が接合されている。流路形成基板421には、圧力室424、インク供給路425、及び、共通インク室426などが形成されている。この流路形成基板421は、例えばシリコン基板によって作製されている。圧力室424は、ノズル427の並び方向に対して直交する方向に細長い室として形成されている。インク供給路425は、圧力室424と共通インク室426との間を連通する狭い流路の部分である。このインク供給路425は、圧力室424へ液体を供給するための、液体の供給部に相当する。共通インク室426は、インクカートリッジ(図示せず)から供給されたインクを一旦貯留する部分であり、共通の液体貯留室に相当する。
ノズルプレート422には、複数のノズル427が、所定の並び方向に所定の間隔で設けられている。このノズルプレート422は、例えばステンレス板やシリコン基板によって作製されている。
振動板423は、例えばステンレス製の支持板428に樹脂製の弾性体膜429を積層した二重構造を採っている。振動板423における各圧力室424に対応する部分は、ステンレス板の部分が環状にエッチング加工されている。そして、環内には島部428aが形成されている。この島部428aと島部周辺の弾性体膜429aとがダイヤフラム部423aを構成する。このダイヤフラム部423aは、ピエゾ素子ユニット43が有するピエゾ素子433によって変形し、圧力室424の容積を可変する。
ピエゾ素子ユニット43は、ピエゾ素子群431と、固定板432とを有する。ピエゾ素子群431は櫛歯状をしている。そして、櫛歯の1つ1つがピエゾ素子433である。各ピエゾ素子433の先端面は、対応する島部428aに接着される。固定板432は、ピエゾ素子群431を支持するとともに、ケース41に対する取り付け部となる。この固定板432は、例えばステンレス板によって構成されており、収容空部411の内壁に接着される。
ピエゾ素子433は、電気機械変換素子の一種であり、圧力室424内の液体に圧力変化を与えるための動作(変形動作)をする素子に相当する。図2Aに示すピエゾ素子433は、隣り合う電極同士の間に電位差を与えることにより、積層方向と直交する素子長手方向に伸縮する。即ち、上記の電極は、所定電位の共通電極434と、駆動信号COM(吐出パルスPS)に応じた電位になる駆動電極435とを有する。そして、両電極434,435に挟まれた圧電体436は、共通電極434と駆動電極435との電位差に応じた度合いで変形する。ピエゾ素子433は、圧電体436の変形に伴って素子の長手方向に伸縮する。本実施形態において、共通電極434は、グランド電位、若しくは、グランド電位よりも所定電位だけ高いバイアス電位に定められる。そして、ピエゾ素子433は、駆動電極435の電位が共通電極434の電位よりも高くなるほど収縮する。反対に、駆動電極435の電位が共通電極434の電位に近付くほど、或いは、共通電極434の電位よりも低くなるほど伸張する。
前述したように、ピエゾ素子ユニット43は、固定板432を介してケース41に取り付けられている。このため、ピエゾ素子433が収縮すると、ダイヤフラム部423aは、圧力室424から遠ざかる方向に引っ張られる。これにより、圧力室424が膨張される。反対に、ピエゾ素子433が伸長すると、ダイヤフラム部423aが圧力室424側に押される。これにより、圧力室424が収縮する。圧力室424内のインクには、圧力室424の膨張や収縮に起因して圧力変化が生じる。すなわち、圧力室424の収縮に伴って圧力室424内のインクは加圧され、圧力室424の膨張に伴って圧力室424内のインクは減圧される。ピエゾ素子433の伸縮状態は駆動電極435の電位に応じて定まるので、圧力室424の容積も駆動電極435の電位に応じて定まる。従って、圧力室424内のインクに対する加圧度合いや減圧度合いは、駆動電極435における単位時間あたりの電位変化量で定めることができる。
<インク流路について>
ヘッドHDには、共通インク室426からノズル427に至る一連のインク流路(液体で満たされる液体流路に相当する)が、ノズル427の数に応じた複数設けられている。このインク流路では、圧力室424に対して、ノズル427及びインク供給路425がそれぞれ連通している。このため、インクの流れなどの特性を解析する場合、ヘルムホルツの共鳴器の考え方が適用される。図2Bは、この考え方に基づくヘッドHDの構造を模式的に説明する図である。
一般的なヘッドHDにおいて、圧力室424の長さL424は200μmから2000μmの範囲内に定められる。圧力室424の幅W424は20μmから300μmの範囲内に定められ、圧力室424の高さH424は30μmから500μmの範囲内に定められる。そして、インク供給路425の長さL425は50μmから2000μmの範囲内に定められる。インク供給路425の幅W425は20μmから300μmの範囲内に定められ、インク供給路425の高さH425は30μmから500μmの範囲内に定められる。また、ノズル427の直径φ427は10μmから35μmの範囲内に定められ、ノズル427の長さL427は40μmから100μmの範囲内に定められる。
なお、インク供給路425に関し、幅W425や高さH425は、圧力室424の幅W424や高さH424以下に定められる。また、インク供給路425の幅W425や高さH425の一方を、圧力室424の幅W424や高さH424の一方に揃えた場合、インク供給路425の幅W425や高さH425の他方は、圧力室424の幅W424や高さH424の他方よりも小さいサイズに定められる。
このようなインク流路では、圧力室424内のインクに圧力変化を与えることで、ノズル427からインクを吐出させる。このとき、圧力室424、インク供給路425、及び、ノズル427は、ヘルムホルツの共鳴器のように機能する。このため、圧力室424内のインクに加わる圧力の大きさは、ヘルムホルツ周期と呼ばれる固有の周期で変化する。すなわち、インクには圧力振動が生じる。従って、ヘルムホルツ周期は、圧力室424におけるインク(液体)の固有振動周期とも呼ばれる。このヘルムホルツ周期の圧力振動により、メニスカス(ノズル427で露出しているインクの自由表面)がノズル427内で周期的に移動する。そして、この固有振動周期の圧力変化を利用することで、インクをノズル427から効率よく吐出させたり、圧力室424内のインクの圧力変化を効率よく打ち消したりすることができる。
一般的なヘッドHDにおいて、圧力室424における固有振動周期は5μsから10μsの範囲内に定められる。例えば、図2Aのインク流路において、圧力室424の幅W424を100μm、高さH424を70μm、長さL424を1000μmとし、インク供給路425の幅W425を50μm、高さH425を70μm、長さL425を500μmとし、ノズル427の直径φ427を30μm、長さL427を100μmとした場合、圧力室424における固有振動周期は8μs程度になる。なお、この固有振動周期は、隣り合う圧力室424同士を区画する隔壁の厚さ、弾性体膜429の厚さやコンプライアンス、流路形成基板421やノズルプレート422の素材によっても変化する。
<プリンタ側コントローラ60について>
プリンタ側コントローラ60は、プリンタ1における全体的な制御を行う。例えば、コンピュータCPから受け取った印刷データや各検出器からの検出結果に基づいて制御対象部を制御し、用紙に画像を印刷させる。図1に示すように、プリンタ側コントローラ60は、インタフェース部61と、CPU62と、メモリ63とを有する。インタフェース部61は、コンピュータCPとの間でデータの受け渡しを行う。CPU62は、プリンタ1の全体的な制御を行う。メモリ63は、コンピュータプログラムを格納する領域や作業領域等を確保する。CPU62は、メモリ63に記憶されているコンピュータプログラムに従い、各制御対象部を制御する。例えば、CPU62は、用紙搬送機構10やキャリッジ移動機構20を制御する。また、CPU62は、ヘッドHDの動作を制御するためのヘッド制御信号をヘッド制御部HCに送信したり、駆動信号COMを生成させるための制御信号を駆動信号生成回路30に送信したりする。
ここで、駆動信号COMを生成させるための制御信号はDACデータとも呼ばれ、例えば複数ビットのデジタルデータである。このDACデータは、生成される駆動信号COMの電位の変化パターンを定める。従って、このDACデータは、駆動信号COMや吐出パルスPSの電位を示すデータともいえる。このDACデータは、メモリ63の所定領域に記憶されており、駆動信号COMの生成時に読み出されて駆動信号生成回路30へ出力される。
<駆動信号生成回路30について>
駆動信号生成回路30は、吐出パルス生成部として機能し、DACデータに基づき、吐出パルスPSを有する駆動信号COMを生成する。図3に示すように、駆動信号生成回路30は、DAC回路31と、電圧増幅回路32と、電流増幅回路33とを有する。DAC回路31は、デジタルのDACデータをアナログ信号に変換する。電圧増幅回路32は、DAC回路31で変換されたアナログ信号の電圧を、ピエゾ素子433を駆動できるレベルまで増幅する。このプリンタ1では、DAC回路31から出力されるアナログ信号は最大3.3Vであるのに対し、電圧増幅回路32から出力される増幅後のアナログ信号(便宜上、波形信号ともいう。)は最大42Vである。電流増幅回路33は、電圧増幅回路32からの波形信号について電流の増幅をし、駆動信号COMとして出力する。この電流増幅回路33は、例えば、プッシュプル接続されたトランジスタ対によって構成される。
<ヘッド制御部HCについて>
ヘッド制御部HCは、駆動信号生成回路30で生成された駆動信号COMの必要部分をヘッド制御信号に基づいて選択し、ピエゾ素子433へ印加する。このため、図3に示すように、ヘッド制御部HCは、駆動信号COMの供給線の途中に、ピエゾ素子433毎に設けられた複数のスイッチ44を有する。そして、ヘッド制御部HCは、ヘッド制御信号からスイッチ制御信号を生成する。このスイッチ制御信号によって各スイッチ44を制御することで、駆動信号COMの必要部分(例えば吐出パルスPS)がピエゾ素子433へ印加される。このとき、必要部分の選択の仕方次第で、ノズル427からのインクの吐出を制御できる。
<駆動信号COMについて>
次に、駆動信号生成回路30によって生成される駆動信号COMについて説明する。図4に示すように、駆動信号COMには、繰り返し生成される複数の吐出パルスPSが含まれている。これらの吐出パルスPSは、いずれも同じ波形をしている。すなわち、電位の変化パターンが同じである。前述したように、この駆動信号COMは、ピエゾ素子433が有する駆動電極435に印加される。これにより、固定電位とされた共通電極434との間に、電位の変化パターンに応じた電位差が生じる。その結果、ピエゾ素子433は、電位の変化パターンに応じて伸縮し、圧力室424の容積を変化させる。
詳細については後で説明するが、この吐出パルスPSの電位は、基準電位としての中間電位VBから最高電位VHまで上昇した後に、最低電位VLまで下降する。そして、中間電位VBまで上昇する。前述したように、ピエゾ素子433は、駆動電極435の電位が共通電極434の電位よりも高いほど収縮して、圧力室424の容積を拡大させる。従って、この吐出パルスPSがピエゾ素子433に印加されると、圧力室424は、中間電位VBに対応する基準容積から、最高電位VHに対応する最大容積まで膨張する。その後、最低電位VLに対応する最小容積まで収縮し、基準容積まで膨張する。そして、最大容積から最小容積に収縮する際に、圧力室424内のインクが加圧され、ノズル427から滴状のインク(インク滴)が吐出される。
例示した吐出パルスPSでは、最高電位VHから最低電位VLまで変化する部分が、インクを吐出させるための吐出部分に相当する。そして、インク滴の吐出間隔は、相前後して生成される吐出部分の間隔によって定められる。例えば、図4の例において、実線の駆動信号COMは、吐出部分が期間Ta毎に生成されている。これにより、インク滴も期間Ta毎に吐出される。また、一点鎖線の駆動信号COMは、吐出部分が期間Taよりも長い期間Tb毎に生成されている。これにより、インク滴も期間Tb毎に吐出される。従って、実線の駆動信号COMによる吐出周波数は、一点鎖線の駆動信号COMによる吐出周波数よりも高くなる。
===吐出動作について===
<概要>
この種のプリンタ1では、インクをできるだけ高い周波数で吐出させたいという要望がある。これは、印刷等の処理を高速化できるからである。ここで、一般的なインクの粘度(約1ミリパスカル秒)よりも十分に高い粘度のインク、具体的には粘度が6〜20ミリパスカル秒のインク(便宜上、高粘度インクともいう。)を吐出させた場合には、インクの吐出周波数を高めるとインクの吐出が不安定になってしまうという問題があった。図5Aは、高粘度インクが安定して吐出されている様子を示している。これに対し、図5Bは、高粘度インクが不安定な状態で吐出されている様子を示している。これらの図を比較すると、不安定な状態では、飛行速度が不足しているインク滴や吐出曲がりが生じているインク滴があることが判る。
インクの吐出を不安定にする要因は種々考えられるが、その要因の一つにインクの供給不足があると考えられる。このヘッドHDでは、共通インク室426に貯留されたインクを、インク供給路425を通じて圧力室424内に流入させている。ここで、高粘度インクでは、インクの吐出周波数を高めていくと、共通インク室426側からのインクの流入が追いつかなくなると考えられる。このため、圧力室424内のインクが不足した状態でインクの吐出動作が行われることになり、インク滴の飛行速度が過度に遅くなったり、インク滴の飛行曲がりが生じたりすると考えられる。
このような事情に鑑み、本実施形態の吐出パルスPSでは、インクの吐出後に圧力室424を基準容積まで膨張させるための膨張部分に関し、その生成期間(pwc2)を圧力室424における固有振動周期(以下、記号Tcで示すこともある)の1/3以下に定めている。このような吐出パルスPSを用いることにより、吐出周波数を高めても吐出を安定化させることができる。これは、膨張部分の印加に伴う圧力室424の膨張によって、インク供給路425側から圧力室424側に向けて高粘度インクを流入させることができ、液体の供給不足が改善されるためと考えられる。以下、詳細に説明する。
<pwc2<1/4Tcの場合>
図6は、膨張部分として機能する第2減圧部分P6の生成期間pwc2を、圧力室424における固有振動周期の1/4よりも短くした場合の吐出パルスPS1aを説明する図である。図7は、図6の吐出パルスPS1aで1つのインク滴を吐出させた場合における、メニスカスの状態を説明する図である。なお、図6において、縦軸は駆動信号COMの電位であり、横軸は時間である。また、図7において、縦軸はメニスカスの状態をインクの量で示しており、横軸は時間である。縦軸に関し、0ngは、定常状態におけるメニスカスの位置を示す。そして、正側に値が大きくなるほどメニスカスが吐出方向に押し出された状態を示し、負側に値が大きくなるほどメニスカスが圧力室424側に引き込まれた状態を示す。加えて、対象の圧力室424における固有振動周期は8μsであり、インクの粘度は20ミリパスカル秒である。
まず、吐出パルスPS1aについて説明する。図6において、符号P2から符号P6で示される部分が吐出パルスPS1aである。なお、符号P1及び符号P7で示される部分は、中間電位VBで一定の定電位部分である。これらの定電位部分P1,P7は、例えば、先に生成された吐出パルスPS1aの終端と、後に生成される吐出パルスPS1aの始端とを中間電位VBで接続するために用いられる。そして、吐出パルスPS1aは、第1減圧部分P2と、第1電位保持部分P3と、加圧部分P4と、第2電位保持部分P5と、第2減圧部分P6とを有する。
第1減圧部分P2は、タイミングt1aからタイミングt2aに亘って生成される部分である。この第1減圧部分P2は、タイミングt1aにおける電位(始端電位に相当する)が中間電位VBであり、タイミングt2aにおける電位(終端電位に相当する)が最高電位VHである。このため、第1減圧部分P2がピエゾ素子433に印加されると、圧力室424は、基準容積から最大容積まで、第1減圧部分P2の生成期間pwc1に亘って膨張する。この第1減圧部分P2は、吐出部分としての加圧部分P4よりも前に生成され、インク滴を吐出するための準備をすべく圧力室424を膨張させる動作をピエゾ素子433に行わせている。このような第1減圧部分P2は、他の膨張部分に相当する。第1減圧部分P2の始端電位である中間電位VBは、吐出パルスPS1aにおける最低電位VLよりも、吐出パルスPS1aにおける最高電位VHから最低電位VLまでの差(以下、駆動電圧Vhともいう)の40%だけ高い電位に定められている。そして、この吐出パルスPS1aにおける駆動電圧Vhは25Vである。このため、中間電位VBは最低電位VLよりも10V高く、最高電位VHは中間電位VBよりも15V高い。また、第1減圧部分P2の生成期間pwc1は3.5μsである。
第1電位保持部分P3は、タイミングt2aからタイミングt3aに亘って生成される部分である。この第1電位保持部分P3は、最高電位VHで一定である。このため、第1電位保持部分P3がピエゾ素子433に印加されると、圧力室424は、第1電位保持部分P3の生成期間pwh1に亘って、最大容積が維持される。この吐出パルスPS1aにおいて、第1電位保持部分P3の生成期間pwh1は2μsである。
加圧部分P4は、タイミングt3aからタイミングt4aに亘って生成される部分である。この加圧部分P4は、タイミングt3aにおける始端電位が最高電位VHであり、タイミングt4aにおける終端電位が最低電位VLである。このため、加圧部分P4がピエゾ素子433に印加されると、圧力室424は、最大容積から最小容積まで加圧部分P4の生成期間pwd1に亘って収縮する。圧力室424の収縮に伴ってインクが吐出されるので、加圧部分P4は吐出部分に相当する。なお、この吐出パルスPS1aにおいて、加圧部分P4の生成期間は3.5μsである。
第2電位保持部分P5は、タイミングt4aからタイミングt5aに亘って生成される、最低電位VLで一定の部分であり、加圧部分P4の終端と第2減圧部分P6の始端とを一定の電位で接続する定電位部分である。この第2電位保持部分P5がピエゾ素子433に印加されると、圧力室424は、第2電位保持部分P5の生成期間pwh2に亘って、最小容積で維持される。この吐出パルスPS1aにおいて、第2電位保持部分P5の生成期間pwh2は3.5μsである。
第2減圧部分P6は、タイミングt5aからタイミングt6aに亘って生成される部分である。この第2減圧部分P6は、タイミングt5aにおける始端電位が最低電位VLであり、タイミングt6aにおける終端電位が中間電位VBである。このため、第2減圧部分P6がピエゾ素子433に印加されると、圧力室424は、最小容積から基準容積まで、第2減圧部分P6の生成期間pwc2に亘って膨張する。従って、第2減圧部分P6は、吐出部分よりも後に生成され、収縮状態の圧力室424を基準容積まで膨張させるための動作をピエゾ素子433に行わせる膨張部分に相当する。この吐出パルスPS1aにおいて、第2減圧部分P6の生成期間pwc2は1.5μsであり、圧力室424における固有振動周期の1/4(2μs)よりも短く定められている。
次に、この吐出パルスPS1aをピエゾ素子433に印加した場合における、ピエゾ素子433や圧力室424の動作、及び、インクの流れについて説明する。第1減圧部分P2がピエゾ素子433に印加されると、圧力室424が最大容積まで膨張する。この膨張に伴い、メニスカスがノズル427内で圧力室424側に引き込まれる。メニスカスの圧力室424側への移動は、第1減圧部分P2の印加終了後も継続される。すなわち、圧力室424を区画する隔壁や振動板423のコンプライアンス等により、メニスカスは、第1電位保持部分P3の印加期間中も圧力室424側へ移動する。その後、メニスカスは圧力室424から遠ざかる吐出方向に反転する(図7中に符号A1で示すタイミング)。このとき、加圧部分P4の印加に伴う圧力室424の収縮も加わるため、メニスカスの移動速度は速い。加圧部分P4の印加に伴って移動したメニスカスは柱状になる。そして、第2電位保持部分P5のピエゾ素子433への印加が終了するまでに、柱状になったメニスカスの先端側の一部分が切れ、滴状になって吐出される(図7中に符号B1で示すタイミング)。
吐出の反動で、メニスカスは圧力室424側に速い速度で戻る。このとき、ピエゾ素子433には第2減圧部分P6が印加される。この第2減圧部分P6の印加に伴って圧力室424が膨張し、圧力室424内のインク圧力を低くする。このことは、メニスカスが大きく引き込まれていることからも理解できる(図7中に符号C1で示すタイミング)。そして、第2減圧部分P6がピエゾ素子433に印加されると、インク供給路425内のインクは、より強い力で圧力室424側に移動される。従って、第2減圧部分P6は、インク供給路425を通じて共通インク室426側から圧力室424内へとインクを流入させるためのインク流入部分(液体流入部分)ともいえる。その後、メニスカスは、符号D1で示すタイミングで再度圧力室424側に戻り、移動方向の反転を繰り返しながら定常状態(インク量0ng)の位置へ近付く。
メニスカスが定常状態の位置に近付く理由は、圧力室424内のインクが増えているからと考えられる。このため、メニスカスが定常状態の位置に近付いている間は、インク供給路425から圧力室424内にインクが供給されているといえる。そして、メニスカスが定常状態の位置まで戻ったということは、圧力室424内に十分な量のインクが供給されたことを意味する。従って、この時点以降に吐出パルスPS1aをピエゾ素子433に入力すれば、インクの供給不足に起因するインクの吐出不良は防止できる。
図7の例において、メニスカスは、第1減圧部分P2のピエゾ素子433への印加開始から100μsを経過した時点で、ほぼ定常状態の位置に戻っている。本実施形態では、第1減圧部分P2の印加開始から100μsを経過した時点でメニスカスが定常状態の位置に戻っていることを、40kHz程度の高い周波数であっても安定した吐出が行えることの判断基準にしている。ここで、図7の結果では、インク滴の吐出間隔が最短でも100μsであるため、吐出周波数は、最高でも10kHz程度になってしまうとも考えられる。しかし、吐出周波数を高めた場合、インク滴が次々と吐出されることから、インク流路(共通インク室426からノズル427に至る一連の流路)には、共通インク室426側からノズル427側に向かうインクの流れが生じると考えられる。このインクの流れは、吐出周波数を高めるほど速くなり、圧力室424へのインクの供給を補助すると考えられる。以上より、上記の判断基準が定められている。
<pwc2<1/3Tcの場合>
図8は、第2減圧部分P6の生成期間pwc2を、圧力室424における固有振動周期の1/3よりも短くした場合の吐出パルスPS1bを説明する図である。図9は、図8の吐出パルスPS1bでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。この場合も、対象の圧力室424における固有振動周期は8μsであり、インクの粘度は20ミリパスカル秒である。
図8に示す吐出パルスPS1bは、第2減圧部分P6の生成期間pwc2が図6の吐出パルスPS1aと相違している。具体的には、生成期間pwc2が2μsとなっている点が相違している。ここで、圧力室424における固有振動周期は8μsである。従って、2μsという時間は、固有振動周期の1/3よりも短い。なお、この吐出パルスPS1bにおける他の部分については、図6の吐出パルスPS1aと同じである。このため、説明は省略する。
この吐出パルスPS1bをピエゾ素子433に印加した場合、インク滴が吐出されるまでのピエゾ素子433や圧力室424の動作、及び、インク流路内におけるインクの流れは、図6の吐出パルスPS1aをピエゾ素子433に印加した場合とほぼ同じである。図9と図7との比較で判るように、例えば、第1減圧部分P2及び第1電位保持部分P3に起因するメニスカスの引き込み度合いや、引き込まれたメニスカスが吐出方向へ反転するタイミングA1,A2は、何れの吐出パルスPS1a,PS1bでもほぼ同じである。また、インク滴の吐出タイミングB1,B2や、このタイミングにおけるメニスカスの位置もほぼ同じである。
そして、図8の吐出パルスPS1bと図6の吐出パルスPS1aとでは、インク滴の吐出後におけるメニスカスの引き込み量が異なっている。すなわち、図8の吐出パルスPS1bを印加した場合、インク滴の吐出後のタイミングC2(図9)にて、圧力室424側に引き込まれたメニスカスは移動方向を反転させる。同様に、図6の吐出パルスPS1aを印加した場合、タイミングC1(図7)にて、メニスカスは移動方向を反転させる。このときのメニスカスの引き込み量を比較すると、図8の吐出パルスPS1bを印加した場合の方が、図6の吐出パルスPS1aを印加した場合よりも引き込み量が小さい。そして、メニスカスが再度圧力室424側に戻るタイミングD2でのメニスカスの引き込み量は、図6の吐出パルスPS1aを印加した場合(タイミングD1での引き込み量)よりも大きい。要するに、反動が小さくなっていると考えられる。その結果、図6の吐出パルスPS1aを印加した場合よりも、メニスカスの戻り(インクの供給)に多少の遅れが生じている。しかし、メニスカスは、第1減圧部分P2のピエゾ素子433への印加開始から100μsを経過した時点で、ほぼ定常状態の位置まで戻っている。このため、図8の吐出パルスPS1bにおいても、40kHz程度の高い周波数でインク滴を安定して吐出させることができるといえる。
<pwc2≒1/3Tcの場合>
図10は、第2減圧部分P6の生成期間pwc2を、圧力室424における固有振動周期の1/3にほぼ揃えた吐出パルスPS2aを説明する図である。図11は、図10の吐出パルスPS2aでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。この場合において、対象の圧力室424における固有振動周期は7μsであり、インクの粘度は20ミリパスカル秒である。
図10において、符号P2から符号P6で示される部分が吐出パルスPS2aであり、符号P1及び符号P7で示す部分が定電位部分である。この吐出パルスPS2aにおいて、波形(電位の変化パターン)の概略は、図6の吐出パルスPS1aや図8の吐出パルスPS1bと同じである。すなわち、中間電位VBから最高電位VHまで電位を上昇させた後、最低電位VLまで電位を下降させ、中間電位VBに戻している。しかし、図10の吐出パルスPS2aでは、中間電位VBや各部分の生成期間を他の吐出パルスPS1a,PS1bとは異ならせている。
具体的に説明すると、第1減圧部分P2は、タイミングt1cにおける始端電位が中間電位VBであり、タイミングt2cにおける終端電位が最高電位VHである。ここで、中間電位VBは、吐出パルスPS2aにおける最低電位VLよりも、駆動電圧Vhの30%だけ高い電位に定められている。そして、この吐出パルスPS2aにおける駆動電圧Vhは25Vである。このため、中間電位VBは最低電位VLよりも7.5V高く、最高電位VHは中間電位VBよりも17.5V高い。また、第1減圧部分P2の生成期間pwc1は3μsである。
第1電位保持部分P3は、タイミングt2cからタイミングt3cに亘って生成される、最高電位VHで一定の部分である。この吐出パルスPS2aにおいて、第1電位保持部分P3の生成期間pwh1は2μsである。
加圧部分P4は、タイミングt3cからタイミングt4cに亘って生成され、始端電位が最高電位VH、終端電位が最低電位VLである。このため、加圧部分P4がピエゾ素子433に印加されると、インク滴が吐出される。従って、加圧部分P4は、インクを吐出させるための吐出部分に相当する。この吐出パルスPS2aにおいて、加圧部分P4の生成期間pwd1は3μsである。
第2電位保持部分P5は、タイミングt4cからタイミングt5cに亘って生成され、最低電位VLで一定である。この吐出パルスPS2aにおいて、第2電位保持部分P5の生成期間pwh2は5μsである。
第2減圧部分P6は、タイミングt5cからタイミングt6cに亘って生成され、タイミングt5cにおける始端電位が最低電位VLであり、タイミングt6cにおける終端電位が中間電位VBである。この第2減圧部分P6は膨張部分に相当する。この吐出パルスPS2aにおいて、第1減圧部分P2の生成期間pwc1は2.3μsであり、圧力室424における固有振動周期のほぼ1/3の期間に定められている。
この吐出パルスPS2aをピエゾ素子433に印加した場合、インク滴が吐出されるまでのピエゾ素子433や圧力室424の動作、及び、インク流路内におけるインクの流れは、図6や図8の各吐出パルスPS1a,PS1bをピエゾ素子433に印加した場合とほぼ同じである。しかし、図11と図9との比較で判るように、メニスカスの移動量(振幅)が異なっている。例えば、タイミングB3におけるインク量はほぼ20ngである。このようにメニスカスの移動量が異なる理由は、図10の吐出パルスPS2aでは、中間電位VBが図8の吐出パルスPS1bよりも低くなっていること、及び、第1減圧部分P2や加圧部分P4の生成期間が図8の吐出パルスPS1bよりも短くなっていることなどが影響していると考えられる。
このように、メニスカスの動きに違いはあるが、第2減圧部分P6の生成期間を固有振動周期のほぼ1/3に設定した吐出パルスPS2aでも、メニスカスは、第1減圧部分P2の印加開始から100μs経過した時点で定常状態の位置まで戻っている。このため、40kHz程度の高い周波数でインク滴を安定して吐出させることができるといえる。
図12は、第2減圧部分P6の生成期間pwc2を、圧力室424における固有振動周期の1/3にほぼ揃えた他の吐出パルスPS2bを説明する図である。図13は、図12の吐出パルスPS2bでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。この場合においても、対象の圧力室424における固有振動周期は7μsであり、インクの粘度は20ミリパスカル秒である。
図12において、符号P2から符号P6で示される部分が吐出パルスPS2bである。この吐出パルスPS2bにおいて、波形の概略は、前述の吐出パルスPS1a等と同じである。この吐出パルスPS2bでは、中間電位VBや各部分の生成期間を他の吐出パルスPS1a等とは異ならせている。
第1減圧部分P2は、他の膨張部分に相当し、タイミングt1dからタイミングt2dに亘って生成されている。この第1減圧部分P2は、始端電位が中間電位VBであり、終端電位が最高電位VHである。この吐出パルスPS2bにおける駆動電圧Vhは25Vであるので、中間電位VBは最低電位VLよりも5V高く、最高電位VHは中間電位VBよりも20V高い。そして、第1減圧部分P2の生成期間pwc1は2μsである。
第1電位保持部分P3は、タイミングt2dからタイミングt3dに亘って生成されている。この第1電位保持部分P3は、最高電位VHで一定である。この吐出パルスPS2bにおいて、第1電位保持部分P3の生成期間pwh1は1μsである。
加圧部分P4は、吐出部分に相当し、タイミングt3dからタイミングt4dに亘って生成される。この加圧部分P4の始端電位は最高電位VHであり、終端電位は最低電位VLである。この吐出パルスPS2bにおいて、加圧部分P4の生成期間は2μsである。
第2電位保持部分P5は、タイミングt4dからタイミングt5dに亘って生成され、最低電位VLで一定の部分である。この吐出パルスPS2bにおいて、第2電位保持部分P5の生成期間pwh2は3μsである。
第2減圧部分P6は、膨張部分に相当し、タイミングt5dからタイミングt6dに亘って生成される。この第2減圧部分P6の始端電位は最低電位VLであり、終端電位は中間電位VBである。この吐出パルスPS2bにおいて、第2減圧部分P6の生成期間pwc2は、吐出パルスPS2aと同じく2.3μsであり、圧力室424における固有振動周期のほぼ1/3に定められている。
この吐出パルスPS2bをピエゾ素子433に印加した場合、インク滴が吐出されるまでのピエゾ素子433や圧力室424の動作、及び、インク流路内におけるインクの流れは、前述の吐出パルスPS1a等をピエゾ素子433に印加した場合とほぼ同じである。しかし、図13と図11との比較で判るように、メニスカスの移動量(振幅)が異なっている。例えば、タイミングA4におけるメニスカスの位置は、タイミングA3におけるメニスカスの位置よりも圧力室424側であり、タイミングD4におけるメニスカスの位置は、タイミングD3におけるメニスカスの位置よりも吐出側である。このことから、吐出パルスPS2bをピエゾ素子433に印加した場合、インクにおける圧力振動の振幅は、吐出パルスPS2aをピエゾ素子433に印加した場合よりも大きくなっていると考えられる。このような違いはあるが、吐出パルスPS2bをピエゾ素子433に印加した場合であっても、メニスカスは、第1減圧部分P2の印加開始から100μs経過した時点で定常状態の位置まで戻っている。従って、40kHz程度の高い周波数でインク滴を安定して吐出させることができるといえる。
図14は、第2減圧部分P6の生成期間pwc2を、圧力室424における固有振動周期の1/3にほぼ揃えた他の吐出パルスPS2cを説明する図である。図15は、図14の吐出パルスPS2cでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。この場合においても、対象の圧力室424における固有振動周期は7μsであり、インクの粘度は20ミリパスカル秒である。
図14において、符号P2から符号P6で示される部分が吐出パルスPS2cである。この吐出パルスPS2cにおいて、波形の概略は、前述の吐出パルスPS1a等と同じである。そして、この吐出パルスPS2cでも、中間電位VBや各部分の生成期間を他の吐出パルスPS1a等とは異ならせている。
第1減圧部分P2は、タイミングt1eからタイミングt2eに亘って生成されている。この第1減圧部分P2は、始端電位が中間電位VBであり、終端電位が最高電位VHである。この吐出パルスPS2cにおける駆動電圧Vhは25Vであるので、中間電位VBは最低電位VLよりも12.5V高く、最高電位VHは中間電位VBよりも12.5V高い。そして、第1減圧部分P2の生成期間pwc1は3μsである。
第1電位保持部分P3は、タイミングt2eからタイミングt3eに亘って生成されている。この第1電位保持部分P3は、最高電位VHで一定である。この吐出パルスPS2cにおいて、第1電位保持部分P3の生成期間pwh1は1μsである。
加圧部分P4は、タイミングt3eからタイミングt4eに亘って生成され、吐出部分に相当する。この加圧部分P4の始端電位は最高電位VHであり、終端電位は最低電位VLである。この吐出パルスPS2cにおいて、加圧部分P4の生成期間は2μsである。
第2電位保持部分P5は、タイミングt4eからタイミングt5eに亘って生成され、最低電位VLで一定の部分である。この吐出パルスPS2cにおいて、第2電位保持部分P5の生成期間pwh2は3μsである。
第2減圧部分P6は、タイミングt5eからタイミングt6eに亘って生成される。この第2減圧部分P6の始端電位は最低電位VLであり、終端電位は中間電位VBである。この吐出パルスPS2cにおいて、第2減圧部分P6の生成期間pwc2は、吐出パルスPS2a等と同じく2.3μsであり、圧力室424における固有振動周期のほぼ1/3に定められている。
この吐出パルスPS2cをピエゾ素子433に印加した場合、インク滴が吐出されるまでのピエゾ素子433や圧力室424の動作、及び、インク流路内におけるインクの流れは、前述の吐出パルスPS1a等をピエゾ素子433に印加した場合とほぼ同じである。しかし、図15と図13との比較で判るように、メニスカスの移動量(振幅)が異なっている。例えば、タイミングA5におけるメニスカスの位置は、タイミングA4におけるメニスカスの位置よりも吐出側であり、タイミングD5におけるメニスカスの位置は、タイミングD4におけるメニスカスの位置よりも圧力室424側である。このことから、吐出パルスPS2cをピエゾ素子433に印加した場合、吐出パルスPS2aをピエゾ素子433に印加した場合に比べ、第1減圧部分P2に起因するインクの減圧度合いは小さく、第2減圧部分P6に起因するインクの減圧度合いは大きいといえる。このような違いはあるが、吐出パルスPS2cをピエゾ素子433に印加すると、メニスカスは、第1減圧部分P2の印加開始から50μs経過した時点でほぼ定常状態の位置まで戻っている。従って、40kHz程度の高い周波数でインク滴を安定して吐出させることができるといえる。
<pwc2>1/3Tcの場合>
次に、比較例として、第2減圧部分P6の生成期間pwc2を、圧力室424における固有振動周期の1/3よりも長くした場合について説明する。図16は、この吐出パルスPS1cを説明する図である。図17は、図16の吐出パルスPS1cでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。この場合において、対象の圧力室424における固有振動周期は8μsであり、インクの粘度は20ミリパスカル秒である。
図16に示す吐出パルスPS1cは、第2減圧部分P6の生成期間pwc2が図8の吐出パルスPS1bと相違している。具体的には、生成期間pwc2が4μsとなっている点が相違している。ここで、圧力室424における固有振動周期は8μsである。従って、4μsという時間は、固有振動周期の1/2である。なお、この吐出パルスPS1cにおける他の部分については、図8の吐出パルスPS1bと同じである。このため、説明は省略する。
この吐出パルスPS1cをピエゾ素子433に印加した場合、インク滴が吐出されるまでのピエゾ素子433や圧力室424の動作、及び、インク流路内におけるインクの流れは、図8の吐出パルスPS1bをピエゾ素子433に印加した場合とほぼ同じである。図17と図9との比較で判るように、例えば、第1減圧部分P2及び第1電位保持部分P3に起因するメニスカスの引き込み度合いや、引き込まれたメニスカスが吐出方向へ反転するタイミングA2,A6は、何れの吐出パルスPS1b,PS1cでもほぼ同じである。また、インク滴の吐出タイミングB2,B6や、このタイミングにおけるメニスカスの位置もほぼ同じである。
図16に示す吐出パルスPS1cと図8の吐出パルスPS1bとでは、インク滴の吐出後におけるメニスカスの引き込み量が異なっている。特にタイミングD2,D6における、メニスカスの反転時の引き込み量に顕著な違いが現れている。すなわち、図16の吐出パルスPS1cを用いた場合(タイミングD6)の方が図8の吐出パルスPS1bを用いた場合(タイミングD2)よりも、反転時におけるメニスカスの位置が圧力室424寄りになっている。これに伴い、図16の吐出パルスPS1cでは、メニスカスが定常状態の位置まで戻るまで、第1減圧部分P2の印加開始から約150μs以上経過している。これは、第2減圧部分P6に起因して生じるインク供給路425内のインクの流れが、図8の吐出パルスPS1bを用いた場合よりも弱いためと考えられる。このため、図16の吐出パルスPS1cを用い、40kHz程度の高い周波数でインク滴を吐出させた場合には、インクの供給不足が生じて吐出が不安定になってしまう虞がある。
<生成期間pwc2と波形の関係について>
次に、第2減圧部分P6の生成期間pwc2と波形の関係について説明する。図18Aは、図6の吐出パルスPS1aで1つのインク滴を吐出させた場合における、メニスカスの状態を説明する図である。図18Bは、図10の吐出パルスPS2aで1つのインク滴を吐出させた場合における、メニスカスの状態を説明する図である。なお、比較を容易にするために、図18A,図18Bでは時間軸を揃えている。
ここで、図6の吐出パルスPS1aを用いた圧力室424の固有振動周期は8μsであり、図10の吐出パルスPS2aを用いた圧力室424の固有振動周期は7μsである。また、図6の吐出パルスPS1aは10ngのインク滴を吐出させるように波形が調整され、図10の吐出パルスPS2aは20ngのインク滴を吐出させるように波形が調整されている。加えて、図6の吐出パルスPS1aが有する第2減圧部分P6の生成期間pwc2は、圧力室424の固有振動周期の1/4よりも短く定められ、図10の吐出パルスPS2aが有する第2減圧部分P6の生成期間pwc2は、圧力室424の固有振動周期のほぼ1/3に定められている。
このように、図6の吐出パルスPS1aと図10の吐出パルスPS2aには波形の違いがあり、また対象となる圧力室424の固有振動周期も異なっている。しかし、図18Aと図18Bの比較から判るように、吐出パルスPSの波形等に相違があっても、第2減圧部分P6の生成期間pwc2を圧力室424における固有振動周期の1/3以下に定めることにより、40kHz程度の高い周波数でインク滴を安定して吐出できるといえる。
<周波数特性について>
次に、インクの吐出周波数について説明する。図19は、図6の吐出パルスPS1aを用いた場合(四角形)、及び、図8の吐出パルスPS1bを用いた場合(菱形)におけるインク滴の吐出量を、吐出周波数毎に示す図である。この例では、吐出タイミング(B1,B2)におけるメニスカスの位置を、インク滴の吐出量としている。この図において、上側の太線と下側の太線とに挟まれた範囲が、インク滴の量の許容範囲を示している。そして、各吐出パルスPS1a,PS1bにおける目標吐出量が10ngであることから、その10%である1ngを許容範囲に定めている。なお、10%という数値は、プリンタ1において画質に影響を与えない程度の誤差として定められている。
図19から判るように、図6の吐出パルスPS1a、及び、図8の吐出パルスPS1bの何れにおいても、吐出周波数を2kH〜40kHzの広い範囲に亘って変化させたとしても、吐出量が許容範囲内に収まっていることがわかる。これにより、インク滴の安定的な吐出が行えることが判る。
<粘度との関係について>
前述した結果は、インクの粘度が20ミリパスカル秒の結果であった。ここで、インクの供給不足は、インクの粘度が低くなるほど生じ難くなると考えられる。従って、20ミリパスカル秒のインクにおいてインクの吐出が安定化できれば、それよりも低い粘度の高粘度インクについてもインクの吐出が安定化できると考えられる。ここで、図20は、インクの粘度が6ミリパスカル秒である場合に使用できる吐出パルスPS3を説明する図である。図21は、図20の吐出パルスPS3を用いた場合における、メニスカスの状態を説明するための図である。この場合において、対象の圧力室424における固有振動周期は7μsである。
図20の吐出パルスPS3において、波形の概略は、図6の吐出パルスPS1a等と同じである。しかし、図20の吐出パルスPS3では、駆動電圧Vhや各部分の生成期間を他の吐出パルスPS1a等とは異ならせている。
具体的に説明すると、第1減圧部分P2は、タイミングt1gにおける始端電位が中間電位VBであり、タイミングt2gにおける終端電位が最高電位VHである。ここで、中間電位VBは、吐出パルスPS3における最低電位VLよりも、駆動電圧Vhの40%だけ高い電位に定められている。そして、この吐出パルスPS3における駆動電圧Vhは30Vである。このため、中間電位VBは最低電位VLよりも12V高く、最高電位VHは中間電位VBよりも18V高い。また、第1減圧部分P2の生成期間pwc1は4μsである。
第1電位保持部分P3は、タイミングt2gからタイミングt3gに亘って生成される、最高電位VHで一定の部分である。この吐出パルスPS3において、第1電位保持部分P3の生成期間pwh1は1.4μsである。
加圧部分P4は、タイミングt3gからタイミングt4gに亘って生成され、始端電位が最高電位VH、終端電位が最低電位VLの部分である。この第1減圧部分P2が吐出部分に相当する。この吐出パルスPS3において、加圧部分P4の生成期間は2.8μsである。
第2電位保持部分P5は、タイミングt4gからタイミングt5gに亘って生成され、最低電位VLで一定の部分である。この吐出パルスPS3において、第2電位保持部分P5の生成期間pwh2は2.8μsである。
第2減圧部分P6は、タイミングt5gからタイミングt6gに亘って生成され、タイミングt5gにおける始端電位が最低電位VLであり、タイミングt6gにおける終端電位が中間電位VBである。このため、第2減圧部分P6は膨張部分に相当する。この吐出パルスPS3において、第1減圧部分P2の生成期間pwc1は6μsであり、圧力室424における固有振動周期の1/3よりも長い。
この吐出パルスPS3をピエゾ素子433に印加した場合、図21に示すように、第1減圧部分P2の印加開始から40μs経過した時点で、メニスカスは定常状態の位置まで戻っている。このように、生成期間pwc1を固有振動周期の1/3よりも長く定めても、第1減圧部分P2の印加開始から40μs経過した時点で、メニスカスが定常状態の位置まで戻っている。このことから、図20の吐出パルスPS3においても、40kHz程度の高い周波数でインク滴を安定して吐出させることができるといえる。
<まとめ>
以上の説明から判るように、このプリンタ1では、各吐出パルスPS(PS1a,PS1b,PS2a〜PS2c,PS3)が有する第2減圧部分P6、すなわち、収縮状態の圧力室424を基準容積まで膨張させるための動作をピエゾ素子433に行わせる膨張部分について、その生成期間pwc2を圧力室424における固有振動周期の1/3以下にしている。これにより、6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内の粘度を有する高粘度インクについて、吐出を安定化させることができる。
また、図7と図9の比較から、20ミリパスカルのインクにおいては、第2減圧部分P6の生成期間pwc2は、固有振動周期の1/4以下にすることがより好ましいといえる。メニスカスの戻りが速やかになるからである。なお、第2減圧部分P6の生成期間pwc2は、メニスカスの形状を維持できる時間以上であることが求められる。すなわち、あまりに短い時間でメニスカスを圧力室424側に引き込んでしまうと、メニスカスが大きく変形して気泡になり、圧力室424内に入り込んでしまう。この観点から、生成期間pwc2の最小値が定められる。この例において、生成期間pwc2は1μs以上であることが好ましい。なお、1μs以上に定めると、ピエゾ素子433を保護することもできる。すなわち、ピエゾ素子433の電位を短時間に急激に変化させると、過度に大きな電流がピエゾ素子433に流れ込んでしまう。生成期間pwc2を1μs以上に定めることで、電流を制限できる。
また、各吐出パルスPSにおいて、加圧部分P4、すなわちインクを吐出させるための吐出部分は、各吐出パルスPSにおける最高電位VHから最低電位VLまで、一定の勾配で電位を変化させている。このように吐出部分を定めることで、圧力室424における容積の変化幅を大きくすることができ、液体の吐出量を増やすことができる。また、加圧部分P4の終端と第2減圧部分P6の始端とを、一定電位の第2電位保持部分P5で接続しているので、吐出パルスPSの波形を単純化でき、高い周波数でのインクの吐出に適する。また、第2減圧部分P6による圧力室424の膨張開始タイミングを、第2電位保持部分P5の生成期間で調整できる。
また、各吐出パルスPSにおいて、第1減圧部分P2の始端電位を、最低電位VLから、最高電位VHと前記最低電位VLの差の20%(吐出パルスPS2b)以上であって50%(吐出パルスPS2c)以下の範囲に定めている。これにより、インク吐出前における圧力室424の膨張容積とインク吐出後における圧力室424の膨張容積とをバランスよく定めることができる。その結果、インク滴の吐出速度を確保しつつ、圧力室424へのインクの供給不足を抑制できる。
また、各吐出パルスPSにおいて、加圧部分P4よりも前に、中間電位VBから最高電位VHまで一定の勾配で電位を変化させる第1膨張部分P2を設けている。そして、この第1膨張部分P2の終端と加圧部分P4の始端とを、第1膨張部分P2の終端電位で一定の第1電位保持部分P3で接続している。このように構成することで、波形の簡素化(単純化)が図れ、インク滴の高い周波数での吐出に適する。
===その他の実施形態について===
前述した実施形態は、主として、液体吐出装置としてのプリンタ1を有する印刷システムについて記載されているが、その中には、液体吐出方法や液体吐出システム等の開示が含まれている。また、この実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
<他のヘッドについて>
前述した実施形態のヘッドHDでは、ピエゾ素子433として、吐出パルスPSで与えられる電位が高いほど、圧力室424の容積を大きくするための動作をするタイプのものを用いていた。ヘッドに関し、他のタイプのものを用いてもよい。図22に示した他のヘッドHD´は、ピエゾ素子75として、吐出パルスPS4(図23を参照)で与えられる電位が高いほど、圧力室73の容積を小さくするための動作をするタイプのものを用いている。
簡単に説明すると、他のヘッドHD´は、共通インク室71と、インク供給口72と、圧力室73と、ノズル74とを有する。そして、共通インク室71から圧力室73を通ってノズル74に至る一連のインク流路をノズル74に対応する複数有している。他のヘッドHD´でも圧力室73は、その容積がピエゾ素子75の動作によって変化される。すなわち、圧力室73の一部は振動板76によって区画され、圧力室73とは反対側となる振動板76の表面にはピエゾ素子75が設けられている。
ピエゾ素子75はそれぞれの圧力室73に対応して複数設けられている。各ピエゾ素子75は、例えば圧電体を上電極と下電極とで挟んだ構成であり(何れも図示せず。)、これらの電極間に電位差を与えることにより変形する。この例では、上電極の電位を上昇させると圧電体が充電され、これに伴ってピエゾ素子75は圧力室73側に凸となるように撓む。これにより圧力室73が収縮される。
他のヘッドHD´用の吐出パルスPS4は、例えば図23に示す波形のものである。簡単に説明すると、この吐出パルスPS4は、前述した各吐出パルスPSを電位方向(高低方向)に反転させた波形をしている。従って、この吐出パルスPS4は、第1減圧部分P12と、第1電位保持部分P13と、加圧部分P14と、第2電位保持部分P15と、第2減圧部分P16とを有する。なお、符号P11及びP17で示す部分は、定電位部分である。
第1減圧部分P12は、始端電位が中間電位VB、終端電位が最低電位VLであり、タイミングt1hからタイミングt2hに亘って生成される。第1電位保持部分P13は、最低電位VLで一定であり、タイミングt2hからタイミングt3hに亘って生成される。加圧部分P14は、始端電位が最低電位VL、終端電位が最高電位VHであり、タイミングt3hからタイミングt4hに亘って生成される。第2電位保持部分P15は、最高電位VHで一定であり、タイミングt4hからタイミングt5hに亘って生成される。第2減圧部分P16は、始端電位が最高電位VH、終端電位が中間電位VBであり、タイミングt5hからタイミングt6hに亘って生成される。なお、圧力室73における固有振動周期、及び、各タイミングt1h〜t6hで規定される期間は、図6の吐出パルスPS1aと同じである。
他のヘッドHD´用の吐出パルスPS4が有する各部分P11〜P16の機能は、図6の吐出パルスPS1aが有する各部分P1〜P6の機能と同じである。そして、中間電位VBは、吐出パルスPS4における最高電位VHよりも、駆動電圧Vhの40%だけ低い電位に定められている。この吐出パルスPS4を用いて高粘度インクを高い吐出周波数で吐出させても、吐出を安定させることができる。
<吐出動作をする素子について>
このプリンタ1では、インクを吐出させるための動作をする素子として、ピエゾ素子433,75を用いている。ここで、吐出動作をする素子は、前述したピエゾ素子433,75に限定されるものではない。印加された電位に応じて動作をし、圧力室424,73内の液体に圧力変化を与える素子であればよい。例えば、磁歪素子であってもよい。そして、この素子として、前述の実施形態のようにピエゾ素子433,75を用いた場合には、圧力室424,73の容積を吐出パルスPSの電位に基づいて精度良く制御できる。
<他の応用例について>
また、前述の実施形態では、液体吐出装置としてプリンタ1が説明されていたが、これに限られるものではない。例えば、カラーフィルタ製造装置、染色装置、微細加工装置、半導体製造装置、表面加工装置、三次元造形機、液体気化装置、有機EL製造装置(特に高分子EL製造装置)、ディスプレイ製造装置、成膜装置、DNAチップ製造装置などのインクジェット技術を応用した各種の液体吐出装置に、本実施形態と同様の技術を適用しても良い。また、これらの方法や製造方法も応用範囲の範疇である。
印刷システムの構成を説明するブロック図である。 図2Aは、ヘッドの断面図である。図2Bは、ヘッドの構造を模式的に説明する図である。 駆動信号生成回路等の構成を説明するブロック図である。 駆動信号の一例を説明するための図である。 図5Aは、高粘度インクが安定して吐出されている様子を示す図である。図5Bは、高粘度インクが不安定な状態で吐出されている様子を示す図である。 第2減圧部分の生成期間を、圧力室における固有振動周期の1/4よりも短くした場合の吐出パルスを説明する図である。 図6の吐出パルスで1つのインク滴を吐出させた場合における、メニスカスの状態を説明する図である。 第2減圧部分の生成期間を、圧力室における固有振動周期の1/3よりも短くした場合の吐出パルスを説明する図である。 図8の吐出パルスでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。 第2減圧部分の生成期間を、圧力室における固有振動周期の1/3にほぼ揃えた吐出パルスの、第1の例を説明する図である。 図10の吐出パルスでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。 第2減圧部分の生成期間を、圧力室における固有振動周期の1/3にほぼ揃えた吐出パルスの、第2の例を説明する図である。 図12の吐出パルスでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。 第2減圧部分の生成期間を、圧力室における固有振動周期の1/3にほぼ揃えた吐出パルスの、第3の例を説明する図である。 図14の吐出パルスでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。 第2減圧部分の生成期間を、圧力室における固有振動周期の1/3よりも長くした場合の吐出パルスを説明する図である。 図16の吐出パルスでインクを1回吐出させた場合における、メニスカスの状態を説明する図である。 図18Aは、図6の吐出パルスで1つのインク滴を吐出させた場合における、メニスカスの状態を説明する図である。図18Bは、図10の吐出パルスで1つのインク滴を吐出させた場合における、メニスカスの状態を説明する図である。 図6の吐出パルスを用いた場合(四角形)、及び、図8の吐出パルスを用いた場合(菱形)におけるインク滴の吐出量を、吐出周波数毎に示す図である。 インクの粘度が6ミリパスカル秒である場合に使用できる吐出パルスを説明する図である。 図20の吐出パルスを用いた場合における、メニスカスの状態を説明するための図である。 他のヘッドを説明する断面図である。 他のヘッド用の吐出パルスを説明する図である。
符号の説明
1 プリンタ,10 用紙搬送機構,20 キャリッジ移動機構,
30 駆動信号生成回路,31 DAC回路,32 電圧増幅回路,
33 電流増幅回路,40 ヘッドユニット,41 ケース,
411 収容空部,42 流路ユニット,421 流路形成基板,
422 ノズルプレート,423 振動板,423a ダイヤフラム部,
424 圧力室,425 インク供給路,426 共通インク室,
427 ノズル,428 支持板,428a 島部,429 弾性体膜,
43 ピエゾ素子ユニット,431 ピエゾ素子群,432 固定板,
433 ピエゾ素子,434 共通電極,435 駆動電極,
436 圧電体,44 スイッチ,50 検出器群,
60 プリンタ側コントローラ,61 インタフェース部,
62 CPU,63 メモリ,71 共通インク室,
72 インク供給口,73 圧力室,74 ノズル,75 ピエゾ素子,
76 振動板,CP コンピュータ,HD ヘッド,
HD´ 他のヘッド,HC ヘッド制御部,COM 駆動信号,
PS 吐出パルス,P2 第1減圧部分,P3 第1電位保持部分,
P4 加圧部分,P5 第2電位保持部分,P6 第2減圧部分,
P12 第1減圧部分,P13 第1電位保持部分,
P14 加圧部分,P15 第2電位保持部分,P16 第2減圧部分

Claims (8)

  1. (A)液体の供給部とノズルのそれぞれに連通された圧力室と、
    (B)前記圧力室の容積を変化させるための動作をする素子と、
    (C)前記ノズルから前記液体を吐出させるべく基準容積の圧力室の容積を変化させて前記基準容積に戻す一連の動作を前記素子に行わせる吐出パルスを繰り返し生成する、吐出パルス生成部と、
    を備え、
    (D)前記液体は、
    粘度が6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内であり、
    (E)前記吐出パルスは、
    前記液体を前記ノズルから吐出させるべく、前記圧力室を収縮させる動作を前記素子に行わせる吐出部分と、
    前記吐出部分よりも後に生成され、収縮状態の前記圧力室を前記基準容積まで膨張させるための動作を前記素子に行わせる膨張部分であって、生成期間が前記圧力室における固有振動周期の1/3以下に定められた膨張部分とを有する、
    (F)液体吐出装置。
  2. 請求項1に記載の液体吐出装置であって、
    前記膨張部分は、
    その生成期間が、前記圧力室における固有振動周期の1/4以下に定められている、液体吐出装置。
  3. 請求項1又は請求項2に記載の液体吐出装置であって、
    前記膨張部分は、
    その生成期間が、メニスカスの形状を維持し得る時間以上に定められている、液体吐出装置。
  4. 請求項1から請求項3の何れかに記載の液体吐出装置であって、
    前記素子は、
    前記吐出パルスにおける電位の変化パターンに応じた変形により、前記圧力室の容積を変化させるものである、液体吐出装置。
  5. 請求項4に記載の液体吐出装置であって、
    前記吐出部分は、
    前記吐出パルスにおける最高電位と最低電位の一方から他方まで電位を変化させる部分であり、
    前記膨張部分は、
    前記吐出パルスにおける最高電位と最低電位の他方から前記基準容積に対応する基準電位まで電位を変化させる部分である、液体吐出装置。
  6. 請求項5に記載の液体吐出装置であって、
    前記吐出パルスは、
    前記吐出部分の終端と前記膨張部分の始端とを接続する、前記吐出部分の終端電位で一定の定電位部分を有する、液体吐出装置。
  7. 請求項5又は請求項6に記載の液体吐出装置であって、
    前記基準電位は、
    前記吐出パルスにおける最高電位と最低電位の他方から、前記吐出パルスの最高電位と最低電位の差の20%以上であって50%以下の範囲に定められている、液体吐出装置。
  8. 液体の供給部とノズルのそれぞれに連通された圧力室内を満たし、粘度が6ミリパスカル秒以上であって20ミリパスカル秒以下の範囲内の液体を、前記圧力室の容積を変化させる素子を動作させることにより、前記ノズルから吐出させる液体吐出方法であって、
    基準容積の前記圧力室を膨張させるステップと、
    前記液体を前記ノズルから吐出させるべく、膨張状態の前記圧力室を前記基準容積よりも小さな容積まで収縮させるステップと、
    収縮状態の前記圧力室を、前記圧力室における固有振動周期の1/3以下の期間で、前記基準容積まで膨張させるステップと、
    を行う液体吐出方法。
JP2008002021A 2008-01-09 2008-01-09 液体吐出装置、及び、液体吐出方法 Pending JP2009160865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002021A JP2009160865A (ja) 2008-01-09 2008-01-09 液体吐出装置、及び、液体吐出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002021A JP2009160865A (ja) 2008-01-09 2008-01-09 液体吐出装置、及び、液体吐出方法

Publications (1)

Publication Number Publication Date
JP2009160865A true JP2009160865A (ja) 2009-07-23

Family

ID=40964023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002021A Pending JP2009160865A (ja) 2008-01-09 2008-01-09 液体吐出装置、及び、液体吐出方法

Country Status (1)

Country Link
JP (1) JP2009160865A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643414B2 (en) 2015-09-08 2017-05-09 Ricoh Company, Ltd. Device to discharge liquid and head driving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141642A (ja) * 1998-04-03 2000-05-23 Seiko Epson Corp インクジェット式記録ヘッドの駆動方法
JP2003237060A (ja) * 2002-02-20 2003-08-26 Seiko Epson Corp デバイスの製造装置及び製造方法、デバイスの製造装置の駆動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141642A (ja) * 1998-04-03 2000-05-23 Seiko Epson Corp インクジェット式記録ヘッドの駆動方法
JP2003237060A (ja) * 2002-02-20 2003-08-26 Seiko Epson Corp デバイスの製造装置及び製造方法、デバイスの製造装置の駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643414B2 (en) 2015-09-08 2017-05-09 Ricoh Company, Ltd. Device to discharge liquid and head driving method

Similar Documents

Publication Publication Date Title
JP2009255513A (ja) 液体吐出方法、液体吐出ヘッド、及び、液体吐出装置
JP5251093B2 (ja) 液体吐出装置、及び、液体吐出方法
JP2014019050A (ja) インクジェット記録装置及びインクジェット式記録ヘッドの駆動方法
JP2009234253A (ja) 液体吐出方法、液体吐出ヘッド、及び、液体吐出装置
JP5428970B2 (ja) 液体吐出装置、及び、液体吐出方法
JP5446295B2 (ja) 液体吐出装置、及び、液体吐出方法
JP2009255514A (ja) 液体吐出方法、液体吐出ヘッド、及び、液体吐出装置
JP5347325B2 (ja) 液体吐出装置、及び、液体吐出方法
JP2012196902A (ja) 液体噴射装置
JP5169227B2 (ja) 吐出パルスの設定方法
JP2010110968A (ja) 液体吐出装置、及び、液体吐出方法
JP2010221567A (ja) 液体吐出装置、及び、その制御方法
JP2009226926A (ja) 液体吐出方法、液体吐出ヘッド、及び、液体吐出装置
JP2009234252A (ja) 液体吐出方法、液体吐出ヘッド、及び、液体吐出装置
JP2008114486A (ja) 液体噴射装置、及び、その制御方法
JP5187046B2 (ja) 液体吐出装置
JP5200556B2 (ja) 吐出パルスの設定方法
JP2015089645A (ja) インクジェットヘッド
JP2010131909A (ja) 液体吐出装置、及び、液体吐出方法
JP2009160865A (ja) 液体吐出装置、及び、液体吐出方法
JP6644538B2 (ja) 液体吐出装置及びこれを備えたインクジェット式記録装置
JP2008105265A (ja) 液体噴射ヘッドの駆動方法、及び、液体噴射装置
JP4529515B2 (ja) 液体噴射装置
JP5256930B2 (ja) 液体吐出ユニット、液体吐出装置、及び、液体吐出方法
JP2009172920A (ja) 液体吐出装置、及び、液体吐出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016