JP2009130300A - Method of manufacturing light-emitting device - Google Patents

Method of manufacturing light-emitting device Download PDF

Info

Publication number
JP2009130300A
JP2009130300A JP2007306626A JP2007306626A JP2009130300A JP 2009130300 A JP2009130300 A JP 2009130300A JP 2007306626 A JP2007306626 A JP 2007306626A JP 2007306626 A JP2007306626 A JP 2007306626A JP 2009130300 A JP2009130300 A JP 2009130300A
Authority
JP
Japan
Prior art keywords
led chip
heat transfer
transfer plate
submount
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007306626A
Other languages
Japanese (ja)
Inventor
Yoji Urano
洋二 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007306626A priority Critical patent/JP2009130300A/en
Publication of JP2009130300A publication Critical patent/JP2009130300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a light-emitting device capable of increasing heat dissipation and dispensing with a flux cleaning step. <P>SOLUTION: A chip mounting step is performed to perform the eutectic junction of an LED chip 10 to a submount member 30 (Fig.1(a)), and then a submount mounting step is performed to perform the eutectic junction of the submount member 30 to a heat transfer plate 21 (Fig.1(b)). Then, a wiring board sticking step is performed to stick a wiring board 22 to one surface side of the heat transfer plate 21 (Fig.1(c)), a wire-bonding step is performed to connect the LED chip 10 to wiring patterns 23, 23 of the wiring board 22 via bonding wires 14, 14, a resin injection step is performed to inject a liquid-like sealing resin 50a that becomes one portion of a sealing section 50 (Fig.1(d)), an optical member sticking step is performed to stick an optical member 60 to the wiring board 22, and a color conversion member sticking step is performed to stick a color conversion member 70 to the wiring board 22 (Fig.1(f)). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、LEDチップ(発光ダイオードチップ)を利用した発光装置の製造方法に関するものである。   The present invention relates to a method of manufacturing a light emitting device using an LED chip (light emitting diode chip).

従来から、LEDチップとLEDチップから放射された光によって励起されてLEDチップとは異なる発光色の光を放射する波長変換材料としての蛍光材料とを組み合わせてLEDチップの発光色とは異なる色合いの混色光を出す発光装置の研究開発が各所で行われている。なお、この種の発光装置としては、例えば、青色光あるいは紫外光を放射するLEDチップと蛍光体とを組み合わせて白色の光(白色光の発光スペクトル)を得ることができるものが知られている。   Conventionally, an LED chip and a fluorescent material that is excited by light emitted from the LED chip and emits light of a different emission color from the LED chip are combined with a light emitting color different from that of the LED chip. Research and development of light emitting devices that emit mixed color light are being conducted in various places. In addition, as this kind of light emitting device, for example, a device capable of obtaining white light (white light emission spectrum) by combining an LED chip that emits blue light or ultraviolet light and a phosphor is known. .

また、この種の発光装置の応用例として、白色光が得られる発光装置を複数個用いた照明器具なども提供されている。しかしながら、この種の照明器具では、複数個の発光装置を回路基板に実装して器具本体に収納する必要があるので、LEDチップの発光部から器具本体までの熱抵抗が大きくなり、LEDチップのジャンクション温度が最大ジャンクション温度を超えないようにLEDチップへの入力電力を制限する必要があるから、光出力の高出力化が制限されてしまう。   Further, as an application example of this type of light emitting device, a lighting fixture using a plurality of light emitting devices capable of obtaining white light is also provided. However, in this type of lighting fixture, it is necessary to mount a plurality of light emitting devices on a circuit board and store them in the fixture main body, so that the thermal resistance from the light emitting portion of the LED chip to the fixture main body increases, Since it is necessary to limit the input power to the LED chip so that the junction temperature does not exceed the maximum junction temperature, the increase in light output is limited.

これに対して、LEDチップを利用した発光装置において、光出力の高出力化を図るためにLEDチップで発生した熱を効率良く放熱させることができるようにした発光装置が提案されている(例えば、特許文献1)。   On the other hand, in a light emitting device using an LED chip, there has been proposed a light emitting device that can efficiently dissipate heat generated by the LED chip in order to increase the light output (for example, Patent Document 1).

ここで、上記特許文献1には、図10に示すように、第1の熱伝導性材料からなる伝熱板21’と、伝熱板21’よりも小さな平面サイズに形成され伝熱板21’の一表面側に接着剤により接合された第2の熱伝導性材料からなるサブマウント部材30’と、サブマウント部材30’における伝熱板21’側とは反対側に接着剤により接合されたLEDチップ10’と、有機系絶縁性基材22a’の一表面側にLEDチップ10’に電気的に接続される配線パターン23’,23’が形成されるとともにサブマウント部材30’が内側に離間して配置される窓孔24’が厚み方向に貫設されてなり伝熱板21’の上記一表面側に固着された配線基板22’と、配線基板22’上においてLEDチップ10’およびボンディングワイヤ14’,14’を囲む形で配設された封止枠体40’と、蛍光体を含有した透光性封止樹脂からなり封止枠体40’の内側でLEDチップ10’およびボンディングワイヤ14’,14’を封止した封止部50’とを備えた発光装置が提案されている。
特開2006−5290号公報(段落〔0020〕,〔0011〕−〔0016〕、および図5,図1)
Here, in Patent Document 1, as shown in FIG. 10, a heat transfer plate 21 ′ made of a first heat conductive material and a heat transfer plate 21 that is formed in a plane size smaller than the heat transfer plate 21 ′. The submount member 30 'made of the second heat conductive material joined to one surface side by an adhesive and the submount member 30' joined to the opposite side of the heat transfer plate 21 'by an adhesive. LED chip 10 'and wiring patterns 23' and 23 'electrically connected to LED chip 10' are formed on one surface side of organic insulating base material 22a 'and submount member 30' is on the inside. A wiring board 22 ′ fixed to the one surface side of the heat transfer plate 21 ′, and a LED chip 10 ′ on the wiring board 22 ′. And the bonding wires 14 'and 14' are disposed so as to surround them. A sealing frame 50 ′ and a sealing portion 50 made of a translucent sealing resin containing a phosphor and sealing the LED chip 10 ′ and bonding wires 14 ′ and 14 ′ inside the sealing frame 40 ′. A light-emitting device equipped with 'has been proposed.
Japanese Patent Laying-Open No. 2006-5290 (paragraphs [0020], [0011]-[0016], and FIGS. 5 and 1)

ところで、図10に示した構成の発光装置では、サブマウント部材30’と伝熱板21’とが有機系材料からなる接着剤(例えば、シリコーン系樹脂、エポキシ系樹脂など)により接合されていると、LEDチップ10’から伝熱板21’までの熱抵抗が大きくなって熱伝導性が低下してしまう。   Incidentally, in the light emitting device having the configuration shown in FIG. 10, the submount member 30 ′ and the heat transfer plate 21 ′ are joined by an adhesive made of an organic material (for example, silicone resin, epoxy resin, etc.). And the thermal resistance from LED chip 10 'to heat-transfer plate 21' will become large, and thermal conductivity will fall.

そこで、図10に示した構成の発光装置の製造にあたっては、LEDチップ10’とサブマウント部材30’とを接合する接着剤、サブマウント部材30’と伝熱板21’とを接合する接着剤として、伝熱板21’の上記一表面側に固着されている配線基板22’の有機系絶縁性基材22a’の耐熱温度を考慮して、銀ペーストや半田(SnAgCu)ペーストを用いることが考えられるが、フラックスなどの樹脂成分が配線パターン23’,23’上に残渣として残ってしまい、ボンディング不良などの接続不良の原因となる恐れがあるので、フラックス洗浄工程を追加する必要があった。   Therefore, in manufacturing the light emitting device having the configuration shown in FIG. 10, an adhesive that joins the LED chip 10 ′ and the submount member 30 ′, and an adhesive that joins the submount member 30 ′ and the heat transfer plate 21 ′. In consideration of the heat resistance temperature of the organic insulating base material 22a ′ of the wiring board 22 ′ fixed to the one surface side of the heat transfer plate 21 ′, a silver paste or a solder (SnAgCu) paste may be used. Although it is conceivable, a resin component such as flux remains as a residue on the wiring patterns 23 ′ and 23 ′, which may cause a connection failure such as a bonding failure. Therefore, it is necessary to add a flux cleaning process. .

本発明は上記事由に鑑みて為されたものであり、その目的は、放熱性を高めることができ且つフラックス洗浄工程が不要な発光装置の製造方法を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a method for manufacturing a light-emitting device that can improve heat dissipation and does not require a flux cleaning step.

請求項1の発明は、第1の熱伝導性材料からなる伝熱板と、伝熱板よりも小さな平面サイズに形成され伝熱板の一表面側に接合された第2の熱伝導性材料からなるサブマウント部材と、サブマウント部材における伝熱板側とは反対側に接合されたLEDチップと、有機系絶縁性基材の一表面側にLEDチップに電気的に接続される配線パターンが形成されるとともにサブマウント部材が内側に離間して配置される窓孔が厚み方向に貫設されてなり伝熱板の前記一表面側に固着された配線基板とを備えた発光装置の製造方法であって、配線基板を伝熱板の前記一表面側に固着する配線基板固着工程を行う以前に、LEDチップをサブマウント部材に共晶接合するチップ搭載工程およびサブマウント部材を伝熱板に共晶接合するサブマウント搭載工程を備えることを特徴とする。   The invention according to claim 1 is a heat transfer plate made of the first heat conductive material, and a second heat conductive material formed in a plane size smaller than the heat transfer plate and joined to one surface side of the heat transfer plate. A submount member comprising: an LED chip bonded to the side opposite to the heat transfer plate side of the submount member; and a wiring pattern electrically connected to the LED chip on one surface side of the organic insulating substrate. A method for manufacturing a light emitting device, comprising: a wiring board formed on the one surface side of the heat transfer plate, in which a window hole in which a submount member is spaced apart and arranged inward is provided in the thickness direction. Before performing the wiring board fixing process for fixing the wiring board to the one surface side of the heat transfer plate, the chip mounting process for eutectic bonding the LED chip to the submount member and the submount member as the heat transfer plate. Equipped with submount for eutectic bonding Characterized in that it comprises a degree.

この発明によれば、配線基板を伝熱板の前記一表面側に固着する配線基板固着工程を行う以前に、LEDチップをサブマウント部材に共晶接合するチップ搭載工程およびサブマウント部材を伝熱板に共晶接合するサブマウント搭載工程を備えるので、チップ搭載工程においてLEDチップがサブマウント部材に共晶接合され、また、サブマウント搭載工程においてサブマウント部材が伝熱板に共晶接合されるから、チップ搭載工程およびサブマウント搭載工程においてフラックスを利用する必要がなく、しかも、LEDチップから伝熱板までの熱抵抗が小さくなるから、放熱性を高めることができ且つフラックス洗浄工程が不要になる。   According to the present invention, before performing the wiring board fixing process for fixing the wiring board to the one surface side of the heat transfer plate, the chip mounting process for eutectic bonding the LED chip to the submount member and the heat transfer to the submount member are performed. Since the submount mounting step for eutectic bonding to the plate is provided, the LED chip is eutectic bonded to the submount member in the chip mounting step, and the submount member is eutectic bonded to the heat transfer plate in the submount mounting step. Therefore, it is not necessary to use flux in the chip mounting process and the submount mounting process, and since the thermal resistance from the LED chip to the heat transfer plate is reduced, the heat dissipation can be improved and the flux cleaning process is unnecessary. Become.

請求項2の発明は、請求項1の発明において、前記チップ搭載工程および前記サブマウント搭載工程それぞれにおける共晶接合は、Nガス雰囲気中でのAuSu共晶接合であることを特徴とする。 The invention of claim 2 is characterized in that, in the invention of claim 1, the eutectic bonding in each of the chip mounting step and the submount mounting step is AuSu eutectic bonding in an N 2 gas atmosphere.

この発明によれば、前記チップ搭載工程および前記サブマウント搭載工程における共晶接合がSnAgCu共晶接合の場合に比べて、前記LEDチップから前記伝熱板までの熱抵抗をより小さくすることができる。   According to the present invention, the thermal resistance from the LED chip to the heat transfer plate can be further reduced as compared to the case where the eutectic bonding in the chip mounting step and the submount mounting step is SnAgCu eutectic bonding. .

請求項1の発明では、放熱性を高めることができ且つフラックス洗浄工程が不要になるという効果がある。   The invention of claim 1 has the effect that heat dissipation can be improved and a flux cleaning step is not required.

(実施形態1)
まず、本実施形態における発光装置について図2〜図6を参照しながら説明した後、当該発光装置の製造方法について図1を参照しながら説明する。
(Embodiment 1)
First, after describing the light-emitting device in the present embodiment with reference to FIGS. 2 to 6, a method for manufacturing the light-emitting device will be described with reference to FIG. 1.

本実施形態における発光装置1は、LEDチップ10と、一表面側にLEDチップ10への給電用の配線パターン(導体パターン)23,23を有しLEDチップ10が上記一表面側に実装された矩形板状の実装基板20と、LEDチップ10から放射された光の配光を制御する光学部材であって実装基板20との間にLEDチップ10を収納する形で実装基板20の上記一表面側に固着された透光性材料からなるドーム状の光学部材60と、光学部材60と実装基板20とで囲まれた空間に充実されLEDチップ10および当該LEDチップ10に電気的に接続された複数本(本実施形態では、2本)のボンディングワイヤ14を封止した透光性封止材からなる封止部50と、LEDチップ10から放射され封止部50および光学部材60を透過した光によって励起されてLEDチップ10の発光色とは異なる色の光を放射する蛍光体および透光性材料により形成されたものであって実装基板20の上記一表面側において実装基板20との間にLEDチップ10などを囲む形で配設されるドーム状の色変換部材70とを備えている。ここにおいて、色変換部材70は、実装基板20の上記一表面側において光学部材60の光出射面60bとの間に空気層80が形成されるように配設されている。また、実装基板20は、上記一表面において光学部材60の外側に、光学部材60を実装基板20に固着する際に上記空間から溢れ出た封止樹脂を堰き止める環状の堰部27が突設されている。   The light emitting device 1 according to the present embodiment includes the LED chip 10 and wiring patterns (conductor patterns) 23 and 23 for supplying power to the LED chip 10 on one surface side, and the LED chip 10 is mounted on the one surface side. The one surface of the mounting board 20 in the form of housing the LED chip 10 between the rectangular board-like mounting board 20 and the mounting board 20, which is an optical member for controlling the light distribution of the light emitted from the LED chip 10. The LED chip 10 and the LED chip 10 are electrically connected to the space surrounded by the dome-shaped optical member 60 made of a translucent material fixed to the side and the optical member 60 and the mounting substrate 20. A sealing portion 50 made of a translucent sealing material that seals a plurality of (two in this embodiment) bonding wires 14, and the sealing portion 50 and the optical member 60 that are emitted from the LED chip 10. It is formed of a phosphor and a translucent material that is excited by the transmitted light and emits light of a color different from the emission color of the LED chip 10, and on the one surface side of the mounting substrate 20 with the mounting substrate 20. And a dome-shaped color conversion member 70 disposed so as to surround the LED chip 10 and the like. Here, the color conversion member 70 is disposed so that an air layer 80 is formed between the light emitting surface 60 b of the optical member 60 on the one surface side of the mounting substrate 20. Further, the mounting substrate 20 has an annular dam portion 27 protruding outside the optical member 60 on the one surface so as to dam the sealing resin overflowing from the space when the optical member 60 is fixed to the mounting substrate 20. Has been.

ここにおいて、本実施形態における発光装置1を照明器具の光源として用いる場合には、例えば、照明器具における金属(例えば、Al,Cuなどの熱伝導率の高い金属)製の器具本体100(図3、図5、図6参照)と実装基板20とを、シリカやアルミナなどのフィラーからなる充填材を含有し且つ加熱時に低粘度化する樹脂シート(例えば、溶融シリカを高充填したエポキシ樹脂シートのような有機グリーンシート)からなる接合用部材90により接合すればよい。ここで、上記樹脂シートからなる接合用部材90は、電気絶縁性を有するとともに熱伝導率が高く加熱時の流動性が高く凹凸面への密着性が高いので、実装基板20を金属製の器具本体100に接合用部材90を介して接合する(実装基板20と器具本体100との間に接合用部材90を介在させた後で接合用部材90を加熱することで実装基板20と器具本体100とを接合する)際に接合用部材90と実装基板20および器具本体100との間に空隙が発生するのを防止することができて、密着不足による熱抵抗の増大やばらつきの発生を防止することができ、サーコン(登録商標)のようなゴムシート状の放熱シートなどを挟む場合に比べて、LEDチップ10から器具本体100までの熱抵抗を小さくすることができて放熱性が向上するとともに熱抵抗のばらつきが小さくなり、LEDチップ10のジャンクション温度の温度上昇を抑制できるから、入力電力を大きくでき、光出力の高出力化を図れる。なお、本実施形態における発光装置1を照明器具の光源として用いる場合には、図5に示すように、器具本体100に複数個の発光装置1を実装して複数個の発光装置1を直列接続したり並列接続したりすればよい。また、発光装置1は、金属製の器具本体100に限らず、接合用部材90を介して金属製部材に接合するようにしてもよい。   Here, when the light-emitting device 1 according to the present embodiment is used as a light source of a lighting fixture, for example, a fixture main body 100 (for example, a metal having high thermal conductivity such as Al or Cu) in the lighting fixture (FIG. 3). 5 and 6) and the mounting substrate 20, a resin sheet containing a filler made of a filler such as silica or alumina and having a low viscosity when heated (for example, an epoxy resin sheet highly filled with fused silica) What is necessary is just to join by the joining member 90 which consists of such an organic green sheet. Here, since the joining member 90 made of the resin sheet has electrical insulation properties, has high thermal conductivity, high fluidity during heating, and high adhesion to the uneven surface, the mounting substrate 20 is made of a metal instrument. Joining to the main body 100 via the joining member 90 (the joining member 90 is heated between the mounting substrate 20 and the instrument main body 100 and then the joining member 90 is heated to thereby heat the mounting substrate 20 and the instrument main body 100. Can be prevented from generating gaps between the bonding member 90 and the mounting substrate 20 and the instrument main body 100, thereby preventing an increase in thermal resistance and variations due to insufficient adhesion. The heat resistance from the LED chip 10 to the instrument body 100 can be reduced and heat dissipation is improved compared to the case where a rubber sheet-like heat dissipation sheet such as Sarcon (registered trademark) is sandwiched. Variations in Rutotomoni thermal resistance is reduced, since the temperature rise of the junction temperature of the LED chip 10 can be suppressed, it can increase the input power, thereby a high light output. In addition, when using the light-emitting device 1 in this embodiment as a light source of a lighting fixture, as shown in FIG. 5, the several light-emitting device 1 is mounted in the fixture main body 100, and the several light-emitting device 1 is connected in series. Or connect in parallel. In addition, the light emitting device 1 is not limited to the metal instrument body 100 but may be bonded to the metal member via the bonding member 90.

LEDチップ10は、青色光を放射するGaN系青色LEDチップであり、結晶成長用基板としてサファイア基板に比べて格子定数や結晶構造がGaNに近く且つ導電性を有するn形のSiC基板を用いており、SiC基板の主表面側にGaN系化合物半導体材料により形成されて例えばダブルへテロ構造を有する積層構造部からなる発光部がエピタキシャル成長法(例えば、MOVPE法など)により成長されているが、結晶成長用基板はSC基板に限らず、例えば、GaN基板などでもよい。ここで、LEDチップ10は、一表面側(図2(a)における上面側)にアノード電極(図示せず)が形成され、他表面側(図2(a)における下面側)にカソード電極が形成されている。上記カソード電極および上記アノード電極は、Ni膜とAu膜との積層膜により構成してあるが、上記カソード電極および上記アノード電極の材料は特に限定するものではなく、良好なオーミック特性が得られる材料であればよく、例えば、Alなどを採用してもよい。また、LEDチップ10の構造は特に限定するものではなく、例えば、結晶成長用基板の主表面側に発光部などをエピタキシャル成長した後に発光部を支持する支持基板(例えば、Si基板など)を発光部に固着してから、結晶成長用基板などを除去したものを用いてもよい。   The LED chip 10 is a GaN-based blue LED chip that emits blue light, and uses an n-type SiC substrate having a lattice constant and a crystal structure close to GaN as compared to a sapphire substrate and having conductivity as a crystal growth substrate. In addition, a light-emitting portion formed of a GaN-based compound semiconductor material and having a double-heterostructure, for example, on the main surface side of the SiC substrate is grown by an epitaxial growth method (for example, MOVPE method). The growth substrate is not limited to the SC substrate, and may be a GaN substrate, for example. Here, the LED chip 10 has an anode electrode (not shown) formed on one surface side (upper surface side in FIG. 2A) and a cathode electrode on the other surface side (lower surface side in FIG. 2A). Is formed. The cathode electrode and the anode electrode are composed of a laminated film of a Ni film and an Au film, but the material of the cathode electrode and the anode electrode is not particularly limited, and a material capable of obtaining good ohmic characteristics For example, Al or the like may be employed. Further, the structure of the LED chip 10 is not particularly limited. For example, a light emitting unit is formed by supporting a light emitting unit after epitaxially growing the light emitting unit or the like on the main surface side of the crystal growth substrate. Alternatively, a substrate obtained by removing the crystal growth substrate or the like may be used.

実装基板20は、第1の熱伝導性材料(例えば、Cuなど)からなる矩形板状の伝熱板21と、伝熱板21よりも小さく且つLEDチップ10よりも大きな平面サイズに形成され伝熱板21の一表面側(図2(a)における上面側)に接合された第2の熱伝導性材料(例えば、AlNなど)からなるサブマウント部材30と、有機系絶縁性基材22aの一表面側にLEDチップ10に電気的に接続される上述の配線パターン23,23が形成されるとともにサブマウント部材30が内側に離間して配置される窓孔24が厚み方向に貫設されてなり伝熱板21の上記一表面側に固着された矩形板状のフレキシブル配線板からなる配線基板22とで構成されており、サブマウント部材30における伝熱板21側とは反対側にLEDチップ10が接合されている。したがって、LEDチップ10で発生した熱が配線基板22を介さずにサブマウント部材30および伝熱板21に伝熱されるようになっている。ここにおいて、配線基板22は、伝熱板21の上記一表面側に例えばポリオレフィン系の固着シート29(図3参照)を介して固着されている。また、伝熱板21の上記一表面には、サブマウント部材30の位置決め精度を高めるためのアライメントマーク21c(図3参照)が形成されている。   The mounting board 20 is a rectangular plate-shaped heat transfer plate 21 made of a first heat conductive material (for example, Cu) and a planar size smaller than the heat transfer plate 21 and larger than the LED chip 10. A submount member 30 made of a second heat conductive material (for example, AlN) joined to one surface side (the upper surface side in FIG. 2A) of the hot plate 21, and an organic insulating base material 22a. The above-described wiring patterns 23 and 23 that are electrically connected to the LED chip 10 are formed on one surface side, and a window hole 24 in which the submount member 30 is spaced apart on the inner side is provided in the thickness direction. And a wiring board 22 composed of a rectangular flexible wiring board fixed to the one surface side of the heat transfer plate 21, and the LED chip on the opposite side of the submount member 30 from the heat transfer plate 21 side. 10 is contact It is. Therefore, the heat generated in the LED chip 10 is transferred to the submount member 30 and the heat transfer plate 21 without passing through the wiring board 22. Here, the wiring board 22 is fixed to the one surface side of the heat transfer plate 21 via, for example, a polyolefin-based fixing sheet 29 (see FIG. 3). An alignment mark 21c (see FIG. 3) for increasing the positioning accuracy of the submount member 30 is formed on the one surface of the heat transfer plate 21.

なお、本実施形態では、伝熱板21の第1の熱伝導性材料としてCuを採用しているが、Cuに限らず、例えば、Alなどを採用してもよい。また、本実施形態では、LEDチップ10の発光部が結晶成長用基板よりも伝熱板21から離れた側となるように伝熱板21に搭載されているが、LEDチップ10の発光部が結晶成長用基板よりも伝熱板21に近い側となるように伝熱板21に搭載するようにしてもよい。光取り出し効率を考えた場合には、発光部を伝熱板21から離れた側に配置することが望ましいが、本実施形態では結晶成長用基板と発光部とが同程度の屈折率を有しているので、発光部を伝熱板21に近い側に配置しても光の取り出し損失が大きくなりすぎることはない。   In the present embodiment, Cu is employed as the first thermal conductive material of the heat transfer plate 21. However, the present invention is not limited to Cu, and for example, Al may be employed. In the present embodiment, the LED chip 10 is mounted on the heat transfer plate 21 so that the light emitting portion of the LED chip 10 is farther from the heat transfer plate 21 than the crystal growth substrate. The heat transfer plate 21 may be mounted so as to be closer to the heat transfer plate 21 than the crystal growth substrate. In consideration of light extraction efficiency, it is desirable to arrange the light emitting part on the side away from the heat transfer plate 21, but in this embodiment, the crystal growth substrate and the light emitting part have the same refractive index. Therefore, even if the light emitting part is arranged on the side close to the heat transfer plate 21, the light extraction loss does not become too large.

上述の配線基板22は、ポリイミドフィルムからなる有機系絶縁性基材22aの一表面側に、LEDチップ10への給電用の一対の配線パターン23,23が設けられるとともに、各配線パターン23,23および有機系絶縁性基材22aにおいて配線パターン23,23が形成されていない部位を覆う白色系のレジスト(樹脂)からなる保護層26が積層されている。したがって、LEDチップ10の側面から放射され保護層26の表面に入射した光が保護層26の表面で反射されるので、LEDチップ10から放射された光が配線基板22に吸収されるのを防止することができ、外部への光取り出し効率の向上による光出力の向上を図れる。なお、各配線パターン23,23は、有機系絶縁性基材22aの外周形状の半分よりもやや小さな外周形状に形成されている。また、有機系絶縁性基材22aの材料としては、FR4、FR5、紙フェノールなどを採用してもよい。   The wiring board 22 is provided with a pair of wiring patterns 23 and 23 for supplying power to the LED chip 10 on one surface side of an organic insulating base material 22a made of a polyimide film. In addition, a protective layer 26 made of a white resist (resin) covering a portion of the organic insulating base material 22a where the wiring patterns 23, 23 are not formed is laminated. Therefore, the light emitted from the side surface of the LED chip 10 and incident on the surface of the protective layer 26 is reflected by the surface of the protective layer 26, thereby preventing the light emitted from the LED chip 10 from being absorbed by the wiring substrate 22. Thus, the light output can be improved by improving the light extraction efficiency to the outside. In addition, each wiring pattern 23 and 23 is formed in the outer periphery shape a little smaller than half of the outer periphery shape of the organic type insulating base material 22a. Further, as a material of the organic insulating base material 22a, FR4, FR5, paper phenol, or the like may be employed.

保護層26は、配線基板22の窓孔24の近傍において各配線パターン23,23の2箇所が露出し、配線基板22の周部において各配線パターン23,23の1箇所が露出するようにパターニングされており、各配線パターン23,23は、配線基板22の窓孔24近傍において露出した2つの矩形状の部位が、ボンディングワイヤ14が接続される端子部23aを構成し、配線基板22の周部において露出した円形状の部位が外部接続用電極部23bを構成している。なお、配線基板22の配線パターン23,23は、Cu膜とNi膜とAu膜との積層膜により構成されている。また、2つの外部接続用電極部23bのうちLEDチップ10の上記アノード電極が電気的に接続される外部接続用電極部23b(図6における右側の外部接続用電極部23b)には「+」の表示が形成され、LEDチップ10の上記カソード電極が電気的に接続される外部接続用電極部23b(図6における左側の外部接続用電極部23b)には「−」の表示が形成されているので、発光装置1における両外部接続用電極部23b,23bの極性を視認することができ、誤接続を防止することができる。   The protective layer 26 is patterned so that two portions of the wiring patterns 23 and 23 are exposed in the vicinity of the window hole 24 of the wiring substrate 22 and one portion of the wiring patterns 23 and 23 is exposed in the peripheral portion of the wiring substrate 22. In each wiring pattern 23, 23, two rectangular portions exposed in the vicinity of the window hole 24 of the wiring substrate 22 constitute a terminal portion 23 a to which the bonding wire 14 is connected. The circular part exposed in the part constitutes the external connection electrode part 23b. In addition, the wiring patterns 23 and 23 of the wiring board 22 are comprised by the laminated film of Cu film | membrane, Ni film | membrane, and Au film | membrane. In addition, “+” is used for the external connection electrode portion 23b (the right external connection electrode portion 23b in FIG. 6) to which the anode electrode of the LED chip 10 is electrically connected, of the two external connection electrode portions 23b. Is displayed, and “−” is formed on the external connection electrode portion 23b (the left external connection electrode portion 23b in FIG. 6) to which the cathode electrode of the LED chip 10 is electrically connected. Therefore, the polarities of the external connection electrode portions 23b and 23b in the light emitting device 1 can be visually recognized, and erroneous connection can be prevented.

サブマウント部材30は、LEDチップ10と伝熱板21との線膨張率の差に起因してLEDチップ10に働く応力を緩和する応力緩和機能と、LEDチップ10で発生した熱を伝熱板21においてLEDチップ10のチップサイズよりも広い範囲に伝熱させる熱伝導機能を有している。したがって、本実施形態の発光装置1では、LEDチップ10がサブマウント部材30を介して伝熱板21に搭載されているので、LEDチップ10で発生した熱をサブマウント部材30および伝熱板21を介して効率良く放熱させることができるとともに、LEDチップ10と伝熱板21との線膨張率差に起因してLEDチップ10に働く応力を緩和することができる。   The submount member 30 includes a stress relaxation function for relaxing stress acting on the LED chip 10 due to a difference in linear expansion coefficient between the LED chip 10 and the heat transfer plate 21, and heat generated by the LED chip 10. 21 has a heat conduction function of transferring heat to a wider range than the chip size of the LED chip 10. Therefore, in the light emitting device 1 of the present embodiment, since the LED chip 10 is mounted on the heat transfer plate 21 via the submount member 30, the heat generated in the LED chip 10 is transferred to the submount member 30 and the heat transfer plate 21. The heat acting on the LED chip 10 due to the difference in linear expansion coefficient between the LED chip 10 and the heat transfer plate 21 can be relieved.

本実施形態では、サブマウント部材30の材料として熱伝導率が比較的高く且つ絶縁性を有するAlNを採用しており、LEDチップ10は、上記カソード電極がサブマウント部材30におけるLEDチップ10側の表面に設けられ上記カソード電極と接続される導体パターン31(図3参照)および金属細線(例えば、金細線、アルミニウム細線など)からなるボンディングワイヤ14を介して一方の配線パターン23と電気的に接続され、上記アノード電極がボンディングワイヤ14を介して他方の配線パターン23と電気的に接続されている。ここにおいて、LEDチップ10とサブマウント部材30とは、AuSnにより共晶接合され、サブマウント部材30と伝熱板21とも、AuSnにより共晶接合されているが、いずれの共晶接合においても、接合表面にあらかじめAuからなる金属層が形成されている。   In the present embodiment, AlN having a relatively high thermal conductivity and insulation is used as the material of the submount member 30, and the LED chip 10 has the cathode electrode on the LED chip 10 side of the submount member 30. A conductive pattern 31 (see FIG. 3) provided on the surface and connected to the cathode electrode and electrically connected to one wiring pattern 23 via a bonding wire 14 made of a fine metal wire (for example, a gold fine wire, an aluminum fine wire, etc.) The anode electrode is electrically connected to the other wiring pattern 23 via the bonding wire 14. Here, the LED chip 10 and the submount member 30 are eutectic bonded by AuSn, and the submount member 30 and the heat transfer plate 21 are also eutectic bonded by AuSn, but in any eutectic bonding, A metal layer made of Au is formed in advance on the bonding surface.

サブマウント部材30の材料はAlNに限らず、線膨張率がLEDチップ10の結晶成長用基板の材料に比較的近く且つ熱伝導率が比較的高い材料であればよく、例えば、複合SiC、Si、Cu、CuWなどを採用してもよい。なお、サブマウント部材30は、上述の熱伝導機能を有しており、伝熱板21におけるLEDチップ10側の表面の面積はLEDチップ10における伝熱板21側の表面の面積よりも十分に大きいことが望ましい。   The material of the submount member 30 is not limited to AlN, and any material may be used as long as the linear expansion coefficient is relatively close to the material of the crystal growth substrate of the LED chip 10 and the heat conductivity is relatively high. For example, composite SiC, Si Cu, CuW, etc. may be employed. The submount member 30 has the above-described heat conduction function, and the area of the surface of the heat transfer plate 21 on the LED chip 10 side is sufficiently larger than the area of the surface of the LED chip 10 on the heat transfer plate 21 side. Larger is desirable.

また、本実施形態における発光装置1では、サブマウント部材30の厚み寸法を、当該サブマウント部材30の表面が配線基板22の保護層26の表面よりも伝熱板21から離れるように設定してあり、LEDチップ10から側方に放射された光が配線基板22の窓孔24の内周面を通して配線基板22に吸収されるのを防止することができる。なお、サブマウント部材30においてLEDチップ10が接合される側の表面においてLEDチップ10との接合部位の周囲に、LEDチップ10から放射された光を反射する反射膜を形成すれば、LEDチップ10の側面から放射された光がサブマウント部材30に吸収されるのを防止することができ、外部への光取出し効率をさらに高めることが可能となる。ここで、反射膜は、例えば、Ni膜とAg膜との積層膜により構成すればよい。   In the light emitting device 1 according to this embodiment, the thickness dimension of the submount member 30 is set so that the surface of the submount member 30 is farther from the heat transfer plate 21 than the surface of the protective layer 26 of the wiring board 22. In addition, light emitted from the LED chip 10 to the side can be prevented from being absorbed by the wiring board 22 through the inner peripheral surface of the window hole 24 of the wiring board 22. In addition, if a reflective film that reflects the light emitted from the LED chip 10 is formed around the bonding portion with the LED chip 10 on the surface of the submount member 30 on the side to which the LED chip 10 is bonded, the LED chip 10 is formed. It is possible to prevent the light radiated from the side surface from being absorbed by the submount member 30 and to further increase the light extraction efficiency to the outside. Here, the reflective film may be formed of, for example, a laminated film of a Ni film and an Ag film.

上述の封止部50の材料である透光性封止材としては、シリコーン樹脂を用いているが、シリコーン樹脂に限らず、例えばアクリル樹脂、ガラスなどを用いてもよい。   As a translucent sealing material which is a material of the above-mentioned sealing part 50, although silicone resin is used, not only silicone resin but acrylic resin, glass, etc. may be used, for example.

光学部材60は、透光性材料(例えば、シリコーン樹脂、アクリル樹脂、ガラスなど)の成形品であってドーム状に形成されている。ここで、本実施形態では、光学部材60をシリコーン樹脂の成形品により構成しているので、光学部材60と封止部50との屈折率差および線膨張率差を小さくすることができる。   The optical member 60 is a molded product of a translucent material (for example, silicone resin, acrylic resin, glass, etc.) and is formed in a dome shape. Here, in this embodiment, since the optical member 60 is formed of a silicone resin molded product, the difference in refractive index and the linear expansion coefficient between the optical member 60 and the sealing portion 50 can be reduced.

ところで、光学部材60は、光出射面60bが、光入射面60aから入射した光を光出射面60bと上述の空気層80との境界で全反射させない凸曲面状に形成されており、LEDチップ10と光軸が一致するように配置されている。したがって、LEDチップ10から放射され光学部材60の光入射面60aに入射された光が光出射面60bと空気層80との境界で全反射されることなく色変換部材70まで到達しやすくなり、全光束を高めることができる。なお、LEDチップ10の側面から放射された光は封止部50および光学部材60および空気層80を伝搬して色変換部材70まで到達し色変換部材70の蛍光体を励起したり蛍光体には衝突せずに色変換部材70を透過したりする。また、光学部材60は、位置によらず法線方向に沿って肉厚が一様となるように形成されている。   By the way, the optical member 60 has a light emitting surface 60b formed in a convex curved surface shape that does not totally reflect the light incident from the light incident surface 60a at the boundary between the light emitting surface 60b and the air layer 80 described above. 10 and the optical axis coincide with each other. Therefore, the light emitted from the LED chip 10 and incident on the light incident surface 60a of the optical member 60 can easily reach the color conversion member 70 without being totally reflected at the boundary between the light emitting surface 60b and the air layer 80, The total luminous flux can be increased. The light emitted from the side surface of the LED chip 10 propagates through the sealing portion 50, the optical member 60, and the air layer 80 to reach the color conversion member 70 to excite the phosphor of the color conversion member 70 or to the phosphor. Passes through the color conversion member 70 without colliding. Further, the optical member 60 is formed so that the thickness is uniform along the normal direction regardless of the position.

色変換部材70は、シリコーン樹脂のような透光性材料とLEDチップ10から放射された青色光によって励起されてブロードな黄色系の光を放射する粒子状の黄色蛍光体とを混合した混合物の成形品により構成されている(つまり、色変換部材70は、蛍光体を含有している)。したがって、本実施形態の発光装置1は、LEDチップ10から放射された青色光と黄色蛍光体から放射された光とが色変換部材70の外面70bを通して放射されることとなり、白色光を得ることができる。なお、色変換部材70の材料として用いる透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用してもよい。また、色変換部材70の材料として用いる透光性材料に混合する蛍光体も黄色蛍光体に限らず、例えば、赤色蛍光体と緑色蛍光体とを混合しても白色光を得ることができる。   The color conversion member 70 is a mixture of a translucent material such as a silicone resin and a particulate yellow phosphor that emits broad yellow light when excited by the blue light emitted from the LED chip 10. It is comprised by the molded article (that is, the color conversion member 70 contains fluorescent substance). Therefore, in the light emitting device 1 of the present embodiment, the blue light emitted from the LED chip 10 and the light emitted from the yellow phosphor are emitted through the outer surface 70b of the color conversion member 70, and white light is obtained. Can do. The translucent material used as the material of the color conversion member 70 is not limited to a silicone resin, but an organic / inorganic hybrid in which, for example, an acrylic resin, glass, an organic component and an inorganic component are mixed and combined at the nm level or the molecular level. Materials etc. may be adopted. Further, the phosphor mixed with the translucent material used as the material of the color conversion member 70 is not limited to the yellow phosphor. For example, white light can be obtained by mixing a red phosphor and a green phosphor.

ここで、色変換部材70は、内面70aが光学部材60の光出射面60bに沿った形状に形成されている。したがって、光学部材60の光出射面60bの位置によらず法線方向における光出射面60bと色変換部材70の内面70aとの間の距離が略一定値となっている。なお、色変換部材70は、位置によらず法線方向に沿った肉厚が一様となるように成形されている。また、色変換部材70は、実装基板20側の端縁(開口部の周縁)を実装基板20に対して、例えば接着剤(例えば、シリコーン樹脂、エポキシ樹脂など)を用いて固着すればよい。   Here, the color conversion member 70 has an inner surface 70 a formed along the light emitting surface 60 b of the optical member 60. Therefore, the distance between the light emitting surface 60b and the inner surface 70a of the color conversion member 70 in the normal direction is a substantially constant value regardless of the position of the light emitting surface 60b of the optical member 60. In addition, the color conversion member 70 is shape | molded so that the thickness along a normal line direction may become uniform irrespective of a position. In addition, the color conversion member 70 may be fixed to the mounting substrate 20 with an end edge (periphery of the opening) on the mounting substrate 20 side using, for example, an adhesive (for example, silicone resin, epoxy resin).

ところで、本実施形態における発光装置1を光源として用いた上述の照明器具は、図5および図6に示すように、各発光装置1の接続関係を規定する配線パターン202が絶縁性基材201の一表面側に形成された回路基板200を備えている。なお、本実施形態では、複数の発光装置1を直列接続しているが、複数の発光装置1の接続関係は特に限定するものではなく、例えば、並列接続するようにしてもよいし、直列接続と並列接続とを組み合わせてもよい。   By the way, the above-mentioned lighting fixture using the light-emitting device 1 in the present embodiment as a light source has a wiring pattern 202 that defines the connection relationship of each light-emitting device 1 as shown in FIGS. A circuit board 200 formed on one surface side is provided. In the present embodiment, the plurality of light emitting devices 1 are connected in series. However, the connection relationship between the plurality of light emitting devices 1 is not particularly limited. For example, the light emitting devices 1 may be connected in parallel or connected in series. And parallel connection may be combined.

回路基板200は、浅い有底円筒状の器具本体100内において当該器具本体100の底壁100aから離間して配置されるものであり、各発光装置1それぞれに対応する部位に各発光装置1の一部を通す開孔窓204が形成されている。なお、回路基板200の絶縁性基材201の材料としては、例えば、FR4のようなガラスエポキシ樹脂を採用すればよいが、ガラスエポキシ樹脂に限らず、例えば、ポリイミド系樹脂、フェノール樹脂などでもよい。また、器具本体100の形状は特に限定するものではなく、例えば、平板状でもよい。   The circuit board 200 is disposed in the shallow bottomed cylindrical instrument body 100 so as to be separated from the bottom wall 100a of the instrument body 100, and the circuit board 200 is disposed at a position corresponding to each light-emitting device 1 respectively. An aperture window 204 through which a part passes is formed. In addition, as a material of the insulating base material 201 of the circuit board 200, for example, a glass epoxy resin such as FR4 may be adopted, but not limited to a glass epoxy resin, for example, a polyimide resin, a phenol resin, or the like may be used. . Moreover, the shape of the instrument main body 100 is not specifically limited, For example, flat form may be sufficient.

上述の回路基板200は、器具本体100の底壁100aに貫設されている挿通孔100cに挿通された給電用のリード線が挿通される電線挿通孔206が貫設されており、電線挿通孔206に挿通された一対の電線が電気的に接続されるようになっている。また、回路基板200は、器具本体100の底壁100a側とは反対の表面側に白色系のレジスト層からなる光反射層203が形成されており、配線パターン202の大部分が光反射層203により覆われている。   The circuit board 200 described above is provided with a wire insertion hole 206 through which a lead wire for power supply inserted through the insertion hole 100c formed in the bottom wall 100a of the instrument body 100 is inserted. A pair of electric wires inserted through 206 is electrically connected. Further, the circuit board 200 has a light reflecting layer 203 made of a white resist layer formed on the surface side opposite to the bottom wall 100 a side of the instrument body 100, and most of the wiring pattern 202 is the light reflecting layer 203. Covered by.

また、回路基板200は、各開口窓204の開口サイズが発光装置1における実装基板20の平面サイズよりもやや大きく設定されている。なお、回路基板200には、発光装置1のLEDチップ10へ過電圧が印加されるのを防止するために、過電圧防止用の表面実装型のツェナダイオード231(図6参照)および表面実装型のセラミックコンデンサ232(図6参照)が各開口窓204の近傍で実装されている。   In the circuit board 200, the opening size of each opening window 204 is set to be slightly larger than the planar size of the mounting substrate 20 in the light emitting device 1. In addition, in order to prevent an overvoltage from being applied to the LED chip 10 of the light emitting device 1, a surface mount type Zener diode 231 (see FIG. 6) for preventing overvoltage and a surface mount type ceramic are provided on the circuit board 200. A capacitor 232 (see FIG. 6) is mounted in the vicinity of each opening window 204.

一方、発光装置1は、実装基板20の各外部接続用電極部23bが端子板210を介して回路基板200の配線パターン202と電気的に接続されている。ここにおいて、端子板210は、細長の金属板の一端部をL字状に曲成することにより配線パターン202に厚み方向が重なる形で半田などを用いて接合される端子片211を形成するとともに、他端部をJ字状に曲成することにより外部接続用電極部23bに厚み方向が一致する形で半田などを用いて接合される端子片212を形成したものであり、器具本体100と回路基板200との線膨張率差に起因して接続端子210と外部接続用電極部23bおよび配線パターン202それぞれとの接合部に発生する応力を緩和可能となっており、各発光装置1と回路基板200との間の接続信頼性を高めることができる。   On the other hand, in the light emitting device 1, each external connection electrode portion 23 b of the mounting board 20 is electrically connected to the wiring pattern 202 of the circuit board 200 via the terminal board 210. Here, the terminal plate 210 forms a terminal piece 211 that is joined to the wiring pattern 202 by using solder or the like so as to overlap the wiring pattern 202 by bending one end of an elongated metal plate into an L shape. The other end portion is bent in a J shape to form a terminal piece 212 to be joined to the external connection electrode portion 23b using solder or the like so that the thickness direction thereof matches. It is possible to relieve the stress generated at the joint between the connection terminal 210, the external connection electrode portion 23b, and the wiring pattern 202 due to the difference in linear expansion coefficient with the circuit board 200. Connection reliability with the substrate 200 can be improved.

また、本実施形態における発光装置1では、上述のように、実装基板20の上記一表面において光学部材60の外側に、光学部材60を実装基板20に固着する際に上記空間(光学部材60と実装基板20とで囲まれた空間)から溢れ出た封止樹脂を堰き止める環状(本実施形態では、円環状)の堰部27を突設してある。ここにおいて、堰部27は、白色系のレジストにより形成されている。また、堰部27は、当該堰部27の内周面から内方へ延出し当該堰部27の中心と光学部材60の中心軸とをセンタリングする複数(本実施形態では、4つ)のセンタリング用爪部27bが周方向に離間して等間隔で設けられ、且つ、色変換部材70の位置決め部を兼ねている。ここで、上述のセンタリング用爪部27bの数は4つに限定するものではないが、少なくとも3つ設けることが望ましく、堰部27と光学部材60との間に溜めることが可能な封止樹脂の許容量を多くするためにセンタリング用爪部27bの幅寸法は小さいほうが望ましい。   Further, in the light emitting device 1 according to the present embodiment, as described above, when the optical member 60 is fixed to the mounting substrate 20 outside the optical member 60 on the one surface of the mounting substrate 20, the space (the optical member 60 and An annular (in the present embodiment, annular) dam portion 27 is provided to dam up the sealing resin overflowing from the space surrounded by the mounting substrate 20. Here, the dam portion 27 is formed of a white resist. In addition, the dam portion 27 extends inward from the inner peripheral surface of the dam portion 27 to center the center of the dam portion 27 and the central axis of the optical member 60 (four in this embodiment). The claw portions 27b are spaced apart in the circumferential direction and provided at equal intervals, and also serve as a positioning portion for the color conversion member 70. Here, the number of the claw portions 27b for centering is not limited to four, but it is desirable to provide at least three, and the sealing resin that can be stored between the dam portion 27 and the optical member 60 In order to increase the permissible amount, it is desirable that the width dimension of the centering claw portion 27b is small.

また、色変換部材70は、実装基板20側の端縁に、堰部27に係合する切欠部71が全周に亘って形成されている。したがって、本実施形態における発光装置1では、実装基板20に対する色変換部材70の位置決め精度を高めることができ、また、色変換部材70と光学部材60との間隔を短くすることができる。なお、切欠部71は、色変換部材70の端縁側と内面70a側とが開放されている。   Further, the color conversion member 70 has a notch 71 that engages with the weir 27 on the edge of the mounting substrate 20 side over the entire circumference. Therefore, in the light emitting device 1 according to the present embodiment, the positioning accuracy of the color conversion member 70 with respect to the mounting substrate 20 can be increased, and the interval between the color conversion member 70 and the optical member 60 can be shortened. The notch 71 is open on the edge side and the inner surface 70a side of the color conversion member 70.

また、上述の実装基板20における配線パターン23,23は、色変換部材70よりも外側において露出した部位が上述の外部接続用電極部23b,23bを構成している。   Further, in the wiring patterns 23 and 23 on the mounting board 20 described above, the portions exposed outside the color conversion member 70 constitute the above-described external connection electrode portions 23b and 23b.

以下、本実施形態の発光装置1の製造方法について図1を参照しながら説明する。   Hereinafter, the manufacturing method of the light-emitting device 1 of this embodiment is demonstrated, referring FIG.

まず、LEDチップ10をサブマウント部材30に共晶接合するチップ搭載工程を行うことによって、図1(a)に示す構造を得る。ここで、チップ搭載工程における共晶接合は、Nガス雰囲気中でのAuSu共晶接合であり、予めサブマウント部材30の上記接合表面の金属層上にAuSn層をスパッタ法などによりメタライズしておき、サブマウント部材30を上記導体パターン31が設けられた面とは反対側から加熱源(ヒータなど)により加熱してAuSn層を320℃以上の温度で溶融させた状態でLEDチップ10とサブマウント部材30とを近づけて共晶接合させるようにしている。なお、チップ搭載工程における加熱源および加熱方法は特に限定するものではない。また、チップ搭載工程では、成形ずみのAuSn半田をサブマウント部材30の上記接合表面の金属層上に供給し、その後、サブマウント部材30を上記導体パターン31が設けられた面とは反対側から加熱源により加熱してAuSn半田を320℃以上の温度で溶融させた状態でLEDチップ10とサブマウント部材30とを近づけて共晶接合させるようにしてもよい。 First, a structure shown in FIG. 1A is obtained by performing a chip mounting process in which the LED chip 10 is eutectic bonded to the submount member 30. Here, the eutectic bonding in the chip mounting step is AuSu eutectic bonding in an N 2 gas atmosphere, and an AuSn layer is previously metallized on the metal layer on the bonding surface of the submount member 30 by sputtering or the like. In addition, the submount member 30 is heated by a heating source (such as a heater) from the side opposite to the surface on which the conductor pattern 31 is provided, and the AuSn layer is melted at a temperature of 320 ° C. or higher, so The mount member 30 is brought close to each other and eutectic bonding is performed. The heating source and heating method in the chip mounting process are not particularly limited. Further, in the chip mounting step, the pre-formed AuSn solder is supplied onto the metal layer on the bonding surface of the submount member 30, and then the submount member 30 is moved from the side opposite to the surface on which the conductor pattern 31 is provided. The LED chip 10 and the submount member 30 may be brought close to each other and eutectic bonded in a state where the AuSn solder is melted at a temperature of 320 ° C. or higher by heating with a heat source.

上述のチップ搭載工程の後、サブマウント部材30を伝熱板21に共晶接合するサブマウント搭載工程を行うことによって、図1(b)に示す構造を得る。ここで、サブマウント搭載工程における共晶接合は、Nガス雰囲気中でのAuSu共晶接合であり、成形ずみのAuSn半田を伝熱板21の上記接合表面の金属層上に供給し、その後、伝熱板21を他表面側から加熱源(ヒータなど)により加熱してAuSn半田を320℃以上の温度で溶融させた状態でサブマウント部材30と伝熱板21とを近づけて共晶接合させるようにしている。なお、サブマウント搭載工程における加熱源および加熱方法は特に限定するものではない。また、サブマウント搭載工程では、予め伝熱板21の上記接合表面の金属層上にAuSn層をスパッタ法などによりメタライズしておき、伝熱板21を上記他表面側から加熱源により加熱してAuSn層を320℃以上の温度で溶融させた状態でサブマウント部材30と伝熱板21とを近づけて共晶接合させるようにしてもよい。 After the above-described chip mounting process, a submount mounting process in which the submount member 30 is eutectic bonded to the heat transfer plate 21 is performed to obtain the structure shown in FIG. Here, the eutectic bonding in the submount mounting process is AuSu eutectic bonding in an N 2 gas atmosphere, and a pre-formed AuSn solder is supplied onto the metal layer on the bonding surface of the heat transfer plate 21, and thereafter The submount member 30 and the heat transfer plate 21 are brought close to each other and the eutectic bonding is performed in a state where the AuSn solder is melted at a temperature of 320 ° C. or higher by heating the heat transfer plate 21 from the other surface side with a heating source (such as a heater) I try to let them. The heating source and heating method in the submount mounting process are not particularly limited. In the submount mounting step, an AuSn layer is metallized in advance on the metal layer on the bonding surface of the heat transfer plate 21 by sputtering or the like, and the heat transfer plate 21 is heated from the other surface side by a heating source. The submount member 30 and the heat transfer plate 21 may be brought close to each other and eutectic bonded in a state where the AuSn layer is melted at a temperature of 320 ° C. or higher.

上述のチップ搭載工程およびサブマウント搭載工程が終了した後、配線基板22を伝熱板21の上記一表面側に固着する配線基板固着工程を行うことによって、図1(c)に示す構造を得る。ここで、配線基板固着工程では、上述のポリオレフィン系の固着シート29(図3参照)を用いて配線基板22と伝熱板21とを固着しているが、固着シート29の材料は特に限定するものではない。   After the above chip mounting step and submount mounting step are completed, a wiring substrate fixing step for fixing the wiring substrate 22 to the one surface side of the heat transfer plate 21 is performed to obtain the structure shown in FIG. . Here, in the wiring board fixing step, the wiring board 22 and the heat transfer plate 21 are fixed using the polyolefin-based fixing sheet 29 (see FIG. 3), but the material of the fixing sheet 29 is particularly limited. It is not a thing.

上述の配線基板固着工程の後、LEDチップ10と配線基板22の配線パターン23,23とをボンディングワイヤ14,14を介して電気的に接続するワイヤボンディング工程を行い、続いて、配線基板22の窓孔24に連続して形成されている樹脂注入孔28(図3参照)からサブマウント部材30と配線基板22との隙間に上述の封止部50の一部となる液状の封止樹脂(例えば、シリコーン樹脂)50aを注入するとともに、ドーム状の光学部材60の内側に上述の封止部50の一部となる液状の封止樹脂(例えば、シリコーン樹脂)50aを注入する樹脂注入工程を行ってから、図1(d)に示すように、光学部材60を実装基板20に対向させる。ここで、樹脂注入工程では、ドーム状の光学部材60の内側に、光学部材60の内側空間の容積よりも多い適量(定量)の封止樹脂50aを注入するようにしている。   After the above-described wiring board fixing process, a wire bonding process for electrically connecting the LED chip 10 and the wiring patterns 23 and 23 of the wiring board 22 via the bonding wires 14 and 14 is performed. A liquid sealing resin (a part of the sealing portion 50 described above) is formed in the gap between the submount member 30 and the wiring substrate 22 from the resin injection hole 28 (see FIG. 3) formed continuously in the window hole 24. For example, a resin injecting step of injecting a liquid sealing resin (for example, silicone resin) 50a that becomes a part of the above-described sealing portion 50 into the inside of the dome-shaped optical member 60 while injecting a silicone resin) 50a. Then, as shown in FIG. 1D, the optical member 60 is made to face the mounting substrate 20. Here, in the resin injection step, an appropriate amount (quantitative amount) of the sealing resin 50a larger than the volume of the inner space of the optical member 60 is injected into the inside of the dome-shaped optical member 60.

その後、光学部材60と実装基板20とを近づけ、図1(e)に示すように光学部材60を位置決めしてから液状の封止樹脂50aを硬化させることにより封止部50を形成するとともに光学部材60を配線基板22に固着する光学部材固着工程を行う。ここで、実装基板20の上記一表面側において光学部材60と堰部27と保護層26とで囲まれた空間に溜まった封止樹脂50aは、硬化させることにより、図1(e)における樹脂部(余剰部)50bとなる。   Thereafter, the optical member 60 and the mounting substrate 20 are brought close to each other, and the optical member 60 is positioned and then the liquid sealing resin 50a is cured as shown in FIG. An optical member fixing step for fixing the member 60 to the wiring board 22 is performed. Here, the sealing resin 50a accumulated in the space surrounded by the optical member 60, the weir 27, and the protective layer 26 on the one surface side of the mounting substrate 20 is cured to be the resin shown in FIG. Part (surplus part) 50b.

その後、色変換部材70を配線基板22に接着剤(例えば、シリコーン樹脂など)により固着する色変換部材固着工程を行うことによって、図1(f)に示す構造の発光装置1を得る。   Thereafter, a color conversion member fixing step for fixing the color conversion member 70 to the wiring substrate 22 with an adhesive (for example, silicone resin) is performed, thereby obtaining the light emitting device 1 having the structure shown in FIG.

以上説明した本実施形態の発光装置1の製造方法によれば、配線基板22を伝熱板21の上記一表面側に固着する配線基板固着工程を行う以前に、LEDチップ10をサブマウント部材30に共晶接合するチップ搭載工程およびサブマウント部材30を伝熱板21に共晶接合するサブマウント搭載工程を備えるので、チップ搭載工程においてLEDチップ10がサブマウント部材30に共晶接合され、また、サブマウント搭載工程においてサブマウント部材30が伝熱板21に共晶接合されるから、チップ搭載工程およびサブマウント搭載工程においてフラックスを利用する必要がなく、しかも、LEDチップ10から伝熱板21までの熱抵抗が小さくなるから、放熱性を高めることができ且つフラックス洗浄工程が不要になる。なお、上述の製造方法では、チップ搭載工程の後でサブマウント搭載工程を行い、その後、配線基板固着工程を行う例について説明したが、チップ搭載工程とサブマウント搭載工程との順序は逆でもよく、サブマウント部材30を伝熱板21に共晶接合するサブマウント搭載工程を行った後でLEDチップ10をサブマウント部材30に共晶接合するチップ搭載工程を行い、その後、配線基板固着工程を行うようにしてもよい。   According to the method for manufacturing the light emitting device 1 of the present embodiment described above, the LED chip 10 is attached to the submount member 30 before performing the wiring board fixing step of fixing the wiring board 22 to the one surface side of the heat transfer plate 21. A chip mounting step for eutectic bonding and a submount mounting step for eutectic bonding of the submount member 30 to the heat transfer plate 21, so that the LED chip 10 is eutectic bonded to the submount member 30 in the chip mounting step. In addition, since the submount member 30 is eutectic bonded to the heat transfer plate 21 in the submount mounting process, it is not necessary to use flux in the chip mounting process and the submount mounting process. Therefore, the heat dissipation can be improved and the flux cleaning process is not necessary. In the above-described manufacturing method, an example in which the submount mounting process is performed after the chip mounting process and then the wiring board fixing process is described, but the order of the chip mounting process and the submount mounting process may be reversed. After performing the submount mounting process for eutectic bonding the submount member 30 to the heat transfer plate 21, the chip mounting process for eutectic bonding the LED chip 10 to the submount member 30 is performed, and then the wiring board fixing process is performed. You may make it perform.

また、上述の製造方法では、チップ搭載工程およびサブマウント搭載工程それぞれにおける共晶接合は、Nガス雰囲気中でのAuSu共晶接合であるので、チップ搭載工程およびサブマウント搭載工程における共晶接合がSnAgCu共晶接合の場合に比べて、LEDチップ10から伝熱板21までの熱抵抗をより小さくすることができる。 Further, in the above manufacturing method, the eutectic bonding in each of the chip mounting process and the submount mounting process is AuSu eutectic bonding in an N 2 gas atmosphere, and therefore, the eutectic bonding in the chip mounting process and the submount mounting process. Compared with the case of SnAgCu eutectic bonding, the thermal resistance from the LED chip 10 to the heat transfer plate 21 can be further reduced.

また、上述の製造方法によれば、製造過程で封止部50にボイドが発生しにくくなり、信頼性が高く且つ光出力が大きな発光装置1を提供することができる。ここで、光学部材60を実装基板20に近づける前(つまり、図1(d)の段階)に、サブマウント部材30と配線基板22との隙間に注入した封止樹脂50aを硬化させておけば、光学部材60と実装基板20とを近づける際にボイドが抜けやすくなり、封止部50にボイドが発生するのを防止できてボンディングワイヤ14,14の断線や光出力の低下を防止できる。また、上述の発光装置1では、光学部材60と堰部27の内周面とが離間しているので、堰部27の外側へ封止樹脂50aが溢れて外部接続用電極部23b,23b上に付着するのを抑制することができ、外部接続用電極部23b,23bでの半田付け不良などの発生を防止可能となる。   Further, according to the above-described manufacturing method, it is difficult to generate a void in the sealing portion 50 during the manufacturing process, and it is possible to provide the light emitting device 1 with high reliability and high light output. Here, before the optical member 60 is brought close to the mounting substrate 20 (that is, in the stage of FIG. 1D), the sealing resin 50a injected into the gap between the submount member 30 and the wiring substrate 22 is cured. When the optical member 60 and the mounting substrate 20 are brought close to each other, voids can be easily removed, and voids can be prevented from being generated in the sealing portion 50, and disconnection of the bonding wires 14 and 14 and reduction in light output can be prevented. Further, in the light emitting device 1 described above, since the optical member 60 and the inner peripheral surface of the dam portion 27 are separated from each other, the sealing resin 50a overflows to the outside of the dam portion 27 and on the external connection electrode portions 23b and 23b. It is possible to prevent the external connection electrode portions 23b and 23b from causing poor soldering and the like.

なお、図7に示すように、実装基板20の上記一表面において環状の堰部27と各外部接続用電極部23b,23bとの間それぞれに、堰部27と同じ材料(本実施形態では、白色のレジスト)により形成された弧状の樹脂止め部25,25を設ければ、製造時に封止樹脂50aが外部接続用電極部23b,23bの表面に付着するのをより確実に防止することができる。   As shown in FIG. 7, the same material as the weir 27 (in this embodiment, between the annular weir 27 and each external connection electrode 23 b, 23 b on the one surface of the mounting substrate 20, If the arc-shaped resin stoppers 25, 25 formed of white resist are provided, it is possible to more reliably prevent the sealing resin 50a from adhering to the surfaces of the external connection electrode portions 23b, 23b during manufacturing. it can.

また、上述のLEDチップ10は、上記一表面側に上記アノード電極が形成され、上記他表面側にカソード電極が形成されているが、上記一表面側にアノード電極およびカソード電極が形成されていてもよく、この場合には、アノード電極およびカソード電極の両方ともボンディングワイヤ14,14を介して配線パターン23,23と直接接続することができる。また、サブマウント部材30に搭載するLEDチップ10の数は1個に限らず、複数個でもよい。   The LED chip 10 has the anode electrode formed on the one surface side and the cathode electrode formed on the other surface side. The anode electrode and the cathode electrode are formed on the one surface side. In this case, both the anode electrode and the cathode electrode can be directly connected to the wiring patterns 23 and 23 via the bonding wires 14 and 14. Further, the number of LED chips 10 mounted on the submount member 30 is not limited to one, and may be plural.

(実施形態2)
本実施形態における発光装置1の基本構成は実施形態1と略同じであり、図8に示すように、サブマウント部材30上に複数個(図8には2個しか記載されていないが、4個)のLEDチップ10が搭載されて直列に接続されており、これら複数個のLEDチップ10を囲む透光性材料(例えば、シリコーン樹脂、ガラスなど)からなる円環状の枠体40がサブマウント部材30上に固着され、枠体40の内側に各LEDチップ10および各ボンディングワイヤ14を封止する枠体内封止部150が設けられ、封止部50が枠体40および枠体内封止部150を覆うように形成されている点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light-emitting device 1 in the present embodiment is substantially the same as that in the first embodiment. As shown in FIG. 8, a plurality of pieces (only two are shown in FIG. LED chips 10 are mounted and connected in series, and an annular frame 40 made of a translucent material (for example, silicone resin, glass, etc.) surrounding the plurality of LED chips 10 is a submount. A frame body sealing portion 150 that is fixed on the member 30 and seals each LED chip 10 and each bonding wire 14 is provided inside the frame body 40, and the sealing portion 50 is the frame body 40 and the frame body sealing portion. The point which is formed so that 150 may be covered is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

以下、本実施形態の発光装置1の製造方法について図9を参照しながら説明するが、実施形態1と同様の工程については説明を適宜省略する。   Hereinafter, a method for manufacturing the light emitting device 1 of the present embodiment will be described with reference to FIG. 9, but description of the same steps as those of the first embodiment will be omitted as appropriate.

まず、複数個のLEDチップ10をサブマウント部材30に共晶接合するチップ搭載工程を行うことによって、図9(a)に示す構造を得る。   First, a structure shown in FIG. 9A is obtained by performing a chip mounting process in which a plurality of LED chips 10 are eutectic bonded to the submount member 30.

その後、サブマウント部材30上の複数個のLEDチップ10をボンディングワイヤ14により電気的に接続する第1のワイヤボンディング工程を行うことによって、図9(b)に示す構造を得る。   Thereafter, a first wire bonding step of electrically connecting the plurality of LED chips 10 on the submount member 30 by the bonding wires 14 is performed to obtain the structure shown in FIG.

続いて、サブマウント部材30を伝熱板21に共晶接合するサブマウント搭載工程を行うことによって、図9(c)に示す構造を得る。   Then, the structure shown in FIG. 9C is obtained by performing a submount mounting process in which the submount member 30 is eutectic bonded to the heat transfer plate 21.

次に、サブマウント部材30上に枠体40を接着剤(例えば、シリコーン樹脂など)により固着する枠体固着工程を行い、続いて、枠体40の内側に各LEDチップ10および各ボンディングワイヤ14を封止する透光性の封止樹脂(例えば、シリコーン樹脂など)を充填して硬化させることにより枠体内封止部150を形成する枠体内封止工程を行い、その後、配線基板22を伝熱板21の上記一表面側に固着する配線基板固着工程を行うことによって、図9(d)に示す構造を得る。   Next, a frame body fixing step of fixing the frame body 40 on the submount member 30 with an adhesive (for example, silicone resin) is performed. Subsequently, each LED chip 10 and each bonding wire 14 is placed inside the frame body 40. A frame body sealing step for forming a frame body sealing portion 150 is performed by filling and curing a light-transmitting sealing resin (for example, silicone resin) that seals the wiring board, and then the wiring substrate 22 is transmitted. By performing the wiring board fixing process for fixing to the one surface side of the hot plate 21, the structure shown in FIG. 9D is obtained.

上述の配線基板固着工程の後、複数個のLEDチップ10の直列回路と配線基板22の配線パターン23,23とをボンディングワイヤ14,14を介して電気的に接続する第2のワイヤボンディング工程を行うことによって、図9(e)に示す構造を得る。   After the above-described wiring board fixing process, a second wire bonding process for electrically connecting the series circuit of the plurality of LED chips 10 and the wiring patterns 23 and 23 of the wiring board 22 via the bonding wires 14 and 14 is performed. By doing so, the structure shown in FIG.

続いて、配線基板22の窓孔24に連続して形成されている樹脂注入孔28(図3参照)からサブマウント部材30と配線基板22との隙間に上述の封止部50の一部となる液状の封止樹脂(例えば、シリコーン樹脂)を注入するとともに、ドーム状の光学部材60の内側に上述の封止部50の一部となる液状の封止樹脂(例えば、シリコーン樹脂)を注入する樹脂注入工程を行ってから、光学部材60を実装基板20に対向させ、その後、光学部材60と実装基板20とを近づけ、光学部材60を位置決めしてから液状の封止樹脂を硬化させることにより封止部50を形成するとともに光学部材60を配線基板22に固着する光学部材固着工程を行うことによって、図9(f)に示す構造を得る。   Subsequently, a part of the above-described sealing portion 50 is inserted into the gap between the submount member 30 and the wiring board 22 from the resin injection hole 28 (see FIG. 3) formed continuously in the window hole 24 of the wiring board 22. A liquid sealing resin (for example, a silicone resin) is injected, and a liquid sealing resin (for example, a silicone resin) to be a part of the sealing portion 50 is injected inside the dome-shaped optical member 60. After performing the resin injection step, the optical member 60 is made to face the mounting substrate 20, and then the optical member 60 and the mounting substrate 20 are brought close to each other, and after positioning the optical member 60, the liquid sealing resin is cured. Then, the sealing portion 50 is formed and the optical member fixing step for fixing the optical member 60 to the wiring board 22 is performed, thereby obtaining the structure shown in FIG.

その後、色変換部材70を配線基板22に接着剤(例えば、シリコーン樹脂など)により固着する色変換部材固着工程を行うことによって、図9(g)に示す構造の発光装置1を得る。   Thereafter, a color conversion member fixing step for fixing the color conversion member 70 to the wiring board 22 with an adhesive (for example, silicone resin) is performed, whereby the light emitting device 1 having the structure shown in FIG. 9G is obtained.

以上説明した本実施形態の発光装置1の製造方法によれば、実施形態1にて説明した製造方法と同様に、配線基板22を伝熱板21の上記一表面側に固着する配線基板固着工程を行う以前に、LEDチップ10をサブマウント部材30に共晶接合するチップ搭載工程およびサブマウント部材30を伝熱板21に共晶接合するサブマウント搭載工程を備えるので、チップ搭載工程においてLEDチップ10がサブマウント部材30に共晶接合され、また、サブマウント搭載工程においてサブマウント部材30が伝熱板21に共晶接合されるから、チップ搭載工程およびサブマウント搭載工程においてフラックスを利用する必要がなく、しかも、LEDチップ10から伝熱板21までの熱抵抗が小さくなるから、放熱性を高めることができ且つフラックス洗浄工程が不要になる。なお、上述の製造方法では、チップ搭載工程の後でサブマウント搭載工程を行い、その後、配線基板固着工程を行う例について説明したが、チップ搭載工程とサブマウント搭載工程との順序は逆でもよく、サブマウント搭載工程の後でチップ搭載工程を行い、当該チップ搭載工程の後で、第1のワイヤボンディング工程、枠体固着工程、枠体内封止工程、配線基板固着工程、第2のワイヤボンディング工程、光学部材固着工程、色変換部材固着工程を順次行うようにしてもよい。   According to the manufacturing method of the light emitting device 1 of the present embodiment described above, the wiring board fixing step of fixing the wiring board 22 to the one surface side of the heat transfer plate 21 as in the manufacturing method described in the first embodiment. Before performing the step, the chip mounting step of eutectic bonding the LED chip 10 to the submount member 30 and the submount mounting step of eutectic bonding the submount member 30 to the heat transfer plate 21 are provided. 10 is eutectic bonded to the submount member 30, and the submount member 30 is eutectic bonded to the heat transfer plate 21 in the submount mounting process. Therefore, it is necessary to use a flux in the chip mounting process and the submount mounting process. In addition, since the thermal resistance from the LED chip 10 to the heat transfer plate 21 is reduced, heat dissipation can be improved and Box cleaning process becomes unnecessary. In the above-described manufacturing method, an example in which the submount mounting process is performed after the chip mounting process and then the wiring board fixing process is described, but the order of the chip mounting process and the submount mounting process may be reversed. The chip mounting process is performed after the submount mounting process. After the chip mounting process, the first wire bonding process, the frame fixing process, the frame sealing process, the wiring board fixing process, and the second wire bonding are performed. The step, the optical member fixing step, and the color conversion member fixing step may be sequentially performed.

また、実施形態1の発光装置1の製造方法では、配線基板22を伝熱板21の上記一表面側に固着する配線基板固着工程を行う際に固着シート29から蒸発した有機物によりLEDチップ10の電極が汚染されてワイヤボンディング工程でのボンディング不良が起こることも考えられるが、本実施形態の発光装置1の製造方法によれば、配線基板固着工程よりも前に、第1のワイヤボンディング工程においてLEDチップ10の電極がボンディングワイヤ14に接続されているので、LEDチップ10の電極が汚染されるのを防止することができるとともに、ボンディング不良の発生を防止できる。なお、第2のワイヤボンディング工程では第1のワイヤボンディング工程よりも線径の大きなワイヤを用いることができ、LEDチップ10に比べて強い超音波振動を与えることができるので、配線基板固着工程において、配線基板22の配線パターン23,23およびサブマウント部材30の導体パターンが上記有機物により汚染されたとしてもボンディング不良が発生するのを防止することができる。   Further, in the method for manufacturing the light emitting device 1 according to the first embodiment, the organic substance evaporated from the fixing sheet 29 when performing the wiring board fixing process for fixing the wiring board 22 to the one surface side of the heat transfer plate 21 is used. Although it is conceivable that the electrode is contaminated and bonding failure occurs in the wire bonding process, according to the manufacturing method of the light emitting device 1 of the present embodiment, the first wire bonding process is performed before the wiring board fixing process. Since the electrode of the LED chip 10 is connected to the bonding wire 14, it is possible to prevent the electrode of the LED chip 10 from being contaminated and to prevent the occurrence of bonding failure. In the second wire bonding process, a wire having a larger diameter than that in the first wire bonding process can be used, and a stronger ultrasonic vibration can be applied compared to the LED chip 10. Even if the wiring patterns 23 and 23 of the wiring board 22 and the conductor pattern of the submount member 30 are contaminated by the organic matter, it is possible to prevent a bonding failure from occurring.

なお、上述の実施形態では、LEDチップ10として、発光色が青色の青色LEDチップを採用しており、結晶成長用基板としてSiC基板を採用しているが、SiC基板の代わりにGaN基板やサファイア基板を用いてもよく、SiC基板やGaN基板を用いた場合には結晶成長用基板として絶縁体であるサファイア基板を用いている場合に比べて、結晶成長用基板の熱伝導率が高く結晶成長用基板の熱抵抗を小さくできる。また、LEDチップ10から放射される光は青色光に限らず、例えば、赤色光、緑色光、紫色光、紫外光などでもよい。また、上述の実施形態では、色変換部材70を備えた発光装置1の製造方法について説明したが、色変換部材70は必ずしも備えている必要はなく、LEDチップ10として、蛍光体層が積層された構造のものを用いても良い。   In the above-described embodiment, a blue LED chip whose emission color is blue is used as the LED chip 10 and a SiC substrate is used as the crystal growth substrate. However, a GaN substrate or sapphire is used instead of the SiC substrate. A substrate may be used, and when a SiC substrate or a GaN substrate is used, the crystal growth substrate has a higher thermal conductivity than the case where a sapphire substrate, which is an insulator, is used as the crystal growth substrate. The thermal resistance of the circuit board can be reduced. Moreover, the light radiated | emitted from LED chip 10 is not restricted to blue light, For example, red light, green light, purple light, ultraviolet light etc. may be sufficient. Moreover, although the above-mentioned embodiment demonstrated the manufacturing method of the light-emitting device 1 provided with the color conversion member 70, the color conversion member 70 does not necessarily need to be provided and a fluorescent substance layer is laminated | stacked as the LED chip 10. FIG. A structure having a different structure may be used.

実施形態1における発光装置の製造方法を説明するための主要工程断面図である。FIG. 6 is a cross-sectional view of main processes for describing the method for manufacturing the light emitting device in the first embodiment. 同上における発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device in the same as the above. 同上における発光装置を用いた照明器具の要部概略分解斜視図である。It is a principal part schematic disassembled perspective view of the lighting fixture using the light-emitting device same as the above. 同上における発光装置の要部概略平面図である。It is a principal part schematic plan view of the light-emitting device same as the above. 同上における発光装置を用いた照明器具の要部概略分解斜視図である。It is a principal part schematic disassembled perspective view of the lighting fixture using the light-emitting device same as the above. 同上における発光装置を用いた照明器具の要部概略斜視図である。It is a principal part schematic perspective view of the lighting fixture using the light-emitting device in the same as the above. 同上における他の構成例の発光装置を用いた照明器具の要部概略分解斜視図である。It is a principal part schematic disassembled perspective view of the lighting fixture using the light-emitting device of the other structural example same as the above. 実施形態2における発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 同上における発光装置の製造方法を説明するための主要工程断面図である。It is main process sectional drawing for demonstrating the manufacturing method of the light-emitting device same as the above. 従来例における発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device in a prior art example.

符号の説明Explanation of symbols

1 発光装置
10 LEDチップ
14 ボンディングワイヤ
21 伝熱板
22 配線基板
22a 有機系絶縁性基材
23 配線パターン
24 窓孔
30 サブマウント部材
50 封止部
50a 封止樹脂
60 光学部材
70 色変換部材
DESCRIPTION OF SYMBOLS 1 Light-emitting device 10 LED chip 14 Bonding wire 21 Heat-transfer plate 22 Wiring board 22a Organic insulation base material 23 Wiring pattern 24 Window hole 30 Submount member 50 Sealing part 50a Sealing resin 60 Optical member 70 Color conversion member

Claims (2)

第1の熱伝導性材料からなる伝熱板と、伝熱板よりも小さな平面サイズに形成され伝熱板の一表面側に接合された第2の熱伝導性材料からなるサブマウント部材と、サブマウント部材における伝熱板側とは反対側に接合されたLEDチップと、有機系絶縁性基材の一表面側にLEDチップに電気的に接続される配線パターンが形成されるとともにサブマウント部材が内側に離間して配置される窓孔が厚み方向に貫設されてなり伝熱板の前記一表面側に固着された配線基板とを備えた発光装置の製造方法であって、配線基板を伝熱板の前記一表面側に固着する配線基板固着工程を行う以前に、LEDチップをサブマウント部材に共晶接合するチップ搭載工程およびサブマウント部材を伝熱板に共晶接合するサブマウント搭載工程を備えることを特徴とする発光装置の製造方法。   A heat transfer plate made of a first heat conductive material, a submount member made of a second heat conductive material formed in a plane size smaller than the heat transfer plate and joined to one surface side of the heat transfer plate, An LED chip bonded to the side opposite to the heat transfer plate side in the submount member, and a wiring pattern electrically connected to the LED chip formed on one surface side of the organic insulating base material and the submount member Is a manufacturing method of a light-emitting device, comprising: a wiring board fixed to the one surface side of the heat transfer plate, wherein a window hole that is spaced apart inwardly extends in the thickness direction. Before performing the wiring board fixing process for fixing to the one surface side of the heat transfer plate, the chip mounting process for eutectic bonding the LED chip to the submount member and the submount mounting for eutectic bonding the submount member to the heat transfer plate To have a process Method of manufacturing a light emitting device according to symptoms. 前記チップ搭載工程および前記サブマウント搭載工程それぞれにおける共晶接合は、Nガス雰囲気中でのAuSu共晶接合であることを特徴とする請求項1記載の発光装置の製造方法。 2. The method for manufacturing a light emitting device according to claim 1, wherein the eutectic bonding in each of the chip mounting step and the submount mounting step is AuSu eutectic bonding in an N 2 gas atmosphere.
JP2007306626A 2007-11-27 2007-11-27 Method of manufacturing light-emitting device Pending JP2009130300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306626A JP2009130300A (en) 2007-11-27 2007-11-27 Method of manufacturing light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306626A JP2009130300A (en) 2007-11-27 2007-11-27 Method of manufacturing light-emitting device

Publications (1)

Publication Number Publication Date
JP2009130300A true JP2009130300A (en) 2009-06-11

Family

ID=40820876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306626A Pending JP2009130300A (en) 2007-11-27 2007-11-27 Method of manufacturing light-emitting device

Country Status (1)

Country Link
JP (1) JP2009130300A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136236A1 (en) * 2010-04-26 2011-11-03 パナソニック電工株式会社 Leadframe, wiring board, light emitting unit, and illuminating apparatus
JP2011249737A (en) * 2010-04-26 2011-12-08 Panasonic Electric Works Co Ltd Lead frame, wiring board, and led unit using the same
JP2013149637A (en) * 2012-01-17 2013-08-01 Asahi Glass Co Ltd Light emitting device and manufacturing method of the same
EP2525447A3 (en) * 2011-05-18 2014-05-28 Tyco Electronics Japan G.K. LED connector and lighting device
WO2021205815A1 (en) * 2020-04-08 2021-10-14 シチズン電子株式会社 Linear light-emitting member and planar light-emitting device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179648A (en) * 1984-09-28 1986-04-23 宇部興産株式会社 Laminate and manufacture thereof
JPS61195004A (en) * 1985-02-25 1986-08-29 Matsushita Electric Works Ltd Plane antenna
JPH0366191A (en) * 1989-08-03 1991-03-20 Mitsubishi Electric Corp Method of manufacturing semiconductor device
JPH0794786A (en) * 1993-04-27 1995-04-07 Nec Corp Optical semiconductor device joint structure and joint method
JPH08203342A (en) * 1995-01-23 1996-08-09 Mitsubishi Cable Ind Ltd Cable and method for connecting the same
JPH09172224A (en) * 1995-12-20 1997-06-30 Toshiba Corp Submount for phototransistor and its mounting method
JP2004096088A (en) * 2002-07-10 2004-03-25 Fuji Photo Film Co Ltd Multiplex laser light source and aligner
JP2006301597A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Laser apparatus and method for assembling the same
JP2007019087A (en) * 2005-07-05 2007-01-25 Sharp Corp Semiconductor laser device and its manufacturing method
WO2007034803A1 (en) * 2005-09-20 2007-03-29 Matsushita Electric Works, Ltd. Led lighting apparatus
JP2007165937A (en) * 2005-06-30 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007273885A (en) * 2006-03-31 2007-10-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor sub-module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179648A (en) * 1984-09-28 1986-04-23 宇部興産株式会社 Laminate and manufacture thereof
JPS61195004A (en) * 1985-02-25 1986-08-29 Matsushita Electric Works Ltd Plane antenna
JPH0366191A (en) * 1989-08-03 1991-03-20 Mitsubishi Electric Corp Method of manufacturing semiconductor device
JPH0794786A (en) * 1993-04-27 1995-04-07 Nec Corp Optical semiconductor device joint structure and joint method
JPH08203342A (en) * 1995-01-23 1996-08-09 Mitsubishi Cable Ind Ltd Cable and method for connecting the same
JPH09172224A (en) * 1995-12-20 1997-06-30 Toshiba Corp Submount for phototransistor and its mounting method
JP2004096088A (en) * 2002-07-10 2004-03-25 Fuji Photo Film Co Ltd Multiplex laser light source and aligner
JP2006301597A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Laser apparatus and method for assembling the same
JP2007165937A (en) * 2005-06-30 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007019087A (en) * 2005-07-05 2007-01-25 Sharp Corp Semiconductor laser device and its manufacturing method
WO2007034803A1 (en) * 2005-09-20 2007-03-29 Matsushita Electric Works, Ltd. Led lighting apparatus
JP2007273885A (en) * 2006-03-31 2007-10-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor sub-module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136236A1 (en) * 2010-04-26 2011-11-03 パナソニック電工株式会社 Leadframe, wiring board, light emitting unit, and illuminating apparatus
JP2011249737A (en) * 2010-04-26 2011-12-08 Panasonic Electric Works Co Ltd Lead frame, wiring board, and led unit using the same
US8967827B2 (en) 2010-04-26 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Lead frame, wiring board, light emitting unit, and illuminating apparatus
EP2525447A3 (en) * 2011-05-18 2014-05-28 Tyco Electronics Japan G.K. LED connector and lighting device
JP2013149637A (en) * 2012-01-17 2013-08-01 Asahi Glass Co Ltd Light emitting device and manufacturing method of the same
WO2021205815A1 (en) * 2020-04-08 2021-10-14 シチズン電子株式会社 Linear light-emitting member and planar light-emitting device
JPWO2021205815A1 (en) * 2020-04-08 2021-10-14
JP7375170B2 (en) 2020-04-08 2023-11-07 シチズン電子株式会社 Linear light emitting member and planar light emitting device

Similar Documents

Publication Publication Date Title
JP4888280B2 (en) Light emitting device
JP5149601B2 (en) Light emitting device
JP3948488B2 (en) Light emitting device
KR100983836B1 (en) Led lighting fixture
KR101010230B1 (en) Light-emitting device
JP4678388B2 (en) Light emitting device
JP5209910B2 (en) LED lighting fixtures
JP4204058B2 (en) LED lighting fixtures
KR20080027355A (en) Light emitting device
JP2007142281A (en) Light-emitting apparatus and manufacturing method thereof
JP4981600B2 (en) lighting equipment
JP2007043125A (en) Light-emitting device
JP2009105379A (en) Light-emitting device
JP2007116095A (en) Light-emitting apparatus
JP2009054892A (en) Packaging method of led chip
JP4001178B2 (en) Light emitting device
JP2009130300A (en) Method of manufacturing light-emitting device
JP4960657B2 (en) Light emitting device
JP5180564B2 (en) Light emitting device
JP5155539B2 (en) Light emitting device
JP3918863B1 (en) Method for manufacturing light emitting device
JP2007165937A (en) Light-emitting device
JP4678389B2 (en) Light emitting device
JP3918871B2 (en) Light emitting device
JP4678392B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918