JP2009124118A - 露光方法及び装置、並びにデバイス製造方法 - Google Patents

露光方法及び装置、並びにデバイス製造方法 Download PDF

Info

Publication number
JP2009124118A
JP2009124118A JP2008264802A JP2008264802A JP2009124118A JP 2009124118 A JP2009124118 A JP 2009124118A JP 2008264802 A JP2008264802 A JP 2008264802A JP 2008264802 A JP2008264802 A JP 2008264802A JP 2009124118 A JP2009124118 A JP 2009124118A
Authority
JP
Japan
Prior art keywords
exposure
substrate
region
wafer
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008264802A
Other languages
English (en)
Inventor
Tadashi Nagayama
匡 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2009124118A publication Critical patent/JP2009124118A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7096Arrangement, mounting, housing, environment, cleaning or maintenance of apparatus

Abstract

【課題】基板上の複数の領域にそれぞれ対応するパターンを効率的に露光する。
【解決手段】第1ウエハステージWST1と、第2ウエハステージWST2と、ウエハステージWST1,WST2上のウエハのマークを検出するアライメントセンサ26と、ウエハ上の第1領域に露光光ILを照射する投影光学系PLと、その第1領域とは異なるウエハ上の第2領域に露光光ILAを照射する欠けショット露光系40Aとを備える。欠けショット露光系40Aは、アライメントセンサ26によるマークの検出動作中に、ウエハステージWST2に保持されるウエハW2上の第2領域に露光光ILAを照射する。
【選択図】図1

Description

本発明は、基板上の異なる複数の領域を露光する露光技術に関し、例えば基板上の欠けたショット領域に対して、基板上の完全なショット領域内に露光されるパターンに関連するパターンを露光する場合に適用可能なものである。さらに本発明は、その露光技術を用いるデバイス製造技術に関する。
例えば半導体デバイス又は液晶表示素子等の各種デバイス(電子デバイス、マイクロデバイス)を製造するためのリソグラフィ工程においては、レチクル(又はフォトマスク等)のパターンをレジストが塗布されたウエハ(又はガラスプレート等)上に転写露光するために、ステッパ等の一括露光型の投影露光装置又はスキャニングステッパ等の走査露光型の投影露光装置(走査型露光装置)などの露光装置が使用されている。
これらの露光装置によって露光されるウエハの周辺部で有効露光領域から一部がはみ出でしまう欠けたショット領域(以下、欠けショットと言う。)は、デバイスとして使用できない部分であるため、本来は露光を行う必要がない。しかしながら、最近のデバイス製造工程中では、パターンが形成されたウエハの表面を平坦化するために、化学機械的研磨であるCMP(Chemical & Mechanical Polishing)プロセスが適用されることがある。このCMPプロセスを適用する際には、露光及び現像後のウエハの周辺部にも中心部と同様の段差(又は周期性若しくはパターン密集率)を持つパターンを形成する必要がある。この場合、露光装置においてそれらの欠けショットに対してもレチクルのパターンを露光するものとすると、スループットが低下する。
そこで、例えば現像装置内に設置された簡単な露光光学系を備え、ウエハの周辺部の欠けショットのみを露光する露光ユニットが提案されている(例えば、特許文献1参照)。また、露光装置のレチクルステージのレチクルの近傍に補助パターン板を設置しておき、その補助パターン板のパターンを介してウエハ上の欠けショットを効率的に露光するようにした露光装置が提案されている(例えば、特許文献2参照)。
特開平5−259069号公報 特開2006−278820号公報
従来の欠けショット露光用の露光ユニットは、高精度なアライメント機構等を備えていないため、ウエハ上の欠けショットのみを正確に露光することが困難であった。これに関して、欠けショット露光のために、高精度なアライメント及びフォーカス位置計測を再び始めから行うものとすると、スループットが低下する恐れがある。
一方、レチクルステージに補助パターン板を設けた露光装置においては、欠けショットへの露光中にはウエハ上の本来の完全なショット領域への露光ができないため、スループット改善の割合があまり大きくないという問題があった。
本発明はこのような事情に鑑み、ウエハ等の基板上の複数の領域(例えば完全なショット領域を含む領域と欠けショットを含む領域)にそれぞれ対応するパターンを効率的に露光できる露光技術及びデバイス製造技術を提供することを目的とする。
本発明による露光方法は、基板上の異なる第1領域(65F)及び第2領域(65G)を含む複数の領域を露光する露光方法において、2次元平面内で移動する第1基板保持可動体(WST1)に保持される第1基板(W1)のその第1領域を第1光学系(PL)を介して露光する動作と並行して、その2次元平面内で移動する第2基板保持可動体(WST1)上又はその第2基板保持可動体に保持される第2基板(W2)上の複数のマークのうちの所定のマーク(WMS1,WMS2)を検出する第1工程(ステップ213、104)と;その所定のマークの検出結果に基づいて、その第2基板保持可動体に保持されるその第2基板の第2領域を第2光学系(40A〜40D)を介して露光する動作と、その複数のマークのうちのその所定のマークを除くマーク(WM)を検出する動作とを実質的に並行に実行する第2工程(ステップ105〜108)と;その複数のマークの検出結果に基づいて、その第2基板保持可動体に保持されるその第2基板の第1領域をその第1光学系を介して露光する第3工程(ステップ113)と;を備えるものである。
また、本発明による露光装置は、基板上の複数の領域を露光する露光装置において、基板を保持して2次元平面内を移動可能な第1基板保持可動体(WST1)と;基板を保持してその2次元平面内を移動可能な第2基板保持可動体(WST2)と;その2つの基板保持可動体上のマーク及びその2つの基板保持可動体に保持される基板上のマークの少なくとも一方を検出するアライメント系(26)と;基板上の第1領域(65F)に第1露光光を照射する第1光学系(PL)と;その第1領域とは異なる基板上の第2領域(65G)に第2露光光を照射する第2光学系(40A〜40D)と;を備え、そのアライメント系は、その第1光学系がその第1基板保持可動体に保持される第1基板に対してその第1露光光を照射する動作中に、その第2基板保持可動体上又はその第2基板保持可動体に保持される第2基板上のマークを検出し、その第2光学系は、そのアライメント系によるそのマークの検出動作中に、その第2基板保持可動体に保持されるその第2基板上のその第2領域にその第2露光光を照射するものである。
本発明によれば、第1基板保持可動体上の第1基板の第1領域(例えば完全なショット領域を含む領域)への露光と、第2基板保持可動体上の第2基板の第2領域(例えば欠けショットを含む領域)への露光とをほぼ並行に実行できるため、各基板の第1及び第2領域にそれぞれ対応するパターンを効率的に露光できる。さらに、その第2基板の第1領域の露光を行うためのアライメント系によるマーク検出(第2工程のマーク検出動作)と、その基板の第2領域の露光とを実質的に並行に行うため、露光工程のスループットをさらに向上できる。
以下、本発明の好ましい実施形態の一例につき図面を参照して説明する。
図1は、本実施形態に係る露光装置100の全体構成を概略的に示す。露光装置100は、スキャニングステッパ(スキャナ)よりなる走査露光型で、かつ液浸法により露光を行う投影露光装置である。
図1において、露光装置100は、光源及び照明光学系を含み、露光ビームとしての露光光(露光用の照明光)ILによりレチクルR(マスク)を照明する照明系10と、レチクルRを保持して移動するレチクルステージRSTと、レチクルRを介した露光光ILで基板としてのウエハ(図1ではウエハW1)上の完全なショット領域を含むデバイス領域65D(図4(A)参照)を含む領域露光する投影光学系PLと、ウエハW1を保持して移動する第1ウエハステージWST1と、投影光学系PLによる露光動作等を統括制御するコンピュータよりなる第1制御系20Aとを備えている。
さらに露光装置100は、露光光ILAでウエハ(図1ではウエハW2)上の欠けショットを含む非デバイス領域65ND(図4(A)参照)の少なくとも一部を露光する欠けショット露光系40A,40B,40C,40D(図2参照)と、ウエハW2を保持して移動する第2ウエハステージWST2と、ウエハステージWST1,WST2上の基準マーク及びウエハステージWST1,WST2上のウエハ上のマーク(アライメントマーク)を検出するアライメントセンサ26と、アライメントセンサ26によるアライメント及び欠けショット露光系40A〜40Dによる露光動作を制御するコンピュータよりなる第2制御系20Bと、各種駆動系等とを備えている。第1制御系20A及び第2制御系20Bは、計測情報及び動作タイミング等の情報の受け渡しを行う。
露光装置100は、2台の同じ構成のウエハステージWST1,WST2を備えており、図1の配置とは逆に、第2ウエハステージWST2上のウエハを投影光学系PLを介して露光するのと同時に、第1ウエハステージWST1上のウエハに欠けショット露光系40A〜40Dを介して露光する工程もある。以下、図1において、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面(本実施形態ではほぼ水平面に平行)内で、図1の紙面に平行な方向にX軸を、図1の紙面に垂直な方向にY軸を取って説明する。走査露光時のレチクルR及びウエハ(ウエハW1等)の走査方向は、Y方向(Y軸に平行な方向)である。
図1において、照明系10中の照明光学系は、例えば特開2001−313250号公報(対応する米国特許出願公開第2003/0025890号公報)などに開示されるように、オプティカルインテグレータ(回折光学素子、フライアイレンズ等)等を含む照度均一化光学系、リレーレンズ系、レチクルブラインド(視野絞り)、及びコンデンサレンズ系等を含んで構成されている。照明系10は、露光光ILによって、レチクルブラインドで規定されたレチクルR上のスリット状の照明領域をほぼ均一な照度分布で照明する。露光光ILとしては、一例として色収差を低減するために発振波長の狭帯化が行われたArFエキシマレーザ光(波長193m)が用いられている。なお、露光光ILとしては、KrFエキシマレーザ光(波長193nm)、固体レーザ(YAGレーザ、半導体レーザ等)の高調波、又は水銀ランプの輝線等も使用できる。
レチクルRを保持するレチクルステージRSTは、不図示のレチクルベース上のガイド面に載置されて、リニアモータ等を含むレチクルステージ駆動部(不図示)により、Y方向に指定された走査速度で駆動されるとともに、X方向、Y方向、及びZ軸に平行な軸の周りの回転方向(θZ方向)に微小駆動される。レチクルステージRSTのガイド面上の位置は、レチクル干渉計(不図示)によって例えば0.5〜0.1nm程度の分解能で常時計測されている。その位置情報に基づいて第1制御系20A内のレチクルステージ制御部が上記のレチクルステージ駆動部を介してレチクルステージRSTの位置及び速度を制御する。
図1において、投影光学系PLは、例えば両側テレセントリックで所定の投影倍率(例えば1/4倍又は1/5倍)を有する。照明系10からの露光光ILによってレチクルRの照明領域が照明されると、レチクルRを通過した露光光ILにより、投影光学系PLを介してその照明領域内の回路パターンの像が、ウエハW1上の一つのショット領域上のX方向に細長い露光領域31(図2参照)に形成される。ウエハW1,W2は、例えば半導体(シリコン等)又はSOI(silicon on insulator)等の直径が200〜300mm程度の円板状の基材の表面に、露光光ILに感光するレジスト(感光剤)を塗布したものである。ウエハW1,W2にはオリエンテーションフラット(又はノッチ部等)よりなる回転角を検出可能な切り欠き部W1a(図2参照)が形成されている。なお、投影光学系PLは、屈折光学系又はミラーとレンズとを含んで構成される反射屈折系(カタディオプトリック系)等である。上記のレチクルベース及び投影光学系PLは不図示のフレームに防振機構を介して支持されている。
アライメントセンサ26は、投影光学系PLから+X方向に離して配置されている。アライメントセンサ26は、比較的広い波長域の照明光で被検マークを照射する照明系と、その被検マークの拡大像を撮像する倍率可変の受光系とを含み、得られた像を画像処理してその被検マークの位置を検出するFIA(Field Image Alignment)方式である。アライメントセンサ26の検出信号は信号処理系27を介して第2制御系20Bに供給される。FIA方式のアライメントセンサについては、例えば特開平7−183186号公報に開示されている。
また、図1において、投影光学系PLを構成する最も像面側(ウエハ側)の光学部材(不図示)の先端部を囲むように、ほぼリング状のノズルユニット23が不図示のフレームによって保持されている。また、ノズルユニット23内の液体供給路及び液体回収路がそれぞれ供給配管24A及び回収配管24Bを介して液体供給回収装置25に連結されている。液体供給回収装置25は、第1制御系20Aの制御のもとで、ウエハの走査露光中に、投影光学系PLの先端とウエハとの間の液浸領域30に局所液浸方式で液体Lqを供給して回収する。
液体Lqとしては、一例として露光光IL(ここではArFエキシマレーザ光)が透過する超純水(以下、単に水と言う)を用いるものとする。水の露光光ILに対する屈折率nはほぼ1.44である。従って、ウエハを露光する露光光ILの波長は、約134nm(=193nm×1/n)に短波長化され、解像度及び焦点深度が向上する。液体Lqとしては、より高屈折率の液体であるデカリン(Decalin)等も使用できる。
また、ウエハW1,W2に塗布されるレジストは、一例として液体Lqをはじく撥液性のレジストであり、必要に応じてその上に保護用のトップコートが塗布されている。また、ウエハステージWST1,WST2の上面のウエハW1,W2を囲む領域(後述の基準マーク等が形成されている領域を除く)には液体Lqをはじく撥液性のコーティングが施されている。
なお、本実施形態はリング状のノズルユニット23を備えているが、これに限らず、例えば、国際公開第99/49504号パンフレットに開示されるように、液体を供給する複数のノズル部材と、液体を回収する複数のノズル部材とを含んで液体供給回収システムを構成することも可能である。
図1において、ウエハステージWST1,WST2は、それぞれ投影光学系PLの下方に水平に配置されたウエハベースWB上のZ軸に垂直なガイド面(XY平面)上に複数のエアベアリングを介して非接触で浮上支持されている。ウエハベースWBは、複数の防振台2を介して床部材1上に支持されている。ウエハステージWST1,WST2上に、それぞれウエハホルダ36A,36Bを介してウエハW1,W2が真空吸着(又は静電吸着)によって保持されている。
また、第1ウエハステージWST1は、ウエハベースWB上でリニアモータ又は平面モータ等の駆動部(不図示)によってX方向、Y方向、及びθZ方向に駆動されるXYステージ38Aと、Z・レベリングステージ35Aと、XYステージ38A上にZ・レベリングステージ35Aを支持するように配置されてZ方向の位置が可変の3つのアクチュエータ37A(例えばボイスコイルモータを含んで構成される)とを備えている。その3つのアクチュエータ37AをZ方向に独立に駆動することによって、ウエハW1を投影光学系PLの像面又はアライメントセンサ26の観察面に合焦させるために、XYステージ38Aに対するZ・レベリングステージ35AのZ方向の位置(フォーカス位置)、並びにX軸及びY軸に平行な軸の周りの傾斜角θX,θYを制御可能である。
図1のXYステージ38AをXY平面内で駆動するとともに、アクチュエータ37Aを駆動するウエハステージ制御部21Aの信号ラインが、切替部19Aを介して第1制御系20Aの信号ライン20Aa又は第2制御系20Bの信号ライン20Baに選択的に接続される。
一方、第2ウエハステージWST2は、第1ウエハステージWST1と同様に、ウエハベースWB上で駆動されるXYステージ38Bと、ウエハW2を保持するZ・レベリングステージ35Bと、Z・レベリングステージ35BをZ方向に駆動する3つのアクチュエータ37Bとを備えている。さらに、第2ウエハステージWST2を駆動するウエハステージ制御部21Bの信号ラインが、切替部19Bを介して信号ライン20Aa又は信号ライン20Baに選択的に接続される。切替部19A,19Bの切り替えは第1制御系20Aによって制御される。ウエハステージWST1,WST2は、投影光学系PLの下方にある期間では第1制御系20Aによって制御され、アライメントセンサ26の下方にある期間では第2制御系20Bによって制御される。
制御系20A及び20Bは、それぞれウエハステージWST1又はWST2を駆動するために、以下のようにして、ウエハステージWST1又はWST2のウエハベースWBのガイド面上での位置情報を計測し、ウエハステージWST1又はWST2上のウエハW1又はW2の表面のフォーカス位置(Z方向の位置)の分布情報を計測する。
先ず、投影光学系PLの下部側面に、投影光学系PLの露光領域及びこの近傍の領域を含む被検領域に斜めに複数のスリット像(検出用パターン)を投影する送光系28aと、その被検領域からの反射光を受光する受光系28bとを含み、その被検領域の複数の計測点のフォーカス位置を計測する斜入射方式の多点のオートフォーカスセンサ(以下、AF系と言う)28がコラム(不図示)に支持されている。AF系28の受光系28bの検出信号は信号処理部22Aに供給され、信号処理部22Aは、その被検領域の各計測点のフォーカス位置の像面からのデフォーカス量を求め、求めたデフォーカス量の分布情報(フォーカス位置情報)を第1制御系20Aに供給する。なお、斜入射方式の多点のAF系の詳細な構成は、例えば米国特許第5633721号明細書及び特開2007−48819号公報に開示されている。
同様に、アライメントセンサ26の下部側面において、AF系28と同様に送光系29a及び受光系29bを備え、アライメントセンサ26の視野26Fを含む細長い被検領域29F(図4(A)参照)に複数のスリット像32を投影する斜入射方式の多点のAF系29がコラム(不図示)に支持されている。AF系29の受光系29bの検出信号は信号処理部22Bに供給され、信号処理系22Bは、その被検領域の各計測点のフォーカス位置の所定の基準面(例えばアライメントセンサ26のベストフォーカス面を含む面)からのデフォーカス量を求め、求めたデフォーカス量の分布情報(フォーカス位置情報)を第2制御系20Bに供給する。
次に、図2は、図1のウエハベースWB上のウエハステージWST1,WST2を示す平面図である。図2において、ウエハステージWST1,WST2のZ・レベリングステージ35A,35BのX方向及びY方向の側面は、移動鏡の反射面として使用できるように鏡面加工されている。なお、それらの側面にロッド状の移動鏡を固定してもよい。
そして、投影光学系PLの光軸AX及びアライメントセンサ26の視野の中心を通りY軸に平行に、計測対象のステージの反射面に計測用の複数軸のレーザビームを照射するY軸のレーザ干渉計46YA,46YBと、光軸AX及びその視野の中心を通りX軸に平行にそのステージの別の反射面に計測用の複数軸のレーザビームを照射するX軸のレーザ干渉計46XA,46XBとがフレーム(不図示)に支持されている。
図2の状態では、レーザ干渉計46XA,46YAによって第1ウエハステージWST1(Z・レベリングステージ35A)の少なくともX方向、Y方向、θZ方向の位置が計測され、これらの計測情報が図1の第1制御系20Aに供給される。また、レーザ干渉計46XB,46YBによって第2ウエハステージWST2(Z・レベリングステージ35B)の少なくともX方向、Y方向、θZ方向の位置が計測され、これらの計測情報が図1の第2制御系20Bに供給される。図2において、第1ウエハステージWST1は一例として、ウエハベースWBの+Y方向側に折れ曲がる経路MP1に沿って投影光学系PLの下方とアライメントセンサ26の下方との間を移動し、第2ウエハステージWST2は、ウエハベースWBの−Y方向側に折れ曲がる経路MP2に沿って投影光学系PLの下方とアライメントセンサ26の下方との間を移動する。
さらに、経路MP1,MP2に沿って移動するウエハステージWST1,WST2のY座標及びX座標を連続して計測するために、Y軸のレーザ干渉計46YA,46YBの間に、Y軸のレーザ干渉計46YC,46YD,46YEが設置され、X軸のレーザ干渉計46XBをY方向に挟むように、X軸のレーザ干渉計46XC,46XDが設置されている。レーザ干渉計46XA〜46XD,46YA〜46YEの計測分解能はそれぞれ例えば0.5〜0.1nm程度である。一例として、レーザ干渉計46XC,46YC,46YDの計測値が図1の第1制御系20Aに供給され、レーザ干渉計46XD,46YEの計測値が第2制御系20Bに供給されている。
また、一例として、ウエハステージWST1及びWST2のウエハのローディング及びアンローディングの位置LP1及びLP2は、それぞれウエハベースWBの+X方向の端部の+Y方向及び−Y方向の端部に設定されている。なお、その他に、例えば位置LP1をウエハステージWST1,WST2に共通のウエハのローディング位置として、位置LP2をウエハステージWST1,WST2に共通のウエハのアンローディング位置としてもよい。
本実施形態では、図2の位置LP2にあるウエハW2の外形A1を検出するために3個の画像処理型のプリアライメントセンサ(以下、PAセンサという)48A,48B,48Cが不図示のフレームに支持されて配置されている。PAセンサ48A〜48Cの検出結果は図1の第2制御系20Bに供給される。同様に、位置LP1にあるウエハの外形を検出するための3個のPAセンサ(不図示)も設けられている。なお、例えばウエハローダ系(不図示)にプリアライメントセンサが設けられている場合には、PAセンサ48A〜48C等は省略できる。
また、図2において、第1のウエハステージWST1の上面のウエハW1の近傍に、露光光ILの照度及び照射量をそれぞれ計測する照度むらセンサ51A及び照射量センサ52Aと、基準マーク53A及び受光窓54Aが形成された基準部材とが設置されている。受光窓54Aの底面のZ・レベリングステージ35Aの内部には、空間像計測系55Aが設置されている。空間像計測系55Aは、図3(A)に示すように、受光窓54Aを透過した露光光ILを結像する結像系56と、露光光ILを折り曲げるミラー57と、露光光ILの像を撮像するCCD型又はCMOS型の2次元の撮像素子58とを含む撮像型である。照度むらセンサ51A、照射量センサ52A、及び撮像素子58の検出信号は信号処理系(不図示)を介して第1制御系20Aに供給されている。
一例として、受光窓54Aの上面には基準マーク53Aと所定関係にある指標マーク(不図示)が形成され、空間像計測系55AによってレチクルRに形成されたレチクルマークの投影光学系PLによる像とその指標マークとの位置関係を計測することで、レチクルアライメント及びベースライン計測が行われる。なお、撮像型の空間像計測系55Aの代わりに、図3(B)に示すように、スリットが形成されたスリット板59と、集光レンズ60と、フォトダイオード等の受光素子61とを含む走査型の空間像計測系55A1を使用してもよい。空間像計測系55A1では、スリット板59のスリットと被検マークの像とを相対走査することで、被検マークの像位置が検出される。
図2において、第2のウエハステージWST2の上面のウエハW2の近傍にも、同様に照度むらセンサ51B、照射量センサ52B、並びに基準マーク53B及び受光窓54Bが形成された基準部材が設置され、受光窓54Bの底面に空間像計測系55Aと同じ空間像計測系55Bが設置されている。
図1に戻り、アライメントセンサ26をX方向に挟むように、1対の同じ構成の欠けショット露光系40A及び40Bが不図示のフレームに支持されて配置されている。一方の欠けショット露光系40Aは、不図示の光源から光ガイドを介して導かれた露光光ILAを射出する光学部材41と、露光光ILAで被照射面を照明するコンデンサ光学系42と、被照射面に配置された視野絞りを兼ねるレチクル43と、レチクル43からの光を折り曲げるミラー44と、レチクル43に形成されたライン・アンド・スペースパターン(以下、L&Sパターンという。)の像63X(図4(C)参照)をウエハステージWST2(又はWST1)上のウエハW2(又はW1)上のX方向に細長い矩形の露光領域46A(図2参照)に形成する投影系45とを備えている。
露光光ILAは、投影光学系PLを介してウエハを露光するのに使用される露光光IL(本実施形態ではArFエキシマレーザ光)と同じ波長(193nm)である。ただし、後述のように、欠けショット露光系40Aの解像度は、液浸法を用いる投影光学系PLの解像度よりも数倍から数10倍程度に粗くともよい。そこで、露光光ILAとして、露光光ILよりも波長幅が広いArFエキシマレーザ光を使用することも可能である。これによって、露光光ILAの照度(パルスエネルギー)を大きくできるため、後述の複数の欠けショット露光系40A〜40Dによって露光光ILAの光源を共有しても、十分な照度が得られる。さらに、ウエハW1,W2のレジストはArFエキシマレーザ光に感度を持つが、そのレジストがKrFエキシマレーザ光(波長248nm)等にも感度を有する場合には、露光光ILAとして露光光ILよりも長波長のKrFエキシマレーザ光等を使用することも可能である。これによって欠けショット露光系40Aの光源のコストを低減できる。
他方の欠けショット露光系40Bは、欠けショット露光系40Aと同一構成であるが、欠けショット露光系40Aに対向するように対称に配置されている。欠けショット露光系40Bは、図2に示すように、アライメントセンサ26に対して露光領域46Aと対称な矩形の露光領域46BにL&S(ラインアンドスペース)パターンの像を投影する。また、図2に示すように、欠けショット露光系40B(ひいては露光領域46B)を不図示のフレームに対してX方向に所定範囲内(例えばウエハの一つのショット領域の幅程度)でスライドさせる駆動機構47Bが設けられている。図1の第2制御系20Bによって制御される駆動機構47Bは、例えば送りねじ方式であり、欠けショット露光系40Bの駆動量をモニタするリニアエンコーダを備えている。欠けショット露光系40A,40Bで露光するパターンの位置決め精度は、ウエハ上のショット間のスクライブライン領域の幅(例えば50μm程度)より小さければよいため、そのリニアエンコーダの計測精度は1μm程度でよい。
さらに、図2において、アライメントセンサ26をY方向に挟むように、欠けショット露光系40A,40Bを90°回転した配置で、別の1対の欠けショット露光系40C,40Dが不図示のフレームに支持されて配置されている。欠けショット露光系40C,40Dはそれぞれ欠けショット露光系40Aと同じ構成で、かつY方向に細長い矩形の露光領域46C,46DにY方向に所定周期のL&Sパターンの像63Y(図4(D)参照)を投影する。また、欠けショット露光系40D(ひいては露光領域46D)を不図示のフレームに対してY方向に所定範囲内(例えばウエハの一つのショット領域の幅程度)でスライドさせる駆動機構47Dが設けられている。
また、欠けショット露光系40A,40Bの露光領域46A,46BのX方向の幅dX(図4(A)参照)、及び欠けショット露光系40C,40Dの露光領域46C,46DのY方向の幅dYは、それぞれ投影光学系PLの露光領域31のX方向の幅(ウエハ上のショット領域のX方向の幅にほぼ等しい)よりも小さい。しかしながら、欠けショット露光の効率をより高めるために、露光領域46A〜46Dを露光領域31と同じ程度の大きさにしてもよい。本実施形態では複数(図2では4つ)の欠けショット露光系40A〜40Dが設けられているため、欠けショットの露光を効率的に行うことができる。ただし、欠けショット露光系は一つ(例えば欠けショット露光系40Aのみ)でもよい。
次に、本実施形態の図1の露光装置100によって露光されるウエハのショット配列の一例につき図4(A)〜(D)を参照して説明する。以下では代表的にウエハW2を例にとって説明する。
図4(A)は図1の第2ウエハステージWST2上のウエハW2を示す平面図である。図4(A)において、ウエハW2の露光面はX方向の幅DXでY方向の幅DYの多数のショット領域SAによってX方向、Y方向に区分されている。隣接する2つのショット領域SAの境界部にはそれぞれ幅50μm程度のスクライブライン領域SLAが設けられている。一例としてウエハW2は1層目の回路形成が済んでおり、各ショット領域SAにはファインアライメントマークとしての2次元のウエハマークWMと、2次元のサーチアライメントマークWMSとが形成されている。本実施形態では、一例として、ウエハW2上の2つのサーチアライメントマークWMS1,WMS2を検出して、ウエハW2のX方向、Y方向の位置、及びθZ方向の回転角の検出(サーチアライメント)を行う。その後、ウエハWの所定個数(図4(A)では10個)のショット領域(以下、サンプルショットという)SA1〜SA10に付設されたウエハマークWMの位置を検出して、例えばEGA方式でウエハW2のアライメントを行うものとする。
また、ウエハW2の露光面において、有効露光領域内に全部が含まれる完全なショット領域SAのみを含むデバイス領域65Dは、実線の折れ線よりなる境界線65で囲まれた領域である。一方、境界線65の外側の領域は、有効露光領域から一部がはみ出たショット領域である欠けショット(例えば欠けショットSAD1,SAD2等)のみを含む非デバイス領域65NDである。非デバイス領域65NDは、ウエハW2のスクライブライン領域SLAに平行な直線(Y軸又はX軸に平行な直線で、例えば境界部65aを含む直線)とウエハW2のエッジ部とで囲まれた単純な形状の4つの非デバイス領域66A,66B,66C,66Dと、折れ線よりなる境界部(例えば境界部65e)とエッジ部とで囲まれた複雑な形状の4つの非デバイス領域67A,67B,67C,67Dとから構成されている。
さらに、ウエハW2のデバイス領域65D内の各ショット領域SAのほぼ全面に、図1の投影光学系PLを介して、図4(B)に示すように、X方向の周期PXのL&Sパターン62X又はY方向の周期PYの解像限界に近いL&Sパターンの像62X又は62Yが露光されるものとする。このとき、後工程においてCMP(Chemical & Mechanical Polishing)プロセスが実行されるものとすると、ウエハW2上の非デバイス領域65NDにも像62X又は62Yと同様の周期性(ただし、周期は粗くともよい)又は密集性を持つL&Sパターンの像を露光することが好ましい。
そこで、一例として、非デバイス領域65ND中の単純な形状の4つの非デバイス領域66A〜66Dには、図2の欠けショット露光系40A〜40Dを用いて図4(C)に示すX方向の周期QXのL&Sパターンの像64X、又は図4(D)に示すY方向の周期QYのL&Sパターンの像64Yを露光するものとする。このため、欠けショット露光系40A〜40Dによる図4(A)の矩形の露光領域46A,46B及び46C,46Dにはそれぞれ図4(C)のX方向に周期QXのL&Sパターンの像63X及びY方向に周期QYのL&Sパターンの像63Yが投影される。そして、欠けショットの露光時には、図4(A)の露光領域46A,46B又は46C,46Dに露光光ILAを照射した状態で、第2ウエハステージWST2によってウエハW2をY方向又はX方向に走査することによって、走査露光方式で非デバイス領域66A〜66DにL&Sパターンの像64X又は64Yが露光される。
像64X,64Yの周期QX,QYはそれぞれ完全なショット領域SA内に露光される図4(B)のL&Sパターンの像62X,62Yの周期PX,PYの5〜20倍程度である。また、像62X,62Yのライン部(明部)の線幅はほぼ周期QX,QYの1/2であるため、像64X,64Yのライン部の線幅は像62X,62Yのライン部(明部)の線幅の5〜20倍程度である。なお、欠けショット露光系40A〜40Dの解像度を細かくできる場合には、非デバイス領域66A〜66Dに露光されるL&Sパターンの像の線幅を上記の5倍より小さくしてもよい。さらに、CMPプロセスで問題が生じない場合には、非デバイス領域66A〜66Dに露光されるL&Sパターンの像の線幅を上記の20倍より大きくしてもよい。
一方、非デバイス領域65ND中の複雑な形状の4つの非デバイス領域67A〜67Dには、図1の投影光学系PLを介してレチクルRのパターンの像62X,62Yを露光するものとする。このように、非デバイス領域65NDの露光を欠けショット露光系40A〜40Dと投影光学系PLとで分担することによって、全体としてのウエハに対する露光時間を短くできる場合がある。
次に、図1の露光装置100の露光動作の一例につき図7及び図8のフローチャートを参照して説明する。図7のステップ101〜109、及びステップ114,115の動作は主に第2制御系20Bによって制御され、図7のステップ110〜113及び図8のステップ210〜213の動作は主に第1制御系20Aによって制御される。先ず、図2に示すように、第1ウエハステージWST1上にウエハW1がロードされているものとして、図7のステップ101において、第2ウエハステージWST2の中心を図2のローディングの位置LP2に移動して、ウエハW2をロードする。ウエハW2には不図示のコータ・デベロッパにおいてレジストが塗布されている(ステップ121)。
次のステップ102において、図2のPAセンサ48A〜48Cを用いて第2ウエハステージWST2上のウエハW2の外形基準の位置及び回転角を検出して、ウエハW2のプリアライメントを行う。これによって、図4(A)のウエハW2の各ショット領域SAのサーチアライメントマークWMSをアライメントセンサ26の視野内に追い込むことが可能になる。なお、上記のようにウエハローダ系(不図示)においてウエハW2のプリアライメントが完了しているときには、ステップ102は省略できる。次のステップ103において、第2ウエハステージWST2をアライメントセンサ26の視野側に移動して、アライメントセンサ26で図2の基準マーク53Bを検出する(ベースライン計測の一部)。
この場合、予め図2の例えばウエハステージWST2の空間像計測系55Bを用いて、欠けショット露光系40A〜40Cの露光領域46A〜46Dの位置を計測しておく。これらの計測結果と、基準マーク53Bと空間像計測系55Bの指標マークとの既知の間隔とから、アライメントセンサ26の検出中心と露光領域46A〜46Dとの位置関係が分かる。従って、アライメントセンサ26の検出結果から、ウエハW2上の各ショット領域(欠けショットを含む)と欠けショット露光系40A〜40Cとの位置関係を求めることができる。なお、この段階から、図1のAF系29によるウエハW2又は被検面のフォーカス位置の計測、及びこの計測結果に基づいた被検マークのアライメントセンサ26に対する合焦が行われている。
次のステップ104において、例えばアライメントセンサ26の倍率を低倍にして視野を広くして、図4(A)のウエハW2上の2つのサーチアライメントマークWMS1,WMS2を検出して、ウエハW2のショット配列のX方向、Y方向のオフセット、及びθZ方向の回転角を求める。このサーチアライメントによって、図1の第2制御系20Bは、ウエハW2上の非デバイス領域65NDの位置がスクライブライン領域SLAの幅より小さい精度で認識できるとともに、ウエハW2の各ショット領域SA内のウエハマークWMを図2のアライメントセンサ26の高倍率の視野内に追い込むことができるようになる。
次のステップ105において、図1のAFセンサ29によるウエハW2の表面のフォーカス位置計測、及び被検マークのアライメントセンサ26に対する合焦を行いながら、アライメントセンサ26によって図5に示すように、ウエハW2上の2つのサンプルショットSA1,SA2のウエハマークの検出を行う(ファインアライメントの一部)。このようにサンプルショットSA2の計測が終わった状態では、図2の欠けショット露光系40A,40Bの露光領域46A,46B(この状態では露光光ILAは照射されていない)は、図5の非デバイス領域66A,66Bを露光するのに都合がよい(第2ウエハステージWST2の移動量が少なくてよい)位置A3,B3の近傍にある。
そこで、ステップ106において、図2の駆動機構47Bによって欠けショット露光系40BをX方向に微動して、図5の露光領域46A,46BのX方向の間隔をデバイス領域65DのX方向の幅に、露光領域46Aの幅を加算した値に設定した後、露光領域46Bの−X方向のエッジ部をデバイス領域65Dの+X方向の境界部65b内に合わせる。その後、露光領域46A,46Bが位置A3,B3に来るように第2ウエハステージWST2を位置決めする。そして、露光領域46A,46Bへの露光光ILAの照射を開始して、第2ウエハステージWST2を+Y方向に走査した後、第2ウエハステージWST2を−X方向に露光領域46Aの幅だけステップ移動することによって、露光領域46A,46Bは位置A5,B5に移動する。そして、第2ウエハステージWST2を−Y方向に走査することで、露光領域46A,46Bは図5の軌跡TA,TBで示すように非デバイス領域66A,66B内を相対的に移動する(露光領域46Aのエッジ部はデバイス領域65Dの境界部65a内を移動する)ため、非デバイス領域66A,66B内に図4(C)のL&Sパターンの像64Xが露光される。
この際に、図1のAF系29によるウエハW2のフォーカス位置の計測値の履歴又はリアルタイムの実測値より、露光領域46A,46Bに最も近いウエハW2の表面のフォーカス位置の情報を求め、この情報に基づいてその走査露光中に欠けショット露光系40A,40Bの投影系45(図1参照)にウエハW2の表面が合焦されるように、第2ウエハステージWST2のZ・レベリングステージ35BのZ位置及びレベリングを制御する。投影系45は、投影光学系PLに比べて焦点深度が深いため、このような制御で必要な合焦精度が得られる。
なお、非デバイス領域66A,66BのX方向の幅が狭い場合には、露光領域46A,46BとウエハW2とをY方向に1回相対走査するのみで、露光領域46A,46Bの全部を露光してもよい。
この状態では、図2のアライメントセンサ26の視野は図6のサンプルショット領域SA2上にある。そこで、ステップ107において、計測対象のサンプルショットが残っているかどうかを判定すると、この段階ではサンプルショットSA3〜SA10が残っているため、動作はステップ105に戻り、アライメントセンサ26によって図6の2つのサンプルショットSA3,SA4のウエハマークの検出を行う。この状態では、図2の欠けショット露光系40C,40Dの露光領域46C,46Dは、図6の非デバイス領域66C,66Dを露光するのに都合がよい(第2ウエハステージWST2の移動量が少なくてよい)位置C3,D3の近傍にある。
そこで、ステップ106に移行して、図2の駆動機構47Dによって欠けショット露光系40DをY方向に駆動して、図6の露光領域46C,46DのY方向の間隔をデバイス領域65DのY方向の幅に、露光領域46CのY方向の幅を加算した値に設定した後、露光領域46Dの−Y方向のエッジ部をデバイス領域65Dの+Y方向の境界部内に収めて、露光領域46C,46Dを位置C3,D3に位置決めする。その後、露光領域46C,46Dへの露光光ILAの照射を開始して、第2ウエハステージWST2を−X方向に走査した後、第2ウエハステージWST2を−Y方向に露光領域46Cの幅だけステップ移動することによって、露光領域46C,46Dは位置C5,D5に移動する。そして、第2ウエハステージWST2を+X方向に走査することで、露光領域46C,46Dは図6の軌跡TC,TDで示すように非デバイス領域66C,66D内を移動するため、非デバイス領域66C,66D内に図4(D)のL&Sパターンの像64Yが露光される。この状態では、アライメントセンサ26の視野は図6のウエハW2のサンプルショットSA5の近傍にある。
次にステップ107において、この段階ではサンプルショットSA5〜SA10が残っているため、動作はステップ105に戻り、アライメントセンサ26によって図6の残りのサンプルショットSA5〜SA10のウエハマークの検出を行う。このときに欠けショット露光系40A〜40Dで露光する非デバイス領域は残っていないため、動作はステップ106から107に移行する。また、計測すべきサンプルショットも残っていないため、動作はステップ108に移行して、欠けショット露光系40A〜40Dで露光する非デバイス領域(欠けショット領域)が残っているかどうかを最終的に判定する。露光すべき非デバイス領域がある場合には動作はステップ106に戻る。
一方、ステップ108で露光すべき非デバイス領域がない場合には動作はステップ109に移行して、図1の第2制御系20BはウエハW2のサンプルショットSA1〜SA10のウエハマークの計測結果から、例えばEGA方式で図2の基準マーク53Bを基準としてウエハW2の各ショット領域の配列座標(アライメント情報)を算出する。さらに、第2制御系20Bは、アライメント中にAF系29によって得られた計測値から、ウエハW2の表面のフォーカス位置の分布情報(フォーカス位置情報)を求める。これらのウエハW2のアライメント情報及びフォーカス位置情報は、第2制御系20Bから第1制御系20Aに送出される。
次に、図7のステップ110において、図9に示すように、第2ウエハステージWST2を経路MP2に沿って投影光学系PLの露光領域側に移動する。この際に並行して、第1ウエハステージWST1は経路MP1に沿ってアライメントセンサ26の視野側に移動した後、位置LP1において第1ウエハステージWST1上の露光済みのウエハは未露光のウエハW3に交換される。
次のステップ111において、図9の第2ウエハステージWST2の空間像計測系55Bで図1のレチクルRのレチクルマークの像位置を検出する(ベースライン計測)。次のステップ112において、第1制御系20Aは、その像位置と、基準マーク53Bと受光窓54Bとの既知の位置関係とを用いて、上記の第2制御系20Bから供給されたウエハW2の各ショット領域の配列座標を、レチクルの像を基準とした配列座標に換算することができる。この後は、換算後の配列座標を用いて、ウエハW2の各ショット領域とレチクルRの像との位置合わせを高精度に行うことができる。
さらに、第1制御系20Aは、例えばAF系28を介してウエハW2上のAF系29によって計測された1点のフォーカス位置(ここでは投影光学系PLの像面に対するデフォーカス量)を計測する。そして、この計測値を用いて、上記の第2制御系20Bから供給されたウエハW2のフォーカス位置の分布情報を、投影光学系PLの像面からのデフォーカス量の分布に換算する。この後は、予めZ・レベリングステージ35Bを駆動してウエハW2の露光領域31の表面を像面に合わせ込むことによって、デフォーカス量が小さく追い込まれているため、AF系28の計測値に基づく合焦をより高速に、かつ高精度に行うことができる。
次のステップ113において、第2ウエハステージWST2上のウエハW2のフォーカス位置計測及び合焦を行いつつ、ウエハW2上の各ショット領域にレチクルRのパターンの像を液浸法で走査露光する。この際に、本実施形態では、図4(A)の非デバイス領域65NDの4つの非デバイス領域67A〜67Dの欠けショットにもそれぞれレチクルRのパターンの像(図4(B)の像62X,62Y)を露光する。具体的に、図9のウエハステージWST2をX方向、Y方向に駆動して、ウエハW2が走査開始位置にステップ移動される。続いて、図1の液浸領域30への液体Lqの供給を開始し、露光光ILの照射を開始して、レチクルステージRSTを介してY方向にレチクルRを走査するのに同期して、図9のウエハステージWST2を介して露光領域31に対してウエハW2上の一つのショット領域を対応する方向に投影倍率を速度比として走査する走査露光が行われる。そのステップ移動と走査露光とを繰り返すステップ・アンド・スキャン動作によって、図4(A)のウエハW2上のデバイス領域65D及び非デバイス領域65NDの非デバイス領域67A〜67Dのショット領域にレチクルRのパターンの像が転写される。
次のステップ114において、図2に示すように、第2ウエハステージWST2をアンロードの位置LP2に移動して、ステップ115において、ウエハW2のアンロードを行った後、ステップ101に移行して次のウエハのロードを行う。一方、ステップ115でアンロードされた露光済みのウエハW2は、露光装置100からコータ・デベロッパ(不図示)に搬送され、ステップ122においてウエハのレジストの現像が行われる。次のステップ123において、現像したウエハの加熱(キュア)、エッチング工程、CMPプロセスなどを含む基板処理が行われる。そして、次のステップ124において、必要に応じてリソグラフィ工程及び基板処理工程を繰り返した後、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)、及び検査ステップ等を経て半導体デバイス等のデバイスが製造される。この際に、本実施形態の図4(A)のウエハW2の露光面にはほぼ全面に所定の周期性を持つL&Sパターンの像が露光され、現像及び基板処理によってウエハのほぼ全面にその周期性を持つパターンが形成されるため、CMPプロセスを容易に実行できる。
また、図7のステップ101〜115の第2ウエハステージWST2上のウエハW2に対する露光動作と同様の動作が、第1ウエハステージWST1上のウエハW1に対しても並行に行われている。ただし、図8に示すように、ステップ103〜108の第2ウエハステージWST2上のウエハW2のアライメント及び欠けショット露光動作と同時に、ステップ210〜213の第1ウエハステージWST1上のウエハW1に対する投影光学系PLを介したレチクルRのパターンの像の露光が行われる。逆に、第1ウエハステージWST1上のウエハに対してステップ105〜108に対応するアライメント及び欠けショット露光が行われているときに、同時に図7のステップ110〜113における第2ウエハステージWST2上のウエハに対する投影光学系PLによる露光が行われる。
本実施形態の作用効果及び変形例は以下の通りである。
(1)図1の露光装置100による露光方法は、ウエハ上の図4(A)に示すデバイス領域65Dを含む領域(第1領域)及び非デバイス領域65ND内の領域(第2領域)を含む複数の領域を露光する露光方法において、ガイド面(2次元平面)内で移動する第1ウエハステージWST1(第1基板保持可動体)に保持されるウエハW1のその第1領域を投影光学系PL(第1光学系)を介して露光する動作(ステップ213)と並行して、そのガイド面内で移動する第2ウエハステージWST2(第2基板保持可動体)上のウエハW2上のサーチアライメントマークWMS1,WMS2を検出するステップ105と;サーチアライメントマークWMS1,WMS2の検出結果に基づいて、第2ウエハステージWST2上のウエハW2の第2領域を欠けショット露光系40A〜40D(第2光学系)を介して露光する動作と、ウエハW2上のサンプルショットSA1〜SA10に付設されたウエハマークWMを検出する動作とを実質的に並行に実行するステップ105〜108と;ウエハマークWMの検出結果に基づいて、第2ウエハステージWST2上のウエハW2の第1領域を投影光学系PLを介して露光するステップ113とを有する。
また、露光装置100は、第1ウエハステージWST1と、第2ウエハステージWST2と、第2ウエハステージWST2上の基準マーク53B及びウエハステージWST1,WST2上のウエハのマークの少なくとも一方を検出するアライメントセンサ26と、ウエハ上のその第1領域に露光光ILを照射する投影光学系PLと、その第1領域とは異なるウエハ上の第2領域に露光光ILAを照射する欠けショット露光系40A〜40Dと、を備えている。そして、アライメントセンサ26は、投影光学系PLが第1ウエハステージWST1に保持されるウエハW1に対して露光光ILを照射する動作中に、第2ウエハステージWST2上の基準マーク53B又はウエハW2上のマークを検出し、欠けショット露光系40A〜40Dは、アライメントセンサ26によるマークの検出動作中に、第2ウエハステージWST2に保持されるウエハW2上のその第2領域に露光光ILAを照射する。
本実施形態によれば、第1ウエハステージWST1上のウエハW1の第1領域(完全なショット領域を含む領域)への露光と、第2ウエハステージWST2上のウエハW2の第2領域(欠けショットを含む領域)への露光とをほぼ並行に実行できるため、ウエハW1,W2の第1及び第2領域にそれぞれ対応するパターンを効率的に露光できる。さらに、ウエハW2の第1領域の露光を行うためのアライメントセンサ26によるマーク検出(ステップ105のマーク検出動作)と、ウエハW2の第2領域の露光(ステップ106)とを実質的に並行に行うため、露光工程のスループットをさらに向上できる。
(2)また、図4(A)において、ウエハW2の表面は、複数の完全なショット領域(区画領域)よりなるデバイス領域65Dと、複数の一部が欠けたショット領域よりなる非デバイス領域65NDとに分割され、その第1領域は、デバイス領域65Dと、非デバイス領域65NDの一部の領域(複雑な形状の非デバイス領域67A〜67D)とを含み、その第2領域は、その非デバイス領域65NDのうちで、その第1領域には含まれない領域(単純な形状の非デバイス領域66A〜66D)を含んでいる。この結果、非デバイス領域65ND(欠けショット)のうちで、その第1領域に含まれる領域が投影光学系PLによって露光され、その第2領域が欠けショット露光系40A〜40Dによって露光される。このように欠けショットの露光を分担することによって、露光工程のスループットを向上できる場合がある。
なお、例えば欠けショット露光系40A〜40Dの個数が多いような場合、又は図1の投影光学系PLによるウエハW1の露光時間に比べて、アライメントセンサ26及び欠けショット露光系40A〜40DによるウエハW1のアライメント及び欠けショット露光の時間が短いような場合には、ウエハW2の非デバイス領域65NDの全部を欠けショット露光系40A〜40Dによって露光してもよい。
(3)また、図4(A)において、ウエハW2上のその第2領域(非デバイス領域66A〜66D)は、直交する2方向のいずれかに平行な直線とウエハW2のエッジ部とで囲まれた単純な形状の領域である。このため、その第2領域に対して図2の欠けショット露光系40A〜40Dを用いて例えば走査露光方式で効率的に図4(C)、図4(D)のパターンの像64X,64Yを露光できる。
(4)また、アライメントセンサ26が第2ウエハステージWST2上のウエハW2上の複数のマークのうちの少なくとも2つのマーク(サーチアライメントマークWMS1,WMS2)を検出した(ステップ104)後に、欠けショット露光系40A〜40DはウエハW2上のその第2領域に露光光ILAを照射する(ステップ106)。この場合、ステップ104の検出結果を用いて、その第2領域の位置を必要な精度で認識できる。
なお、図4(A)において、例えばプリアライメントの精度が高い場合には、サーチアライメントマークWMS1,WMS2の検出動作(ステップ104)を省略してもよい。この場合には、ウエハW2上の2つのサンプルショット(例えばSA1,SA2)のウエハマーク(ファインアライメントマーク)の位置を検出することで、非デバイス領域65NDの位置を認識できる。従って、その2つのサンプルショットのウエハマークの検出後に欠けショット露光系40A〜40Dによるその第2領域の露光を行うことができる。
(5)また、アライメントセンサ26は、欠けショット露光系40A〜40Dがその第2領域中の非デバイス領域66A,66Bの照射を開始した(最初のステップ106)後に、ウエハW2上のその少なくとも2つのマークとは異なるサンプルショットSA3以降のウエハマークの検出を開始している(2回目のステップ105)。これによって、サーチアライメントの結果を、欠けショット露光のための位置決めと、ファインアライメントのための位置決めとの両方に使用できる。
(6)また、第2ウエハステージWST2のガイド面内での位置を制御するウエハステージ制御部21Bをさらに備え、ウエハステージ制御部21Bは、その少なくとも2つのサーチアライメントマークWMS1,WMS2の検出情報に基づいて第2ウエハステージWST2を移動させる。サーチアライメントマークWMS1,WMS2の検出情報を用いることで、後のマークをアライメントセンサ26の視野内に容易に追い込むことができる。
(7)また、投影光学系PLはウエハのその第1領域に図4(B)のL&Sパターンの像62X,62Y(第1パターン)を露光し、欠けショット露光系40A〜40Dはその第2領域にその第1パターンとは異なるL&Sパターンの像64X,64Y(第2パターン)を露光する。これによって、欠けショット露光系40A〜40Dの解像度を投影光学系PLの解像度より粗くできるため、例えば投影光学系PLで液浸露光を行う場合に、欠けショット露光系40A〜40Dではドライ露光を行うことができる。従って、欠けショット露光系40A〜40Dの構成を簡易化できる。
(8)また、その像64X,64Yの線幅が、像62X,62Yの最小線幅の5〜20倍である場合には、欠けショット露光系40A〜40Dを簡易化できるとともに、後工程のCMPプロセスを良好に行うことができる。
なお、図4(A)の非デバイス領域65NDには、特定のパターンを露光することなく、欠けショット露光系40A〜40Dによって、単にレジスト感度を超える露光量の露光(いわゆる周辺露光)を行ってもよい。
(9)また、第2ウエハステージWST2に保持されるウエハW2のガイド面の法線方向(Z方向)に沿ったフォーカス位置(面位置情報)を検出するためのAF系29(面位置検出部)をさらに備え、AF系29により検出された面位置情報に基づいて、第2ウエハステージWST2に保持されるウエハW2と欠けショット露光系40A〜40Dとの間隔を制御している。これによって、欠けショット露光を高解像度で行うことができる。
なお、図1のように共通のAF系29を用いる代わりに、欠けショット露光系40A〜40Dのそれぞれで計測点数の少ない小型のAF系(オートフォーカスセンサ)を備えてもよい。この場合、このAF系で計測されるウエハ上のフォーカス位置の情報を用いて、対応する欠けショット露光系40A〜40Dの合焦を正確に行うことができるとともに、予めウエハの表面のフォーカス位置の分布の情報を計測できる。
(10)また、複数の欠けショット露光系40A〜40Dのうちの2つの欠けショット露光系(露光部)40A,40B(又は40C,40D)の間隔を調整する駆動機構(調整部)47B(又は47D)をさらに備えている。
駆動機構47BによってウエハW2のショット配列に応じて欠けショット露光系40A,40Bの間隔を調整することで、図5に示すように、1対の欠けショット露光系40A,40Bで同時に並行にウエハW2の第2領域を露光できる。従って、欠けショット露光をさらに効率的に実行できる。
(11)また、図2のアライメントセンサ26の検出位置は、複数の欠けショット露光系40A〜40Dの露光領域46A〜46Dで囲まれる位置にある。これによって、アライメント及び欠けショット露光を効率的に実行できる。
(12)また、上記の実施形態では、欠けショット露光系40A〜40DからウエハW2上の露光領域46A〜46D(第2領域の一部)に露光光IL2を照射している間に、欠けショット露光系40A〜40DとウエハW2とを相対移動している。即ち、走査露光方式によって、例えばウエハW2上の一連の複数の欠けショットに対して連続的に所定のL&Sパターンの像を効率的に露光できる。この場合、L&Sパターンの像を露光できればよいため、欠けショット露光系40A〜40D中のレチクル43(図1参照)には、非走査方向に所定周期のL&Sパターンを形成しておくだけで、レチクル43の走査機構を設ける必要はない。
なお、欠けショット露光系40A〜40Dによって、ステップ・アンド・リピート方式でウエハW2上に露光してもよい。
(13)また、投影光学系PLによる露光は、投影光学系PLとウエハとの間の液体Lqを介して行われ、欠けショット露光系40A〜40Dによる露光は、ドライ露光で行われる。
なお、投影光学系PLによる露光をドライ露光で行う場合にも本発明が適用できる。また、欠けショット露光系40A〜40Dによる露光を液浸法で行うことも可能である。
(14)また、露光光ILの波長と露光光ILAの波長とがほぼ同じ波長であることが好ましい。これによって、欠けショット露光によるウエハ上のレジストを短時間で感光させることができる。
ここで、露光ビームとしての露光光ILを供給する光源と、欠けショット露光のための露光光ILAを供給する光源とは、同じ光源であってもよい。
また、欠けショット露光系40A〜40Dに光源からの露光光ILAを導くために、光ガイドを用いているが、光ガイドを用いずにレンズ等からなる伝送光学系を用いて欠けショット露光系40A〜40Dに光源からの露光光ILAを導く構成であってもよい。
(15)また、上記の実施形態のデバイス製造方法は、レジストが塗布されたウエハ(感光性基板)を準備する工程(ステップ121)と、上記の実施形態の露光装置100を用い、投影光学系PL及び欠けショット露光系40A〜40Dを介してそれぞれ所定のパターンをウエハ上に露光する工程(ステップ101〜115)と、露光されたウエハを現像し、その露光されたパターンに対応する形状のマスク層をウエハの表面に形成する工程(ステップ122)と、そのマスク層を介してウエハの表面を加工する工程(ステップ123)とを備えている。
この場合、露光装置100によれば、欠けショットを含むウエハの露光を効率的に行うことができ、後工程においてCMPプロセスを良好に実行できるため、デバイスを高い歩留りで高スループットに製造できる。
なお、本発明は、走査露光型の投影露光装置のみならず、一括露光型(ステッパー型)の投影露光装置を用いて露光する場合にも適用することが可能である。また、本発明は、ドライ露光型の露光装置で露光を行う場合にも適用できる。
また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置の製造プロセスや、撮像素子(CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスの製造プロセスにも広く適用できる。
なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
本発明の実施形態の一例の露光装置の概略構成を示す図である。 図1のウエハベースWB上のウエハステージWST1,WST2を示す平面図である。 (A)は図2の空間像計測系55Aの構成を示す図、(B)は空間像計測系の別の例を示す図である。 (A)は図1のウエハW2のショットマップの一例を示す平面図、(B)は図1の投影光学系PLによって露光されるパターンを示す拡大図、(C)は図4(A)の露光領域46Aによって露光されるパターンを示す拡大図、(D)は図4(A)の露光領域46Cによって露光されるパターンを示す拡大図である。 露光領域46A,46BによってウエハW2の欠けショットを露光する動作の説明に供する平面図である。 露光領域46C,46DによってウエハW2の欠けショットを露光する動作の説明に供する平面図である。 図1の露光装置100の露光動作の一例を示すフローチャートである。 図1の2台のウエハステージによって並行に実行される動作の一部を示すフローチャートである。 投影光学系PLの下方に第2ウエハステージWST2が移動し、アライメントセンサ26の下方に第1ウエハステージWST1が移動した状態を示す平面図である。
符号の説明
R…レチクル、PL…投影光学系、WST1…第1ウエハステージ、WST2…第2ウエハステージ、W1,W2…ウエハ、WM…ウエハマーク、10…照明系、20A…第1制御系、20B…第2制御系、26…アライメントセンサ、28,29…AF系、40A〜40D…欠けショット露光系、46A〜46D…露光領域、47B,47D…駆動機構、53A,53B…基準マーク、55A,55B…空間像計測系、100…露光装置

Claims (22)

  1. 基板上の異なる第1及び第2領域を含む複数の領域を露光する露光方法において、
    2次元平面内で移動する第1基板保持可動体に保持される第1基板の前記第1領域を第1光学系を介して露光する動作と並行して、前記2次元平面内で移動する第2基板保持可動体上又は前記第2基板保持可動体に保持される第2基板上の複数のマークのうちの所定のマークを検出する第1工程と;
    前記所定のマークの検出結果に基づいて、前記第2基板保持可動体に保持される前記第2基板の前記第2領域を第2光学系を介して露光する動作と、前記複数のマークのうちの前記所定のマークを除くマークを検出する動作とを実質的に並行に実行する第2工程と;
    前記複数のマークの検出結果に基づいて、前記第2基板保持可動体に保持される前記第2基板の前記第1領域を前記第1光学系を介して露光する第3工程と;
    を備えることを特徴とする露光方法。
  2. 前記第2基板の表面は、複数の完全な区画領域と、複数の一部が欠けた区画領域とに分割され、
    前記第1領域は、前記複数の完全な区画領域と、前記複数の一部が欠けた区画領域の一部の領域とを含み、
    前記第2領域は、前記複数の一部が欠けた区画領域のうちで、前記第1領域には含まれない領域を含むことを特徴とする請求項1に記載の露光方法。
  3. 前記第2基板上の前記第2領域は、直交する2方向のいずれかに平行な直線と前記第2基板のエッジ部とで囲まれた領域であることを特徴とする請求項2に記載の露光方法。
  4. 前記第1光学系は、前記第1領域に第1パターンを露光し、
    前記第2光学系は、前記第2領域に第2パターンを露光し、
    前記第2パターンの線幅は、前記第1パターンの最小線幅の5〜20倍であることを特徴とする請求項1から3の何れか一項に記載の露光方法。
  5. 前記第1光学系で使用される第1露光光の波長幅に対して、前記第2光学系で使用される第2露光光の波長幅は広いことを特徴とする請求項1から4の何れか一項に記載の露光方法。
  6. 前記第2光学系を介して前記第2基板上の前記第2領域の一部を露光している間に、前記第2基板と前記第2光学系とを相対移動することを特徴とする請求項1から5の何れか一項に記載の露光方法。
  7. 基板上の複数の領域を露光する露光装置において、
    基板を保持して2次元平面内を移動可能な第1基板保持可動体と;
    基板を保持して前記2次元平面内を移動可能な第2基板保持可動体と;
    前記2つの基板保持可動体上のマーク及び前記2つの基板保持可動体に保持される基板上のマークの少なくとも一方を検出するアライメント系と;
    基板上の第1領域に第1露光光を照射する第1光学系と;
    前記第1領域とは異なる基板上の第2領域に第2露光光を照射する第2光学系と;
    を備え、
    前記アライメント系は、前記第1光学系が前記第1基板保持可動体に保持される第1基板に対して前記第1露光光を照射する動作中に、前記第2基板保持可動体上又は前記第2基板保持可動体に保持される第2基板上のマークを検出し、
    前記第2光学系は、前記アライメント系による前記マークの検出動作中に、前記第2基板保持可動体に保持される前記第2基板上の前記第2領域に前記第2露光光を照射することを特徴とする露光装置。
  8. 前記アライメント系が前記第2基板保持可動体に保持される前記第2基板上の複数のマークのうちの少なくとも2つのマークを検出した後に、
    前記第2光学系は、前記第2基板上の前記第2領域に前記第2露光光を照射することを特徴とする請求項7に記載の露光装置。
  9. 前記アライメント系は、前記第2光学系が前記第2領域への前記第2露光光の照射を開始した後に、前記複数のマークのうちの前記少なくとも2つのマークとは異なるマークの検出を開始することを特徴とする請求項8に記載の露光装置。
  10. 前記第2基板保持可動体の前記2次元平面内での位置を制御する位置制御部をさらに備え、
    該位置制御部は、前記少なくとも2つのマークの検出情報に基づいて前記第2基板保持可動体を移動させることを特徴とする請求項8又は9に記載の露光装置。
  11. 前記第1光学系は、前記第1領域に第1パターンを露光し、
    前記第2光学系は、前記第2領域に前記第1パターンとは異なる第2パターンを露光することを特徴とする請求項7から10の何れか一項に記載の露光装置。
  12. 前記第2パターンの線幅は、前記第1パターンの最小線幅の5〜20倍であることを特徴とする請求項11に記載の露光装置。
  13. 前記第2基板保持可動体に保持される前記第2基板の前記2次元平面の法線方向に沿った面位置情報を検出するための面位置検出部をさらに備え、
    該面位置検出部により検出された面位置情報に基づいて、前記第2基板保持可動体に保持される前記第2基板と前記第2光学系との間隔を制御することを特徴とする請求項7から12の何れか一項に記載の露光装置。
  14. 前記第2光学系は、前記第2基板上の複数の前記第2領域にそれぞれ前記第2露光光を照射する複数の露光部を備えることを特徴とする請求項7から13の何れか一項に記載の露光装置。
  15. 前記第2光学系の前記複数の露光部のうちの2つの露光部の間隔を調整する調整部をさらに備えることを特徴とする請求項14に記載の露光装置。
  16. 前記アライメント系の検出位置は、前記第2光学系の前記複数の露光部による前記第2露光光の複数の照射位置で囲まれる位置にあることを特徴とする請求項14又は15に記載の露光装置。
  17. 前記第2光学系から前記第2基板上の前記第2領域の一部に前記第2露光光を照射している間に、前記第2基板と前記第2光学系とを相対移動することを特徴とする請求項7から16の何れか一項に記載の露光装置。
  18. 前記第2領域は、基板上において前記第1領域の周囲に位置することを特徴とする請求項7から17の何れか一項に記載の露光装置。
  19. 前記第2領域は、直交する2方向のいずれかに平行な直線と前記基板のエッジ部とで囲まれた領域であることを特徴とする請求項18に記載の露光装置。
  20. 前記第1領域は、前記第1光学系と基板との間の液体を介して露光され、
    前記第2領域は、前記第2光学系と基板との間に液体を介することなく露光されることを特徴とする請求項7から19の何れか一項に記載の露光装置。
  21. 前記第1領域の露光に用いられる前記第1露光光の波長と、前記第2領域の露光に用いられる前記第2露光光の波長とはほぼ同じ波長であることを特徴とする請求項7から20の何れか一項に記載の露光装置。
  22. デバイスの製造方法であって、
    感光性基板を準備する工程と;
    請求項7から21の何れか一項に記載の露光装置を用い、前記第1及び第2光学系を介してそれぞれ所定のパターンを前記感光性基板上に露光する工程と;
    露光された前記感光性基板を現像し、前記第1及び第2光学系を介して露光されたパターンに対応する形状のマスク層を前記感光性基板の表面に形成する工程と;
    前記マスク層を介して前記感光性基板の表面を加工する工程と;
    を備えることを特徴とするデバイスの製造方法。
JP2008264802A 2007-11-14 2008-10-14 露光方法及び装置、並びにデバイス製造方法 Withdrawn JP2009124118A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99637907P 2007-11-14 2007-11-14
US12/247,892 US20090123874A1 (en) 2007-11-14 2008-10-08 Exposure method, exposure apparatus, and method for manufacturing device

Publications (1)

Publication Number Publication Date
JP2009124118A true JP2009124118A (ja) 2009-06-04

Family

ID=40624041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264802A Withdrawn JP2009124118A (ja) 2007-11-14 2008-10-14 露光方法及び装置、並びにデバイス製造方法

Country Status (4)

Country Link
US (1) US20090123874A1 (ja)
JP (1) JP2009124118A (ja)
TW (1) TW200931197A (ja)
WO (1) WO2009063736A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134585A1 (ja) 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2016157841A (ja) * 2015-02-25 2016-09-01 東京エレクトロン株式会社 周辺露光装置、周辺露光方法、プログラム及びコンピュータ記憶媒体
JP2018124557A (ja) * 2017-02-03 2018-08-09 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034063B (zh) * 2011-09-29 2015-03-04 中芯国际集成电路制造(北京)有限公司 光刻设备
JP2015032800A (ja) * 2013-08-07 2015-02-16 キヤノン株式会社 リソグラフィ装置、および物品製造方法
US9851645B2 (en) * 2013-12-06 2017-12-26 Ev Group E. Thallner Gmbh Device and method for aligning substrates
JP5582267B1 (ja) * 2014-01-17 2014-09-03 株式会社東光高岳 連続走査型計測装置
TWI550362B (zh) * 2014-09-22 2016-09-21 力晶科技股份有限公司 曝光機台的遮光裝置
CN104597721B (zh) * 2015-01-20 2016-09-21 中国科学院上海光学精密机械研究所 紫外光刻二维平台
DE102016122353A1 (de) * 2016-11-21 2018-05-24 Manz Ag Bearbeitungsanlage
JP6688273B2 (ja) * 2017-11-13 2020-04-28 キヤノン株式会社 リソグラフィ装置、リソグラフィ方法、決定方法及び物品の製造方法
NL2024768A (en) * 2019-02-26 2020-08-31 Asml Netherlands Bv Inspection apparatus, lithographic apparatus, measurement method
CN113759654B (zh) * 2020-05-19 2023-07-21 长鑫存储技术有限公司 一种晶圆边缘曝光装置、方法及光刻设备
CN113900356B (zh) * 2020-07-07 2023-03-21 长鑫存储技术有限公司 一种曝光方法及曝光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204406B2 (ja) * 1991-10-30 2001-09-04 株式会社ニコン 面位置検出方法及び装置、半導体露光装置、並びに前記方法を用いた露光方法
JP3395798B2 (ja) * 1993-12-22 2003-04-14 株式会社ニコン 位置検出方法及び装置、並びに露光方法及び装置
TW546699B (en) * 2000-02-25 2003-08-11 Nikon Corp Exposure apparatus and exposure method capable of controlling illumination distribution
KR100466311B1 (ko) * 2002-07-05 2005-01-13 삼성전자주식회사 반도체 공정의 노광 장치 및 이를 이용한 노광 방법
KR100585170B1 (ko) * 2004-12-27 2006-06-02 삼성전자주식회사 트윈 기판 스테이지를 구비한 스캐너 장치, 이를 포함하는반도체 사진 설비 및 상기 설비를 이용한 반도체 소자의제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134585A1 (ja) 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2016157841A (ja) * 2015-02-25 2016-09-01 東京エレクトロン株式会社 周辺露光装置、周辺露光方法、プログラム及びコンピュータ記憶媒体
JP2018124557A (ja) * 2017-02-03 2018-08-09 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
JP2018156100A (ja) * 2017-02-03 2018-10-04 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
JP2019015989A (ja) * 2017-02-03 2019-01-31 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
JP2019015990A (ja) * 2017-02-03 2019-01-31 エーエスエムエル ネザーランズ ビー.ブイ. 露光装置
US11092903B2 (en) 2017-02-03 2021-08-17 Asml Netherlands B.V. Exposure apparatus

Also Published As

Publication number Publication date
US20090123874A1 (en) 2009-05-14
TW200931197A (en) 2009-07-16
WO2009063736A1 (en) 2009-05-22

Similar Documents

Publication Publication Date Title
JP2009124118A (ja) 露光方法及び装置、並びにデバイス製造方法
JP2009135166A (ja) 露光方法及び装置、露光ユニット、並びにデバイス製造方法
US10461039B2 (en) Mark, method for forming same, and exposure apparatus
JPH10214783A (ja) 投影露光装置及び投影露光方法
JP2001332490A (ja) 位置合わせ方法、露光方法、露光装置、及びデバイス製造方法
JPH10163097A (ja) 投影露光装置及び投影露光方法
JPWO2005088686A1 (ja) 段差計測方法及び装置、並びに露光方法及び装置
JP4774335B2 (ja) リソグラフィ装置、予備位置合わせ方法、デバイス製造方法、および予備位置合わせデバイス
JP2007251185A (ja) リソグラフィ装置、アライメント方法、およびデバイス製造方法
JPH10163098A (ja) 投影露光装置及び投影露光方法
JP5494755B2 (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2009200122A (ja) 露光装置およびデバイス製造方法
JP2012195380A (ja) マーク検出方法及び装置、並びに露光方法及び装置
JP2009054736A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2009054732A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP5120691B2 (ja) マーク検出方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2009054737A (ja) マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP6748907B2 (ja) 計測装置、露光装置、デバイス製造方法、及びパターン形成方法
JP2003156322A (ja) 位置計測方法及び装置、位置決め方法、露光装置、並びにマイクロデバイスの製造方法
JP2004096109A (ja) アライメントツール、リソグラフィ装置、アライメント方法、デバイス製造方法、およびそれにより製造されたデバイス
JP2010123793A (ja) 光学特性計測方法、露光方法、及びデバイス製造方法
JPH10163100A (ja) 投影露光装置及び投影露光方法並びに走査露光方法
JP2009218588A (ja) リソグラフィ装置及び方法
JP4029360B2 (ja) 投影露光装置及び投影露光方法並びに走査露光方法
JP3940113B2 (ja) 基板位置合せ方法、コンピュータ・プログラム、デバイス製造方法、およびそれにより製造されたデバイス

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110