JP2009158054A - 垂直磁気記録媒体及びその製造方法 - Google Patents

垂直磁気記録媒体及びその製造方法 Download PDF

Info

Publication number
JP2009158054A
JP2009158054A JP2007338122A JP2007338122A JP2009158054A JP 2009158054 A JP2009158054 A JP 2009158054A JP 2007338122 A JP2007338122 A JP 2007338122A JP 2007338122 A JP2007338122 A JP 2007338122A JP 2009158054 A JP2009158054 A JP 2009158054A
Authority
JP
Japan
Prior art keywords
layer
alloy
recording medium
soft magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007338122A
Other languages
English (en)
Other versions
JP5128930B2 (ja
Inventor
Hiroyuki Suzuki
博之 鈴木
Hiroshi Ide
井手  浩
Atsushi Nakamura
敦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2007338122A priority Critical patent/JP5128930B2/ja
Publication of JP2009158054A publication Critical patent/JP2009158054A/ja
Application granted granted Critical
Publication of JP5128930B2 publication Critical patent/JP5128930B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】少ないエネルギ消費で効率良く磁気記録媒体を加熱し、記録層に用いる規則合金の規則度が変化しても長期間にわたり書き込み性能を向上する。
【解決手段】剛体基板10上に接着層12を介して或いは直接軟磁性下地層141を形成し、その軟磁性下地層上に非磁性中間層142を介して軟磁性下地層143、酸化物からなる低熱伝導中間層144を形成後、結晶配向性制御層を介して或いは直接結晶粒径制御層18を形成し、結晶配向性制御兼低熱伝導中間層を介して或いは直接、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層20、Fe−Pt合金或いはCo−Pt合金からなるキャップ層22、保護層24及び潤滑層26をこの順に形成した構造を有する垂直磁気記録媒体とする。
【選択図】図1

Description

本発明は、高密度磁気記録を実現する垂直磁気記録媒体及びその製造方法に関する。
特許文献1には、基体への熱の影響を最小限に抑えながら磁気記録層を加熱することを目的とし、断熱層を基体と磁気記録層との間に形成する磁気記録媒体が提案されている。特許文献3には、熱伝導率の低い材料で形成されたディスクの表面に、磁性膜を形成した磁気ディスクが提案されている。特許文献4には、非磁性基体上に非磁性下地層及び強磁性層を積層し、非磁性下地層は熱伝導率が、20℃〜300℃の温度範囲で30W/(m・k)以下を示す材料により構成し、強磁性層はCrを含有する強磁性金属からなる磁気記録媒体が提案されている。これらの磁気記録媒体は、いずれも記録層に熱を閉じ込めるために、記録層の下部に記録層よりも熱伝導率の低い層を設けている。
一方、特許文献2には、少なくとも部分的に薄膜の膜厚を貫通して延在する低熱伝導率材料の領域と、低熱伝導率材料の領域を分離する高熱伝導率材料の領域とを備え、これらの領域が、低熱伝導率の領域よりも高熱伝導率の領域で、薄膜の膜厚を貫通する熱伝導がより大きくなるように構成及び配置された薄膜が提案されている。また、特許文献5には、L10構造の規則化を高めるためにCu,Au,Zn,Sn及びPdを添加したFePt合金利用の垂直磁気記録媒体が提案されている。或いはFePt合金に替わりCoPt,FePd合金の規則度を向上させた垂直磁気記録媒体が提案されている。特許文献6には、基板上に第一の下地層、第二の下地層及び第三の下地層と、第三の下地層の上に磁性層を有し、第一の下地層が非晶質構造の合金を有し、第二の下地層がW単体もしくはWを含む合金を有し、第三の下地層がCrを主成分としTi又はBを含む体心立方構造の合金を有し、磁性層が1層以上のCoを主成分とした六方稠密充填構造の合金層である磁気記録媒体が提案されている。
特許文献7には、熱支援記録の方式例が示されている。特許文献8には、ニア−フィールドのヒーター(Near Field Heater)利用等、局所的に加熱する方法が例示されている。また、特許文献9に記載のように、必要に応じて通電して発熱させることにより磁極先端部を熱膨張させて突出させるようにした薄膜抵抗体を形成した薄膜磁気ヘッド素子を有する磁気ヘッドや、磁気ヘッドが磁気ディスクに対してリード・ライトを行うときに、通電して発熱させることにより、磁極先端部を熱膨張させて突出させるようにした薄膜抵抗体を薄膜磁気ヘッド素子の絶縁体層の内部に形成し、磁極先端部の突出によりこれと磁気ディスク面との間隙を小さくするように構成することが提案されている。特許文献10には、スライダの底部に近接場光を発生させるための散乱体の上部に磁極が配置されている熱アシスト記録装置用ヘッドも提案されている。
特開平7−65357号公報 特開2006−196151号公報 特開昭59−165243号公報 特開昭63−249925号公報 特許第3730518号 特開2005−190512号公報 US2006/0154110A1 US2002/0101673A1 特開平5−20635号公報 特開2007−128573号公報
面記録密度の増加に対応し、記録層に用いる結晶粒径を微細化する必要がある。しかしながら、記録層の結晶粒径を微細化すると、熱的な揺らぎによる記録磁化の不安定性が顕著になる。この対策として、(1)記録層の結晶性の向上、(2)結晶粒径分散の低減、(3)磁気異方性の大きな記録材料の利用、(4)書き込み性能の異なる磁性層の積層化等が提案されている。特に、磁気異方性の大きな記録材料を利用する際には、記録層を加熱し、保磁力を低減して書き込み性能を向上することが提案されている。
しかしながら、金属間化合物の強磁性体を利用した磁気記録媒体では、加熱による書き込みを繰り返していくことにより、規則化が進んだ段階でL10構造をとることが期待される組成で構成される金属間化合物の規則度が向上し、結果として磁気異方性が増加するため書き込み性能が劣化する可能性があることについて十分な対策がなされていなかった。また、軟磁性下地層を用いた垂直磁気記録媒体で熱伝導率を考慮し、同時に書き込み性能を向上させた磁気記録媒体は提案されていなかった。磁気記録を行なう上での軟磁性下地層の役割を考慮し、軟磁性下地層と記録層の間隔を詰められる結晶性が高くかつ薄い低熱伝導率層を設けた磁気記録媒体も提案されていなかった。
このような背景から、本発明が解決しようとする課題は、磁気記録媒体に磁気的な書き込みをする際に熱伝導率を考慮して、少ないエネルギ消費で効率良く磁気記録媒体を加熱し、同時に記録層に用いる規則合金の規則度が変化しても長期間にわたり書き込み性能を向上することを実現することにある。
本発明の垂直磁気記録媒体は、剛体基板上に直接或いは接着層を介して軟磁性下地層を形成し、その軟磁性下地層上に非磁性中間層を介して軟磁性下地層、酸化物からなる低熱伝導中間層を形成後、直接或いは結晶配向性制御層を介して結晶粒径制御層を形成し、直接或いは結晶配向性制御兼低熱伝導中間層を介して、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Pt合金からなるキャップ層、保護層及び潤滑層をこの順に形成した構造を有する。接着層としてAl−Ti合金だけでなくCr−Ti合金等を用いることもできる。結晶粒径制御層としては、Ti,Mo,Wからなる群Mから選ばれる少なくとも1元素を添加したCr−M−B合金層を用いることができる。また、結晶粒径制御層としてCr−M−B合金層を形成後、結晶配向性制御兼低熱伝導中間層としてMgO層を設けることもできる。
規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金を主成分とするグラニュラ記録層は、Cuを含有してもよい。これらのFe−Pt合金或いはFe−Cu−Pt合金は規則化が進んだ段階でL10構造をとることが期待される組成で構成され、これらの金属間化合物を構成する組成に対しさらに、SiO2或いはTiO2やTaの酸化物から選ばれる少なくとも1種の酸化物を添加してグラニュラ記録層を構成する。
或いは規則化が進んだ段階でL10構造をとることが期待される組成で構成されるCo−Pt合金を主成分とするグラニュラ記録層は、Coに対してNiを置換するように添加したものであってもよい。これらのCo−Pt合金或いはCo−Ni−Pt合金は、規則化が進んだ段階でL10構造をとることが期待される組成で構成され、これらの金属間化合物を構成する組成に対しさらにSiO2或いはTiO2やTaの酸化物から選ばれる少なくとも1種の酸化物を添加してグラニュラ記録層を構成する。
結晶配向性制御層は、W−Co合金とすることができる。W−Co合金の組成としては、特開2005−190512号公報に記載のように、例えばW単体もしくはWを含む合金としてW−30at.%CoやW−40at.%Co合金が挙げられる。
剛体基板上に接着層を介して或いは直接基板上に軟磁性下地層を形成し、軟磁性下地層上に非磁性中間層を介して軟磁性下地層を形成した基板を大気中に取り出し、別の真空プロセスで基板を加熱後、酸化物からなる低熱伝導中間層、結晶配向性制御層、結晶粒径制御層をこの順に形成し、結晶配向性制御兼低熱伝導中間層を介して或いは直接結晶粒径制御層上に、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Pt合金からなるキャップ層、保護層を形成後、熱処理を行ない、その後潤滑層を形成することにより、本発明の垂直磁気記録媒体を作製することができる。キャップ層に用いるFe−Pt合金、或いはCo−Pt合金のPt組成は40at.%から60at.%であれば良い。Ptの添加濃度を減らしすぎると結晶性が変化するため、fcc構造或いはfct構造をとる組成であれば良い。
本発明によれば、消費電力を低減して磁気記録媒体を加熱でき、同時に書き込み性能が常に優れた垂直磁気記録媒体を提供できる。
本発明では、軟磁性下地層を用いた垂直磁気記録媒体において、軟磁性下地層と記録層の距離を低減するために、結晶配向性制御層上に記録層をヘテロエピタキシャル成長させ軟磁性下地層と記録層間の距離を最適化した。同時に結晶低熱伝導中間層を用いて熱伝導率を低下することにより、軟磁性下地層まで加熱しなくても記録層の保磁力を低下でき、低消費電力で磁化反転が可能となる。
剛体基板上に接着層を介して軟磁性下地層を形成すると機械的な信頼性が向上するため好ましい。軟磁性下地層の膜厚が30nm程度以下の場合には、膜応力が小さいため接着層は必ずしも設ける必要はない。軟磁性下地層上に酸化被膜を形成すると、酸化被膜の熱伝導率が1W/(m・K)程度と金属膜に比べ小さいため、記録時に軟磁性下地層を加熱せずに記録層を加熱しやすくなる。さらにこの酸化物からなる低熱伝導中間層上に結晶配向性制御層を介して、あるいは直接Ti,Mo,Wからなる群Mから選ばれる少なくとも1元素を添加したCr−M−B合金層からなる結晶粒径制御層を形成すると、図1に示すように体心立方構造をとる合金中間層の(100)面が基板面に平行に成長する。図1の矢印が体心立方構造のa軸に相当する。結果として、この結晶粒径制御層上に形成するグラニュラ記録層中のfcc或いはfct構造をとる部分の(001)面が、図2に示すように基板面と平行にヘテロエピタキシャル成長する。図2の矢印がfcc或いはfct構造のa軸に相当する。
体心立方構造をとる結晶粒径制御層のCr−M−B合金膜に含まれるM濃度を調整し、体心立方構造のa軸長の√2倍の長さが、グラニュラ記録層のL10規則合金構造のa軸長より長くなるよう図3に示すように格子定数を制御すれば、グラニュラ記録層中のfct構造の(100)面は基板面と平行にヘテロエピタキシャル成長しにくくなり、グラニュラ記録層を形成後の熱処理により、歪解消を駆動力として合金の規則度の向上と粒界偏析の促進が期待される。
規則合金のCoPtはa軸の格子定数が0.38nm、c軸の格子定数が0.368nmであるのに対して、FePtは、a=0.385nm、c=0.371nmである。よって、それぞれの記録層の合金に対して0.272,0.269nm以上のbcc構造をとる結晶粒径制御層を形成すれば、グラニュラ記録層中のfcc或いはfct構造をとる部分の(001)面が図3のように配向させやすくなる。
Cr−M合金に含まれるM濃度を増加していくと結晶粒径が増加する。Cr−M合金にBを添加すると、結晶粒を微細化できる。Bの添加濃度を10at.%以上とした場合、結晶粒の微細化の効果が大きくなりすぎるため、効果的なBの添加濃度範囲は2at.%から8at.%、より好ましくは4at.%以上8at.%以下のBを添加することが好ましい。このCr−M−B合金からなる結晶粒径制御層上にさらにMgOからなる結晶配向性制御兼低熱伝導中間層を設けることにより、結晶配向を向上させ、同時に記録層から基板側への断熱性を高めることもできる。
Fe−Pt合金を主成分とするグラニュラ記録層を形成する際に、FeをCuで置換するように添加すると、L10規則構造を形成しやすくなるので好ましい。Co−Pt合金を主成分とするグラニュラ記録層を形成する際に、CoをNiで置換するように添加しても、L10規則構造を形成しやすくなるので好ましい。記録層をグラニュラ化するのにSiO2やTiO2の他、Ta酸化物あるいはこれらの混合物を添加することもできる。
磁気記録媒体を形成した直後にはL10規則合金の規則度は必ずしも高くない。しかしながら、加熱記録を繰り返すうちに徐々に規則度が向上し、保磁力が増加する。グラニュラ記録層の保磁力が増加しても、磁化反転のきっかけを与えるキャップ層をグラニュラ記録層の上に形成することにより、書き込み性能に問題が生じない。
キャップ層として用いることができる材料はグラニュラ記録層よりも異方性磁界が小さな材料であれば良い。例えば規則度が低いfcc構造或いはfct構造をとるFeをCuで置換していないFe−Pt合金や、CoをNiで置換していないCo−Pt合金などからなるキャップ層を用いることができる。キャップ層を形成した後に設ける保護層としては、窒素あるいは水素を含んだ炭素を主成分とする保護層のほか、窒化珪素を主成分とする保護層を形成することも加熱のしやすさの観点からから好ましい。保護層を形成後、熱処理を行ない、その後潤滑層を形成することにより、グラニュラ記録層のL10構造が期待される合金部分の規則度を向上させることができる。
以下、図面を参照して、実施例について説明する。
図4は、実施例による磁気記録媒体の構成を示す断面図である。この磁気記録媒体は、基板10上に接着層12、軟磁性下地層141、非磁性層142、軟磁性下地層143、酸化物からなる低熱伝導中間層144、結晶粒径制御層18、グラニュラ記録層20、キャップ層22、保護層24及び潤滑層26を有する。
次に磁気記録媒体の製造方法について説明する。基板10として厚さ0.508mm、外径48mmの化学強化したガラス基板を用いた。インライン式の枚葉式DC/RFマグネトロンスパッタリング装置を用い、全てのチャンバを2×10-5Pa以下の真空まで排気した。その後、基板10を載せたキャリアを各プロセスチャンバに移動させて、グラニュラ記録層20を除き、放電用Arガス圧を0.7PaとしてDCマグネトロンスパッタリング法で以下の薄膜形成を行なった。薄膜の形成方法はDCマグネトロンスパッタに限定されない。特にグラニュラ記録層20の形成には、期待される規則合金の結晶性を高めるため、高周波マグネトロンスパッタ法を用いた。また、酸化物を含有した薄膜形成時にDCパルススパッタ法やバイアス電圧を引加することも可能である。
本実施例では、ガラス基板10として、硼珪酸ガラス、或いはアルミノシリケートガラスからなる基板表面を化学強化した基板を洗浄後、乾燥して用いた。化学強化したガラス基板に替え、アルミニウム合金基板上にNi−Pめっき後表面研磨した基板や、SiやTi合金からなる剛体基板を用いることもできる。基板の外径は48mmに限定されることなく、65mmや84mm等から選択できる。基板の厚みも剛性が保たれる範囲で選択でき、0.635mmや0.8mm等から選択できる。接着層12として厚さ5nmの50at.%Al−50at.%Ti合金膜を形成した。
軟磁性下地層141として厚さ20nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成し、非磁性層142として厚さ0.7nmのRu膜を形成後、軟磁性下地層143として厚さ20nmの51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金膜を形成した。軟磁性下地層141,143の組成は前記組成に限定されないが、TaとZrの添加元素の濃度は合計で5at.%添加されている場合、基板を300℃に加熱すると5秒以内の酸化プロセスで酸化物からなる低熱伝導中間層144を形成することができる。TaとZrの添加元素の濃度は、合計で20at.%添加されている場合に軟磁性下地層141と143をそれぞれ20nmより厚くすれば書き込み特性が向上した。TaとZrの添加元素の濃度を15at.%に固定したまま、51at.%Fe−34at.%Co−10at.%Ta−5at.%Zr合金の替わりに例えば48at.%Fe−37at.%Co−10at.%Ta−5at.%Zr合金に変更することも可能である。X線回折による反射曲線の測定結果から、これらのFe−Co−Ta−Zr合金膜はいずれも微結晶あるいは非晶質であると考えられる。
非磁性層142はRu或いはRuを主成分とする合金として、Ru−50at.%Fe合金、Ru−40at.%Cr合金、Ru−30at.%Co合金などを用いることができる。その膜厚は、軟磁性下地層141と143が反強磁性結合できる範囲で変えることもできる。さらに、この反強磁性結合を用いて軟磁性下地層141と143の残留磁化を等しく反平行にすれば、再生ノイズを低減することができる。軟磁性下地層143を形成後、基板を300℃に加熱し、1vol.%酸素を含有したArガスを5秒暴露することにより、酸化物からなる低熱伝導中間層144を形成した。
酸化物からなる低熱伝導中間層144を形成後、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を3nmから10nm形成した。さらにグラニュラ記録層20として92 mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2Paとした。
これらの試料について銅の特性X線を用いた反射回折曲線を測定した。結果、Cr−Ti−B合金膜の膜が厚くなるに従い、bcc構造に由来する200回折強度が増加することが確認された。この回折強度の増加に伴い、グラニュラ記録層に起因すると考えられるfcc構造或いはfct構造に由来する002回折強度とfct構造に由来する001回折強度の増加が観測された。このことから、この媒体は記録層の磁化容易軸が膜面垂直方向に向いた垂直磁気記録媒体であることが確認された。
グラニュラ記録層20を形成後、60at.%Fe−40at.%Pt合金からなるキャップ層22を3nmから12nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。
機械的な浮上特性を確認後、幾何学トラック幅PW 105nmの書き込み極で記録しシールドギャップ長35nmを有するTMRヘッドを用いて磁気記録媒体の電磁変換特性を測定した。図5に、単磁極ヘッドと近接場光を発生させるための散乱体を組み合わせた記録ヘッドを中心とした断面図を示す。スライダ32の表面に近接場光を発生させるための散乱体34を形成し、その上に磁極36を形成した。波長785nmの半導体レーザ38を用いて光を発生させ、半導体レーザ38から発生する光をコア部40とクラッド部42から構成される導波路を用いて散乱体34まで導いた。導波路のコア部40はクラッド部42で囲まれている。薄膜コイル44を用いて発生させた磁界を、主磁極46によって散乱体34の近くに導いた。主磁極46及び薄膜コイル44は、導波路に対して流出端48側に配置した。散乱体34の上部にある磁極36と主磁極46は、磁極50を用いて結合した。薄膜コイル44の反対側には、磁極51を介して閉磁路を形成するための補助磁極52を形成した。散乱体34上の磁極36と磁極50、主磁極46、磁極51、補助磁極52によって形成される磁気回路に、コイル44が鎖交している。導波路の横には、記録信号を再生するための、磁気再生素子54を形成した。磁気再生素子54の周辺には、周りからの磁界を遮蔽するためのシールド56を形成した。この再生素子は、補助磁極52の横(流出端48側)に置いても良いが、本実施例では図5に示す再生素子の配置とし、磁気再生素子54としてTMR素子を用いた。必要に応じて通電して発熱させることにより再生素子54を熱膨張させ突出させるようにした薄膜抵抗体58を形成した。
記録時には120mWの波長785nmの半導体レーザ38を用いて光を発生させ、加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を評価した。
磁気記録媒体を90/s(=5400pm)で回転させ、半径21mmでヘッドのskew角度を0度とした。オーバーライト特性(O/W)は、47.2kFC/mm(=1200kFCI)で消磁後、35.4kFC/mm(=900kFCI)の信号を書き、7.01kFC/mm(=178kFCI)の信号を重ね書きし、35.4kFC/mmの信号の消し残りを評価した。磁気記録媒体に対してリード・ライトを行うときに、60mW通電して薄膜抵抗体58を発熱させ電磁変換特性を測定した。並行して同時に加熱して書き込み回数に対する経時変化を同一トラック上で測定した。
その結果、加熱初期のオーバーライト特性に対して1万回の重ね書きを実施後でもオーバーライト特性は±0.2dBの誤差範囲に入っており、規則合金の規則度が仮に変化したとしても長期間にわたり書き込み性能に問題ないことが明らかになった。また、キャップ層22として4nm以上の厚さとなるように形成すると、図6に示すようにオーバーライト特性が改善された。
幾何学トラック幅(Pw)で規格化した書き込みトラック幅(Tw)とキャップ層22の厚さの関係を図7に示す。キャップ層の膜厚を増加すると(Tw/Pw)値が増加する傾向は、キャップ層の材料によらなかった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると5nmから8nm程度形成すれば良いと考えられる。
〔比較例1〕
結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を形成せずに、酸化物からなる低熱伝導中間層144を形成後、直接グラニュラ記録層20として92mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成したことを除き、他のプロセス条件はすべて実施例1に記載の条件で形成した。この磁気記録媒体について90/s(=5400pm)で回転させ、半径21mmでヘッドのskew角度を0度でオーバーライト特性(O/W)を測定した。その結果、120mWの波長785nmの半導体レーザ38を用いて光を発生させ記録時に加熱した場合に、O/Wは、−11dB程度であった。半導体レーザの投入電力を140mWに増加しても、O/Wは、−15.4dBであった。
また、軟磁性下地層143を形成後、基板を300℃に加熱し、1vol.%酸素を含有したArガスに暴露することなく、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を5nm形成した。その後、直接グラニュラ記録層20として92 mol%(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成したことを除き、他のプロセス条件はすべて実施例1に記載の条件で形成した。この磁気記録媒体についてオーバーライト特性(O/W)を測定した結果、120mWの波長785nmの半導体レーザ38を用いて光を発生させ記録時に加熱した場合に、O/Wは、−12.3dB程度であった。半導体レーザの投入電力を140mWに増加しても、O/Wは、−16.5dBであった。
これらの結果から、実施例1に記載したように、120mWの加熱で−23dB以下のオーバーライト特性を得るには、軟磁性下地層143、酸化物からなる低熱伝導中間層144、結晶粒径制御層18、グラニュラ記録層20、キャップ層22、保護層24を順に形成し、不活性雰囲気中で熱処理した磁気記録媒体が有効であることが明らかとなった。
実施例1で軟磁性下地層143を形成後、一旦大気中に取り出し、別の製膜装置で以下のような後工程を設定した。2×10-5Pa以下まで真空排気後、300℃に加熱し、軟磁性下地層143の表面に酸化層からなる低熱伝導中間層144を形成後、W−30at.%Co合金からなる結晶配向性制御層16を3nm形成し、その表面をArで希釈した酸素雰囲気中に暴露して制御して酸化した。
さらに、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を3nmから10nm形成した。さらにグラニュラ記録層20として(50at.%Fe−50at.%Pt)−8mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2Paとした。
図8に示す断面構成を有するこれらの試料について、グラニュラ磁性層の平均結晶粒径を測定した。平均結晶粒径<D>は、透過電子顕微鏡(TEM)像から算出した。まず、基板面に平行な方向の記録層の結晶粒像を透過電子顕微鏡により撮影した。次に、得られた写真をスキャナで取り込み、画像のコントラストが観察されるコア部分を結晶粒と定義し、各結晶粒に存在するピクセル数を計算した。ピクセル数とスケールとの換算から、各結晶の面積を求め、得られた各結晶粒の面積と同じ面積の真円の直径として結晶粒径を定義し、個々の結晶粒の粒径Diを求めた。この計算を300個程度の結晶粒について行ない、得られた粒子径の算術平均値を平均結晶粒径<D>とした。
8mol%SiO2を添加したFe−Pt−SiO2膜では、平均結晶粒径<D>が約8nmであった。10mol%SiO2を添加したFe−Pt−SiO2膜では、<D>が6.2nmあった。さらに12mol%SiO2を添加したFe−Pt−SiO2膜では、<D>が5nmまで減少した。
結晶粒径制御層として形成したbcc構造を有するCr−Ti−B合金層が厚くなると、bcc構造に由来する200回折強度が増加した。この結晶粒径制御層によるX線回折強度の増加に伴い、記録層のfcc構造或いはfct構造に由来する002回折強度とfct構造に由来する001回折強度の増加も観測された。これらのX線回折強度の挙動から、bcc構造をとる結晶粒径制御層とこの上に形成するfcc構造或いはfct構造を有する記録層はヘテロエピタキシャル成長の関係にあると考えられる。
グラニュラ記録層20を形成後、図9に示すように60at.%Fe−40at.%Pt合金、或いはCo−40at.%Pt合金からなるキャップ層22を3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を2.5nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。
機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には120mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、前記キャップ層22として4nm以上の厚さとなるように形成するとオーバーライト特性が実施例1に比べ1dBから4dB改善された。一方、書き込みトラック幅はキャップ層22が厚くなると広くなった。この傾向、すなわちキャップ層が厚くなるとトラック幅が広くなるという傾向は、キャップ層の材料を変えても同様であった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると6〜8nm程度形成すれば良いと考えられる。
並行して同時に加熱書き込み回数に対する経時変化を同一トラック上で測定した。結果、加熱初期のオーバーライト特性に対して1万回の重ね書きを実施後でもオーバーライト特性は±0.2dBの誤差範囲に入っており、規則合金の規則度に変化があったとしても長期間にわたり書き込み性能に問題ないことを確認した。
実施例1では軟磁性下地層143を形成後、基板を300℃に加熱し、1vol.%酸素を含有したArガスを5秒暴露することにより酸化物からなる低熱伝導中間層144を形成し、直接結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を形成した。
一方、本実施例2では、軟磁性下地層143を形成後、一旦大気中に取り出し、別の製膜装置で2×10-5Pa以下まで真空排気後、300℃に加熱し、軟磁性下地層143の表面に酸化層からなる低熱伝導中間層144を形成後、W−30at.%Co合金からなる結晶配向性制御層16を3nm形成し、その表面をArで希釈した酸素雰囲気中に暴露して制御して酸化後に、結晶粒径制御層18としてCr−18at.%Ti−4at.%B合金膜を形成することにより、結晶粒径制御層18の結晶性を高めることが可能となった。結晶粒径制御層として8nmの厚さとなるように形成したbcc構造を有するCr−Ti−B合金層に起因すると考えられる200回折強度の半値幅は、実施例1の場合に5.4度であったのに対し、実施例2では同じ厚さのCr−Ti−B合金層起因の200回折強度の半値幅は3.8度であった。実施例1に比べて実施例2のオーバーライト特性が改善したのは、この200回折強度の半値幅の減少に対応していると考えられる。
図10に断面模式図を示す垂直磁気記録媒体を作製した。実施例1で軟磁性下地層143を形成後、300℃に加熱し、軟磁性下地層143の表面に酸化物層からなる低熱伝導中間層144を形成した。その後、結晶配向性制御層16としてW−40at.%Co合金膜を4nm形成し、Arガスで100倍に希釈した酸素ガス雰囲気中に4秒間暴露した。さらに結晶粒径制御層18としてCr−20at.%Ti−5at.%B合金層を5nm形成後、RFマグネトロンスパッタ法で結晶配向性制御兼低熱伝導中間層19としてMgO層を4nm形成した。さらに90mol%(50at.%Fe−50at.%Pt)−(10mol%SiO2)膜を11nm形成後、Co−45at.%Pt合金からなるキャップ層22を厚さで3nmから10nm形成し、窒素あるいは水素を含有し炭素を主成分とする保護層24を3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、パーフルオロポリエーテルを主成分とする潤滑層26を形成した。
機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件でヘッドの保護膜と媒体の保護層24の間隔を2nmに保持して電磁変換特性を測定した。その結果、キャップ層22として4nm以上の厚さとなるように形成するとキャップ層22を形成しない場合に比べオーバーライト特性が4dB以上改善された。一方、キャップ層22が厚くなると書き込みトラック幅は広くなっていた。
120mW(実施例1)から100mW(実施例3)まで投入電力を低減しても−25dB以下のO/W特性が得られたのは、結晶配向性制御兼低熱伝導中間層19としてMgO層を4nm形成し、実効的に記録層の温度上昇しやすくなったことによると考えられる。
実施例3に記載のグラニュラ記録層形成時に90mol%(50at.%Fe−50at.%Pt)−10mol%SiO2膜を11nm形成する代わりに、以下の合金からなるグラニュラ記録層を形成したことを除き、実施例3と同様にして磁気記録媒体を形成した。
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%SiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−10mol%SiO2−2mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−8mol%SiO2−4mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−6mol%SiO2−6mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−4mol%SiO2−8mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%TiO2
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%Ta25
88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−6mol%SiO2−6mol%Ta25
92mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−8mol%TiO2
92mol%[(50at.%Fe−5at.%Cu−45at.%Pt)]−8mol%TiO2
92mol%[(50at.%Fe−0at.%Cu−50at.%Pt)]−8mol%TiO2
上記グラニュラ記録層20を形成後、Fe−40at.%Pt合金からなるキャップ層22を厚さで3nmから10nm形成した。さらに窒素あるいは水素を含有し炭素を主成分とする保護層24を3.3nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。
機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。
その結果、キャップ層22として4nm以上の厚さとなるように形成すると、キャップ層22を形成しない場合に比べオーバーライト特性が4dB以上改善され、キャップ層22が厚くなると書き込みトラック幅は広くなった。4nm厚のキャップ層を形成した場合のグラニュラ記録層88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−xmol%SiO2−(12−x)mol%TiO2の組成とオーバーライト特性の関係を図11に示す。TiO2の添加濃度を増加するとオーバーライト特性は3dB程度劣化した。
4nm厚のキャップ層を形成した場合について、グラニュラ記録層88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−xmol%SiO2−(12−x)mol%TiO2の組成と媒体ノイズNdと再生信号出力Soの割合を対数表示したSo/Ndの関係を図12に示す。88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−6mol%SiO2−6mol%TiO2では、オーバーライト特性の劣化が少ない割に良好なSo/Ndが得られた。
透過電子顕微鏡で88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%SiO2グラニュラ記録層と88mol%[(45at.%Fe−5at.%Cu−50at.%Pt)]−12mol%TiO2グラニュラ記録層を比べた結果、TiO2を添加したグラニュラ記録層でTiO2を主成分とする粒界が明瞭になり、SiO2を添加したグラニュラ記録層に比べ相対的に粒界幅が広くなっていた。この結果から、TiO2の濃度が高い媒体では磁性粒子が磁気的に孤立し易くなり、媒体ノイズNdが低下し、SiO2の濃度の高い媒体に比べSo/Ndが改善し、TiO2とSiO2を同時に含んだ組成域でオーバーライト特性とSo/Ndを両立できる組成があることが明らかになった。
〔比較例2〕
実施例3に記載のグラニュラ記録層形成時に90mol%(50at.%Fe−50at.%Pt)−10mol%SiO2膜を11nm形成する代わりに92mol%[(45at.%Fe−5at.%Zn−50at.%Pt)]−8mol%SiO2膜を形成した。初期に形成したグラニュラ膜と翌日試作したグラニュラ膜について蛍光X線分析した結果、グラニュラ記録層に含有されるZnの組成が低下していた。この結果から、量産時の組成変動と磁気特性の安定性を考慮すると、グラニュラ膜形成用の合金ターゲットを真空中に保持する場合、Zn濃度の変化を管理する必要があることが明らかとなった。
実施例1でグラニュラ記録層20として、(50at.%Fe−50at.%Pt)−8mol%SiO2膜に代わり(50at.%Co−50at.%Pt)−10mol%SiO2膜或いは(40at.%Co−10at.%Ni−50at.%Pt)−10mol%SiO2膜を12nm形成した。グラニュラ記録層20を形成する際の放電用Arガス圧を2.5Paとした。グラニュラ記録層20を形成後、50at.%Co−50at.%Pt合金、又は50at.%Ni−50at.%Fe合金からなるキャップ層22を3nmから12nm形成、窒化珪素を主成分とする保護層24を2nm形成した。さらに窒素置換した不活性雰囲気中で300℃に1時間保持後、大気圧に戻し、フッ素を主成分とする潤滑層26を形成した。
機械的な浮上特性を確認後、実施例1と同じヘッドを用い、記録時には100mWの波長785nmの半導体レーザ38を用いて加熱した。再生時には半導体レーザ38を用いず、薄膜抵抗体58に60mW通電する条件で電磁変換特性を測定した。その結果、前記キャップ層22として4nm以上の厚さとなるように形成するとオーバーライト特性が、−25dB以下まで改善された。特に、50at.%Ni−50at.%Fe合金を用いた場合、キャップ層22の厚さが4nmから6nm程度の場合にオーバーライト特性が−30dB以下であり、かつ幾何学トラック幅で規格化した書き込みトラック幅の割合も1.2から1.3の範囲に入り改善が顕著であった。
一方、書き込みトラック幅は、キャップ層22が4nmから12nmへ厚くなると広くなった。この傾向はキャップ層の材料によらなかった。これらの結果から、キャップ層の厚さは少なくとも4nm程度必要であるが、トラック幅の広がりを考慮すると、厚い場合でも8nm程度形成すれば良いことが明らかとなった。
実施例3で結晶粒径制御層18としてCr−20at.%Ti−5at.%B合金層を5nm形成する代わりに、Cr−16at.%Mo−4at.%B合金層、Cr−30at.%Mo−4at.%B合金層、Cr−30at.%Mo−8at.%B合金層、Cr−30at.%Mo−10at.%B合金層、Cr−15at.%W−4at.%B合金層、Cr−25at.%W−4at.%B合金層、Cr−25at.%W−8at.%B合金層、Cr−25at.%W−10at.%B合金層をそれぞれ4nm形成して垂直磁気記録媒体を作製した。垂直方向に室温で測定した保磁力の結晶粒径制御層の濃度依存性を図13に示す。Cr−30at.%Mo−B合金とCr−25at.%W−B合金を用いた結晶粒径制御層に含まれるB添加濃度を8at.%から10at.%に増加した場合に、急激に保磁力が低下した。この結果から、B添加濃度の上限は8at.%程度とすることが好ましい。
本発明の磁気記録媒体は、熱支援磁気記録媒体として使用することができる。
体心立方構造をとる結晶粒径制御層の(100)面の原子配列の概念図。 面心立方構造或いはL10構造をとるグラニュラ記録層のうち粒界部を除く(100)面の原子配列の概念図。 結晶粒径制御層とグラニュラ記録層の原子配列の概念図。 本発明による磁気記録媒体の断面構成図。 熱支援記録の概念図。 オーバーライト特性とキャップ層の厚さの関係を示す図。 幾何学トラック幅で規格化した書き込みトラック幅とキャップ層の厚さの関係を示す図。 平均結晶粒径を測定するための試料の断面構成図。 本発明による磁気記録媒体の断面構成図。 本発明による磁気記録媒体の断面構成図。 グラニュラ記録層の組成とオーバーライト特性の関係を示す図。 グラニュラ記録層の組成とSo/Ndの関係を示す図。 結晶粒径制御層に含有されるB添加濃度と室温で測定した磁気記録媒体の垂直保磁力の関係を示す図。
符号の説明
10…基板
12…接着層
14…軟磁性下地層
141…軟磁性下地層
142…非磁性層
143…軟磁性下地層
144…低熱伝導中間層
16…結晶配向性制御層
18…結晶粒径制御層
19…結晶配向性制御兼低熱伝導中間層
20…グラニュラ記録層
22…キャップ層
24…保護層
26…潤滑層
30…磁気記録媒体
32…スライダ
34…近接場光を発生させるための散乱体
36…磁極
38…半導体レーザ
40…導波路コア部
42…導波路クラッド部
44…磁界発生用薄膜コイル
46…主磁極
48…流出端
50,51…磁極
52…補助磁極
54…磁気再生素子
56…シールド
58…薄膜抵抗体

Claims (6)

  1. 剛体基板上に直接あるいは接着層を介して形成した第1の軟磁性下地層と、
    前記第1の軟磁性下地層上に非磁性中間層を介して形成した第2の軟磁性下地層と、
    前記第2の軟磁性下地層上に形成した酸化物からなる低熱伝導中間層と、
    前記低熱伝導中間層上に直接或いは結晶配向性制御層を介して形成した結晶粒径制御層と、
    前記結晶粒径制御層上に直接或いは結晶配向性制御兼低熱伝導中間層を介して形成した、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層と、
    前記グラニュラ記録層上に形成したFe−Pt合金或いはCo−Pt合金からなるキャップ層と、
    前記キャップ層上に形成した保護層と
    を有することを特徴とする垂直磁気記録媒体。
  2. 請求項1に記載の垂直磁気記録媒体において、前記結晶粒径制御層としてTi,Mo,Wからなる群Mから選ばれる少なくとも1元素を添加したCr−M−B合金層を設けたことを特徴とする垂直磁気記録媒体。
  3. 請求項1に記載の垂直磁気記録媒体において、前記結晶粒径制御層としてCr−M−B合金層を形成後、結晶配向性制御兼低熱伝導中間層としてMgO層を設けたことを特徴とする垂直磁気記録媒体。
  4. 請求項1に記載の垂直磁気記録媒体において、前記Fe−Pt合金を主成分とするグラニュラ記録層がCuを含有していることを特徴とする垂直磁気記録媒体。
  5. 請求項1に記載の垂直磁気記録媒体において、前記結晶配向性制御層がW−Co合金からなることを特徴とする垂直磁気記録媒体。
  6. 剛体基板上に接着層を介して或いは直接基板上に軟磁性下地層を形成し、前記軟磁性下地層上に非磁性中間層を介して軟磁性下地層を形成した基板を大気中に取り出し、別の真空プロセスで基板を加熱後、酸化物からなる低熱伝導中間層、結晶配向性制層、結晶粒径制御層をこの順に形成し、結晶配向性制御兼低熱伝導中間層を介して或いは直接結晶粒径制御層上に、規則化が進んだ段階でL10構造をとることが期待される組成で構成されるFe−Pt合金或いはCo−Pt合金を主成分とするグラニュラ記録層、Fe−Pt合金或いはCo−Pt合金からなるキャップ層、保護層を形成後、熱処理を行ない、その後潤滑層を形成したことを特徴とする垂直磁気記録媒体の製造方法。
JP2007338122A 2007-12-27 2007-12-27 垂直磁気記録媒体及びその製造方法 Expired - Fee Related JP5128930B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338122A JP5128930B2 (ja) 2007-12-27 2007-12-27 垂直磁気記録媒体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338122A JP5128930B2 (ja) 2007-12-27 2007-12-27 垂直磁気記録媒体及びその製造方法

Publications (2)

Publication Number Publication Date
JP2009158054A true JP2009158054A (ja) 2009-07-16
JP5128930B2 JP5128930B2 (ja) 2013-01-23

Family

ID=40961893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338122A Expired - Fee Related JP5128930B2 (ja) 2007-12-27 2007-12-27 垂直磁気記録媒体及びその製造方法

Country Status (1)

Country Link
JP (1) JP5128930B2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021652A1 (ja) * 2009-08-20 2011-02-24 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
WO2011027880A1 (ja) * 2009-09-07 2011-03-10 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
WO2011096472A1 (ja) * 2010-02-04 2011-08-11 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
CN102163433A (zh) * 2010-02-23 2011-08-24 昭和电工株式会社 热辅助磁记录介质和磁存储装置
JP2011210303A (ja) * 2010-03-29 2011-10-20 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
CN102646421A (zh) * 2011-02-15 2012-08-22 昭和电工株式会社 热辅助磁记录介质和磁存储装置
JP2012221535A (ja) * 2011-04-12 2012-11-12 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
JP2013157071A (ja) * 2012-01-31 2013-08-15 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記録再生装置
WO2013165002A1 (ja) * 2012-05-01 2013-11-07 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
JP2014049146A (ja) * 2012-08-29 2014-03-17 Showa Denko Kk 磁気記録媒体及び磁気記録再生装置
US8679654B2 (en) 2011-03-02 2014-03-25 Hitachi, Ltd. Magnetic recording medium including plural FePt alloy layers including carbon, oxides or nitrides
JP2014154177A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
JP2015005326A (ja) * 2014-10-06 2015-01-08 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
US20150017480A1 (en) * 2013-07-11 2015-01-15 HGST Netherlands B.V. Perpendicular magnetic recording medium
JP2015088197A (ja) * 2013-10-28 2015-05-07 昭和電工株式会社 磁気記録媒体および磁気記憶装置
US9230588B2 (en) 2013-07-26 2016-01-05 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
JP2016026368A (ja) * 2015-11-10 2016-02-12 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
US9934810B2 (en) 2013-04-12 2018-04-03 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331303A (ja) * 1999-03-15 2000-11-30 Toshiba Corp 磁気記録装置および磁気記録方法
JP2004054972A (ja) * 2002-07-16 2004-02-19 Showa Denko Kk 磁気記録媒体、その製造方法および磁気記録再生装置
JP2006294106A (ja) * 2005-04-08 2006-10-26 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体
JP2007299492A (ja) * 2006-05-02 2007-11-15 Canon Inc 構造体の製造方法
JP2007310986A (ja) * 2006-05-19 2007-11-29 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331303A (ja) * 1999-03-15 2000-11-30 Toshiba Corp 磁気記録装置および磁気記録方法
JP2004054972A (ja) * 2002-07-16 2004-02-19 Showa Denko Kk 磁気記録媒体、その製造方法および磁気記録再生装置
JP2006294106A (ja) * 2005-04-08 2006-10-26 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体
JP2007299492A (ja) * 2006-05-02 2007-11-15 Canon Inc 構造体の製造方法
JP2007310986A (ja) * 2006-05-19 2007-11-29 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体及びその製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279739B2 (en) 2009-08-20 2012-10-02 Showa Denko K.K. Heat-assisted magnetic recording medium and magnetic storage device
JP5616893B2 (ja) * 2009-08-20 2014-10-29 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
CN102473420A (zh) * 2009-08-20 2012-05-23 昭和电工株式会社 热辅助磁记录介质和磁存储装置
WO2011021652A1 (ja) * 2009-08-20 2011-02-24 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
WO2011027880A1 (ja) * 2009-09-07 2011-03-10 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
JP2011060344A (ja) * 2009-09-07 2011-03-24 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
WO2011096472A1 (ja) * 2010-02-04 2011-08-11 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置
JP2011165232A (ja) * 2010-02-04 2011-08-25 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
US9818441B2 (en) 2010-02-04 2017-11-14 Showa Denko K.K. Thermally assisted magnetic recording medium and magnetic storage device
CN102822892A (zh) * 2010-02-04 2012-12-12 昭和电工株式会社 热辅助磁记录介质和磁存储装置
CN102163433A (zh) * 2010-02-23 2011-08-24 昭和电工株式会社 热辅助磁记录介质和磁存储装置
JP2011210303A (ja) * 2010-03-29 2011-10-20 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
JP2012169017A (ja) * 2011-02-15 2012-09-06 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
CN102646421A (zh) * 2011-02-15 2012-08-22 昭和电工株式会社 热辅助磁记录介质和磁存储装置
CN102646421B (zh) * 2011-02-15 2014-11-12 昭和电工株式会社 热辅助磁记录介质和磁存储装置
US8679654B2 (en) 2011-03-02 2014-03-25 Hitachi, Ltd. Magnetic recording medium including plural FePt alloy layers including carbon, oxides or nitrides
JP2012221535A (ja) * 2011-04-12 2012-11-12 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記憶装置
JP2013157071A (ja) * 2012-01-31 2013-08-15 Showa Denko Kk 熱アシスト磁気記録媒体及び磁気記録再生装置
WO2013165002A1 (ja) * 2012-05-01 2013-11-07 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
US9007880B2 (en) 2012-05-01 2015-04-14 Showa Denko K.K. Thermally assisted magnetic recording medium and magnetic recording and reproducing apparatus
JP2014049146A (ja) * 2012-08-29 2014-03-17 Showa Denko Kk 磁気記録媒体及び磁気記録再生装置
JP2014154177A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法
US9934810B2 (en) 2013-04-12 2018-04-03 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US20150017480A1 (en) * 2013-07-11 2015-01-15 HGST Netherlands B.V. Perpendicular magnetic recording medium
US10276192B2 (en) * 2013-07-11 2019-04-30 Western Digital Technologies, Inc. Perpendicular magnetic recording medium
US9230588B2 (en) 2013-07-26 2016-01-05 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
JP2015088197A (ja) * 2013-10-28 2015-05-07 昭和電工株式会社 磁気記録媒体および磁気記憶装置
US9251834B2 (en) 2013-10-28 2016-02-02 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
JP2015005326A (ja) * 2014-10-06 2015-01-08 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記録再生装置
JP2016026368A (ja) * 2015-11-10 2016-02-12 昭和電工株式会社 熱アシスト磁気記録媒体及び磁気記憶装置

Also Published As

Publication number Publication date
JP5128930B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5128930B2 (ja) 垂直磁気記録媒体及びその製造方法
CN102725793B (zh) 热辅助磁记录介质和磁记录再生装置
JP5616893B2 (ja) 熱アシスト磁気記録媒体及び磁気記憶装置
JP5617112B2 (ja) 垂直磁気記録媒体及びその製造方法
JP5145437B2 (ja) 磁気記録媒体
CN102646421B (zh) 热辅助磁记录介质和磁存储装置
JP5015901B2 (ja) 熱アシスト磁気記録媒体及び磁気記録再生装置
JP6145332B2 (ja) 磁気記録媒体、磁気記憶装置
JP2009158053A (ja) 傾斜記録用磁気記録媒体及びその製造方法
JP2003162806A (ja) 垂直磁気記録媒体および磁気記憶装置
JP5575172B2 (ja) 磁気記録媒体,磁気記録再生装置,および磁気記録媒体の製造方法
JP5938224B2 (ja) 磁気記録媒体及び磁気記録再生装置
WO2013172260A1 (ja) 磁気記録媒体及び磁気記録再生装置
JP4746778B2 (ja) 磁気記録媒体及びそれを用いた磁気記憶装置
JP5786347B2 (ja) 熱アシスト記録装置用の磁気記録媒体およびその製造方法
CN108573715A (zh) 辅助磁记录介质和磁存储装置
JP2001344740A (ja) 磁気記録媒体及び磁気記憶装置
JP4211436B2 (ja) 垂直磁気記録媒体およびその製造方法
CN113053422B (zh) 磁记录介质以及磁存储装置
JP5923152B2 (ja) 熱アシスト磁気記録媒体及び磁気記録再生装置
JP2008276859A (ja) 磁気記録媒体、その製造方法および磁気記録再生装置
JP2006179133A (ja) 磁気記録媒体及びそれを用いた磁気記憶装置
JP3663289B2 (ja) 磁気記録媒体及び磁気記憶装置
JP5685983B2 (ja) 磁気記録媒体
JPH09265619A (ja) 磁気記録媒体、その製造方法及び磁気記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350