JP2009139005A - 冷却器及びその冷却器を備える冷却装置 - Google Patents

冷却器及びその冷却器を備える冷却装置 Download PDF

Info

Publication number
JP2009139005A
JP2009139005A JP2007315182A JP2007315182A JP2009139005A JP 2009139005 A JP2009139005 A JP 2009139005A JP 2007315182 A JP2007315182 A JP 2007315182A JP 2007315182 A JP2007315182 A JP 2007315182A JP 2009139005 A JP2009139005 A JP 2009139005A
Authority
JP
Japan
Prior art keywords
working fluid
cooler
container
contact
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007315182A
Other languages
English (en)
Inventor
Shoji Mori
昌司 森
Kunihito Okuyama
邦人 奧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2007315182A priority Critical patent/JP2009139005A/ja
Publication of JP2009139005A publication Critical patent/JP2009139005A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】コンパクト性および省エネルギー性を保ちつつ、限界熱流束の改善されたプール沸騰方式による冷却器及びその冷却器を備える冷却装置を提供すること。
【解決手段】実施形態1に係るプール沸騰方式による冷却器300は、容器301と、容器301に収容された作動流体302とを備え、容器301は、冷却対象である発熱体110との接触部303を有する。加えて、冷却器300は、接触部303の作動流体302と接する表面上に多孔質体304をさらに備える。言い換えると、容器301の内側に多孔質体304を設け、多孔質体304が、接触部303を挟んで発熱体110と対向するようにしている。多孔質体304は、毛細管現象により作動流体302を接触部303に供給する作動流体供給部401と、接触部303で発生した蒸気を作動流体302中へ排出する蒸気排出部402とを備える。
【選択図】図4

Description

本発明は、冷却器及びその冷却器を備える冷却装置に関し、より詳細には、プール沸騰方式による冷却器及びその冷却器を備える冷却装置に関する。
近年、電子機器の小型化や高集積化に伴い電子機器を構成する素子の発熱密度が急増しており、高性能な熱除去技術の開発が急務となっている。特にLSIでは、低温度において非常に大きな熱流束(単位面積当たりの熱移動速度をいう。)が必要であるという特長がある。LSI等の電子機器の冷却には冷却能力、コンパクト性、省エネルギー性が同時に要求されるが、急速に増大する発熱密度に対応することは難しい現状になりつつある。
従来の熱除去技術あるいは冷却技術には、ポンプなどの外部動力源によって液体を循環させる「強制流動沸騰」や、液体を満たした容器内に冷却対象の伝熱面を沈める場合のように、液体の循環が熱除去に伴い発生した気泡の浮力によって生じる「プール沸騰」等がある。
強制流動沸騰方式は、その冷却能力が外部動力源に依存し、高い冷却能力を得るためには大流量が求められる。その場合、ポンプなどの外部動力源が高性能である必要があり、また流体を循環させるためにループを構成する必要があるので、必然的に大型化しコンパクト性に欠ける。また、ランニングコストや導入コストも高価となる。
図1は、従来のプール沸騰方式による冷却器を示している。冷却器100は、容器101と、容器101内に収容された作動流体102とを備え、容器101は、冷却対象である発熱体110との接触部103を有する。発熱体110において熱が発生し、接触部103を通して作動流体102に熱が伝わると、接触部103の近傍に存在する作動流体102が沸騰する。沸騰により蒸気が生じると気液の密度差により接触部103に作動流体102が供給される。こうして新たに供給された作動流体102がさらに蒸発し、発熱体110から熱を除去する。
プール沸騰方式による冷却器は、強制流動沸騰方式のような液体を循環させるための外部動力源が不要であるため、コンパクト性および省エネルギー性に有利である。
S. G. Kandlikar, M. Shoji, and V. K. Dhir, "Handbook of Phase Change: Boiling and Condensation," Taylor & Francis, 1999
しかしながら、LSI等の電子機器の冷却に必要な大きな熱流束を得ようとすると、従来のプール沸騰方式による冷却器では問題がある。図2にその様子を示す。熱流束が大きくなるにつれて、作動流体102の蒸発量が増加し、接触部103が蒸気に覆われ始める。接触部103が完全に蒸気に覆われてしまい、接触部103への作動流体102の供給ができなくなると、冷却器100の冷却能力は著しく劣化する。この状態の熱流束を「限界熱流束」という。従来のプール沸騰方式による冷却器の限界熱流束は、飽和温度の水の場合80W/cm2程度である(非特許文献1参照)。LSI等の電子機器の冷却には、100W/cm2程度以上の限界熱流束が求められる。
本発明は、このような問題点に鑑みてなされたものであり、その目的は、コンパクト性および省エネルギー性を保ちつつ、限界熱流束の改善されたプール沸騰方式による冷却器及びその冷却器を備える冷却装置を提供することにある。
このような目的を達成するために、請求項1に記載の発明は、プール沸騰方式による冷却器において、発熱体との接触部を有する容器と、前記容器に収容された作動流体と、
前記作動流体と接する前記接触部の表面上の冷却部とを備え、前記冷却部は、毛細管現象により前記作動流体を前記接触部に供給する作動流体供給部と、前記接触部で発生した蒸気を前記作動流体中へ排出する蒸気排出部とを備えることを特徴とする。
また、請求項2に記載の発明は、請求項1において、前記冷却部は、毛細管現象により吸水性を示す材料で構成された層であり、前記蒸気排出部は、前記層を貫通する間隙であることを特徴とする。
また、請求項3に記載の発明は、請求項2において、前記作動流体供給部は、格子状であることを特徴とする。
また、請求項4に記載の発明は、請求項2または3において、前記材料は、多孔質であることを特徴とする。
また、請求項5に記載の発明は、請求項1において、前記接触部は、円柱状または角柱状であり、前記作動流体供給部は、毛細管現象により吸水性を示すひも状の材料を前記接触部に螺旋状に巻き付けて形成され、前記蒸気排出部は、前記作動流体供給部の間隙であることを特徴とする。
また、請求項6に記載の発明は、請求項1から5のいずれかに記載の冷却器と、前記冷却器の容器に接続され、蒸発した作動流体を液化するコンデンサとを備えることを特徴とする。
また、請求項7に記載の発明は、請求項6において、外部動力源を有しないことを特徴とする。
また、請求項8に記載の発明は、作動流体を収容した容器の作動流体中に、発熱体を少なくとも部分的に浸漬して発熱体を冷却するプール沸騰方式による冷却方法において、前記発熱体の作動液体に浸漬された部分の表面に、毛細管現象により前記作動流体を前記接触部に供給する作動流体供給部と、前記接触部で発生した蒸気を前記作動流体中へ排出する蒸気排出部とを備えた部材を装着することを特徴とする。
本発明によれば、毛細管現象により作動流体を接触部に供給する作動流体供給部と、接触部で発生した蒸気を作動流体中へ排出する蒸気排出部とを備える冷却部を、作動液体と発熱体との間に配置することにより、コンパクト性および省エネルギー性を保ちつつ、限界熱流束の改善されたプール沸騰方式による冷却器及びその冷却器を備える冷却装置を提供することができる。
以下、図面を参照して本発明の実施形態を詳細に説明する。
(実施形態1)
図3は、実施形態1に係るプール沸騰方式による冷却器を示している。冷却器300は、容器301と、容器301に収容された作動流体302とを備え、容器301は、冷却対象である発熱体110との接触部303を有する。加えて、冷却器300は、作動流体302と接する接触部303の表面上に多孔質体304をさらに備える。言い換えると、容器301の内側に多孔質体304を設け、多孔質体304が、接触部303を挟んで発熱体110と対向するようにしている。
図4は、本実施形態に係る多孔質体を示している。図4(A)は、多孔質体の平面図であり、図4(B)は、多孔質体を接触部に設けた状態における4−4断面図である。多孔質体304は、図4(A)に示したように、作動流体供給部401と蒸気排出部402とを備える。作動流体供給部401は、毛細管現象により接触部303に作動流体302を供給する。蒸気排出部402は、発熱体110からの熱により発生した蒸気を、接触部303から作動流体302中へと排出する。このように作動流体の供給と蒸気の排出を別個の経路を用いて行うことにより、図2を参照して説明したように、蒸気が接触部を覆ってしまい限界熱流束が制限されるという問題を回避することができる。本実施形態に係る冷却器300は、プール沸騰であることからコンパクト性および省エネルギー性に優れ、かつ後述の実施例から理解されるように従来と比較して限界熱流束を大幅に改善する。また、多孔質体304は安価に入手、作製可能であり、その接触部303への設置に複雑な面もないため、低コストで冷却器300を作製することができる。加えて、必要に応じて多孔質体304を並置していけばよいので、その設置面積すなわち冷却面積は原理的に無限大にまで広げられる。
なお、図4(A)には多孔質体304が円形であり、作動流体供給部401が格子状である形態を示したが、このような形態に限定する意図はない。作動流体供給部401は、たとえばハニカム状としてもよい。多孔質体は、毛細管現象により作動流体を接触部に供給する作動流体供給部と、接触部で発生した蒸気を作動流体中へ排出する蒸気排出部とを備えていればよい。さらに、このような作動流体供給部および蒸気排出部を備える冷却部は、多孔質を用いて構成する必要もなく、毛細管現象により吸水性を示す材料であればよい。また、図4(B)には作動流体供給部401および蒸気排出部402が接触部303に直交するように図示してあるが、作動流体供給部401および蒸気排出部402は、多孔質体304の接触部303と接する面と作動流体302と接する面との間の経路をそれぞれ与えるものであればよい。また、多孔質体304は、図3に示したように接触部303または発熱体110と同じ幅を有する必要はないことに留意されたい。所望の限界熱流束に応じて幅を調整すればよい。多孔質体304の厚さは、0.2〜5mm程度とすることができる。
作動流体供給部401を構成する多孔質は、たとえばコーディライト等のセラミックスまたは焼結金属とすることができる。
また、作動流体302は、たとえば水、低温流体、冷媒、有機溶媒等の表面張力を有する液体とすることができる。
また、本発明の別の態様としては、発熱体110全体を作動流体中に浸漬する、または発熱体110の一部を作動流体302の液面から一部浸漬して冷却を行うこともできる。この場合には、発熱体110は浮遊した状態、容器底面に載置された状態など場合により種々の形態をとるが、要は作動流体302に浸漬されている部分に前記多孔質体304を取り付けることにより、前記例と同様にして冷却を行うことができる。
本発明は、電子機器にとどまらず、その他の高発熱密度を有する熱機器全般に適用可能である。たとえば、核融合炉のダイバータ冷却、キャピラリーポンプループの高性能化、原子炉事故時の冷却、半導体レーザの冷却等が考えられる。
実施例
図5に実験装置の概略図を示す。作動流体と接する接触部の直径30mmをとした。発熱体として、カートリッジヒータが埋め込まれた銅円柱を用いた。カートリッジヒータに印可する電圧を可変単巻変圧器でコントロールすることで加熱量を制御した。接触部からそれぞれ5.4mm、11.4mmの銅円柱中心軸上に設置した2つのφ0.5K型シース熱電対からの出力を用いて外挿して接触部の過熱度を、指示温度差と設定距離及び熱伝導率からフーリエの式で熱流束を求めた。容器は、内径87mm、外形100mmのパイレックス(登録商標)チューブとし、内部沸騰の様相を観察できるようにした。作動液体は、蒸留水を深さが60mmとなるようにし、ヒータで過熱して飽和温度に維持した。発生した蒸気は、パイレックス(登録商標)チューブの上端に設けたコンデンサで凝縮させて容器内に戻した。
多孔質体としては、組成がカルシウムアルミネート(CaO・Al2O3),溶融シリカ(Fused SiO2,二酸化チタン(TiO2)(商品名:NAハニカム)である円板を三種類使用した。外径30mm、厚さ5.0mmであり、幅0.4mmの格子状作動流体供給部、一辺1.8mmの正方形状蒸気排出部を備えるもの(以下「実施例1」という。)、外径30mm、厚さ1.0mmであり、幅0.4mmの格子状作動流体供給部、一辺1.8mmの正方形状蒸気排出部を備えるもの(以下「実施例2」という。)、および外径30mm、厚さ5.0mmであり、蒸気排出部を有しないもの(以下「比較例」という。)である。
実験は、大気圧(0.1MPa)のもとで、カードリッジヒータの電圧を5Vずつ上げながら加熱を行い、十分定常状態になったのを確認して、熱電対の出力電圧を記録した。ここで定常状態か否かは、20分間の温度変化が1K以下であるか否かにより判断した。この操作を定常状態が保てなくなるまで繰り返した。上述した三種類の多孔質体を設置した場合に加えて、多孔質体を設置しない場合についても比較のため実験を行った。
図6に実験により得られた沸騰曲線を示す。沸騰曲線とは、沸騰伝熱の特性を表し、縦軸に熱流束、横軸に発熱体温度と液体の飽和温度との差、すなわち接触部の過熱度ΔTsatをとるものである。図中の矢印は、冷却能力が著しく劣化し接触部の温度が急上昇する点であるバーンアウト発生点を示し、その時の限界熱流束の値を図中に示してある。図6から、比較例では多孔質体を設けない場合より限界熱流束が下がり、実施例1および2の場合、特に厚さが薄く1mmである実施例2の場合には、多孔質体を設けない場合と比較して3倍弱にまで上昇するという興味深い結果が得られた。
なお、比較例の場合に多孔質体を設けない場合よりも限界熱流束が低下したが、この理由は、図7に示すように、接触部703において発生した蒸気が多孔質体704内に滞留し、接触部703への作動液体702の供給を阻害するためであると考えられる。多孔質体704を設置して毛細管現象による作動流体702の供給能力を向上させるだけでは、本発明にみられる顕著な限界熱流束の改善を実現することができないことが分かる。
(実施形態2)
図8は、実施形態2に係るプール沸騰方式による冷却器を示している。冷却器800は、容器801と、容器801に収容された作動流体802とを備え、容器801は、冷却対象である発熱体810との接触部803を有する。本実施形態では、円柱状の発熱体810が、円柱状の接触部803の内部に配置されている。加えて、冷却器800は、接触部803に毛細管現象により吸水性を示すひも状の材料を巻き付けて形成された作動流体供給部804をさらに備える。作動流体供給部804は、密に巻かれているのではなく、間隙805を空けながら螺旋状に巻かれている。本実施形態は、作動流体供給部804が作動流体供給部401に、間隙805が蒸気排出部402に対応する形で、実施形態1に係る冷却器と同様の原理で動作する。換言すると、作動流体供給部804と間隙805が実施形態1の多孔質体304と同様に機能する冷却部を構成する。
作動流体供給部804を構成する吸水性材料としては、不織布や凧糸等の毛管力を有し、かつ柔軟性および耐熱性のあるものを用いることができる。また、接触部803は、円柱状であるとして説明したが、角柱状でもよい。本明細書で使用する「円柱状」という用語は、断面が円または楕円であるものに限らず、閉じた曲線である任意のものを包含する。
(実施形態3)
図9は、実施形態3に係る冷却装置を示している。冷却装置900は、実施形態1に係る冷却器300と、容器301に接続されたコンデンサ901とを備える。コンデンサ901において、蒸発した作動流体302が液化されて、容器301に戻る。冷却装置900は、ポンプなどの外部動力源を必要とせず、装置全体としてのコンパクト性および省エネルギー性が優れている。図10は、実施形態3に係る冷却装置の変形形態を示している。なお、図9および10の構成を実施形態2の冷却器800とともに用いることもできる。
従来のプール沸騰方式による冷却器を示す図である。 従来のプール沸騰方式による冷却器の限界熱流束を説明するための図である。 実施形態1に係るプール沸騰方式による冷却器を示す図である。 実施形態1に係る多孔質体を示す図である。 実験装置の概略図を示す図である。 実験により得られた沸騰曲線を示す図である。 比較例に係る多孔質体を示す図である。 実施形態2に係るプール沸騰方式による冷却器を示す図である。 実施形態3に係る冷却装置を示す図である。 実施形態3に係る冷却装置の変形形態を示す図である。
符号の説明
100 冷却器
101 容器
102 作動流体
103 接触部
110 発熱体
300、800 冷却器
301、801 容器
302、802 作動流体
303、803 接触部
304 多孔質体(冷却部に対応)
401 作動流体供給部
402 蒸気排出部
804 作動流体供給部
805 間隙(蒸気排出部に対応)
810 発熱体
900、1000 冷却装置
901、1001 コンデンサ

Claims (8)

  1. プール沸騰方式による冷却器において、
    発熱体との接触部を有する容器と、
    前記容器に収容された作動流体と、
    前記作動流体と接する前記接触部の表面上の冷却部と
    を備え、
    前記冷却部は、
    毛細管現象により前記作動流体を前記接触部に供給する作動流体供給部と、
    前記接触部で発生した蒸気を前記作動流体中へ排出する蒸気排出部と
    を備えることを特徴とする冷却器。
  2. 前記冷却部は、毛細管現象により吸水性を示す材料で構成された層であり、
    前記蒸気排出部は、前記層を貫通する間隙であることを特徴とする請求項1に記載の冷却器。
  3. 前記作動流体供給部は、格子状であることを特徴とする請求項2に記載の冷却器。
  4. 前記材料は、多孔質であることを特徴とする請求項2または3に記載の冷却器。
  5. 前記接触部は、円柱状または角柱状であり、
    前記作動流体供給部は、毛細管現象により吸水性を示すひも状の材料を前記接触部に螺旋状に巻き付けて形成され、
    前記蒸気排出部は、前記作動流体供給部の間隙であることを特徴とする請求項1に記載の冷却器。
  6. 請求項1から5のいずれかに記載の冷却器と、
    前記冷却器の容器に接続され、蒸発した作動流体を液化するコンデンサと
    を備えることを特徴とする冷却装置。
  7. 外部動力源を有しないことを特徴とする請求項6に記載の冷却装置。
  8. 作動流体を収容した容器の作動流体中に、発熱体を少なくとも部分的に浸漬して発熱体を冷却するプール沸騰方式による冷却方法において、前記発熱体の作動液体に浸漬された部分の表面に、毛細管現象により前記作動流体を前記接触部に供給する作動流体供給部と、前記接触部で発生した蒸気を前記作動流体中へ排出する蒸気排出部とを備えた部材を装着することを特徴とする冷却方法。
JP2007315182A 2007-12-05 2007-12-05 冷却器及びその冷却器を備える冷却装置 Withdrawn JP2009139005A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315182A JP2009139005A (ja) 2007-12-05 2007-12-05 冷却器及びその冷却器を備える冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315182A JP2009139005A (ja) 2007-12-05 2007-12-05 冷却器及びその冷却器を備える冷却装置

Publications (1)

Publication Number Publication Date
JP2009139005A true JP2009139005A (ja) 2009-06-25

Family

ID=40869786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315182A Withdrawn JP2009139005A (ja) 2007-12-05 2007-12-05 冷却器及びその冷却器を備える冷却装置

Country Status (1)

Country Link
JP (1) JP2009139005A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148137A1 (ja) 2013-03-18 2014-09-25 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2015059693A (ja) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 シート型ヒートパイプまたは携帯情報端末
JP2015197245A (ja) * 2014-04-01 2015-11-09 昭和電工株式会社 沸騰冷却装置
WO2015174423A1 (ja) * 2014-05-12 2015-11-19 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2016040505A (ja) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2017072379A (ja) * 2015-10-05 2017-04-13 三菱重工業株式会社 原子炉および原子力プラント
JPWO2020195301A1 (ja) * 2019-03-28 2020-10-01

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977700A4 (en) * 2013-03-18 2016-11-23 Nat Univ Corp Yokohama Nat Uni COOLER, COOLING DEVICE USING THE SAME, AND METHOD FOR COOLING A HEAT GENERATING ELEMENT
JP2014206365A (ja) * 2013-03-18 2014-10-30 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
WO2014148137A1 (ja) 2013-03-18 2014-09-25 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
US20180299207A1 (en) * 2013-03-18 2018-10-18 National University Corporation Yokohama National Univerity Cooler, cooling apparatus using the same, and method for cooling heat generation element
JP2015059693A (ja) * 2013-09-18 2015-03-30 東芝ホームテクノ株式会社 シート型ヒートパイプまたは携帯情報端末
US9551538B2 (en) 2013-09-18 2017-01-24 Toshiba Home Technology Corporation Sheet-type heat pipe and mobile terminal using the same
JP2015197245A (ja) * 2014-04-01 2015-11-09 昭和電工株式会社 沸騰冷却装置
JPWO2015174423A1 (ja) * 2014-05-12 2017-04-20 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
WO2015174423A1 (ja) * 2014-05-12 2015-11-19 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2016040505A (ja) * 2014-08-12 2016-03-24 国立大学法人横浜国立大学 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2017072379A (ja) * 2015-10-05 2017-04-13 三菱重工業株式会社 原子炉および原子力プラント
JPWO2020195301A1 (ja) * 2019-03-28 2020-10-01
WO2020195301A1 (ja) * 2019-03-28 2020-10-01 日本電気株式会社 電子機器
JP7176615B2 (ja) 2019-03-28 2022-11-22 日本電気株式会社 電子機器

Similar Documents

Publication Publication Date Title
JP2009139005A (ja) 冷却器及びその冷却器を備える冷却装置
KR100294317B1 (ko) 초소형 냉각 장치
JP7267625B2 (ja) 装置、熱交換器、および蒸発体収容器
GB2455748A (en) Elastomeric containment of PCM in latent heat storage device
CN103068210B (zh) 一种新型电机控制器散热系统
US20180299207A1 (en) Cooler, cooling apparatus using the same, and method for cooling heat generation element
JP6283410B2 (ja) 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2011009312A (ja) 熱輸送デバイス、電子機器
JP2016040505A (ja) 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP4281619B2 (ja) 蒸気エンジン
Sarode et al. Effect of confinement and heater surface inclination on pool boiling performance of patterned wettability surfaces
CN110926249A (zh) 一种能够对发热体进行恒温的散热装置及制造方法
Zhang et al. Using bulk micromachined structures to enhance pool boiling heat transfer
JP6960651B2 (ja) 電子機器、熱交換器および蒸発体
JP2006295021A (ja) 電力機器
Yuki et al. Development of functional porous heat sink for cooling high-power electronic devices
CN108662933A (zh) 一种空间用相变储能式温控器
JP2016217684A (ja) 冷却器及びそれを用いた冷却装置、並びに、発熱体の冷却方法
JP2017219269A (ja) 発熱体の冷却方法
JP2009129971A (ja) 熱伝達装置
JP5608835B1 (ja) 貯蔵核燃料の冷却システム
Liu et al. Hydrophilic zeolite coatings for improved heat transfer: a quantitative analysis
Winter et al. The Effect of Fin Array Height and Spacing on Heat Transfer Performance during Pool Boiling from Extended Surfaces
JP2016133287A (ja) ループ型ヒートパイプ
US6222112B1 (en) Thermionic converter temperature controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301