以下、実施形態を用いて図面も参照しつつ、本発明について具体的に説明するが、本発明はこれに限定されるものではない。
まず凸状の曲面形状を有し、該面が樹脂層で被覆されている原型(本発明において、樹脂層を含めてこれを基材と言う。)に円描画を行うことで、ブレーズド回折格子構造を同心円状に形成する場合を例に採り説明する。なお基材はこれに限らず、例えば、凹状の曲面形状や平面を有するものであっても良く、又、前記回折構造はバイナリーパターンであっても良い。
図1に、描画パターンの1例並びにその細部の描画形状を示す。同図に示すように、曲面形状を成す基材2の一面には、ブレーズド回折格子構造が形成され、その一部であるE部分を拡大すれば、複数のブレーズ3が同心円状に形成されている。ブレーズ3は、傾斜部3b及び側壁部3aを形成し、側壁部3aは周方向に沿って平面状に複数段形成されている。
より詳細には、図2に示すように、基材2には、ベースとなる原型の曲面部2aに対し、格子条が各ピッチL1毎に形成され、この格子条の少なくとも1ピッチL1に、当該ピッチの区切り目位置にて前記曲面部2aより立ち上がる側壁部3aと、隣接する各側壁部3a間に形成された傾斜部3bと、側壁部3aと傾斜部3bとの境界領域に形成された溝部3cとを有する。
傾斜部3bは、一端が一方の側壁部3aの基端に接し、他端が他方の側壁部3aの先端に接する傾斜面を構成している。尚、この複数のブレーズ3からなる回折格子構造は、曲面部2aを被覆し、塗布で形成された樹脂層を後述する電子ビーム描画装置を用いて描画し、現像処理することで形成され、ブレーズ3の傾斜部3bは、後述する電子ビーム描画装置を用いる描画により、なだらかな傾斜面を形成している。
図3(a)、(b)はこの傾斜部3bの一部であるF部分を描画するためのドーズ分布300を拡大したものである。領域301、302、303のドーズ量の差hは後述する電子ビーム描画装置の電子銃を駆動するための、D/A変換器の最小クロックに基づく、ドーズ量の最小調整単位(最小変位)としてある。そしてドーズ量のこの最小変化量で段階的に変化させる各領域301と302、及び302と303の間にはそれぞれ段階的に変化されたドーズ量の双方が混在するドーズ量混在領域MIXが設けられている。
このドーズ量混在領域において、各凹部と凸部の間隔は同図(a)に示すように、一定、若しくは、同図(b)に示すように、傾斜部3bの高さが低くなる方向に行くに従い、その距離が広くなるように設定されることが好ましい。但し、この際に重要となるのは、ドーズ量が凹に設定される描画部分の幅と凸に設定される描画部分の幅が、各々、当該ドーズ量分布で描画する電子ビームの近接効果で予測される広がりよりも小さく、より好ましくは、当該部分を描画する電子ビームの径よりも小さくなるように構成されることである。
図3(b)に示すように、傾斜部3bの高さが低くなる方向に行くに従い、凹凸部間の距離が広くなるようにドーズ量が設定される場合には、より具体的には、図4に示すように、ドーズ量混在領域MIXは、複数、例えば3つ(実際には、傾斜面の傾斜角度に応じた適切な個数)の凸部BI1、BI2、BI3により構成され、凸部BI1はで長さT1、凸部BI2は長さT2、凸部BI3は長さT3とする。
このドーズ分布において、凸部BI1、BI2、BI3の上面は、本発明における「第一のドーズ量」であり、各凸部BI1、BI2、BI3間の凹部の底面は、本発明における「第二のドーズ量」である。尚、此処にいう第一のドーズ量と第二のドーズ量との差は、先に述べた如く電子ビーム描画装置のD/A変換器の最小クロックに基づき調整可能なドーズ変化量の最小単位となっている。
ここで、凹凸部のピッチをU1=U2=U3、各凸部BI1、BI2、BI3間の距離をV1、V2、V3とし、U1=T1+V1、U2=T2+V2、U3=T3+V3とすると、例えば、この時、T1>T2>T3、V1<V2<V3とすることで、デューティー比を、(T1/U1)>(T2/U2)>(T3/U3)と傾斜部3bの高さが低くなる側に行くにつれ小さくすることができ、第一のドーズ量部分である凸部BI1、BI2、BI3の長さT1、T2、T3を第二のドーズ量部分側に行くにつれ段階的に減らす構成とすることができる。
尚、前述のように、ドーズ量混在領域MIXの各凹凸間の距離を一定とする場合には、デューティー比は、(T1/U1)=(T2/U2)=(T3/U3)とする。また、ドーズ量混在領域MIXに設定する凹凸の個数は、ブレーズの大きさや傾斜角度に応じて変化するようにしても良い。従って、例えば、曲面部2aの中心領域のブレーズでは凹凸の設定は少なく、周辺部側のブレーズになるにつれ凹凸の設定は多くするように構成しても良い。但し、何れの場合であってもこのドーズ量混在領域MIXの凹凸が設定される範囲(U1+U2+U3)は、ブレーズの傾斜角度(より詳しくは、そのブレーズを描画する際のドーズ量の変化量)に応じて決定されることとなる。
尚、円描画は、複数の直線部によって近似して描画する構成としても良く、また、基材2としては、光学素子、例えばピックアップレンズ等の形状にて構成することが好ましい。このように円描画を複数の直線部によって近似して描画することの詳細については、後述する電子ビーム描画装置の(制御系の具体的構成)のところで説明する。
(電子ビーム描画装置の構成)
図5に、本発明に係る電子ビーム描画装置の全体構成を示す。
電子ビーム描画装置1は、電子ビームを生成して基材2に対してビーム照射を行う電子ビーム生成手段である電子銃12と、この電子銃12からの電子ビームを通過させるスリット14と、スリット14を通過する電子ビームの基材2に対する焦点位置を制御するための電子レンズ16と、電子ビームが出射される経路上に配設されたアパーチャー18と、電子ビームを偏向させることでターゲットである基材2上の走査位置等を制御する偏向器20と、偏向を補正する補正用コイル22とを含み構成され、これらの各部は、鏡筒10内に配設されて電子ビーム出射時には真空状態に維持される。
さらに、電子ビーム描画装置1は、描画対象となる基材2を載置するための載置台であるXYZステージ30と、このXYZステージ30上の載置位置に基材2を搬送するための搬送手段であるローダ40と、XYZステージ30上の基材2の表面の基準点を測定するための測定手段である測定装置80と、XYZステージ30を駆動するための駆動手段であるステージ駆動手段50と、ローダを駆動するためのローダ駆動装置60と、鏡筒10内及びXYZステージ30を含む筐体11内を真空となるように排気を行う真空排気装置70と、これらの制御を司る制御手段である制御回路100とを有する。
尚、電子レンズ16は、高さ方向に沿って複数箇所に離間して設置される各コイル17a、17b、17cの各々の電流値によって電子的なレンズが複数生成されるもので、各々制御され、電子ビームの焦点位置が制御される。
測定装置80は、基材2に対してレーザーを照射する第1のレーザー測長器82と、第1のレーザー測長器82にて発光されたレーザー光(第1の照射光)の基材2での反射光を受光する第1の受光部84と、前記第1のレーザー測長器82とは異なる照射角度から照射を行う第2のレーザー測長器86と、前記第2のレーザー測長器86にて発光されたレーザー光(第2の照射光)の基材2での反射光を受光する第2の受光部88と、を含み構成されている。尚、第1のレーザー測長器82と第1の受光部84とで「第1の光学系」を構成し、第2のレーザー測長器86と第2の受光部88とで「第2の光学系」を構成している。
ステージ駆動手段50は、XYZステージ30をX方向に駆動するX方向駆動機構52と、XYZステージ30をY方向に駆動するY方向駆動機構54と、XYZステージ30をZ方向に駆動するZ方向駆動機構56と、XYZステージ30を図示θ方向に駆動するθ方向駆動機構58とを含み構成されている。尚、他の方向に回転させる駆動機構を設けて、ステージをピッチングやヨーイング、ローリング可能に構成してもよい。これにより、XYZステージ30を3次元的に動作させたり、アライメントを行うことが可能になる。
制御回路100は、電子銃12に電源を供給するための電子銃電源部102と、この電子銃電源部102での電流、電圧などを調整制御する電子銃制御部104と、電子レンズ16(複数の電子的なレンズ各々)を動作させるためのレンズ電源部106と、このレンズ電源部106での各電子レンズに対応する各電流を調整制御するレンズ制御部108とを含み構成される。尚、電子銃電源部102は、電子銃12に電源を供給するための図示省略のD/A変換器を有しており、電子銃制御部104が、この図示省略のD/A変換器における電流、電圧などを調整制御することで、電子銃12から照射される電子ビームのドーズ量が調整される。従って、このD/A変換器の最小クロックに基づいて、当該電子ビーム描画装置の最小調整単位のドーズ量(ドーズ量の最小変化量)が決定されることとなる。
さらに、制御回路100は、補正用コイル22を制御するためのコイル制御部110と、偏向器20にて成形方向の偏向を行う成形偏向部112aと、偏向器20にて副走査方向の偏向を行うための副偏向部112bと、偏向器20にて主走査方向の偏向を行うための主偏向部112cと、成形偏向部112aを制御するためにデジタル信号をアナログ信号に変換制御する高速D/A変換器114aと、副偏向部112bを制御するためにデジタル信号をアナログ信号に変換制御する高速D/A変換器114bと、主偏向部112cを制御するためにデジタル信号をアナログ信号に変換制御する高精度D/A変換器114cとを有する。
さらに、制御回路100は、偏向器20における位置誤差を補正するための位置誤差補正信号などを各高速D/A変換器114a、114b、及び高精度D/A変換器114cに対して供給して位置誤差補正を促す、或いは、コイル制御部110に対して当該信号を供給することで補正用コイル22にて位置誤差補正を行う位置誤差補正回路116と、これら位置誤差補正回路116並びに各高速D/A変換器114a、114b及び高精度D/A変換器114cを制御して電子ビームの電界を制御する電界制御手段である電界制御回路118と、描画パターンなどを前記基材2に対して生成するためのパターン発生回路120とを含み構成される。
さらに、制御回路100は、第1のレーザー測長器82を上下左右に移動させることによるレーザー照射位置の移動及びレーザー照射角の角度等の駆動制御を行う第1のレーザー駆動制御回路130と、第2のレーザー測長器86を上下左右に移動させることによるレーザー照射位置の移動及びレーザー照射角の角度等の駆動制御を行う第2のレーザー駆動制御回路132と、第1のレーザー測長器82でのレーザー照射光の出力(レーザーの光強度)を調整制御するための第1のレーザー出力制御回路134と、第2のレーザー測長器86でのレーザー照射光の出力を調整制御するための第2のレーザー出力制御回路136と、第1の受光部84での受光結果に基づき、測定結果を算出するための第1の測定算出部140と、第2の受光部88での受光結果に基づき、測定結果を算出するための第2の測定算出部142とを有する。
さらに、制御回路100は、ステージ駆動手段50を制御するためのステージ制御回路150と、ローダ駆動装置60を制御するローダ制御回路152と、上述の第1、第2のレーザー駆動回路130、132,第1、第2のレーザー出力制御回路134、136,第1、第2の測定算出部140、142,ステージ制御回路150,ローダ制御回路152を制御する機構制御回路154と、真空排気装置70の真空排気を制御する真空排気制御回路156と、測定情報を入力するための測定情報入力部158と、入力された各種情報や他の複数の情報を記憶するための記憶手段であるメモリ160と、各種制御を行うための制御プログラムを記憶したプログラムメモリ162と、後述する制御系300(詳細は後述する)と、これらの各部の制御を司る、例えばCPUなどにて形成された制御部170とを含み構成される。
また、本実施形態の電子ビーム描画装置1では、測定情報入力部158などを含む、所謂「操作系」乃至は「操作手段」においては、アナログスキャン方式/デジタルスキャン方式の選択、基本的な形状の描画パターンの複数からの選択等、各種コマンド操作が可能となっている。
上述の電子ビーム描画装置1においては、ローダ40によって搬送された基材2がXYZステージ30上に載置されると、真空排気装置70によって鏡筒10及び筐体11内の空気やダストなどを排気した後、電子銃12から電子ビームが照射される。
電子銃12から照射された電子ビームは、電子レンズ16を介して偏向器20により偏向され、偏向された電子ビームB(以下、この電子レンズ16を通過後の偏向制御された電子ビームに関してのみ「電子ビームB」と符号を付与することがある)が、XYZステージ30上の基材2の表面、例えば曲面部(曲面)2a上の描画位置に対して照射されることで描画が行われる。
この際に、測定装置80によって、基材2上の描画位置(描画位置のうち少なくとも高さ位置)、若しくは後述するような基準点の位置が測定され、制御回路100は、当該測定結果に基づき、電子レンズ16のコイル17a、17b、17cに流れる各電流値等を調整制御して、電子ビームBの焦点深度、即ち焦点位置を制御し、当該焦点位置が前記描画位置となるように移動制御する。
或いは、前記測定結果に基づき、制御回路100は、ステージ駆動手段50を制御することにより、前記電子ビームBの焦点位置が前記描画位置となるようにXYZステージ30を移動させる。なお電子ビームの制御、XYZステージ30の制御の何れか一方の制御によっても、双方を利用してもよい。
〈測定装置80〉
測定装置80は図6に示すように、第1のレーザー測長器82、第1の受光部84、第2のレーザー測長器86、第2の受光部88などを有する。
第1の光学系は、第1のレーザー測長器82により電子ビームと交差する方向から第1の光ビームS1を照射し、基材2を透過する第1の光ビームS1を第1の受光部84によって受光することで、第1の光強度分布を検出するものである。第1の光強度分布は図6に示すように、基材2の曲面部2aを透過した光ビームS1の基材2の平坦部2bでの反射光に基づくものなので、曲面部2a上の(高さ)位置を測定することができない。
そこで、本例においては、さらに第2の光学系を設け、第2のレーザー測長器86によって、電子ビームとほぼ直交する方向から第2の光ビームS2を照射し、基材2を透過する第2の光ビームS2を第2の受光部88に含まれるピンホール89を介して受光することによって、第2の光強度分布を検出する。
この場合、図6に示すように、第2の光ビームS2が曲面部2aを横切って通過することとなるので、前記第2の強度分布に基づいて曲面部2a上の(高さ)位置を測定算出することができる。
具体的には、曲面部2a上のある位置(XYステージ上の座標で(x’,y)とする)を第2の光ビームS2がX軸に平行に透過すると、この位置において、光ビームS2が曲面を透過することによる反射や屈折による散乱が生じ、この散乱光分の光強度が弱まることとなる。従って第2の受光部88にて検出された光ビーム2の光強度に基づき、以下に説明するように電子ビームの焦点位置(x、y)の深度を曲面部2a上の位置(x’、y)の高さと対応させて算出することができる。
即ち、第2の受光部88の検出した光強度に対応する信号出力(Opとする)と基材の高さとの相関関係を求めると、図7に示す様な特性図が得られるので、制御回路100のメモリ160等に、この特性、即ち相関関係を示した相関テーブルを予め格納しておくことにより、第2の受光部88での信号出力Opに基づき、電子ビームの焦点位置の基材内の高さ位置を算出することができる。これにより、描画位置と、電子ビームの焦点位置との調整を行い描画を行うこととなる。
〈描画位置算出方法の概要〉
次に、電子ビーム描画装置1を用いる場合の描画位置算出方法の概要について説明する。
先ず、本実施形態の基材2は、図8(A)、(B)に示すように、例えば光レンズ等の光学素子形状で、断面略平板状の平坦部2bと、この平坦部2bより突出形成された曲面をなす曲面部2aと、を含んで構成されている。この曲面部2aの曲面は、球面に限らず、非球面などの他、あらゆる高さ方向に変化を有する自由曲面であってよい。
まず、XYZステージ30上に載置する前に、予め基材2上の複数の、例えば3個の基準点P00、P01、P02を決定してこの位置を測定しておく(第1の測定)。これによって、例えば、基準点P00とP01によりX軸、基準点P00とP02によりY軸が定義され、3次元座標系における第1の基準座標系が算出される。ここで、第1の基準座標系における高さ位置をHo(x、y)(第1の高さ位置)とする。これによって、基材2の厚み分布の算出を行うことができる。
一方、基材2をXYZステージ30上に載置した後も、同様の処理を行う。即ち、図8(A)に示すように、基材2上の複数の、例えば3個の基準点P10、P11、P12を決定してこの位置を測定しておく(第2の測定)。これによって、例えば、基準点P10とP11によりX軸、基準点P10とP12によりY軸が定義され、3次元座標系における第2の基準座標系が算出される。
さらに、これらの基準点P00、P01、P02、P10、P11、P12により第1の基準座標系を第2の基準座標系に変換するための座標変換行列などを算出して、この座標変換行列を利用して、第2の基準座標系における前記Ho(x、y)に対応する高さ位置Hp(x、y)(第2の高さ位置)を算出して、この位置を最適フォーカス位置、即ち描画位置として電子ビームの焦点位置が合わされるべき位置とすることとなる。これにより、上述の基材2の厚み分布の補正を行うことができる。
尚、上述の第2の測定は、電子ビーム描画装置1の測定手段である測定装置80を用いて測定することができる。また第1の測定は、予め別の場所において他の測定装置を用いて測定しおく。他の測定装置としては、上述の測定装置80と全く同様の構成の測定装置200(図示せず)を採用することができる。
この場合、測定装置200での測定結果は、例えば、図5に示す測定情報入力部158にて入力されたり、制御回路100と接続される不図示のネットワークを介してデータ転送されることで、メモリ160などに格納されることとなる。
上記のようにして、描画位置が算出されて、電子ビームの焦点位置が制御されて描画が行われることとなる。
具体的には、図8(C)に示すように、まず描画の単位空間を3次元基準座標系で設定し、電子ビームの焦点深度FZの位置を、前記単位空間である1フィールド(m=1)内の描画位置に調整制御する。(この制御は、上述したように、電子レンズ16による電流値の調整もしくはXYZステージ30の駆動制御の何れか一方又は双方によって行われる。)尚、本例においては、1フィールドの高さ分を焦点深度FZより長くなるように、フィールドを設定してあるがこれに限定されるものではない。
ここで、焦点深度FZとは、図9に示すように、電子レンズ16を介して照射される電子ビームBにおいて、ビームウエスト(ビーム径の最も細い所)BWが有効な範囲の高さを示す。尚、本実施形態においては、電子レンズ16の幅D、電子レンズ16よりビームウエストBWまでの深さfとすると、D/fは、0.01程度であり、例えば50nm程度の解像度を有し、焦点深度は例えば数十μm程度である。
そして、図8(C)に示すように、例えば1フィールド内をY方向にシフトしつつ順次X方向に走査することにより、1フィールド内の描画が行われることとなる。さらに、1フィールド内において、描画されていない領域があれば、当該領域についても、上述の焦点位置の制御を行いつつZ方向に移動し、同様の走査による描画処理を行うこととなる。
次に、1フィールド内の描画が行われた後、他のフィールド、例えばm=2のフィールド、m=3のフィールドにおいても、上述と同様に、測定や描画位置の算出を行いつつ描画処理がリアルタイムで行われることとなる。
このようにして、描画されるべき描画領域について全ての描画が終了すると、基材2の表面における描画処理が終了することとなる。
尚、本例では、この描画領域を被描画層とし、この被描画層における曲面部2aの表面の曲面に該当する部分を被描画面としている。また以上に説明した各種演算処理、測定処理、制御処理などの処理を行うための処理プログラムは、プログラムメモリ162に予め制御プログラムとして格納されるものとする。
〈描画順序〉
図3のXYZステージ30上に乗せられる基材2の曲面部は図10(a)、(b)に示される様な複数のフィールド(描画単位)に区分され、図3の電子ビームが走査される走査空間内の最大可能走査領域内に各フィールドは所定の順序で搬送される。
走査領域に搬送されたフィールドに割り当てられた描画パターンは図8(C)に示される様に電子ビームのX方向及びY方向での走査により描画される。
対象とするフィールドに割り当てられた描画パターンの描画が終了すると、隣接するフィールドが次の描画対象フィールドとされて、描画が開始される。この様に、本実施例の描画方法は、描画がフィールド毎に行われるステップ・アンド・リピート方式である。
図10(a)、(b)のフィールド配置の例では、各フィールドは同心円状に配置され、各フィールドは扇形状を有する。この様に同心円状に配置された複数のフィールドの描画順序としては、例えば、同心円の中心の頂部に位置する第1グループのフィールドに対する描画を行い、その次に第1グループのフィールドの下位に位置する同一円周面上の第2グループのフィールドに対する描画を行い、更に、その次に第2グループのフィールドの下位に位置する同一円周面上の第3グループのフィールドに対する描画を行う様に、順次下方に向かって描画を行っていく方法があるが、これに限定されるものではない。
〈ドーズ量制御系の具体的構成〉
図11に、本発明に係る電子ビーム描画装置の制御系の機能ブロック図を示す。
電子ビーム描画装置1のメモリ160は、形状記憶テーブル161を有し、この形状記憶テーブル161には、例えば、基材2の曲面部2aにブレーズ3の傾斜部3b及び側壁部3aを所望の通りに各ピッチL毎に形成する際の描画位置に対応する理想ドーズ分布や、この理想ドーズ分布を当該電子ビーム描画装置のドーズ量最小変位(変化量)にて近似した設定ドーズ分布や、ブレーズ3の傾斜部3bにドーズ混在傾斜部3bbを形成する際の凹凸部に関するドーズ分布(凸部の長さや各凸部間の距離に関するドーズ分布)等を予め定義したドーズ分布情報161aが格納されている。
さらに、メモリ160には、理想ドーズ分布を表す理想ドーズ関数f(n)及び設定ドーズ分布を表す設定ドーズ関数D(n)と、ドーズ量混在領域の範囲を設定するミキシング定数w[%]との相関関係を定義するドーズ量混在領域演算情報161b、設定ドーズ関数D(n)をこのドーズ量混在領域演算情報161bに基づいて補正演算したドーズ分布補正演算情報161c、その他の情報161dなどが格納されている。尚、此処に言う理想ドーズ分布を表す理想ドーズ関数f(n)とは、例えば、図12に示すように、所望のブレーズ3形状を得るための理想的なドーズ分布を表す関数のことであり、また、此処に言う設定ドーズ分布を表す設定ドーズ関数D(n)とは、例えば、図13に示すように、前記理想ドーズ分布を当該電子ビーム描画装置のドーズ最小変位にて近似することで得られ、当該電子ビーム描画装置にて実際に設定される場合のドーズ分布を表す関数のことである。本発明はこの装置本来の設定ドーズ分布をドーズ量混在領域演算情報161bで補正することに特徴を有し、此処にいうドーズ分布補正演算情報161cとは、例えば、図14に示すように、前記設定ドーズ関数D(n)に対して、前記ドーズ量混在領域演算情報161bに基づいて後述する補正演算を行った後のドーズ関数を示すドーズ分布情報のことである。因みに、これら図12〜図14はモデル化して示したものであり、ドーズ関数(ドーズ分布)は、何れも同一ブレーズ形状を得るためのドーズ分布を表すもので、これらドーズ関数(ドーズ分布)は、基材のブレーズ3が形成される一面が平面である場合を示しており、そのドーズ量及びドーズ位置(ドーズ量分布を図示するため設定した仮座標)は、あくまでも一例として示されている。
また、プログラムメモリ162には、これらの処理を行う処理プログラム163a(より詳細には、例えば後述する図19〜図21のS101〜S117までの一連の処理など)、前記ドーズ分布情報161a、ドーズ量混在領域演算情報161b、ドーズ分布補正演算情報161cなどの情報を基に、ブレーズ3の傾斜部3bに対してドーズ量混在領域MIXをどの描画ラインの位置に対して割り当てるか、ブレーズ3の形成位置に応じてドーズ量混在混在領域MIXの凹凸の個数を変更する場合にはその変更処理を含む処理等を演算により算出するなどのドーズ分布補正演算プログラム163b(より詳細には、例えば後述する図22のS301〜S313までの一連の処理など)、その他の処理プログラム163cなどを有している。尚、本実施形態のメモリ160にて「格納手段」を構成でき、また、本実施形態のプログラムメモリ162と制御部170とで「制御手段」を構成できる。
本発明に係る制御手段は、ドーズ分布に基づいてドーズ量を算出しつつ前記ブレーズ3の傾斜部3b及び側壁部3aの描画を行うように制御する。この際、制御手段は、測定手段にて測定された描画位置に基づき、電子レンズの電流値を調整して前記電子ビームの焦点位置を前記描画位置に応じて変化させる制御をするとともに、前記焦点位置について、ドーズ分布に基づいてドーズ量を算出しつつ前記ブレーズ3の傾斜部3b及び側壁部3aの描画を行うように制御する。
また、メモリ160のドーズ分布情報161aは、基材2の曲面部2a、ブレーズ3の傾斜部3b及び側壁部3a等の形状に応じた理想ドーズ分布及び設定ドーズ分布に関する情報を含んでいる。そして、ドーズ分布補正演算プログラム163bは、設定ドーズ分布を、さらに前記ドーズ量混在領域の凹凸に対応するドーズ量を混在させたドーズ分布(ドーズ分布補正演算情報161c)に補正するための演算を行う。このドーズ分布補正演算プログラム163b及び制御部170により、本発明にいう「演算手段」を構成できる。
さらに、制御手段には、前記理想ドーズ分布や後述するドーズ量混在領域:mix_w[%]等を設定するための設定手段181や、例えばライン毎のドーズ情報等を表示可能な表示手段182を備えることとする。
このような構成を有する制御手段において、制御部170は、処理プログラム163aにより所定の描画アルゴリズムを実行しつつ、ドーズ量混在領域のドーズ量を算出するルーチンに至ると、ドーズ分布補正演算プログラム163bを実行し、装置元来の設定ドーズ分布に対して描画位置に応じたドーズ量混在領域の凹凸を設定するための補正されたドーズ分布を算出するために、ある程度の基本的情報、即ち、ドーズ分布情報161a、或いは、ドーズ量混在領域演算情報161bに格納されたテーブル等を参照しつつ、対応するドーズ分布補正演算情報161cを算出した後、この算出したドーズ分布補正演算情報161cを前記メモリ160の所定の一時記憶領域に格納し、そのドーズ分布補正演算情報161cに基づいて描画を行う。
ここで、ドーズ量混在領域演算情報161bに格納されるテーブル、具体的にはドーズ量混在領域の凹凸のドーズ分布に関するテーブルの態様の一例について、図15を参照して説明する。図15には、図3(b)のドーズ量混在領域の描画パターンに対応するドーズ分布に関するテーブル161eの具体例が開示されている。図15の例では、描画0〜13ラインまでは、ドーズ量0にて領域301を構成し、14〜25ラインまでは、ドーズ量0及び100にてドーズ量混在領域MIXを構成している。具体的には、14ライン、18〜19ライン、22〜24ラインは、ドーズ量100にて凹部を構成している。同様に、15〜17ライン、20〜21ライン、25ラインは、ドーズ量0にて凸部を構成している。さらに、26〜38ラインまでは、ドーズ量100にて傾斜部の領域302を構成し、39〜50ラインまでは、ドーズ量100及び150にて、再度、ドーズ量混在領域MIXを構成している。具体的には、39ライン、43〜44ライン、47〜49ラインは、ドーズ量150にて凹部を構成している。同様に、40〜42ライン、45〜46ライン、50ラインは、ドーズ量100にて凸部を構成している。以降、ドーズ最小変位50にて段階的に平坦なドーズ量領域及びドーズ量混在領域を構成していく。
尚、本例では、例えば1ラインピッチを10nm〜30nmとし、最低ドーズ量を100、ドーズ最小変位を50としている。
このように、ドーズ量混在領域のドーズ分布をライン毎に用意したテーブルを利用することで、ドーズ分布補正演算プログラム163b及び制御部170による補正演算を簡単にすることができ、より簡単にドーズ量混在領域の凹凸に対応した描画を行うことができる。尚、このようなテーブルを利用することなく所定のプログラムにより補正演算を行う場合の具体的な処理ステップについては、図3(a)に示すようなドーズ量混領域を例に採り、後述する。
〈制御系の具体的構成〉
ここでは一例として、円描画にあたり円を正多角形で近似して、各描画ラインを直線的に描画する各種処理を行うための制御系の具体的構成について、図16を参照しつつ説明する。
本発明に係る電子ビーム描画装置の制御系300は、図16に示す様に、例えば円描画時に正多角形(不定多角形を含む)に近似するのに必要な(円の半径に応じた)種々のデータ(例えば、ある一つの半径kmmの円について、その多角形による分割数n、各辺・各点の位置の座標情報並びにクロック数の倍数値、さらにはZ方向の位置などの各円に応じた情報等)、さらには円描画に限らず種々の曲線を描画する際に直線近似するのに必要な種々のデータ、各種描画パターン(矩形、三角形、多角形、縦線、横線、斜線、円板、円周、三角周、円弧、扇形、楕円等)に関するデータを記憶する描画パターン記憶手段である描画パターンデータメモリ301を含んで構成される。
また、制御系300は、前記描画パターンデータメモリ301の描画パターンデータに基づいて、描画条件の演算を行う描画条件演算手段310と、前記描画条件演算手段310から(2n+1)ライン((n=0、1、2・・)である場合は(2n+1)であるが、(n=1、2、・・)である場合は(2n−1)としてもよい)即ち奇数ラインの描画条件を演算する(2n+1)ライン描画条件演算手段311と、(2n+1)ライン描画条件演算手段311に基づいて1ラインの時定数を設定する時定数設定回路312と、(2n+1)ライン描画条件演算手段311に基づいて1ラインの始点並びに終点に関する電子銃電源部102での電圧を設定する始点/終点電圧設定回路313と、(2n+1)ライン描画条件演算手段311に基づいてラインのカウンタ数を設定するカウンタ数設定回路314と、(2n+1)ライン描画条件演算手段311に基づいてイネーブル信号を生成するイネーブル信号生成回路315と、奇数ラインの偏向信号を出力するための偏向信号出力回路320と、を含んで構成されている。尚、此処に言うラインとは、多角形を構成する各辺のことを指している。
さらに、制御系300は、前記描画条件演算手段310から(2n)ライン即ち偶数ラインの描画条件を演算する(2n)ライン描画条件演算手段331と、(2n)ライン描画条件演算手段331に基づいて1ラインの時定数を設定する時定数設定回路332と、(2n)ライン描画条件演算手段331に基づいて1ラインの始点並びに終点に関する電子銃電源部102での電圧を設定する始点/終点電圧設定回路333と、(2n)ライン描画条件演算手段331に基づいて、ラインのカウンタ数を設定するカウンタ数設定回路334と、(2n)ライン描画条件演算手段331に基づいてイネーブル信号を生成するイネーブル信号生成回路335と、偶数ラインの偏向信号を出力するための偏向信号出力回路340と、(2n)ライン描画条件演算手段310に基づいて、次の等高線に移動するときなどにブランキングを行うブランキングアンプ350と、描画条件演算手段310での描画条件と、奇数ラインの偏向信号出力回路320並びに偶数ラインの偏向信号出力回路340からの情報とに基づいて、奇数ラインの処理と偶数ラインの処理とを切り換える切換回路360と、を含んで構成されている。
奇数ラインの偏向信号出力回路320は、走査クロックCL1と、カウンタ数設定回路314からの奇数ラインカウント信号CL6と、イネーブル信号発生回路315のイネーブル信号とに基づいてカウント処理を行う計数手段であるカウンタ回路321と、カウンタ回路321からのカウントタイミングと、始点/終点電圧設定回路313での奇数ライン描画条件信号CL3とに基づいて、D/A変換を行うDA変換回路322と、このDA変換回路322にて変換されたアナログ信号を平滑化する処理(偏向信号の高周波成分を除去する等の処理)を行う平滑化回路323と、を含んで構成される。
偶数ラインの偏向信号出力回路340は、走査クロックCL1と、カウンタ数設定回路334からの偶数ラインカウント信号CL7と、イネーブル信号発生回路335のイネーブル信号とに基づいてカウント処理を行う計数手段であるカウンタ回路341と、カウンタ回路341からのカウントタイミングと、始点/終点電圧設定回路333での偶数ライン描画条件信号CL5とに基づいて、D/A変換を行うDA変換回路342と、このDA変換回路342にて変換されたアナログ信号を平滑化する処理を行う平滑化回路343とを含んで構成される。
尚、これらの制御系300を構成する各部は、何れも図5に示す制御部170にて制御可能な構成としている。また、これら制御系300は、X偏向用の制御系とY偏向用の制御系を各々形成する構成としてもよい。
尚、本実施形態の描画パターンデータメモリ310と描画条件演算手段311などを含む制御系300で、「演算手段」を構成できる。この「演算手段」は、走査される走査ライン上に、DA変換器の最小の変換時間(最小時間分解能)の整数倍の時間に対応する距離に相当する少なくとも2点の各位置を演算する機能を有する。本実施形態において制御部170は、前記演算手段にて演算された各位置間を前記電子ビームによりほぼ直線的に走査するように制御することとなる。また、同様にして、本発明の他の態様の「演算手段」では、略円状に走査される走査ライン上に、DA変換器のクロック数により規定される最小時間分解能の整数倍の時間に対応する距離を一辺とする多角形の各頂点位置を算出する機能を有する。また、制御手段は、演算手段にて演算された各位置間を前記電子ビームによりほぼ直線的に走査するのは同様である。
上記のような構成を有する制御系300は、概略次のように作用する。すなわち、描画条件演算手段310が描画パターンデータメモリ301から直線近似による走査(描画)に必要な情報を取得すると、所定の描画条件の演算処理を行い、例えば一つの円に対して正多角形の各辺に近似された場合の各辺のうち最初の辺、奇数番目のラインに関する情報は、(2n+1)ライン描画条件演算手段311へ、次の辺、偶数番目のラインに関する情報は、(2n)ライン描画条件演算手段331へ各々伝達される。
これにより、例えば、(2n+1)ライン描画条件演算手段311は、奇数ラインに関する描画条件を生成し、走査クロックCL1と生成された奇数ライン描画条件生成信号CL2とに基づいて、偏向信号出力回路320から奇数ライン偏向信号CL9を出力する。
一方、例えば、(2n)ライン描画条件演算手段331は、偶数ラインに関する描画条件を生成し、走査クロックCL1と生成された偶数ライン描画条件生成信号CL4とに基づいて、偏向信号出力回路340から偶数ライン偏向信号CL10を出力する。
これら奇数ライン偏向信号CL9と偶数ライン偏向信号CL10は、描画条件演算手段310のもとに切換回路360によって、その出力が交互に切り換わる。したがって、ある一の円について、正多角形に近似され、各辺が算出されると、ある一つの辺、奇数番目の辺が描画されると、次の辺、偶数番目の辺が描画され、さらに次ぎの辺、奇数番目の辺が描画される、という具合に交互に各辺が直線的に描画(走査)されることとなる。
そして、ある一つの円について描画が終了すると、描画条件演算手段310は、その旨をブランキングアンプ350に伝達し、他の次の円を描画するように促す処理を行う。このようにして、各円について多角形で近似した描画を行うこととなる。
(基材の形状について)
次に、ブレーズの傾斜部上にドーズ量混在領域の描画を行うことにより、現像後のブレーズの傾斜面がなだらかに形成されることについて説明する。
図13及び図17には、従来の電子ビーム描画における設定ドーズ分布と、走査型プローブ顕微鏡にて測定された描画/現像後の基材の断面形状が示されており、一方、図14及び図18には、本発明に係る電子ビーム描画における設定ドーズ分布と、走査型プローブ顕微鏡にて測定された描画/現像後の基材の断面形状が示されている。尚、図13及び図14に示すドーズ分布は同一のブレーズ形状に対応するもので、これらドーズ分布は、回折構造のブレーズ3が形成される一面が平面である場合を示しており、そのドーズ量及びドーズ位置は、あくまでも一例が示されている。
また、図17及び図18に示されるように、ブレーズ3′、3は、側壁部3′a、3a及び傾斜部3′b、3bを有し、側壁部3′a、3aと傾斜部3′b、3bとの間には溝部3′c、3cを有する。また、これら図における横軸は、回折格子構造のブレーズの断面方向に沿った位置を示し(単位:μm)、縦軸は、回折格子構造のブレーズの高さ方向に沿った位置を示している(単位:nm)。
図13に示すように、従来の電子ビーム描画においては、理想ドーズ分布を装置の最小ドーズ分解能(ドーズ最小変位)にて近似することにより得られる設定ドーズ分布、即ち、設定ドーズ関数D(n)に基づいて基材の描画が行われる。そして、その描画/現像後に得られるブレーズ3′の側壁部3′a及び傾斜部3′bの形状は、図17に示されるように、その傾斜部3′bに電子ビーム描画装置の最小ドーズ分解能に起因する複数の段差が形成されたものとなる。
一方、図14に示すように、本発明に係る電子ビーム描画においては、前記設定ドーズ関数D(n)に対して、ドーズ量混在領域演算情報161bに格納されるテーブルを基に後述する補正演算を行った後のドーズ分布補正演算情報161cに基づいて基材の描画が行われる。この際、ブレーズ3の傾斜部3bには、前述の平坦なドーズ量領域及びドーズ量混在領域が描画される。尚、ドーズ量混在領域は複数の凹凸により構成される。そして、その描画/現像後に得られるブレーズ3の側壁部3a及び傾斜部3bの形状は、図18に示されるように、その傾斜部3bが、図17に示されるブレーズ3′の傾斜部3′bと比較してなだらかに形成されたものとなる。
ここで、図18に示される傾斜部3bが、図17に示される3′の傾斜部3′bと比較してなだらかに形成されることの詳細について説明すると次のようになる。
一般に、基材に電子ビームを照射した場合には、基材の内部においては少なからず電子ビームの拡散が生じ、その近傍領域には、あたかもその部分が電子ビームにより描画されたような効果が及ぼされることになる。これを本発明では電子ビームによる“近接効果”と称することとする。ところで、本発明において電子ビームによりブレーズ3の傾斜部3bにドーズ量混在領域に基づいて描画する場合にも、ブレーズ3の傾斜部3b内においては電子ビームの拡散が生じ、第1のドーズ量で走査された領域及び第2のドーズ量で走査された領域間にて、この電子ビームによる“近接効果”が生じることとなる。従って、これを現像した場合には、双方の領域は、実際には厳密な凹凸形状とはならない。さらに、前述のように、ドーズ量混在領域で走査する第1のドーズ量による走査幅及び第2のドーズ量による走査幅は、各々、当該領域を描画する電子ビームの径よりも小さく構成されるため、これを電子ビームにより描画した場合には、電子ビームによる描画領域の重複により双方の領域に複数回(例えば2〜3回)にわたって描画される部分が生じるため、これを現像した場合には、ドーズ量混在領域によって描画した領域は、結果として中間的な高さを有する傾斜面となる。
即ち、この結果、ブレーズ3の傾斜部3bの隣接する平坦なドーズ量に対応する領域間に有る段差は、これらの中間的な高さの傾斜面がドーズ量混在領域による走査で形成されるため、従来のブレーズ3′の傾斜部3′bが段差を有するのと比較して、よりなだらかな傾斜面を構成することとなる。
尚、前述のように、ドーズ量混在領域を構成する第1のドーズ量部の当該混在領域に対するデューティー比を傾斜部3bの高さが低くなる側に行くにつれ小さくした場合には、さらになだらかな傾斜面を構成することができる。
(処理手順)
次に、電子ビーム描画装置を用いて、例えば非球面の光レンズの形成型を作製する基材に同心円状に、且つ円を多角形で近似してブレーズを形成する場合の処理手順の1例について図19〜21及び図22に示すフローで説明する。
先ず、母型材(原型)にSPDT(Single Point Diamond Turning:超精密加工機によるダイアモンド切削)により非球面の加工を行う際に、同心円マークを同時に加工する(ステップ、以下「S」101)。この際、光学顕微鏡で、例えば±1μ以内の検出精度の形状が形成されることが好ましい。
次に、FIB(Focused Ion Beam)にて例えば3箇所にアライメントマークを付ける(S102)。ここに、十字形状のアライメントマークは、電子ビーム描画装置内で±20nm以内の検出精度を有することが好ましい。
さらに、前記アライメントマークの、同心円マークとの相対位置を光学顕微鏡にて観察測定し、非球面構造の中心に対する位置を測定し、データベース(DB)(ないしはメモリ(以下、同))へ記録しておく(S103)。なお、この測定精度は、±1μ以内であることが好ましく、中心基準とした3つのアライメントマークの位置、x1y1、x2y2、x3y3をデータベース(DB)へ登録する。
また、原型にレジストを塗布しベーキングして樹脂で被覆し形成した基材の各部の高さとアライメントマークの位置(Xn、Yn、Zn)を測定しておく(S104)。ここで、中心基準で補正した基材:位置テーブルTbl1(OX、OY、OZ)、アライメントマーク:OA(Xn、Yn、Zn)(いずれも3*3行列)を、データベース(DB)へ登録する。
次に、焦点位置の高さ検出のために、第2の光学系の測定ビームの位置をあわせるとともに、電子線のビームをフォーカスしておく等、その他各種準備処理を行う(S105)。
この際、ステージ上に取り付けたEB(電子ビーム)フォーカス用針状(50nmレベル)較正器に第2の光学系の測定ビームを投射すると共に、電子ビーム描画装置のSEM(Scanning Electron Microscope)モードで観察し、フォーカスを合わせる。
次いで、基材を電子ビーム描画装置内へセットし、アライメントマークを読み取り(XXn、YYn、ZZn)、座標変換行列Maを算出して、電子ビーム描画装置内の基材の各部位置を求める(S106)。この際に、電子ビーム描画装置内においては、S106に示されるような各値をデータベース(DB)に登録することとなる。
さらに、基材の形状から、最適なフィールド位置を決定する(S107)。尚、フィールドは同心円の扇型に配分するものとする。また、フィールド同士は、若干重なりを持たせるものとする。さらに、中央で第一輪帯にかからない部分はフィールドを配分しないものとする。
そして、各フィールドについて、隣のフィールドのつなぎアドレスの計算を行う(S108)。この計算は平面として計算を行う。尚、多角形の1つの線分は、同一フィールド内に納める。ここに、「多角形」とは、上述の制御系の項目で説明したように、円描画を所定のn角形で近似した場合の少なくとも1本の描画ラインをいう。
次に、対象とするフィールドについて焦点深度領域を区分する。同一ラインは同じ区分に入るように同一焦点深度領域を区分し、フィールドの中央は、焦点深度区分の高さ中心とする(S109)。ここに、高さ50μ以内は、同一焦点深度範囲として、1〜数箇所程度に分割する。
次いで、対象とするフィールドについて、同一焦点深度領域内での(x、y)アドレスの変換マトリクス(Xc、Yc)によりビーム偏向量を算出する(S110)。このXc、Ycは各々図示の式(16)の通りとなる。ここに、Wdはワークディスタンス、dは該当焦点深度区分の中央からZ方向偏差を示す。
さらに、対象とするフィールドについて、となりとのつなぎアドレスを換算する(S111)。ここで、S108にて算出したつなぎ位置をS110の式(16)を用いて換算する。
そして、対象とするフィールドについて、中心にXYZステージを移動し、高さをEB(電子ビーム)のフォーカス位置に設定する(S112)。つまり、XYZステージにてフィールド中心にセットする。また、測定装置80の信号を検出しながら、XYZステージを移動し、高さ位置を読み取る。
また、対象とするフィールドについて、一番外側(m番目)の同一焦点深度領域の高さ中心に電子ビーム(EB)のフォーカス位置に合わせる(S113)。
次に、対象とする同一焦点深度領域について、一番外側(n番目)のラインのドーズ量及び多角形の始点、終点の座標を計算する。尚、スタート(始点)、エンド(終点)は、隣のフィールドとのつなぎ点とする(S114)。この際、始点、終点は整数にする。また一般にドーズ量は、ラジアル位置(入射角度)で決まった最大ドーズ量と格子の位置で決められた係数に最大ドーズ量を掛け合わせたもので表される。
以降、S113からS115を規定回数実施する(S115)。
ここで、図22に示すフローチャートを用いて、本発明に係る、上述のS113〜115における各描画ラインのドーズ量の決定方法について説明する。尚、以下においては、図3(a)に示すように、傾斜部3bに、第1のドーズ量での走査領域と第2のドーズ量での走査領域の間の距離が一定であるドーズ量混在領域を形成する場合について説明する。
ここで、各種パラメータを次のように定義する。
理想ドーズ関数:f(n)
ドーズ最小変位:min_dose
描画用ドーズ設定値:Dn(整数)
nの四捨五入値:Round(n)
まず、設定手段181により、ドーズ量混在領域領域:mix_w[%]のw[%]を入力する(S301)。尚、此処にいうw[%]とは、図23におけるm/Mの値のことを指し、また、此処にいうドーズ量混在領域:mix_w[%]とは、例えば、図4におけるU1+U2+U3のことを指し、具体的には、図23に示すように、理想ドーズ関数f(n)と設定ドーズ関数D(n)とを同一の描画位置をもって重ねた場合に、理想ドーズ関数f(n)と設定ドーズ関数D(n)との交点Pからmの距離に相当する地点から水平線を引き、理想ドーズ関数f(n)と交わる点Qから、さらに垂直線を引いたときに設定ドーズ関数D(n)と交わる点Rと各ドーズ設定値の始点Oとの間の領域のことを指している。
このようにドーズ量混在領域:mix_w[%]を定義することで、理想ドーズ関数f(n)の傾きに応じてドーズ量混在領域を設ける範囲を決定することができるので、例えば、ブレーズの傾斜面の角度が描画位置に応じて変化するような場合であっても、これに適切に対応することができる。
制御部170は、処理プログラム163aにより所定の描画アルゴリズムを実行しつつ、ドーズ量混在領域のドーズ量を算出するルーチンに至ると、ドーズ分布補正演算プログラム163bを実行し、装置による設定ドーズ分布に対して描画位置に応じたドーズ量混在混在領域を設定するための補正されたドーズ分布を算出する。
具体的には、まず、凹凸の1つの段差に基づいて描画する位置(例えばU1)をn=0〜k(k:最外描画位置)とし、描画位置n=0、ドーズ変位の上下を1及び−1で定義して初期設定値N=1とした上で(S302)、描画位置nにおける理想ドーズ関数f(n)をドーズ最小変位(最小ドーズ分解能)で割った値とその値の小数点以下を四捨五入した値との差R(x)を算出する(S303)。
R(x)=f(n)/min_dose−Round(f(n)/min_dose)・・・〔式1〕
次に、w/100>1−(0.5−R(x)×2)・・・〔式2〕
を判断し(S304)、Yesと判断された場合には、次に、N=1かを判断する(S307)。
当然、初期設定値N=1としているので、描画位置n=0におけるドーズ設定値(設定ドーズ量)Dnは、
Dn=Round(f(n)/min_dose)とされる(S309)。
S304において、Noと判断された場合には、次に、
mix_w/100<(0.5−R(x)×2)
を判断し(S305)、Yesと判断された場合には、次に、N=1を判断する(S308)
当然、初期設定値N=1としているので、描画位置n=0におけるドーズ設定値(設定ドーズ量)Dnは、
Dn=Round(f(n)/min_dose)−1とされる(S310)。
S305において、Noと判断された場合には、描画位置nにおけるドーズ設定値(設定ドーズ量)Dnは、Dn=Round(f(n)/min_dose)とされる(S306)。
S309、或いは、S310から引き続いて、その描画位置nにおけるドーズ設定値Dnをドーズ分布補正演算情報161cとしてメモリ160に格納する(S311)。
次に、n=kを判断する(S312)。
当然、n=0としているので、Noと判断され、n=n+1、N=−1とする(S313)。
以降、n=n+1、N=−N(nに加算する度にNの正負を反転)とした上で、S312においてn=kと判断されるまでS303〜S312が規定回数繰り返される。尚、これらはフィールド内での描画ラインに対する補正となる。
引き続き後続の凹凸ドーズ量に基づく描画位置で上記フローを繰り返して、決定されたドーズ設定値Dnに基づいて描画を行うことで、例えば、図3(a)に示すようなドーズ量混在領域の凹凸に基づいて描画することができる。
以下、図21のフローに戻って、次に、XYZステージの移動、次のフィールドの描画を行う準備を行う(S116)。この際、フィールド番号、時間、温度などデータベース(DB)への登録を行う。
以降、前記S109からS116を規定回数実施する(S117)ことにより、図3(a)に示すようなドーズ量分布で、各ブレーズ3の傾斜部3bを形成することができる。
尚、前述の、例えば図3(b)に示す様な、ドーズ量混在領域の各凹凸間の距離が、傾斜部3bの高さが低くなる方向に行くに従い広くなるように構成される場合には、例えば図15に示すようなドーズ分布をライン毎に用意したテーブルを利用することで、補正演算を簡単に行って描画することが可能となる。
(ドーズ量混在領域の他の実施形態)
次に、本発明の他の実施形態について、図24及び図25に基づいて説明する。尚、以下においては、前述の実施形態と実質的に同様の構成に関しては説明を省略し、異なる部分についてのみ説明する。
前述の実施形態では、ブレーズ3の傾斜部3bの断面方向(傾斜方向)に一定のドーズ量で描画される領域とドーズ量混在領域の凹凸に基づいて描画される領域とを構成する場合を例示したが、本実施形態においては、電子ビームの走査方向(図1(b)の矢印方向)にドーズ量混在領域の凹凸に基づいて描画する場合について説明する。
即ち、本実施形態の特徴は、電子ビームにより走査される描画線(走査方向のライン)を描画するにあたりドーズ量混在領域の凹部に基づき描画されるブランキング区間を設け、線描画部分を前記ドーズ量混在領域の凸部に基づき描画することにある。
図24に、本実施形態のブランキング区間を設けて形成されるブレーズの傾斜部を描画するドーズ分布をモデル的に示す。
図24に示すように、本実施形態のブレーズの傾斜部を描画するドーズ分布200は、断面方向の場合には、第1のドーズ量201と第2のドーズ量202で描画される描画線も有るが(図24(b))、電子ビームの走査方向(図における上下方向)に第1のドーズ量及び第2のドーズ量(但し、第2のドーズ量>第1のドーズ量、第2のドーズ量−第1のドーズ量=ドーズ最小変位)が混在するドーズ量混在領域MIXが、凹部(第2のドーズ量にて描画)に対応するブランキング区間BKと、その他の区間(第1のドーズ量にて描画)とから形成されている。尚、同図(a)における斜線領域が同図(b)の凹部BJ1〜BJ3の底面に対応している。
尚、前述のように、ドーズ量混在領域MIXの各凹部及び凸部の幅は、各々、当該凹凸に基づいて描画する電子ビームの径よりも小さく構成するものとする。
このように、電子ビームの走査方向のドーズ分布にドーズ量混在領域の凹凸部を形成した場合にも、前述の実施形態と同様に、これに対応して電子ビームにより描画した場合には、ブレーズの傾斜部内において電子ビームの拡散が生じ、ドーズ量混在領域の各凹部に基づいて描画される領域及び凸部に基づいて描画される領域間において、この電子ビームによる“近接効果”が生じることとなるため、これを現像した場合には、実際には厳密なバイナリー形状とはならない。さらに、前述のように、ドーズ量混在領域の各凹部に基づいて描画される領域及び凸部に基づいて描画される領域の幅は、各々、当該領域を描画する電子ビームの径よりも小さく構成されるため、これを電子ビームにより描画した場合には、電子ビームによる描画領域の重複により複数回(例えば2〜3回)にわたって描画される部分が生じるため、これを現像した場合には、中間的な高さを有する傾斜面となる。
この結果、基材に形成されるブレーズの、隣接する第1のドーズ量で描画される領域と第2のドーズ量で描画される領域間の段差は、これらの中間的な高さを有するドーズ量混在領域に基づいて描画される領域により、従来のブレーズの傾斜部間の段差と比較して、よりなだらかな傾斜面を構成することとなる。
尚、前述のように、ドーズ量混在領域MIXの凹凸部に対する凸部のデューティー比を傾斜部200の高さが低くなる側に行くにつれ小さくした場合には、ドーズ量混在領域の凸部に基づいて描画される領域の高さを段階的に低くしていくことが可能となるため、よりなだらかな傾斜面を構成することができる。
〈ブランキング区間を設ける制御系の構成〉
次に、上述のようなブランキング区間を形成するべく、描画ラインの各領域に応じて、第1のドーズ量及び第2のドーズ量にて描画を行うための具体的な制御系の構成について、図25を参照しつつ説明する。
本実施形態における制御系700は、例えば、先の実施形態における図5の制御回路100内に組み込まれるもので、ドーズ分布のドーズ量混在領域に基づいて線描画を行う場合に、周期的にブランキングを設ける(ドーズ量混在領域のドーズ分布の所定間隔毎の凹凸に基づいて描画する)ための2つのモード(例えば、第1のドーズ量にて線描画を行う第1モード、ブランキングにより第2のドーズ量にて線描画を行う第2のモード)を利用したモード切換制御を行うものであり、図25に示すように、電子ビームを基材の表面上に走査(スキャン)するために所定のクロック(信号)に基づいてデジタル信号をアナログ信号に変換するDA変換器であるスキャンDAC702と、このスキャンDAC702にて変換されたアナログ信号に基づいて、ビーム偏向信号を生成出力するためのビーム偏向信号出力回路703と、前記クロック(信号)のクロックを計数(カウント)するカウンタ711と、ドーズパターン周期n1に関する情報を格納した第1レジスタ713、ブランキング区間を形成するためのブランキング期間をn3−n2(但し、符号720に示すように、n1>n3、n3>n2)とした場合に、n2に関する情報を格納した第2レジスタ715と、n3に関する情報を格納した第3レジスタ717と、カウンタ711にてカウントされた計数値と第1レジスタ713に格納された情報とを比較してカウンタ711のリセットを実行可能な第1比較器712と、カウンタ711にてカウントされた計数値と第2レジスタ715に格納された情報とを比較する第2比較器714と、カウンタ711にてカウントされた計数値と第3レジスタ717に格納された情報とを比較する第3比較器716と、第2比較器714にて比較された比較結果と、第3比較器717にて比較された比較結果との論理積を算出する論理ゲート718と、論理ゲート718から出力される結果に基づいて、所定の期間ブランキングオフ(第1モード)とするブランキングオフ信号を生成出力するブランキングオフ信号出力回路719と、を含んで構成されている。
尚、上述のスキャンDAC702、ビーム偏向信号出力回路703で、「ビーム偏向制御系」を構成でき、カウンタ711、第1比較器712、第1レジスタ713、第2比較器714、第2レジスタ715、第3比較器716、第3レジスタ717、論理ゲート718、ブランキングオフ出力回路719により「モード切換手段であるブランキング制御系」を構成できる。
上記のような構成を有する制御系700において、クロックに基づくビーム偏向信号出力回路703からの偏向信号によって、特定の描画ライン(描画線)の描画が行われる。
この際、クロックに基づいてn3>n2なるn2のカウント値に至り、カウンタ711が当該カウント値を出力すると、第2比較器714は、例えば出力信号を「L」レベルから「H」レベルとし、「H」レベルの信号を出力して、論理ゲート718の一方の入力に入力する。
次に、クロックに基づいてn3>n2なるn3のカウント値に至り、カウンタ711が当該カウント値を出力すると、第3比較器716は、例えば出力信号を「L」レベルから「H」レベルとし、「H」レベルの信号を出力して、論理ゲート718の他方の入力に入力する。
この間、論理ゲート718の一方の入力が「L」レベル、他方の入力が「L」レベル、あるいは、一方の入力が「H」レベル、他方の入力が「L」レベルの場合には、論理ゲート718は、「H」を出力するので、「ブランキングオン(第2モード期間)」となり、第2のドーズ量にて線描画が行われる。
一方、論理ゲート718の一方の入力が「H」レベル、他方の入力が「H」レベル、あるいは、一方の入力が「L」レベル、他方の入力が「H」レベルの場合には、論理ゲート718は、「L」を出力するので、この間「ブランキングオフ」となり、第1のドーズ量にて線描画が行われる。
他方、クロックに基づいてn1>n3>n2なるn1のカウント値に至り、カウンタ711が当該カウント値を出力すると、第1比較器712は、信号を出力し、カウンタ711をリセットする。
このようにして、n1の周期毎に、以上の「ブランキングオフ」、「ブランキングオン」が繰り返され、例えば、図24の如く、描画ラインにブランキング区間BKを持たせて、第1のドーズ量にて描画される領域と第2のドーズ量にて描画される領域による、描画ライン方向でのバイナリーパターンを形成することができる。
尚、本実施形態においては、ブランキング区間BKを一定としているが、例えば、描画ライン毎にブランキング区間を変化させた構成としても良い。
(ドーズ量混在領域の第3の実施形態)
次に、本発明に係るドーズ量混在領域の第3の実施形態について、図26に基づいて説明する。尚、以下においては、前述の各実施形態と実質的に同様の構成に関しては説明を省略し、異なる部分についてのみ説明する。
最初の実施形態では、ブレーズ3の傾斜部3bの断面方向(傾斜方向)に一定のドーズ量で描画される領域とドーズ量混在領域の凹凸に基づいて描画される領域とを構成する場合を例示し、また、第2の実施形態では、電子ビームの走査方向にドーズ量混在領域の凹凸に基づいて描画される領域を形成する場合を例示したが、本実施形態においては、これらを組み合わせて、ブレーズの傾斜部の断面方向(傾斜方向)に一定のドーズ量で描画される領域とドーズ量混在領域の凹凸に基づいて描画される領域とを構成し、さらに、このドーズ量混在領域の凸部に基づいて描画される領域において電子ビームの走査方向にもドーズ分布の凹凸に基づいて描画される領域を形成する場合について説明する。
より詳細には、ブレーズの傾斜部の断面方向(傾斜方向)に一定のドーズ量で描画される領域とドーズ量混在領域の凹凸に基づいて描画される領域とを構成し、さらに、このドーズ量混在領域の凸部に基づいて描画される領域において、電子ビームにより走査される描画線(走査方向のライン)を描画するにあたり、ブランキング区間を設け、このブランキング区間を前記ドーズ量混在領域の凸部に基づいて描画される領域における凹部に基づいて描画される領域とし、線描画部分を前記ドーズ量混在領域の凸部に基づいて描画される領域とするものである。
具体的には、図26に示すように、本実施形態のブレーズの傾斜部を描画するドーズ分布400は、断面方向から見た場合には、最初の実施形態におけるブレーズ3の傾斜部3bを描画するドーズ分布と特に変わりはない描画線も有る。
しかしながら、これを電子ビームの走査方向から見ると、傾斜部のドーズ分布400のドーズ量混在領域MIXにおける電子ビームの走査方向(図における上下方向)に第1のドーズ量及び第2のドーズ量(但し、第2のドーズ量>第1のドーズ量、第2のドーズ量−第1のドーズ量=ドーズ最小単位)にて描画される領域が、ブレーズの傾斜部の断面方向のドーズ量混在領域の凸部に基づいて描画される領域に形成されている。
一方、一定のドーズ量で描画される領域その他の領域のドーズ分布では、通常通りに、第1のドーズ量401及び第2のドーズ量402を形成し、傾斜部の断面方向の描画においては、階段状に傾斜面を構成することとなる。
同様にして、他の位置にあるブレーズの傾斜部のドーズ分布400に対しても、ドーズ量混在領域MIXと、一定のドーズ量の領域を構成する。
尚、前述のように、ドーズ量混在領域の各凹部で描画される領域及び凸部で描画される領域の幅は、各々、当該凹凸部に基づいて描画する電子ビームの径よりも小さく構成するものとする。
このように、電子ビームの走査方向にドーズ量混在領域の凹凸部に基づいて描画される領域を形成した場合にも、最初の実施形態及び第2の実施形態における基材と同様に、これを電子ビームにより描画した場合には、ブレーズの傾斜部内において電子ビームの拡散が生じ、これを構成する各凹部に基づいて描画される領域及び凸部に基づいて描画される領域間において、この電子ビームによる“近接効果”が生じることとなるため、これを現像した場合には、厳密なバイナリー形状とはならない。さらに、前述のように、ドーズ量混在領域の各凹部に基づいて描画される領域及び凸部に基づいて描画される領域の幅は、各々、当該領域を描画する電子ビームの径よりも小さく構成されるため、これを電子ビームにより描画した場合には、電子ビームによる描画領域の重複により複数回(例えば2〜3回)にわたって描画される部分が生じるため、これを現像した場合には中間的な高さを有する傾斜面となる。
この結果、隣接する一定のドーズ量で描画される領域間の段差は、これらの中間的な高さを有するドーズ量混在領域に基づいて描画される領域により、従来のブレーズの傾斜部間の段差と比較して、よりなだらかな傾斜面を構成することとなる。
尚、前述のように、ドーズ量混在領域のドーズ分布の凹凸部に対する凸部のデューティー比を傾斜部の高さが低くなる側に行くにつれ小さくした場合には、凸部に基づいて描画される領域の高さを段階的に低くしていくことが可能となるため、よりなだらかな傾斜面を構成することができる。
(ドーズ量混在領域の第4の実施形態)
本実施形態では、図27に基づいて、ブレーズの傾斜部のドーズ量混在領域の凸部に基づいて描画される領域における電子ビームの走査方向の描画ラインにおいて、様々なパターンのブランキング区間を設ける場合について説明する。
例えば、図27(A)に示すドーズ量混在領域の凸部に基づいて描画される領域801では、ブランキング区間801aが斜め方向に位置するように構成されている。
図27(B)に示すドーズ量混在領域の凸部に基づいて描画される領域802では、隣接する各描画ライン間で各ブランキング区間802a、802aを千鳥状に配置して、互いに隣り合わないように構成されている。
図27(C)に示すドーズ量混在領域の凸部に基づいて描画される領域803では、場所に応じて凸部に基づいて描画される803bの長さが異なるように構成されている。
図27(D)に示すドーズ量混在領域の凸部に基づいて描画される領域804では、ブランキング区間804aを斜めに傾斜して形成した場合において、一定線群をもってその傾斜方向を変えるように構成されている。
図27(E)に示すドーズ量混在領域の凸部に基づいて描画される領域805では、複数の線群毎にブランキング区間805aの位置を変えるように構成されている。
以上のような各種描画パターンにてブランキング区間を設けた構成としても、前述の各実施形態と同様に、これを電子ビームにより描画した場合には、ブレーズの傾斜部内において電子ビームの拡散が生じ、これを構成する各凹部に基づいて描画された領域及び凸部に基づいて描画された領域間において、この電子ビームによる“近接効果”が生じることとなるため、これを現像した場合には、厳密なバイナリー形状とはならない。さらに、前述のように、ドーズ量混在領域の各凹部に基づいて描画された領域及び凸部に基づいて描画された領域の幅は、各々、当該領域を描画する電子ビームの径よりも小さく構成されるため、これを電子ビームにより描画した場合には、電子ビームによる描画領域の重複により複数回(例えば2〜3回)にわたって描画される部分が生じるため、これを現像した場合には中間的な高さを有する傾斜面となる。
この結果、ブレーズの、隣接する一定のドーズ量で描画された領域間の段差は、これらの中間的な高さを有するドーズ量混在領域に基づいて描画された領域により、従来の段差と比較してよりなだらかな傾斜面を構成することとなる。
(金型の作製方法)
次に、本発明に係る金型の作製方法について、図28及び図29に基づいて説明する。尚、本発明に係る金型は、例えば、光レンズ等の光学素子を射出成形によって製造するためのものである。
先ず、機械加工により例えば光レンズの光学面形状を形成した原型500を作製する(図28(A))。
次いで、スピンコート等により例えば熱硬化性樹脂等のレジストREを原型500の表面に塗布し、プリベークなどを行って樹脂層で被覆する(図28(B))。
そして原型500を被覆する樹脂層に、本発明に係る電子ビーム描画装置を用いて例えばバイナリーパターンのブレーズド回折格子構造を描画する(図28(C))。
樹脂(レジスト)層の現像処理(電子ビームの照射部と非照射部とで現像液に対する溶解度が異なることを利用して照射部を除去、又は電子ビーム照射による凝集破壊で接着性が弱まっている部分を吸引や剥離層を用いて除去)を行うことで、図28(D)に示す様な、回折格子構造を得る(現像工程)。
次いで、SEM観察や膜厚測定器などにより、回折格子構造を評価し、ドライエッチング等のエッチング処理で回折格子構造を整える。
この回折格子構造502のD部を拡大すると、傾斜部502b及び側壁部502aからなる複数のブレーズにて回折格子構造が形成されている。このブレーズは、周辺部に向かうに従い回折格子面の角度が急となるため、ドーズ分布のドーズ量混在領域も回折格子面の角度変化に応じて変化するようにしても良い。
さらに、回折格子構造を有する樹脂層で被覆された原型500に表面処理がなされ、次いで図29(A)に示すように、例えば金型電鋳前処理後、電鋳処理を行い、図29(B)に示すように、原型500と金型504とを剥離する処理を行う。そして、剥離した金型504に対して、表面処理を行う(金型表面処理工程)。
当該金型504を用いて射出成形により成形品を作成すると(図29(C))、射出成型品510には複数のブレーズからなる回折格子構造511が形成され、C部を拡大して示すと、回折格子の1つのピッチが側壁部512a及び傾斜部512bからなるブレーズが構成される。
本実施形態によれば、光学素子(例えば光レンズ)を製造する場合に、まず、電子ビーム描画装置により基材に回折格子を描画する際に、ブレーズの傾斜部上に第1のドーズ量にて描画される領域と、第2のドーズ量にて描画される領域とからなるドーズ量混在領域を描画し、さらに、所定の表面処理等を行った後、ドライエッチングなどによりエッチング処理を施すことで母型を得て、この母型を基に電鋳処理を行うことで基材の表面上に形成された回折格子を金型に転写して、この金型を用いて光学素子を射出成形により製造することができるため、光学素子の製造にかかるコストダウンを図ることができる。
なお上述した各実施形態では、ブレーズの傾斜部及び側壁部の描画と、ドーズ量混在領域の凹凸部に基づく描画とを一連の走査で描画する手順について説明したが、このような手順に限らず、先ずブレーズの描画を行った後に、ドーズ量混在領域の凹凸部に基づく描画を行うようにしてもよい。
加えて、上述した電子ビーム描画装置に限らず、複数の電子ビームにより各々独立して多重描画可能に構成した装置であってもよい。
また、上述の各実施形態の電子ビーム描画装置において使用される処理プログラム、実行される処理、メモリ内のデータ(各種テーブル等)の全体若しくは各部を情報記録媒体に記録した構成であってもよい。この情報記録媒体としては、例えばROM、RAM、フラッシュメモリ等の半導体メモリ並びに集積回路等を用いてよく、さらに当該情報を他のメディア例えばハードディスク等に記録して構成して用いてよい。