JP2009132332A - 電動モータ制御装置及び電動倍力装置 - Google Patents

電動モータ制御装置及び電動倍力装置 Download PDF

Info

Publication number
JP2009132332A
JP2009132332A JP2007311422A JP2007311422A JP2009132332A JP 2009132332 A JP2009132332 A JP 2009132332A JP 2007311422 A JP2007311422 A JP 2007311422A JP 2007311422 A JP2007311422 A JP 2007311422A JP 2009132332 A JP2009132332 A JP 2009132332A
Authority
JP
Japan
Prior art keywords
electric motor
motor
voltage
electric
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007311422A
Other languages
English (en)
Other versions
JP5024618B2 (ja
Inventor
Junichi Ikeda
純一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007311422A priority Critical patent/JP5024618B2/ja
Publication of JP2009132332A publication Critical patent/JP2009132332A/ja
Application granted granted Critical
Publication of JP5024618B2 publication Critical patent/JP5024618B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Systems And Boosters (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】装置の大型化を招くことなく電動モータの適切な回転数及び高いトルクの確保を図ることができる電動モータ制御装置及び電動倍力装置を提供する。
【解決手段】CPU21は、バッテリ電圧Vbを看視して、目標速度がバッテリ電圧Vbでの無負荷回転数を超えると予測した場合、制御端子35をONにすることにより、モータドライバ電源ひいてはモータ8に印加される電圧を大きくする(DC−DCコンバータ出力電圧「Vb+△V」とされる)ので、作動初期段階で回転数を上昇させることができる。また、作動終期においては、制御端子35をOFFにすることにより、モータドライバ電源電圧は、バッテリ電圧Vbが用いられて、モータ駆動電圧を低くし、高トルク発生を図る。これにより、電動倍力装置のモータ8に要求される、初期時の高速化及び作動周期の高トルク発生の両機能を簡易な構成で達成できる。
【選択図】図2

Description

本発明は、車両ブレーキシステムに用いられる電動モータ制御装置及び電動倍力装置に関する。
従来の車両ブレーキシステムの一例として、特許文献1に示される電動倍力装置がある。
特許文献1に示される電動倍力装置は、ブレーキペダルの操作により進退移動する入力部材と、該入力部材に相対移動可能に配置されたアシスト部材と、該アシスト部材を進退移動させる電動モータとを備え、前記ブレーキペダルによる前記入力部材の移動に応じて前記アシスト部材に付与されるアシスト推力によりマスタシリンダ内に倍力されたブレーキ液圧を発生させるようにしている。
ところで、上述した従来技術では、電動モータの駆動電圧ひいては電源電流(電源電圧)等の影響により電動モータの回転数が上限値まで達すると制限を受けることになる。一方、緊急制動を図る際には、電動モータの回転数の増加が要求される。この要求(緊急制動等に際して回転数の増加を図る)に対して、供給電圧を大きくした電源を用意したり、電源にさらにコンデンサを用意したりすることが考えられている。
特開2007−112426号公報
しかしながら、電動倍力装置に用いられる電動モータには、作動初期には、動作時間短縮のため高速回転が必要(なお、負荷トルクは小さい)である一方、作動終期には高い制動力を得るため高トルクが必要とされる。このため、上述したように供給電圧を大きくした電源を用意したり、電源にさらにコンデンサを用意したりすることは、装置の大型化を招くことから、その改善が求められているというのが実情であった。これらの問題は、電動倍力装置のみならず、例えば、電動ディスクブレーキ、電動パーキングブレーキ、及び車両姿勢制御用の液圧システム等の電動モータが設けられた車両ブレーキシステムにおいても同様であった。
本発明は、上記事情に鑑みてなされたものであり、装置の大型化を招くことなく電動モータの適切な回転数及び高いトルクの確保を図ることができる電動モータ制御装置及び電動倍力装置を提供することを目的とする。
本発明は、電源からの電力供給を受けて作動する電動モータを備えた車両ブレーキシステムに用いられて前記電動モータを制御する電動モータ制御装置において、前記電動モータに印加される電圧を昇圧して昇圧電圧を発生する昇圧回路を、前記電動モータに前記昇圧電圧を供給し得るように設け、前記電動モータの回転数と対応する関係にある物理的データの検出結果が、前記電源からの電圧の印加時に前記電動モータの回転数が上限値まで達したことを示す場合、前記昇圧回路が発生した前記昇圧電圧を前記電動モータに供給することを特徴とする。
本発明によれば、装置の大型化を招くことなく電動モータの適切な回転数及び高いトルクの確保を図ることができる。
以下、本発明の一実施の形態に係る電動倍力装置を図1ないし図7に基づいて説明する。図1は、本発明の第1実施形態係る電動倍力装置(車両ブレーキシステムの一例)について、マスタシリンダ、ブレーキペダル及びECU(制御回路、電動モータ制御装置)を含めて模式的に示す断面図である。図2は、図1のECUを模式的に示すブロック図である。
図3は、図2のDC−DCコンバータを示すブロック図である。図4は、図1の電動モータの駆動電流、電動モータの特性及び電源の電流電圧特性を示し、(a)は電動モータの駆動電流を示す図、(b)は電動モータのトルク・回転数特性(TN特性)を示す図、(c)は、モータドライバ電源の電流電圧特性を示す図である。
図5は、図1の電動倍力装置の負荷特性を示す図である。図6は、図1の電動倍力装置の作用を示すための波形図であり、(a)は減速度特性、(b)は液圧特性、(c)はQ軸電流特性、(d)は回転数特性、(e)は昇圧制御信号発生、(f)はブレーキペダル踏込量を、夫々示す図である。
図1において、1は、自動車のブレーキシステム(車両ブレーキシステム)に設けられた電動倍力装置を示す。電動倍力装置1は、ブレーキペダル2の操作により自動車の運転席前壁3に保持されたケース4に摺動案内されて進退移動する入力部材5(インプットロッド)を有している。電動倍力装置1には、プライマリピストン6a及びセカンダリピストン6bからなるピストン6を有し、入力部材5及び電動倍力装置1に備えられた電動モータ(以下、モータ8という。)により加圧されるタンデム型のマスタシリンダ9が接続されている。
電動倍力装置1は、入力部材5の前進動に伴って、マスタシリンダ9のピストン6〔プライマリピストン6a及びセカンダリピストン6b〕を押圧するようにしている。プライマリピストン6aは入力部材5に相対移動可能に配置されている。本実施形態では、プライマリピストン6aがアシスト部材を構成している。
自動車ブレーキシステム(車両ブレーキシステム)の一例である電動倍力装置1は以下に示すような負荷特性を有する。
即ち、
(1)ブレーキ液圧を使うマスタシリンダ9を用い、このマスタシリンダ9は、非制動時にリザーバタンク10のブレーキ液を配管系に供給するための連通路を設けており、図5に示すような制動開始時に連通路を閉じるための無効ストロークδを有する。
(2)電動倍力装置に関連してブレーキ装置としてディスクブレーキ11が用いられ、ディスクブレーキ11では、ディスクロータ(図示省略)が車輪の上下荷重および横荷重の変動により面外に振れるが、このときでもブレーキパッド(図示省略)がディスクロータ12に接触しないように、キャリパ13はロールバック量と呼ばれる量だけ余分に戻る。制動初期に図5中RBで示した液圧を発生しないストロークが存在する。また、ブレーキパッドは樹脂製で非線形に変形し、特に面圧の低い(減速度の小さい)領域の弾性係数が小さい。
(3)配管中に高圧ゴムホース、ABSユニットおよびキャリパ各部のシールリングなど、剛性の低い部分があり、低圧部分の消費液量が多い。
図5ではブレーキ液圧10MPa(通常のシステムでは減速度1G程度の急ブレーキに相当する)に達するストロークを1として、ストロークを正規化して表示したが、正規化ストロークが0.5に達しても液圧は僅かで、O.7以降急速に立ち上がる。
電動倍力装置1は、さらに、前記モータ8と、モータ8のロータ(図示省略)に連結されて、モータ8の回転を図1左右方向の直動に変換してプライマリピストン6aに力(アシスト力)を付与し得るねじ機構15と、電動倍力装置1内の各制御対象(モータ8を含む)及びABSユニット17の制御を行うモータ制御装置(以下、ECUという。)18と、を備えている。本実施形態ではECU18が電動モータ制御装置を構成する。ねじ機構15は、モータ8のロータ(図示省略)に連結された雄ねじ部15aと、この雄ねじ部15aに螺合するナット部15bとからなり、ナット部15bがプライマリピストン6aに固定されている。
モータ8は、表面磁石形で3相(Y結線)のDCブラシレス(DCBL)モータからなり、PWM駆動されるようになっている。ねじ機構15のナット部15b及び入力部材5との間には、両者の相対変位を検出する相対変位センサ19が介在されている。
マスタシリンダ9は、ブレーキペダル2の操作力及び又はモータ8のアシスト力に応じた液圧をマスタシリンダ9に発生させ、この液圧に応じた大きさの制動力を、ABSユニット17を介して四輪に対応して設けられたブレーキ装置(ディスクブレーキ11)に発生させるようにしている。
ECU18は、図2に示すように、5V電源回路20、CPU21(制御回路)、モータドライバ22、モータ電流センサ23、絶縁形DC−DCコンバータ(以下、DC−DCコンバータという。)24(昇圧回路)およびダイオード25を有している。5V電源回路20、CPU21、モータドライバ22、モータ電流センサ23、DC−DCコンバータ24は、バッテリ26からのバッテリ電圧Vbの電力の供給を受けて動作する。そして、ECU18は、ブレーキペダル2の踏み込みに応じて、モータ8を制御するが、具体的にはCPU21で入力部材5の踏み込み量を検出し、モータドライバ22を介して、モータ8の回転を制御する。
前記電流センサ23の検出結果によりモータ8の相電流が判り、モータ8に内蔵された回転角度検出器(図示せず)の信号から電気角をもとめ、現在のQ軸電流つまり出力トルクを算出し、目標トルクとの差をPWM信号に変換/増幅してモータドライバ22へ出力する。
DC−DCコンバータ24は、図3に示すように絶縁トランス30、出力電圧検出アンプ31、出力電流センサ32、コンバータ制御回路33、及びスイッチング素子34を含んで構成され、コンバータ制御回路33は制御端子35がON/OFF信号の入力を受けることによりON/OFF制御される。DC−DCコンバータ24は、ON制御されるときは、バッテリ26の電圧(バッテリ電圧)Vbで動作し、一定電圧(以下、昇圧分電圧という。)△V、望ましくは6〜12Vをバッテリ電圧Vbに加算して(昇圧して)、OFF制御されるときは、スイッチングロスも発生せずに出力(ダイオード25を介したモータドライバ22への出力)を遮断する。
モータドライバ22にはバッテリ電圧VbとDC−DCコンバータ24の出力電圧(以下、DC−DCコンバータ出力電圧という)「Vb+△V」〔請求項1の昇圧電圧に相当する。モータドライバ電源電圧に相当する。〕を低電圧損失のダイオード25のOR接続で供給する。このため、モータドライバ22には、制御端子35がON信号の入力を受ける(以下、このことを、適宜、制御端子35がONするという。)ときはDC−DCコンバータ出力電圧「Vb+△V」〔昇圧電圧〕が供給され(換言すれば、モータドライバ電源電圧VsがDC−DCコンバータ出力電圧「Vb+△V」となり)、OFF信号の入力を受ける(以下、このことを、適宜、制御端子35がOFFするという。)ときはバッテリ電圧Vbが供給される(換言すれば、モータドライバ電源電圧Vsがバッテリ電圧Vbとなる)。
以下、便宜上、DC−DCコンバータ出力電圧「Vb+△V」に相当するモータドライバ電源電圧Vsを昇圧時モータドライバ電源電圧Vs’という。また、バッテリ電圧Vbに相当するモータドライバ電源電圧Vsを非昇圧時モータドライバ電源電圧Vsという。
なお、ダイオード25があることから、バッテリ電圧Vbからはダイオード25の順方向に電圧(0.5〜0.7V)が降下するが、この電圧降下については、説明が煩雑になることを回避するために、便宜上、無視して説明する。
DC−DCコンバータ24の出力電流制限値Ilimはモータ8最大出力時の電源電流「0.81×Iqmax」の1/3程度に設定する。出力電流制限値Ilimをこのように設定するのは、DC−DCコンバータ24内の絶縁トランス30およびスイッチング素子34の小形化と損失の低減のためである。例えば、出力電力で略算すると、本実施形態では、出力電流制限値Ilimについて上述したように設定したことにより、昇圧分電圧△Vは、0Vから24Vに昇圧するのに比べ、このように昇圧される電圧(24V)の約1/2である電圧=12Vとすればよい。さらに出力電流Ilimを「0.81×Iqmax」の1/3にすることにより、出力電力は1/6になり、絶縁トランス30の大きさ、およびスイッチング素子34の電流容量も1/6と大幅に小さくできる。このような効果があることにより、本実施形態では、出力電流制限値Ilimについて上述したように設定した。
ブレーキシステムではブレーキ装置に供給するブレーキ液の液圧を高圧状態で数分以上保持することがあり、極力、モータの発熱およびモータドライバ発熱を低減することが望まれる。上述したようにモータの発熱およびモータドライバ発熱を低減することは、モータ小形化、回路小形化の面からも要望されている。
この要望に応えるべく、本実施形態では、モータ8として、上述したように表面磁石形のDCブラシレス(DCBL)モータを用い、モータ8をPWM駆動する方式を採用している。
本実施形態では、モータ8が有する磁石(図示省略)について、Fe-Nd-Bを用いて構成し、これによりトルク定数Ktを大きくしている。また、モータ8について表面磁石構造にし、これによりコイルインダクタンス(L)を小さくして電流の立ち上がりを早くするようにしている。さらに、モータ8のステータ(図示省略)について、体積を大きくするように設定し、これによりコイル抵抗を下げるようにしている。さらに、モータドライバ22では低ON抵抗のMOSFETをPWM駆動することによりスイッチングロス以外を極小にするようにしている。
モータ8は、上述したようにY結線された3相のDCブラシレスモータが用いられている。モータ8のUVW各相に、図4(a)のように電気角(ロータが8極の場合は機械角90°が電気角360°に相当する)で120°ずらした電流が流れるようにモータ8は制御される。
モータ8のUVW各相電流がI〔Arms〕のとき、駆動力になる直流成分(Q軸電流)Iqは、
Iq=(√3)×I
であり、駆動トルクTはトルク定数Kt〔Nm/A〕を使って、
T=Kt×Iq
で表される。
また、モータドライバ22電源の電圧(以下、モータドライバ電源電圧という。)Vsのとき線間電圧Vmは、
最大電圧Vmmax=(Vs/2)×{√(3/2)}〔Vrms〕
で制限され、無負荷回転数Nmaxは誘起電圧定数Ke〔V/(1/s)〕を使って、
Nmax=(Vs/Ke)×(1/√3)×{1/(2π)}×60〔rpm〕
で表される。なお、トルク定数Ktと誘起電圧定数Keは物理的には同じであるが、使い分けるのが一般的であり、本明細書でも、一般的な例に沿って使い分けて記載する。
図4(b)はモータ8の動作可能範囲を示す図で、粗いハツチングの領域がDC‐DCコンバータ24(昇圧回路)を作動させない(昇圧電圧を得ない)場合〔DC‐DCコンバータ24がOFF制御する場合〕の動作可能範囲を示し、細かいハツチングの領域がDC‐DCコンバータ24を作動させる(昇圧電圧を得る)場合〔DC‐DCコンバータ24がON制御する場合〕の動作可能範囲を示している。図4(b)において横軸はトルクであるが、ここでは、トルクに対応するQ軸電流Iqを用いて表示している。縦軸はモータ8の回転数である。
図4(b)において、点○、△、及び▽をつなぐ線分40は、制御端子35がOFFでモータドライバ22にバッテリ電圧Vb(最大電圧Vmmax)が供給された際の、モータ8の回転数N(rpm)を示す線分である。点○は、モータ8の最大出力を示す特性点である。また、点▽は、モータ8の駆動電圧がVmmaxでモータ8の電流がIq(Q軸電流)のときに作動可能な最大回転数(非昇圧時最大回転数)Nmaxを示す特性点である。この線分40から判るように、モータ電流 Iq(出力トルク)が増加するとモータ8の回転数Nは直線的に低下する。この回転数の低下は、モータ電流×コイル抵抗の電圧損失に起因して生じる。
そして、出力トルク(ひいてはQ軸電流Iq)が0のときの回転数が非昇圧時最大回転数Nmaxであり、この回転数は無負荷回転数(以下、適宜、非昇圧時無負荷回転数Nmaxともいう。)に相当する。
前記モータ回転数Nは、次式で表される。
N={(Nmax−Vs)/Ke}×(1/√3)×{1/(2π)}×60〔rpm〕
図4(b)において、点□、◎、及び◇をつなぐ線分41は、制御端子35がONしてモータドライバ22にDC−DCコンバータ出力電圧「Vb+△V」〔昇圧電圧〕が供給された際の、モータ回転数(適宜、昇圧時モータ回転数という。)N’(rpm)を示す線分である。
昇圧時モータ回転数N’に対して、DC−DCコンバータ24が作動されずに、モータ8にバッテリ電圧Vbが供給された際のモータ回転数Nを、以下、適宜、非昇圧時モータ回転数Nともいう。
点◇は、モータ電圧がVmmax’でモータ電流がIq(Q軸電流)のときに作動可能な最大回転数(昇圧時最大回転数)Nmax’を示す特性点である。この線分41から判るように、モータ電流 Iq(出力トルク)が増加すると、前記非昇圧時モータ回転数Nの場合と同様に、モータ回転数N’は直線的に低下する。
そして、出力トルク(ひいてはQ軸電流Iq)が0のときの回転数が昇圧時最大回転数Nmax’であり、この回転数は無負荷回転数(以下、適宜、昇圧時無負荷回転数Nmax’ともいう。)に相当する。
昇圧時最大回転数(昇圧時無負荷回転数)Nmax’は、非昇圧時無負荷回転数Nmaxに対して、
Nmax’=Nmax×Vs’/Vs
Vs’:昇圧時モータドライバ電源電圧
Vs:非昇圧時モータドライバ電源電圧(=バッテリ電圧Vb)
の関係式で示される。
Vmmax’に対応した回転数を示す線分、即ち、点□、◎、及び◇をつなぐ線分41 は、Vmmaxに対応した回転数を示す線分、即ち、点○、△、及び▽をつなぐ線分40と平行になる。
そして、モータドライバ電源電圧Vsによりモータ電圧の最大電圧Vmmaxが決まると、モータ8の回転数は無負荷回転数Nmaxで制限され、トルク(Q軸電流Iq)が増大するに従い、相電流×コイル抵抗分だけ実効モータ電圧が低下し、これに伴い作動可能な速度範囲が漸減する。また、モータ8およびモータドライバ22には瞬時最大電流の制限があり、Q軸電流は、最大Q軸電流Iqmaxで制限される。
モータ8は発熱の影響を受けることから、モータ8が連続して発生できるトルク(モータ電流)は最大Q軸電流Iqmaxの1/2から1/3程度であるのが普通であり、このことを考慮して、本実施形態では、最大液圧発生時のトルクが上記トルク〔最大Q軸電流Iqmaxの1/2から1/3程度に対応するトルク〕以下であるように設計されている。
図4(c)は、同図(b)の各点△、○、□、◇、▽、◎、●のときの電源電圧(モータドライバ電源電圧Vs)、電源電流(モータドライバ電源電流Is)について、夫々縦軸及び横軸にとって描いた図である。図4(c)において、モータ8がモータ最大出力〔点○。図4(b)の点○に対応する〕を発生しているときに、図4(c)の点○に対応する横軸に記載したように、モータ8には、最大電流Iqmaxの約80%のモータドライバ電源電流Isが流れる。
また、無負荷で最大回転数〔点▽。図4(b)の点▽に対応する〕のとき、モータドライバ電源電流Isは小さい。また最大トルク発生時でも回転数0でその場で保持している〔点●。図4(b)の点●に対応する〕とき、モータドライバ電源電流IsはPWM駆動の効果でモータドライバ電源電流Isは小さい。このときの電源電流×バッテリ電圧のエネルギは全てモータコイルの抵抗発熟で消費され、モータ発生動力はOである。
以上説明した駆動系で前述の負荷特性を持つブレーキシステムで急ブレーキを踏んだときの動作波形を図6で説明する。図6で実線の波形がDC−DCコンバータ24(昇圧回路)の制御端子35がOFFの場合の動作波形で、点線の波形がDC−DCコンバータ24(昇圧回路)の制御端子35がONの場合の動作波形である。
本実施形態では、回転数を把握し、この回転数が所定値以上の場合にDC−DCコンバータ24(昇圧回路)の制御端子35をONにし、これにより、モータドライバ電源電圧を大きくし、図6(d)に点線で示すように回転数を多くするようにしている。この説明に先立って、DC−DCコンバータ24(昇圧回路)の制御端子35がOFFである場合(即ち、DC−DCコンバータ24(昇圧回路)がON制御しない場合、ひいてはDC−DCコンバータ24を備えていない場合)の動作〔実線〕について、説明する。
急ブレーキ操作が行われると、ペダル踏込量〔図6(f)〕は、ほぼ瞬時に最大液圧〔図6(b)右側の平坦な部分〕の大きさに対応したストロークに達する。止まっていたモータ8の回転子(ロータ)を加速するためQ軸電流Iq〔図6(c)〕はdI/dt≒Vs/Lの変化割合でIqmax(図4(b)の●点付近)まで上昇し、回転数N〔図6(d)〕が図4(b)の○点に達するまでIqmaxが保持されるが、無負荷で軽量のロータのみを加速するため、短時間に図4(b)の▽点付近に到達しNmaxより若干小さい定常速度に到達する。
その後、ストロークが増加するに従って徐々に液圧が上昇し、それに伴ってQ軸電流が上昇し、回転数が低下する。液圧が目標液圧(最高液圧。図6(b)右側の平坦な部分)に達すると、回転数は0になり、Q軸電流は液圧に対応した値に保たれる。
図6に示される経緯(動作特性)から最高液圧に達する時間を短縮するには、Iqmaxを増しても達成することができず、Nmaxを大きくすることにより効果があることが判る。減速比を小さくすることも時間短縮になるが、液圧保持時のQ軸電流がモータ8の発熱で制限されているので、減速比は下げられない。また、誘起電圧定数Keを小さくすればNmaxが大きくできるが、Ktを下げることと同義なので、やはりQ軸電流が増加してしまう。可変減速機構を設けて低付加時には減速比を下げることは有効であるが、複雑な変速機構を設けるより、電源電圧を昇圧してNmaxを大きくする方が小形で安価とすることが可能である。
本実施形態では、上記事情を勘案して、DC−DCコンバータ24(昇圧回路)を備え、かつ、DC−DCコンバータ24を利用して、回転数の増加が必要とされる際に、回転数の増加を行うようにモータ8に供給される電圧を大きくするようにしている。
ここで、図6の点線の波形、すなわち、DC−DCコンバータ24(昇圧回路)の制御端子35がONの場合について、説明する。
図6において、制御回路10内のCPU21はブレーキペダル2の踏み込み速度が所定値以上で速度(回転数)不足が予測(この予測は、バッテリ電圧の監視により得られるバッテリ電圧を予め目標速度に対応して設定された電圧しきい値と対比して行い、前記バッテリ電圧が電圧しきい値より小さい場合に速度不足であると予測する。)されたら、DC−DCコンバータ24の昇圧動作を開始する。
制動初期にはモータ8の回転子(ロータ)の慣性を加速するために図6(c)に示すように電流Iqmaxの通電が必要であるが、電流の立ち上げには高電圧は不要なので、回転数が上昇して誘起電圧による速度制限の影響が生じるまでは、DC−DCコンバータ24(昇圧回路)から昇圧電圧(高電圧)をモータ8に供給する。倍力装置のピストン前進、マスタシリンダ9からブレーキ装置のキャリパヘのブレーキ液供給に伴い、モータ8負荷が増加し、(b)に示した所定液圧(負荷設定値)に到達したら、CPU21は、(e)に示すように、制御信号をOFFし、DC−DCコンバータ24の動作を停止する。
低負荷トルク域を高速で通過することにより、(b)の目標液圧、いいかえると(a)の目標減速度に短時間で到達することができる。
図7(a)に、昇圧回路の利用なし(昇圧電圧のモータ8への供給がない)の場合の動作軌跡、図7(b)に、昇圧回路の利用(昇圧電圧のモータ8への供給がある)の場合の動作軌跡を示す。
図7(a)に示すように、昇圧回路の利用なし(昇圧電圧のモータ8への供給がない)の場合には、最大速度はVbでの無負荷回転数Nmaxより若干下った速度で制限される。これに対して、図7(b)に示すように、昇圧回路の利用(昇圧電圧のモータ8への供給がある)の場合には、非昇圧時無負荷回転数Nmax付近から昇圧時無負荷回転数Nmax'付近に大幅に増大する。図6(d)からこの昇圧時無負荷回転数Nmax'付近の高速回転時間がかなり長く、目標減速度到達までの時間が大幅に短縮できることが判る。
さらに消費電力と発熱を低減するために、CPU21でDC−DCコンバータ24の動作時間を制限する。通常は制御端子35をOFFにしておく。CPU21にはブレーキペダル2の踏み込み量を検出する機能があるので、時間差分により踏み込み速度、すなわち駆動モータ8の回転すべき目標速度が算出できる。
そして、上述したように、CPU21は、バッテリ電圧Vbを看視して、目標速度がバッテリ電圧Vbでの無負荷回転数を超えると予測した場合、制御端子35をONにする。
モータ8にはロータ慣性があるので、短時間とはいえ無負荷回転数近くまで加速する時間があり、制御端子35のON時点からの昇圧開始で十分間に合う。また、CPU21にはモータ8の回転角を検出する機能もあるので、時間差分により現在の回転速度を算出でき、Q軸電流から加速に要したトルクを減算することにより、負荷トルクも算出できる。負荷トルクが小さいのに現在の回転速度が目標速度に達しなかったら、制御端子35をONにする。
DC−DCコンバータ24には電流制限機能があるので、ブレーキ液圧が目標液圧に到達するまで、制御端子35をONしたままでも動作上の支障はないが、目標速度がバッテリ電圧Vbでの無負荷回転数−負荷トルク以下になるか、電流がI1imを越えたら昇圧は不要なので制御端子35をOFFにする。これにより1回の急ブレーキでのDC−DCコンバータ24の動作時間は所定値(例えば約O.2秒)以下の短時間に抑えることができ、DC−DCコンバータ24(昇圧回路)の損失低減、および発熱防止が達成できるので、さらに小形化が可能である。
上述したように、目標速度がバッテリ電圧Vbでの無負荷回転数を超えると予測した場合、制御端子35をONにすることにより、モータドライバ電源ひいてはモータ8に印加される電圧を大きくする(DC−DCコンバータ出力電圧「Vb+△V」とされる)ので、作動初期段階で回転数を上昇させることができる。また、作動終期においては、制御端子35をOFFにすることにより、モータドライバ電源電圧は、バッテリ電圧Vbが用いられて、モータ駆動電圧を低くし、高トルク発生を図るようにしている。このようにDC−DCコンバータ24を設けて、作動初期段階でモータ8に対して大きな電圧を供給して回転数の上昇を行い、作動終期においては、制御端子35をOFFにすることにより、モータドライバ電源電圧は、バッテリ電圧が用いられて、モータ駆動電圧を低くし、高トルク発生を図るようにしている。これにより、電動倍力装置のモータ8に要求される、初期時の高速化及び作動周期の高トルク発生の両機能を簡易な構成で達成できる。
上記実施の形態では、コンバータ制御回路33を内蔵した絶縁型DC−DCコンバータ24を用いた場合を例にしたが、同等の機能をCPU21に持たせることも容易であり、このように構成することにより回路規模を縮小できる。
また、上記実施形態では、モータ8の回転数と対応する関係にある物理的データがバッテリ電圧Vbである場合を例にしたが、これに代えて、モータ電流センサ23の検出値を用いてもよい。
上記動作説明ではプレーキ液圧が所定値に到達したときに昇圧動作を停止することとしたが、目標液圧に到達したとき、あるいはブースタピストン変位が目標位置に到達したときに動作を停止するように制御してもよい。この場合、短時間の増加なので損失増加も少ない。
さらに図4(b)に最大電圧Vmmax、Vmmax’に夫々対応する非昇圧時モータ回転数N、昇圧時モータ回転数N’を示す線分40,41が記載されているが、この線分40,41から明らかなように、電源電圧を昇圧すると、回転数N、N’がVmmax、Vmmax’に比例して増加すること、ひいてはバッテリ電圧Vbが低下するとほぼ比例して回転数が低下する、すなわち、回転数は、バッテリ電圧Vb(ひいてはモータドライバ22電源電圧)の影響を大きく受ける。そして、バッテリ電圧Vbの低下、即ち回転数の低下は目標減速度までの到達時間を大幅に延ばしてしまう。これに対して、CPU21でバッテリ電圧Vbを監視して、バッテリ電圧Vbが所定電圧(例えば12V)以下に下がったときは無条件に昇圧動作を開始することにより、上述した目標減速度までの到達時間の大幅延期という悪影響を防止するようにしてもよい。この場合、高液圧保持の電流を流し続けることは、熱容量的には難しいことを考慮して停車したら昇圧を停止して、保持液圧を下げるような工夫をすることが望ましい。
車両によっては、バッテリダウンの対策などのために補助バッテリを搭載し、バッテリ及び補助バッテリを用いた電源二重化システムを採用する場合がある。
このような電源二重化システムを用いて図8に示すように、電動倍力装置1A(第2実施形態)を構成することができる。
第2実施形態に係る電動倍力装置1Aでは、そのECU18Aが、図8に示すように、絶縁型DC−DCコンバータ24Aを使って補助バッテリ26をバッテリ電圧Vbから昇圧するように構成されている。バッテリ26の正常時は最大約24V、バッテリ26失陥時にも補助バッテリ45から約12Vを給電することができる。この場合、DC−DCコンバータ24への給電はオルタネータ46から直接給電する構成にして、バッテリ26と独立させる構成が望ましい。
上記各実施形態では、ブレーキの電動倍力装置を例にして、電源昇圧の効果、およびDC−DCコンバータ24(昇圧回路)の小形化、低損失化を図ることについて説明したが、本発明はこれに限らず、電動ディスクブレーキ、電動パーキングブレーキ、および車両姿勢制御用の液圧システムに用いられる昇圧用ポンプなど、他の電動モータを有するブレーキシステムに適用してもよい。
本発明の第1実施形態に係る電動倍力装置について、マスタシリンダ、ブレーキペダル及びECUを含めて模式的に示す断面図である。 図1のECUを模式的に示すブロック図である。 図2のDC−DCコンバータを示すブロック図である。 図1の電動モータの駆動電流、電動モータの特性及び電源の電流電圧特性を示し、(a)は電動モータの駆動電流を示す図、(b)は電動モータのトルク・回転数特性(TN特性)を示す図、(c)は、モータドライバ電源の電流電圧特性を示す図である。 図1の電動倍力装置の負荷特性を示す図である。 図1の電動倍力装置の作用を示すための波形図であり、(a)は減速度特性、(b)は液圧特性、(c)はQ軸電流特性、(d)は回転数特性、(e)は昇圧制御信号発生、(f)はブレーキペダル踏込量を、夫々示す図である。 電動モータの回転数及び電流で表示する電動モータの動作軌跡を示し、(a)は昇圧回路を作動していない場合、(b)は昇圧回路を作動した場合の動作軌跡を示す図である。 補助バッテリを用いて構成された電動倍力装置のFCUを示す図である。
符号の説明
1、1A…電動倍力装置、2…ブレーキペダル、5…入力部材、6a…プライマリピストン(アシスト部材)、8…モータ(電動モータ)、18…ECU(電動モータ制御装置)、21…CPU(制御回路)、24…DC−DCコンバータ(昇圧回路)、26…バッテリ(電源)。

Claims (4)

  1. 電源からの電力供給を受けて作動する電動モータを備えた車両ブレーキシステムに用いられて前記電動モータを制御する電動モータ制御装置において、
    前記電動モータに印加される電圧を昇圧して昇圧電圧を発生する昇圧回路を、前記電動モータに前記昇圧電圧を供給し得るように設け、前記電動モータの回転数と対応する関係にある物理的データの検出結果が、前記電源からの電圧の印加時に前記電動モータの回転数が上限値まで達したことを示す場合、前記昇圧回路が発生した前記昇圧電圧を前記電動モータに供給することを特徴とする電動モータ制御装置。
  2. 請求項1に記載の電動モータ制御装置において、前記昇圧回路の出力電流を、前記電動モータ駆動の最大電流よりも小さい値の電流に制限することを特徴とする電動モータ制御装置。
  3. ブレーキペダルの操作により進退移動する入力部材と、該入力部材に相対移動可能に配置されたアシスト部材と、該アシスト部材を進退移動させる電動モータとを備え、前記ブレーキペダルによる前記入力部材の移動に応じて前記アシスト部材に付与される推力を、電源からの電動モータヘの電流供給を制御して行う電動倍力装置において、
    前記電動モータに印加される電圧を昇圧して昇圧電圧を発生する昇圧回路を、前記電動モータに前記昇圧電圧を供給し得るように設け、前記電動モータの回転数と対応する関係にある物理的データの検出結果が、前記電源からの電圧の印加時に前記電動モータの回転数が上限値まで達したことを示す場合、前記昇圧回路が発生した前記昇圧電圧を前記電動モータに供給させる制御回路を設けたことを特徴とする電動倍力装置。
  4. 請求項3に記載の電動倍力装置において、前記昇圧回路の出力電流を、前記電動モータ駆動の最大電流よりも小さい値の電流に制限することを特徴とする電動倍力装置。
JP2007311422A 2007-11-30 2007-11-30 電動モータ制御装置及び電動倍力装置 Expired - Fee Related JP5024618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311422A JP5024618B2 (ja) 2007-11-30 2007-11-30 電動モータ制御装置及び電動倍力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311422A JP5024618B2 (ja) 2007-11-30 2007-11-30 電動モータ制御装置及び電動倍力装置

Publications (2)

Publication Number Publication Date
JP2009132332A true JP2009132332A (ja) 2009-06-18
JP5024618B2 JP5024618B2 (ja) 2012-09-12

Family

ID=40864659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311422A Expired - Fee Related JP5024618B2 (ja) 2007-11-30 2007-11-30 電動モータ制御装置及び電動倍力装置

Country Status (1)

Country Link
JP (1) JP5024618B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093492A (ja) * 2009-11-02 2011-05-12 Hitachi Automotive Systems Ltd 電動倍力装置
CN102548818A (zh) * 2009-10-07 2012-07-04 罗伯特·博世有限公司 用于运行机动车的制动力放大的制动系统的方法以及用于机动车的制动力放大的制动系统的控制装置
JP2013507286A (ja) * 2009-10-08 2013-03-04 ピエラリシ マイプ ソチエタ’ ペル アツィオーニ 電動モータを備えた自動車
JP2015096402A (ja) * 2013-11-15 2015-05-21 トヨタ自動車株式会社 電動パーキングブレーキ用制御装置
JP2016179797A (ja) * 2015-03-25 2016-10-13 株式会社アドヴィックス 電動駐車制動装置
KR20170106102A (ko) * 2016-03-11 2017-09-20 주식회사 만도 전동식 브레이크 시스템의 모터 전원 공급 장치
JP2021035206A (ja) * 2019-08-27 2021-03-01 株式会社デンソー モータ駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242772A (ja) * 1987-03-31 1988-10-07 Hitachi Ltd 電動パワ−ステアリング電源装置
JP2002321611A (ja) * 2001-04-26 2002-11-05 Bosch Braking Systems Co Ltd 電動式ブレーキ倍力装置
JP2007124831A (ja) * 2005-10-28 2007-05-17 Nsk Ltd スイッチング電源回路、車載用スイッチング電源装置、これを使用した電動パワーステアリング装置及び電動ブレーキ装置
JP2007166792A (ja) * 2005-12-14 2007-06-28 Nsk Ltd 車載用モータ制御装置、これを使用した電動パワーステアリング装置及び電動ブレーキ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242772A (ja) * 1987-03-31 1988-10-07 Hitachi Ltd 電動パワ−ステアリング電源装置
JP2002321611A (ja) * 2001-04-26 2002-11-05 Bosch Braking Systems Co Ltd 電動式ブレーキ倍力装置
JP2007124831A (ja) * 2005-10-28 2007-05-17 Nsk Ltd スイッチング電源回路、車載用スイッチング電源装置、これを使用した電動パワーステアリング装置及び電動ブレーキ装置
JP2007166792A (ja) * 2005-12-14 2007-06-28 Nsk Ltd 車載用モータ制御装置、これを使用した電動パワーステアリング装置及び電動ブレーキ装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548818A (zh) * 2009-10-07 2012-07-04 罗伯特·博世有限公司 用于运行机动车的制动力放大的制动系统的方法以及用于机动车的制动力放大的制动系统的控制装置
JP2013506598A (ja) * 2009-10-07 2013-02-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両のブレーキ力増幅式ブレーキ装置の制御方法および装置
JP2013507286A (ja) * 2009-10-08 2013-03-04 ピエラリシ マイプ ソチエタ’ ペル アツィオーニ 電動モータを備えた自動車
JP2011093492A (ja) * 2009-11-02 2011-05-12 Hitachi Automotive Systems Ltd 電動倍力装置
JP2015096402A (ja) * 2013-11-15 2015-05-21 トヨタ自動車株式会社 電動パーキングブレーキ用制御装置
CN104648369A (zh) * 2013-11-15 2015-05-27 丰田自动车株式会社 用于电动驻车制动器的控制装置
US9446752B2 (en) 2013-11-15 2016-09-20 Toyota Jidosha Kabushiki Kaisha Control apparatus for electric parking brake
JP2016179797A (ja) * 2015-03-25 2016-10-13 株式会社アドヴィックス 電動駐車制動装置
KR20170106102A (ko) * 2016-03-11 2017-09-20 주식회사 만도 전동식 브레이크 시스템의 모터 전원 공급 장치
KR102573055B1 (ko) * 2016-03-11 2023-08-31 에이치엘만도 주식회사 전동식 브레이크 시스템의 모터 전원 공급 장치
JP2021035206A (ja) * 2019-08-27 2021-03-01 株式会社デンソー モータ駆動装置
JP7347003B2 (ja) 2019-08-27 2023-09-20 株式会社デンソー モータ駆動装置

Also Published As

Publication number Publication date
JP5024618B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5024618B2 (ja) 電動モータ制御装置及び電動倍力装置
US9205825B2 (en) Electric brake apparatus for vehicle
JP4998621B2 (ja) ブレーキ装置およびブレーキ装置の制御方法
US20080284358A1 (en) Controller for Electromechanical Braking System with Power Demand Control and Method
CN108372850B (zh) 车辆用制动系统
JP5165394B2 (ja) 車両用電源システム
US9783171B2 (en) Electromechanical braking systems and methods with power demand control
US10023170B2 (en) Method for braking a vehicle
JP2008100660A (ja) 電動ブレーキ制御装置、及び電動ブレーキ装置
US10744989B2 (en) Brake device for vehicle
JP2009033893A (ja) 車載用アクチュエータシステム
JP2010120522A (ja) 車両用制動装置および車両用制動装置の制御方法
US11001166B2 (en) Electric brake apparatus and electric brake system
WO2018139387A1 (ja) 電動式直動アクチュエータおよび電動ブレーキ装置
JP7066408B2 (ja) 電動式直動アクチュエータおよび電動ブレーキ装置
JP4798092B2 (ja) 電気自動車の制動装置
JP4483322B2 (ja) 昇圧装置
JP6015284B2 (ja) 車両用制動制御装置
JP7347003B2 (ja) モータ駆動装置
JP6084600B2 (ja) 車両用制動装置
KR20230165313A (ko) 전동 브레이크의 제어 장치, 전동 브레이크의 제어 방법, 및 모터 제어 장치
JP4627330B2 (ja) 電動機の制御装置
JP2001280384A (ja) 電動ディスクブレーキ装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees