JP2009122461A - 光波長合分波回路 - Google Patents

光波長合分波回路 Download PDF

Info

Publication number
JP2009122461A
JP2009122461A JP2007297297A JP2007297297A JP2009122461A JP 2009122461 A JP2009122461 A JP 2009122461A JP 2007297297 A JP2007297297 A JP 2007297297A JP 2007297297 A JP2007297297 A JP 2007297297A JP 2009122461 A JP2009122461 A JP 2009122461A
Authority
JP
Japan
Prior art keywords
waveguide
tapered
width
waveguides
optical wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007297297A
Other languages
English (en)
Other versions
JP4960202B2 (ja
Inventor
Arata Kamei
新 亀井
Tsutomu Kito
勤 鬼頭
Masaki Kamitoku
正樹 神徳
Munehisa Tamura
宗久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007297297A priority Critical patent/JP4960202B2/ja
Publication of JP2009122461A publication Critical patent/JP2009122461A/ja
Application granted granted Critical
Publication of JP4960202B2 publication Critical patent/JP4960202B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

【課題】製造誤差等によって、アレイ導波路に位相およびコア幅の誤差が生じた場合であっても、平坦な通過帯域特性を安定的に得られる光波長合分波回路を提供すること。
【解決手段】光波長合分波回路100は、入力導波路101と、第1のスラブ導波路102と、複数本の導波路を有するアレイ導波路103と、第2のスラブ導波路104と、出力導波路105とを備える。本発明に係るテーパ導波路206が入力導波路101と第1のスラブ導波路102との間に設けられている。また、第2のスラブ導波路104と出力導波路105との間には、直線テーパ207で設けられている。テーパ導波路206は、光波の進行方向軸に対して非対称な形状を有する。
【選択図】図3

Description

本発明は光波長合分波回路に関し、より詳細には、アレイ導波路回折格子で構成された光波長合分波器に関する。
ブロードバンド通信サービスの普及により、光通信ネットワークの大容量化要求がますます高まっている中、多数の光波長信号を一括に伝送する光波長多重(Wavelength Division Multiplexing:WDM)伝送は、ネットワークの伝送容量を飛躍的に増大させる技術として重要である。一方、シリコン等の基板上に形成した石英系ガラス導波路によって構成されたプレーナ光波回路(PLC)は、多様な光デバイスの基盤技術として盛んに研究開発が行われているが、かかるPLC技術を利用したアレイ導波路回折格子(AWG)は、多数の光波長を合波あるいは分波する機能を有し、WDM伝送における光波長合分波器として非常に重要な役割を果たしている。
WDM伝送においては、光源の信号光波長が多少変動しても、その損失はなるべく変動しないことが望ましい。また、より高速な変調信号を劣化なく伝送するためには、一定の波長域に広がった変調成分をも損失なく透過することが望ましい。したがって、光波長合分波器としてのAWGには、広く平坦な通過帯域を有するフラット型AWGが求められる。
図22は、従来のAWGの平面図である。2201は入力導波路、2202は第1のスラブ導波路、2203はアレイ導波路、2204は第2のスラブ導波路、2205は出力導波路である。図23は、図22のAA’線に沿った断面図である。ここで、シリコン基板2301に、導波路コア2302および導波路コア2302を囲むクラッド2303が設けられている。入力導波路2201のあるポートから入射した光波は、第1のスラブ導波路で拡大され、アレイ導波路2203に入射する。アレイ導波路2203の各導波路は、その光路長が一定の光路長差で順次長くなるように設定されており、各導波路を伝播した光波には一定の位相差が付与されて第2のスラブ導波路2204に入射する。これら入射した光波は、第2のスラブ導波路2204で干渉し、出力導波路2205に接続する端面に集光する。このとき、アレイ導波路2203で付与される位相差は波長に依存する。すなわち波長によって等位相面の傾きが異なるため、第2のスラブ導波路2204での集光位置も波長に依存する。したがって出力導波路2205には、第2のスラブ導波路2204との接続位置に対応した波長の光波が入射し、各ポートに分波される。WDM伝送においては、入力導波路2201に入力された波長多重信号は、各波長の信号に分波されて出力導波路2205の各ポートに出力される。逆に出力導波路2205の各ポートに入力された各波長の信号は、波長多重信号に合波されて入力導波路2201のあるポートに出力される。
かかるAWGにおいては、入力導波路2201の第1のスラブ導波路2202との接続界面に励起されている光電界と、出力導波路2205の第2のスラブ導波路2204との接続界面に励起される光電界の、パワーオーバーラップ積分が透過スペクトルとなる。通常、これらの光電界は基底モードのみが励起されており、透過スペクトル波形はガウス関数形状となる。しかし、入力導波路2201の第1のスラブ導波路2202との接続部分にパラボラテーパ導波路(特許文献1参照)やY分岐導波路(特許文献2参照)を設けることで、フラット型AWGを実現する方法が開発されている。
ここで実際にAWGを製造する場合には、アレイ導波路において付与される一定の位相差に、少なからず誤差が発生する。これは導波路コアにおける屈折率、コア幅、厚さ等の不均一性がその主要因である。このような位相誤差は、AWGの透過スペクトル波形に影響を与える。特に、アレイ導波路が有する複数本の導波路のそれぞれに対する位相誤差が、中央の導波路に関して非対称である場合は、通過帯域の中心部において透過率の傾きが生じ、平坦性が劣化する。
このようなアレイ導波路における位相誤差による、通過帯域の平坦性の劣化を抑制するために、光の進行方向に対して左右非対称なY分岐導波路を有するフラット型AWGが提案されている(特許文献3参照)。図24は、特許文献3記載の左右非対称なY分岐導波路を有するフラット型AWGの一部の拡大図である。入力導波路2201と第1のスラブ導波路2202との接続部、および第2のスラブ導波路2204と出力導波路2205との接続部を拡大して示してある。入力導波路2201と第1のスラブ導波路2202との間にY分岐導波路2406が設けてあり、第2のスラブ導波路2204と出力導波路2205との間に直線テーパ2407が設けてある。図25は、Y分岐導波路の形状を説明するためのグラフである。Y分岐導波路の長さS、分岐点での各導波路幅W0、導波路ギャップの幅Wg、終点の各導波路幅W1、W2としている。
図26に、アレイ導波路における位相誤差分布の例を示す。ここで位相誤差は3次関数で良く近似される、中央のアレイ導波路に関して非対称な分布であり、誤差の大きさによりI、II、IIIの3種類を示している。図27は、図26の位相誤差IIが付与された場合の、フラット型AWGの透過スペクトル波形の例を示したグラフである。本例においては、クラッドの屈折率を1.44425、導波路の比屈折率差Δを1.5%、導波路コアの厚さは4.5μmとした。またAWGの設計は分波波長間隔0.8nm(周波数100GHz)、FSRは約25.6nm(3.2THz)と仮定し、隣接アレイ導波路の経路長差ΔLを62.8μm、スラブ導波路の長さを4090μm、アレイ導波路の本数を150本とした。図中点線の透過スペクトルは、Y分岐導波路としてS=220μm、W0=4.8μm、Wg=0.5μm、W1=W2=7.75μmの対称な形状の場合の透過スペクトル、図中実線は、Y分岐導波路として、S=220μm、W0=4.8μm、Wg=0.5μm、W1=8.15μm、W2=7.35μmの非対称な形状の場合の透過スペクトルを示したものである。このとき、第2のスラブ導波路に接続する出力導波路の直線テーパは長さ500μm、幅7μmとした。対称なY分岐導波路の場合には、アレイ導波路での位相誤差が影響して通過帯域の平坦性が劣化するのに対し、非対称なY分岐導波路の場合には、励起される非対称な電界によって位相誤差の影響が相殺され、通過帯域の平坦性が保たれているのがわかる。
特許第3112246号公報 特許第3078467号公報 特許第3029028号公報
このように、非対称なY分岐導波路を、AWGの入力導波路2201と第2のスラブ導波路2202との接続部分に設置することにより、製造においてアレイ導波路2203での位相誤差が生じた場合であっても、平坦な通過帯域特性を有する光波長合分波回路を実現することができる。しかしながら実際にAWGを製造する場合には、形成されるコアの幅に、少なからず誤差が発生する。このようなコア幅の設計からの誤差は、AWGの透過スペクトル波形に影響を与える。特にY分岐導波路においては、製造誤差によるギャップ幅の変動が、励起される電界を大きく変動させるため、AWGの透過スペクトル波形変動も大きくなる。
図28に、コア幅が設計どおりの場合、設計から0.2μm増加した場合、設計から0.2μm減少した場合の、透過スペクトル波形の計算結果を示す。ここでアレイ導波路2203においては、図26の位相誤差IIの分布を付与して計算している。コア幅の設計からの誤差が影響し、通過帯域内の損失変動が増大して平坦性が劣化することがわかる。このような平坦性の劣化のため、従来の光波長合分波回路では、高速・高品質な伝送に必要な通過帯域特性を安定的に達成できない可能性があった。
本発明は、このような問題点に鑑みてなされたものであり、その目的は、製造誤差等によって、アレイ導波路に位相およびコア幅の誤差が生じた場合であっても、平坦な通過帯域特性を安定的に得られる光波長合分波回路を提供することにある。
このような目的を達成するために、請求項1に記載の発明は、複数本の導波路を有するアレイ導波路と、前記アレイ導波路の第1および第2の端部にそれぞれ接続された第1および第2のスラブ導波路と、前記第1のスラブ導波路に接続された入力導波路と、前記第2のスラブ導波路に接続された出力導波路と、前記入力導波路と前記第1のスラブ導波路とを接続するテーパ導波路とを備えるアレイ導波路回折格子で構成された光波長合分波器であって、前記テーパ導波路は、前記入力導波路の中心線を延長した線に関して非対称な形状であり、テーパ導波路形状の内側にギャップが無く、すべてがコアで塗りつぶされた構造であることを特徴とする。
また、請求項2に記載の発明は、請求項1において、前記テーパ導波路は、前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1+WE2であり、前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1が、正実数γ1および正実数ε1を用いて、
Figure 2009122461
で表され、他方の側での幅w2が、正実数γ2および正実数ε2を用いて、
Figure 2009122461
で表され、γ1≠γ2、WE1≠WE2、ε1≠ε2のうち、少なくとも1つの条件を満足する非対称な一般化スーパー楕円関数形状であることを特徴とする。
また、請求項3に記載の発明は、請求項2において、前記テーパ導波路は、ε1≧2、ε2≧2、γ1<1、γ2<1という条件を満たすことを特徴とする。
また、請求項4に記載の発明は、請求項1において、前記テーパ導波路は、前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1+WE2であり、前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1が、正実数a1を用いて、
Figure 2009122461
で表され、他方の側での幅w2が、正実数a2を用いて、
Figure 2009122461
で表され、a1≠a2、WE1≠WE2のうちの少なくとも1つの条件を満足する非対称な指数関数形状であることを特徴とする。
また、請求項5に記載の発明は、複数本の導波路を有するアレイ導波路と、前記アレイ導波路の第1および第2の端部にそれぞれ接続された第1および第2のスラブ導波路と、前記第1のスラブ導波路に接続された入力導波路と、前記第2のスラブ導波路に接続された出力導波路と、前記入力導波路と前記第1のスラブ導波路とを接続するテーパ導波路と
を備えるアレイ導波路回折格子で構成された光波長合分波器であって、前記入力導波路、前記テーパ導波路、および前記出力導波路は、それぞれ複数配列され、前記複数のテーパ導波路のうちの少なくとも2つ以上のテーパ導波路は、前記2つ以上のテーパ導波路のそれぞれと接続する入力導波路の中心線を延長した線に関してそれぞれ非対称な形状であり、前記非対称な2つ以上のテーパ導波路には、非対称性の異なる2種類以上のテーパ導波路が含まれ、前記非対称な2つ以上のテーパ導波路は、テーパ導波路形状の内側にギャップが無く、すべてがコアで塗りつぶされた構造であることを特徴とする。
また、請求項6に記載の発明は、請求項5において、前記複数のテーパ導波路のうちの少なくとも1つ以上のテーパ導波路は、前記1つ以上のテーパ導波路のそれぞれと接続する入力導波路の中心線を延長した線に関してそれぞれ対称な形状であることを特徴とする。
また、請求項7に記載の発明は、請求項5において、前記入力導波路および前記テーパ導波路を、それぞれN(Nは2以上の整数)本備え、前記複数のテーパ導波路はすべて、前記複数のテーパ導波路のそれぞれと接続する入力導波路の中心線を延長した線に関してそれぞれ非対称であり、かつ互いに異なる形状であり、i(i=1、2・・・、N)番目の前記テーパ導波路は、前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1(i)+WE2(i)であり、前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数γ1(i)および正実数ε1(i)を用いて、
Figure 2009122461
で表され、他方の側での幅w2(i)が、正実数γ2(i)および正実数ε2(i)を用いて、
Figure 2009122461
で表され、γ1(i)≠γ2(i)、WE1(i)≠WE2(i)、ε1(i)≠ε2(i)のうちの少なくとも1つの条件を満足する非対称な一般化スーパー楕円関数形状であること特徴とする。
また、請求項8に記載の発明は、請求項6において、前記入力導波路および前記テーパ導波路を、それぞれK+L+1(K、Lは1以上の整数)本備え、i(i=1、2、・・・、K+L+1)番目の前記テーパ導波路は、前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅幅WE1(i)+WE2(i)であり、前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数γ1(i)および正実数ε1(i)を用いて、
Figure 2009122461
で表され、他の片側の幅w2(i)が、正実数γ2(i)および正実数ε2(i)を用いて、
Figure 2009122461
で表され、1≦i≦Kの各iに関して、γ1(i)>γ2(i)、WE1(i)>WE2(i)、ε1(i)>ε2(i)のうちの少なくとも1つの条件を満足し、i=K+1に関して、γ1(i)=γ2(i)、WE1(i)=WE2(i)、ε1(i)=ε2(i)の条件を満足し、K+2≦i≦K+L+1の各iに関して、γ1(i)<γ2(i)、WE1(i)<WE2(i)、ε1(i)<ε2(i)のうちの少なくとも1つの条件を満足する非対称および対称な一般化スーパー楕円関数形状であること特徴とする。
また、請求項9に記載の発明は、請求項5において、前記入力導波路および前記テーパ導波路を、それぞれN(Nは2以上の整数)本備え、i(i=1、2、・・・、N)番目の前記テーパ導波路は、前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅幅WE1(i)+WE2(i)であり、前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数a1(i)を用いて、
Figure 2009122461
で表され、他方の側での幅w2(i)が、正実数a2(i)を用いて、
Figure 2009122461
で表され、a1(i)≠a2(i)、WE1(i)≠WE2のうちの少なくとも1つの条件を満足する非対称な指数関数形状であることを特徴とする。
また、請求項10に記載の発明は、請求項6において、前記入力導波路および前記テーパ導波路を、それぞれK+L+1(K、Lは1以上の整数)本備え、i(i=1、2、・・・、K+L+1)番目の前記テーパ導波路は、前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1(i)+WE2(i)であり、前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数a1(i)を用いて、
Figure 2009122461
で表され、他方の側での幅w2(i)が、正実数a2(i)を用いて、
Figure 2009122461
で表され、1≦i≦Kの各iに関して、a1(i)>a2(i)、WE1(i)>WE2(i)のうちの少なくとも1つの条件を満足し、i=K+1に関して、a1(i)=a2(i)、WE1(i)=WE2の条件を満足し、K+2≦i≦K+L+1の各iに関して、a1(i)<a2(i)、WE1(i)<WE2(i)のうちの少なくとも1つの条件を満足する非対称および対称な指数関数形状であることを特徴とする。
本発明によれば、光波の進行方向軸に対して非対称な形状を有するテーパ導波路を入力導波路と第1のスラブ導波路との間に設けることにより、アレイ導波路に位相およびコア幅の誤差が生じた場合であっても、平坦な通過帯域特性を安定的に得られる光波長合分波回路を提供するができる。
以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下の実施例では特定の数値を用いて説明したが、これらの値に本発明の技術的範囲を限定する意図はない。
(実施形態1)
図1は、実施形態1に係る光波長合分波回路の平面図である。光波長合分波回路100は、入力導波路101と、第1のスラブ導波路102と、複数本の導波路を有するアレイ導波路103と、第2のスラブ導波路104と、出力導波路105とを備える。図2は、本実施形態に係るテーパ導波路を備える光波長合分波回路の一部の拡大図である。入力導波路101と第1のスラブ導波路102との接続部分、および第2のスラブ導波路104と出力導波路105との接続部分を拡大して示してある。本発明に係るテーパ導波路206が入力導波路101と第1のスラブ導波路102との間に設けられている。また、第2のスラブ導波路104と出力導波路105との間には、直線テーパ207で設けられている。
図3は、本実施形態に係る光波長合分波回路が備えるテーパ導波路の形状を説明する図である。アレイ導波路103から離れる方向をy軸、テーパ導波路206の幅方向にx軸とし、テーパ導波路206と第1のスラブ導波路102との接続位置(終点)でy=0としている。テーパ導波路206は、入力導波路101側の幅がWSであり第1のスラブ導波路102側の幅がWE1+WE2となるように拡大しており、yにおけるx>0側の幅w1が、正実数γ1および正実数ε1を用いて、
Figure 2009122461
なる式で表され、x<0側の幅w2が、正実数γ2およびε2を用いて、
Figure 2009122461
なる式で表される非対称な形状をしており、γ1≠γ2、WE1≠WE2、ε1≠ε2のうちの少なくとも1つの条件を満足する非対称な一般化スーパー楕円関数形状である。図3には具体的数値が記載されているが、これについては実施例で説明する。
テーパ導波路206が光波の進行方向軸に対して非対称な形状を有することで、奇モード(特に1次モード)の励起を促し、その奇モードによって生じる非対称な位相分布により、作製誤差によって生じた、アレイ導波路103における位相誤差分布を相殺することで、通過帯域の平坦性をより安定的に実現可能である。
またテーパ導波路206は、テーパ導波路形状の内側にギャップが無く、内側すべてがコアで塗りつぶされた構造である。このような構造においては、製造誤差によるギャップ幅の変動が生じ得ないため、テーパ導波路形状の内側にギャップがある場合に比較して、製造誤差によってテーパ導波路206の終点に励起される光フィールドが変動する量が極めて小さい。したがって、以下の実施例にも示されるように、本実施形態に係る光波長合分波回路によればコア幅に製造誤差が生じた場合であっても平坦な通過帯域特性を安定的に得ることができる。
なお、εおよびγには以下に述べるように適当な数値範囲が存在する。本実施形態のように、テーパ導波路形状の内側にギャップが無く、内側すべてがコアで塗りつぶされた構造である場合には、テーパを伝播する過程で導波路の2次モードが励起し、テーパ終点では基底モードと2次モードの合成による双峰状のフィールドが生成され、このフィールド形状によって平坦な透過波形が実現される。しかしながら、テーパ導波路の幅が比較的急速に拡大する部位を伝播する際には、2次より高次のモードも生成される。このような2次より高次のモードが散逸せず、第1のスラブ導波路102に入力した場合、その影響によって光波のフィールド分布が乱され、光波長合分波回路の特性、特に波長分散特性の劣化を引き起こす。すなわち良好な特性を得るためには、2次モードは伝播し、かつ2次より高次のモードは速やかに散逸するようなテーパ導波路形状が好ましい。ここで、テーパ導波路206が本実施形態のように一般化スーパー楕円関数形状であるとき、εはテーパ形状がdw/dy=0に近づく程度、すなわちマルチモード直線導波路にどの程度急速に漸近するかを表すパラメータである。εが小さいとき、テーパは緩やかに広がり徐々に幅W2の導波路となっていくが、εが大きいときは、急速に広がりほぼ幅W2の導波路で遷移する。一般化スーパー楕円関数の性質上ε=1(パラボラ形状)のときは、テーパ終端がdw/dy=0にならないが、ε>1であればdw/dy=0となる。テーパ導波路206において、2次より高次モードの伝播を抑制して良好な特性、特に低分散特性を得るためには、終端でほぼ一定幅すなわちほぼマルチモード直線導波路となる区間がある程度必要であるため、εをある程度大きくとる必要がある。ε≧2とすれば、通常の導波路において殆どの高次モードが散逸する計算結果が得られている。
理論的には、εとして適当な上限はない。εが有限の正実数であれば、同様の効果が得られる。しかしεがあまり大きいと、始点付近でテーパの幅が急速に広がり、その部分で光の散逸が生じて損失が発生すると考えられるので、実用的でない。したがって、εは10以下、より好ましくは4以下程度とするのが適当である。
また、|dw/dy|が始点において最大値を取らない形状であると、テーパ導波路206における高次モード励起はより緩やかになされ、その励起量は、作製による導波路幅誤差に鈍感になる。|dw/dy|が始点において最大値を取らないという条件は、テーパ導波路206が一般化スーパー楕円関数形状である場合にはγを1未満とすることに対応する。γは、始点付近でのテーパの広がり方を示すパラメータである。γが小さいとき、テーパは緩やかに広がり、γが大きいときは、急速に広がる。特にγ=1のとき、テーパは始点付近でdw/dyが一定であり直線的に広がる。γ>1のときは、始点において|dw/dy|が最大値をとり、単調に減少する。γ<1のときは、|dw/dy|は始点からある区間増大して最大値を得た後、単調に減少する。
理論的には、γとして適当な下限はない。γが有限の正実数であれば、同様の効果が得られる。しかしγがあまり小さいと、始点付近でテーパの幅が広がらずテーパの途中で急速に広がる傾向になるため、その部分で光の散逸が生じて損失が発生すると考えられる。したがって、γは0.01以上、より好ましくは0.1以上程度とするのが適当である。
実施例1−1
図3に、実施例1−1に係るテーパ導波路を示した。本実施例においては、Y=120μm、WS=4.5μm、WE1=WE2=9.0μm、γ1=2.8、γ2=1.2とした。また直線テーパ107は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
ここで、本実施例において、AWGのアレイ導波路103において図4に示すような位相誤差が発生したと仮定する。これは、前述した図26における位相誤差IIと同等の、3次関数的な分布を有する非対称な位相誤差である。図5は、本実施例において、仮定する位相誤差が生じた場合の、透過スペクトル波形を示している。透過スペクトル波形は、コア幅が設計どおり、設計から0.2μm減少、設計から0.2μm増加、の3つの場合を示している。クラッドの屈折率を1.44425、導波路の比屈折率差Δを1.5%、導波路コアの厚さは4.5μmとした。本実施例におけるAWGの設計は分波波長間隔0.8nm(周波数100GHz)、FSRは約25.6nm(3.2THz)とし、隣接アレイ導波路の経路長差ΔLを62.8μm、各スラブ導波路の長さを4090μm、各スラブ導波路との接続部におけるアレイ導波路の配列間隔を9μm、アレイ導波路103の本数を150本とし、入力導波路101、アレイ導波路103、出力導波路105の導波路コア幅は4.5μmとした。アレイ導波路103での位相誤差があるにもかかわらず、また、コア幅に製造誤差がある場合であっても、テーパ導波路206に本実施例の非対称な形状を適用することで、通過帯域の平坦性を安定的に実現することが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
実施例1−2
図6に、実施例1−2にテーパ導波路を示した。本実施例では、Y=150μm、WS=4.5μm、WE1=WE2=8.0μm、γ1=0.3、γ2=0.7、ε1=ε2=2.5とした。直線テーパ207は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
ここで、本実施例において、実施例1−1と同様に、AWGのアレイ導波路103において図4に示すような位相誤差が発生したと仮定する。図7は、本実施例において、仮定する位相誤差が生じた場合の、透過スペクトル波形を示している。透過スペクトル波形は、コア幅が設計どおり、設計から0.2μm減少、設計から0.2μm増加、の3つの場合を示している。アレイ導波路103での位相誤差があるにもかかわらず、また、コア幅に製造誤差がある場合であっても、テーパ導波路206に本実施例の非対称な形状を適用することで、通過帯域の平坦性を安定的に実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
実施例1−3
図8に、実施例1−3にテーパ導波路を示した。本実施例では、Y=150μm、WS=4.5μm、WE1=8.4μm、WE2=7.6μm、γ1=γ2=0.5、ε1=ε2=2.5とした。また直線テーパ207は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
ここで、本実施例において、実施例1−1と同様に、AWGのアレイ導波路103において、図4に示すような位相誤差が発生したと仮定する。図9は、本実施例において、仮定する位相誤差が生じた場合の、透過スペクトル波形を示している。透過スペクトル波形は、コア幅が設計どおり、設計から0.2μm減少、設計から0.2μm増加、の3つの場合を示している。アレイ導波路103での位相誤差があるにもかかわらず、また、コア幅に製造誤差がある場合であっても、テーパ導波路206に本実施例の非対称な形状を適用することで、通過帯域の平坦性を安定的に実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
(実施形態2)
図10は、実施形態2に係る光波長合分波回路が備えるテーパ導波路の形状を説明する図である。本実施形態に係る光波長合分波回路は、テーパ導波路206以外は実施形態1に係る合分波回路と同一の構成である。アレイ導波路103から離れる方向をy軸、テーパ導波路206の幅方向にx軸とし、テーパ導波路206と第1のスラブ導波路102との接続位置(終点)でy=0としている。テーパ導波路206は、入力導波路101側の幅WSかつ第1のスラブ導波路102側の幅WE1+WE2で拡大し、yにおけるx>0側の幅w1が、正実数a1を用いて、
Figure 2009122461
なる式で表され、x<0側の幅w2が、正実数a2を用いて、
Figure 2009122461
なる式で表される形状をしており、a1≠a2、WE1≠WE2のうちの少なくとも1つの条件を満足する非対称な指数関数形状である。図10には具体的数値が記載されているが、これについては実施例で説明する。
テーパ導波路206が光波の進行方向軸に対して非対称な形状を有することで、奇モード(特に1次モード)の励起を促し、その奇モードによって生じる非対称な位相分布により、作製誤差によって生じた、アレイ導波路103における位相誤差分布を相殺することで、通過帯域の平坦性をより安定的に実現可能である。
加えて、以下の実施例から分かるように、本実施形態に係る光波長合分波回路によればコア幅に製造誤差が生じた場合であっても平坦な通過帯域特性を安定的に得ることができる。
なお、a1、a2には以下に述べるように適当な数値範囲が存在する。テーパ導波路の長さがYの場合、a1Y、a2Yは、テーパ導波路がどの程度急速に広がるかを示すパラメータである。a1Y、a2Yが小さいとき、テーパ導波路は緩やかに広がり、a1Y、a2Yが大きいときは、急速に広がる。a1、a2があまり小さいと、テーパ導波路の幅が殆ど広がらず、テーパ導波路において2次モードの励起が生じないため、光波長合分波回路において平坦な通過帯域を実現できない。平坦な通過帯域を実現できる程度の2次モードをテーパ導波路において励起するためには、a1Y、a2Yが0.5以上、より好ましくは1以上程度とするのが適当である。また理論的には、a1、a2として適当な上限はない。a1、a2が有限の正実数であれば、同様の効果が得られる。しかしa1、a2があまり大きいと、始点付近でテーパ導波路の幅が急速に広がる傾向になるため、その部分で光の散逸が生じて損失が発生すると考えられる。このような損失を抑制するためには、a1Y、a2Yが20以下、より好ましくは10以下程度とするのが適当である。
実施例2−1
本実施例においてはY=140μm、WS=4.5μm、WE1=WE2=8.0μm、a1=0.012、a2=0.028とした。また直線テーパ207は出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
ここで、本実施例において、実施例1−1と同様に、AWGのアレイ導波路103において、図4に示すような位相誤差が発生したと仮定する。図11は、本実施例において、仮定する位相誤差が生じた場合の、透過スペクトル波形を示している。透過スペクトル波形は、コア幅が設計どおり、設計から0.2μm減少、設計から0.2μm増加、の3つの場合を示している。アレイ導波路103での位相誤差があるにもかかわらず、また、コア幅に製造誤差がある場合であっても、テーパ導波路206に本実施例の非対称な形状を適用することで、通過帯域の平坦性を安定的に実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
(実施形態3)
図12は、実施形態3に係る光波長合分波回路が備えるテーパ導波路の一部の拡大図である。本実施形態に係る光波長合分波回路は、入力導波路101、テーパ導波路1206、出力導波路105、および直線テーパ1207がそれぞれ2本以上配列されている点とテーパ導波路1206の構造を除いて、実施形態1に係る合分波回路と同一の構成である。図12では、例示的に複数の入力導波路101をin(1)〜in(5)、出力導波路105をout(1)〜out(16)と呼び、合分波チャネル数は8としている。この場合、AWGの特性から、in(N)(N=1、2、・・・、5)から入力し、out(M+10−2N)(M=1、2、・・・、8)へ通過する光波長は同一である。
i(i=1、2・・・、N)番目の入力導波路in(i)に接続するテーパ導波路1206は、アレイ導波路103から離れる方向をy軸、テーパ導波路1206の幅方向にx軸とし、テーパ導波路1206と第1のスラブ導波路102との接続位置でy=0としたとき、入力導波路101側の幅WSかつ第1のスラブ導波路102側の幅WE1(i)+WE2(i)で拡大し、yにおけるx>0側の幅w1(i)が、正実数γ1(i)および正実数ε1(i)を用いて、
Figure 2009122461
で表され、他方の側での幅w2(i)が、正実数γ2(i)および正実数ε2(i)を用いて、
Figure 2009122461
で表される形状をしている。
入力導波路は、各iについて、γ1(i)≠γ2(i)、WE1(i)≠WE2(i)、ε1(i)≠ε2(i)のうちの少なくとも1つの条件を満足する非対称な一般化スーパー楕円関数形状としてもよい。
あるいは、入力導波路101およびテーパ導波路1206をそれぞれK+L+1(K、Lは1以上の整数)とし、1≦i≦Kの各iに関して、γ1(i)>γ2(i)、WE1(i)>WE2(i)、ε1(i)>ε2(i)のうちの少なくとも1つの条件を満足し、i=K+1に関して、γ1(i)=γ2(i)、WE1(i)=WE2(i)、ε1(i)=ε2(i)の条件を満足し、K+2≦i≦K+L+1の各iに関して、γ1(i)<γ2(i)、WE1(i)<WE2(i)、ε1(i)<ε2(i)のうちの少なくとも1つの条件を満足するようにしてもよい。
具体的には、Δγを正の実数とし、i≠K+1の各iに関して、γ2(i)=γ1(i)+Δγ×(i−K−1))、WE1(i)=WE2(i)、ε1(i)=ε2(i)であり、i=K+1に関して、γ1(i)=γ2(i)、WE1(i)=WE2(i)、ε1(i)=ε2(i)であるようにしてもよい。
また、ΔWEを正の実数とし、i≠K+1の各iに関して、γ1(i)=γ2(i)、WE2(i)=WE1(i)+ΔWE×(i−K−1))、ε1(i)=ε2(i)であり、i=K+1に関して、γ1(i)=γ2(i)、WE1(i)=WE2(i)、ε1(i)=ε2(i)であるようにしてもよい。
γ1、γ2、ε1、ε2およびWE1、E2の条件についていくつか説明したが、複数のテーパ導波路のうちの少なくとも2つ以上のテーパ導波路を、それらのテーパ導波路と接続する入力導波路の中心線を延長した線に関してそれぞれ非対称な形状とし、かつ非対称な2つ以上のテーパ導波路には、非対称性の異なる2種類以上のテーパ導波路が含まれるようにすることで、アレイ導波路103での位相誤差があり、かつその位相誤差分布が製造毎に変動する場合であっても、発生した位相誤差分布を相殺するのに最適な非対称のテーパ導波路1206およびそのテーパ導波路1206に接続された入力導波路101と、それに対応する出力導波路105を使用することにより、常に通過帯域の平坦性を実現することができる。加えて、複数のテーパ導波路のうちの少なくとも1つ以上のテーパ導波路は、それらのテーパ導波路と接続する入力導波路の中心線を延長した線に関してそれぞれ対称な形状とすることで、アレイ導波路103での位相誤差分布が製造毎に変動し、位相誤差の非対称性が殆ど無いような場合であったとしても、設置した対称のテーパ導波路1206およびそのテーパ導波路1206に接続された入力導波路101と、それに対応する出力導波路105を使用することにより、通過帯域の平坦性を実現することができる。
実施例3−1
実施例3−1では、テーパ導波路1206の第1のスラブ導波路102との接続部における配列間隔を30μm、直線テーパ1207の第2のスラブ導波路104との接続部における配列間隔は15μmとした。
本実施例における、複数の入力導波路in(1)〜in(5)に接続するテーパ導波路1206の形状パラメータY、WS、WE1、WE2、γ1、γ2の各設計値は、表1に示したとおりである。また直線テーパ1207は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
Figure 2009122461
ここで、本実施例において、AWGのアレイ導波路103に、図4に示すような位相誤差が発生したと仮定する。これは、前述した図26における位相誤差IIと同等の、3次関数的な分布を有する非対称な位相誤差である。図13は、本実施例において、図4に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(1)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(1)、出力導波路out(9)〜out(16)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
また別の例として、AWGのアレイ導波路103に、図14に示すような位相誤差が発生したと仮定する。これは、前述した図26における位相誤差Iと同等かつ逆符号で、3次関数的な分布を有する非対称な位相誤差である。図15は、この実施例において、図14に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(4)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(4)、出力導波路out(3)〜out(10)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
このように本実施例では、アレイ導波路103での位相誤差があり、かつその位相誤差分布が製造毎に変動する場合であっても、位相誤差分布に対して、最適な非対称あるいは対称形状のテーパ導波路1206に接続された入力導波路101と、それに対応する出力導波路105を使用することにより、通過帯域の平坦性を実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
実施例3−2
実施例3−2では、テーパ導波路1206の第1のスラブ導波路102との接続部における配列間隔を30μm、直線テーパ1207の第2のスラブ導波路104との接続部における配列間隔は15μmとした。
本実施例における、複数の入力導波路in(1)〜in(5)に接続するテーパ導波路1206の形状パラメータY、WS、WE1、WE2、γ1、γ2の各設計値は、表2に示したとおりである。また直線テーパ1207は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
Figure 2009122461
ここで、本実施例において、AWGのアレイ導波路103に、図4に示すような位相誤差が発生したと仮定する。図16は、本実施形態において、図4に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(1)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(1)、出力導波路out(9)〜out(16)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
また別の例として、AWGのアレイ導波路103に、図14に示すような位相誤差が発生したと仮定する。図17は、本実施例において、図14に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(4)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(4)、出力導波路out(3)〜out(10)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
このように本実施例では、アレイ導波路での位相誤差があり、かつその位相誤差分布が製造毎に変動する場合であっても、位相誤差分布に対して、最適な非対称あるいは対称形状のテーパ導波路1206に接続された入力導波路101と、それに対応する出力導波路105を使用することにより、通過帯域の平坦性を実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
実施例3−3
実施例3−3では、テーパ導波路1206の第1のスラブ導波路102との接続部における配列間隔を30μm、直線テーパ1207の第2のスラブ導波路104との接続部における配列間隔は15μmとした。
本実施例における、複数の入力導波路in(1)〜in(5)に接続するテーパ導波路1206の形状パラメータY、WS、WE1、WE2、γ1、γ2の各設計値は、表3に示したとおりである。また直線テーパ1207は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
Figure 2009122461
ここで、本実施例において、AWGのアレイ導波路103に、図4に示すような位相誤差が発生したと仮定する。図18は、本実施例において、図4に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(1)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(1)、出力導波路out(9)〜out(16)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
また別の例として、AWGのアレイ導波路103に、図14に示すような位相誤差が発生したと仮定する。図19は、本実施例において、図14に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(4)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(4)、出力導波路out(3)〜out(10)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
このように本実施例では、アレイ導波路103での位相誤差があり、またその位相誤差分布が製造毎に変動する場合であっても、位相誤差分布に対して、最適な非対称あるいは対称形状のテーパ導波路1206と接続された入力導波路101と、それに対応する出力導波路105を使用することにより、通過帯域の平坦性を実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
(実施形態4)
実施形態4に係る光波長合分波回路は、テーパ導波路1206の構造を除いて、実施形態3に係る合分波回路と同一の構成である。i(i=1、2・・・、N)番目の入力導波路in(i)に接続するテーパ導波路1206は、アレイ導波路103から離れる方向をy軸、テーパ導波路1206の幅方向にx軸とし、テーパ導波路1206と第1のスラブ導波路102との接続位置でy=0としたとき、入力導波路101側の幅WSかつ第1のスラブ導波路102側の幅WE1(i)+WE2(i)で拡大し、yにおけるx>0側の幅幅w1(i)が、正実数a1(i)を用いて、
Figure 2009122461
で表され、他方の側での幅w2(i)が、正実数a2(i)を用いて、
Figure 2009122461
で表される形状をしている。
入力導波路は、各iについて、a1(i)≠a2(i)、WE1(i)≠WE2のうちの少なくとも1つの条件を満足するようにしてもよい。
あるいは、入力導波路101およびテーパ導波路1206をそれぞれK+L+1(K、Lは1以上の整数)とし、1≦i≦Kの各iに関して、a1(i)>a2(i)、WE1(i)>WE2(i)のうちの少なくとも1つの条件を満足し、i=K+1に関して、a1(i)=a2(i)、WE1(i)=WE2の条件を満足し、K+2≦i≦K+L+1の各iに関して、a1(i)<a2(i)、WE1(i)<WE2(i)のうちの少なくとも1つの条件を満足するようにしてもよい。
具体的には、Δaを正の実数とし、i≠K+1の各iに関して、a2(i)=a1(i)+Δa×(i−K−1)、WE1(i)=WE2(i)であり、i=K+1に関して、a1(i)=a2(i)、WE1(i)=WE2(i)であるようにしてもよい。
また、ΔWEを正の実数とし、i≠K+1の各iに関して、a1(i)=a2(i)、WE2(i)=WE1(i)+ΔWE×(i−K−1))であり、i=K+1に関して、a1(i)=a2(i)、WE1(i)=WE2(i)であるようにしてもよい。
実施例4−1
実施例4−1では、テーパ導波路1206の第1のスラブ導波路102との接続部における配列間隔を30μm、直線テーパ1207の第2のスラブ導波路104との接続部における配列間隔は15μmとした。
本実施例における、複数の入力導波路in(1)〜in(5)に接続するテーパ導波路1206の形状パラメータY、WS、WE1、WE2、a1、a2の各設計値は、表4に示したとおりである。また直線テーパ1207は、出力導波路105側の幅4.5μm、第2のスラブ導波路104側の幅7.0μm、テーパの長さ500μmとした。
Figure 2009122461
ここで、本実施例において、AWGのアレイ導波路103に、図4に示すような位相誤差が発生したと仮定する。図20は、本実施例において、図4に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(1)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(1)、出力導波路out(9)〜out(16)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
また別の例として、AWGのアレイ導波路103に、図14に示すような位相誤差が発生したと仮定する。図21は、本実施形態において、図14に示す位相誤差が生じた場合の、入力導波路in(1)〜in(5)から入力した光の透過スペクトル波形を示している。この場合、入力導波路in(4)を選択することにより、最も平坦な波形を実現できる。よって、入力導波路in(4)、出力導波路out(3)〜out(10)を使用することで、平坦な波形を有する8チャネルの光波長合分波回路として機能する。
このように本実施例では、アレイ導波路での位相誤差があり、またその位相誤差分布が製造毎に変動する場合であっても、位相誤差分布に対して、最適な非対称あるいは対称形状のテーパ導波路1206と接続された入力導波路101と、それに対応する出力導波路105を使用することにより、通過帯域の平坦性を実現できることが分かる。よって、本実施例の光波長合分波回路は、従来に比較し、高速・高品質な伝送に必要な通過帯域特性を、安定的に達成することが可能である。
実施形態1に係る光波長合分波回路の平面図である。 実施形態1に係るテーパ導波路を備える光波長合分波回路の一部の拡大図である。 実施形態1に係る光波長合分波回路が備えるテーパ導波路の形状を説明する図である。 アレイ導波路における位相誤差分布の例を示す図である。 実施例1−1において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例1−2に係るテーパ導波路を示す図である。 実施例1−2において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例1−3に係るテーパ導波路を示す図である。 実施例1−3において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施形態2に係る光波長合分波回路が備えるテーパ導波路の形状を説明する図である。 実施例2−1において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施形態3に係る光波長合分波回路が備えるテーパ導波路の一部の拡大図である。 実施例3−1において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 アレイ導波路における位相誤差分布の例を示す図である。 実施例3−1において、図14の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例3−2において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例3−2において、図14の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例3−3において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例3−3において、図14の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例4−1において、図4の位相誤差が生じた場合の透過スペクトル波形を示す図である。 実施例4−1において、図14の位相誤差が生じた場合の透過スペクトル波形を示す図である。 従来のAWGの平面図である。 図22のAA’線に沿った断面図である。 特許文献3記載の左右非対称なY分岐導波路を有するフラット型AWGの一部の拡大図である。 Y分岐導波路の形状を説明するためのグラフである。 アレイ導波路における位相誤差分布の例を示す図である。 図26の位相誤差IIが付与された場合の、フラット型AWGの透過スペクトル波形の例を示したグラフである。 コア幅の設計からの誤差の影響を示す図である。
符号の説明
101、2201 入力導波路
102、2202 第1のスラブ導波路
103、2203 アレイ導波路
104、2204 第2のスラブ導波路
105、2205 出力導波路
206、1206、2406 テーパ導波路
207、1207、2407 直線テーパ
2301 シリコン基板
2302 導波路コア
2303 クラッド

Claims (10)

  1. 複数本の導波路を有するアレイ導波路と、
    前記アレイ導波路の第1および第2の端部にそれぞれ接続された第1および第2のスラブ導波路と、
    前記第1のスラブ導波路に接続された入力導波路と、
    前記第2のスラブ導波路に接続された出力導波路と、
    前記入力導波路と前記第1のスラブ導波路とを接続するテーパ導波路と
    を備えるアレイ導波路回折格子で構成された光波長合分波器であって、
    前記テーパ導波路は、前記入力導波路の中心線を延長した線に関して非対称な形状であり、テーパ導波路形状の内側にギャップが無く、すべてがコアで塗りつぶされた構造であることを特徴とする光波長合分波回路。
  2. 前記テーパ導波路は、
    前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1+WE2であり、
    前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1が、正実数γ1および正実数ε1を用いて、
    Figure 2009122461
    で表され、他方の側での幅w2が、正実数γ2および正実数ε2を用いて、
    Figure 2009122461
    で表され、
    γ1≠γ2、WE1≠WE2、ε1≠ε2のうち、少なくとも1つの条件を満足する非対称な一般化スーパー楕円関数形状であることを特徴とする請求項1に記載の光波長合分波回路。
  3. 前記テーパ導波路は、ε1≧2、ε2≧2、γ1<1、γ2<1という条件を満たすことを特徴とする請求項2に記載の光波長合分波回路。
  4. 前記テーパ導波路は、
    前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1+WE2であり、
    前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1が、正実数a1を用いて、
    Figure 2009122461
    で表され、他方の側での幅w2が、正実数a2を用いて、
    Figure 2009122461
    で表され、
    1≠a2、WE1≠WE2のうちの少なくとも1つの条件を満足する非対称な指数関数形状であることを特徴とする請求項1に記載の光波長合分波回路。
  5. 複数本の導波路を有するアレイ導波路と、
    前記アレイ導波路の第1および第2の端部にそれぞれ接続された第1および第2のスラブ導波路と、
    前記第1のスラブ導波路に接続された入力導波路と、
    前記第2のスラブ導波路に接続された出力導波路と、
    前記入力導波路と前記第1のスラブ導波路とを接続するテーパ導波路と
    を備えるアレイ導波路回折格子で構成された光波長合分波器であって、
    前記入力導波路、前記テーパ導波路、および前記出力導波路は、それぞれ複数配列され、
    前記複数のテーパ導波路のうちの少なくとも2つ以上のテーパ導波路は、前記2つ以上のテーパ導波路のそれぞれと接続する入力導波路の中心線を延長した線に関してそれぞれ非対称な形状であり、
    前記非対称な2つ以上のテーパ導波路には、非対称性の異なる2種類以上のテーパ導波路が含まれ、
    前記非対称な2つ以上のテーパ導波路は、テーパ導波路形状の内側にギャップが無く、すべてがコアで塗りつぶされた構造であることを特徴とする光波長合分波回路。
  6. 前記複数のテーパ導波路のうちの少なくとも1つ以上のテーパ導波路は、前記1つ以上のテーパ導波路のそれぞれと接続する入力導波路の中心線を延長した線に関してそれぞれ対称な形状であることを特徴とする請求項5に記載の光波長合分波回路。
  7. 前記入力導波路および前記テーパ導波路を、それぞれN(Nは2以上の整数)本備え、
    前記複数のテーパ導波路はすべて、前記複数のテーパ導波路のそれぞれと接続する入力導波路の中心線を延長した線に関してそれぞれ非対称であり、かつ互いに異なる形状であり、
    i(i=1、2・・・、N)番目の前記テーパ導波路は、
    前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1(i)+WE2(i)であり、
    前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数γ1(i)および正実数ε1(i)を用いて、
    Figure 2009122461
    で表され、他方の側での幅w2(i)が、正実数γ2(i)および正実数ε2(i)を用いて、
    Figure 2009122461
    で表され、
    γ1(i)≠γ2(i)、WE1(i)≠WE2(i)、ε1(i)≠ε2(i)のうちの少なくとも1つの条件を満足する非対称な一般化スーパー楕円関数形状であること特徴とする請求項5に記載の光波長合分波回路。
  8. 前記入力導波路および前記テーパ導波路を、それぞれK+L+1(K、Lは1以上の整数)本備え、
    i(i=1、2、・・・、K+L+1)番目の前記テーパ導波路は、
    前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅幅WE1(i)+WE2(i)であり、
    前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数γ1(i)および正実数ε1(i)を用いて、
    Figure 2009122461
    で表され、他の片側の幅w2(i)が、正実数γ2(i)および正実数ε2(i)を用いて、
    Figure 2009122461
    で表され、
    1≦i≦Kの各iに関して、γ1(i)>γ2(i)、WE1(i)>WE2(i)、ε1(i)>ε2(i)のうちの少なくとも1つの条件を満足し、i=K+1に関して、γ1(i)=γ2(i)、WE1(i)=WE2(i)、ε1(i)=ε2(i)の条件を満足し、K+2≦i≦K+L+1の各iに関して、γ1(i)<γ2(i)、WE1(i)<WE2(i)、ε1(i)<ε2(i)のうちの少なくとも1つの条件を満足する非対称および対称な一般化スーパー楕円関数形状であること特徴とする請求項6に記載の光波長合分波回路。
  9. 前記入力導波路および前記テーパ導波路を、それぞれN(Nは2以上の整数)本備え、
    i(i=1、2、・・・、N)番目の前記テーパ導波路は、
    前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅幅WE1(i)+WE2(i)であり、
    前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数a1(i)を用いて、
    Figure 2009122461
    で表され、他方の側での幅w2(i)が、正実数a2(i)を用いて、
    Figure 2009122461
    で表され、
    1(i)≠a2(i)、WE1(i)≠WE2のうちの少なくとも1つの条件を満足する非対称な指数関数形状であることを特徴とする請求項5に記載の光波長合分波回路。
  10. 前記入力導波路および前記テーパ導波路を、それぞれK+L+1(K、Lは1以上の整数)本備え、
    i(i=1、2、・・・、K+L+1)番目の前記テーパ導波路は、
    前記アレイ導波路の方向に向かって拡大しており、長さY、前記入力導波路との接続点の幅WS、前記第1のスラブ導波路との接続点の幅WE1(i)+WE2(i)であり、
    前記テーパ導波路と前記第1のスラブ導波路との接続点からの距離yの位置における、前記非対称な形状の一方の側での幅w1(i)が、正実数a1(i)を用いて、
    Figure 2009122461
    で表され、他方の側での幅w2(i)が、正実数a2(i)を用いて、
    Figure 2009122461
    で表され、
    1≦i≦Kの各iに関して、a1(i)>a2(i)、WE1(i)>WE2(i)のうちの少なくとも1つの条件を満足し、i=K+1に関して、a1(i)=a2(i)、WE1(i)=WE2の条件を満足し、K+2≦i≦K+L+1の各iに関して、a1(i)<a2(i)、WE1(i)<WE2(i)のうちの少なくとも1つの条件を満足する非対称および対称な指数関数形状であることを特徴とする請求項6に記載の光波長合分波回路。
JP2007297297A 2007-11-15 2007-11-15 光波長合分波回路 Active JP4960202B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297297A JP4960202B2 (ja) 2007-11-15 2007-11-15 光波長合分波回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297297A JP4960202B2 (ja) 2007-11-15 2007-11-15 光波長合分波回路

Publications (2)

Publication Number Publication Date
JP2009122461A true JP2009122461A (ja) 2009-06-04
JP4960202B2 JP4960202B2 (ja) 2012-06-27

Family

ID=40814665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297297A Active JP4960202B2 (ja) 2007-11-15 2007-11-15 光波長合分波回路

Country Status (1)

Country Link
JP (1) JP4960202B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122460A (ja) * 2007-11-15 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> 光波長合分波回路
JP2015001626A (ja) * 2013-06-14 2015-01-05 Nttエレクトロニクス株式会社 光波長合分波回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297228A (ja) * 1996-05-01 1997-11-18 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路格子
JP2007286077A (ja) * 2004-05-20 2007-11-01 Nec Corp 光合分波器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297228A (ja) * 1996-05-01 1997-11-18 Nippon Telegr & Teleph Corp <Ntt> アレイ導波路格子
JP2007286077A (ja) * 2004-05-20 2007-11-01 Nec Corp 光合分波器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122460A (ja) * 2007-11-15 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> 光波長合分波回路
JP2015001626A (ja) * 2013-06-14 2015-01-05 Nttエレクトロニクス株式会社 光波長合分波回路

Also Published As

Publication number Publication date
JP4960202B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
US9851504B2 (en) Planar optical waveguide device, DP-QPSK modulator, coherent receiver, and polarization diversity
JP4361030B2 (ja) モードスプリッタおよび光回路
JP5180322B2 (ja) 光波長合分波回路ならびに光波長合分波回路を用いた光モジュールおよび光通信システム
JP5625449B2 (ja) マッハ・ツェンダ干渉計、アレイ導波路回折格子及びマッハ・ツェンダ干渉計の製造方法
JP5357214B2 (ja) 光集積回路
JP6653886B2 (ja) モード合分波器及びモード多重伝送システム
JP4477260B2 (ja) 導波路型光カプラおよび該導波路型光カプラを用いた光合分波器
JP2007148290A (ja) 方向性光結合器
WO2010013662A1 (ja) アレイ導波路格子
JP4960202B2 (ja) 光波長合分波回路
US8295661B2 (en) Flat-top response arrayed waveguide grating
JP5117417B2 (ja) 光波長合分波回路およびその透過波形調整方法
KR20110002619A (ko) 광 소자
JP2009211032A (ja) 光合分波素子
JP2005301301A (ja) 光結合器
JP4960201B2 (ja) 光波長合分波回路
JP2010262314A (ja) 平面光導波回路およびそれを用いた光合分波器
JP6351114B2 (ja) モード合分波器及びモード合分波器の設計方法
JP2010250238A (ja) 光波長合分波回路およびその偏波依存性調整方法
JP2015001626A (ja) 光波長合分波回路
JP5086196B2 (ja) 光波長合分波回路
JP7061771B2 (ja) モード交換器
JP2011128206A (ja) アレイ導波路回折格子
JP4569440B2 (ja) 温度無依存光合分波器
JP4827935B2 (ja) 光波長合分波回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110722

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20110722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4960202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350