JP2009102596A - Phenolic resin molding material and molded article using the same - Google Patents

Phenolic resin molding material and molded article using the same Download PDF

Info

Publication number
JP2009102596A
JP2009102596A JP2007278189A JP2007278189A JP2009102596A JP 2009102596 A JP2009102596 A JP 2009102596A JP 2007278189 A JP2007278189 A JP 2007278189A JP 2007278189 A JP2007278189 A JP 2007278189A JP 2009102596 A JP2009102596 A JP 2009102596A
Authority
JP
Japan
Prior art keywords
phenol resin
mass
molding material
phenolic resin
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007278189A
Other languages
Japanese (ja)
Other versions
JP5356669B2 (en
Inventor
Tatsuo Hirabayashi
辰雄 平林
Masanori Miyoshi
正法 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007278189A priority Critical patent/JP5356669B2/en
Publication of JP2009102596A publication Critical patent/JP2009102596A/en
Application granted granted Critical
Publication of JP5356669B2 publication Critical patent/JP5356669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenolic resin molding material reducing mold shrinkage factor and its anisotropy and also reducing linear expansion coefficient without deteriorating heat resistance and moldability which the phenolic resin molding material has, and to provide a molded article using the same. <P>SOLUTION: In the phenolic resin molding material in which a phenolic resin is blended with a filler, on the basis of the total amount, the phenolic resin is within a range of 8-20 mass% and fused silica as the filler is within a range of 78-90 mass%, and the fused silica consists of 100 mass%, in total, of (A) 85-95 mass% of fused silica having an average particle diameter within a range of 20-30 μm and (B) 5-15 mass% of fused silica having an average particle diameter within a range of 0.5-5 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フェノール樹脂成形材料とそれを用いた成形品に関するものである。   The present invention relates to a phenol resin molding material and a molded article using the same.

電気・電子部品や自動車部品に使用されている金属やセラミックスの代替材料としてエンジニアリングプラスチック、エポキシ樹脂材料などが使用されているが、金属やセラミックスから得られた部品と比較して耐熱性、寸法安定性の点では未だその領域に近づけていないのが現状である。   Engineering plastics and epoxy resin materials are used as substitutes for metals and ceramics used in electrical and electronic parts and automotive parts, but they are heat resistant and dimensionally stable compared to parts obtained from metals and ceramics. In terms of sex, it is not close to that area yet.

近年、特にエレクトロニクス分野では小型化、高精密化が追求されており、成形品の耐熱性、寸法安定性の要求が一層厳しくなっている。   In recent years, particularly in the electronics field, miniaturization and high precision have been pursued, and the requirements for heat resistance and dimensional stability of molded products have become more severe.

フェノール樹脂成形材料(特許文献1,2参照)は耐熱性に優れるため、金属やセラミックスの代替材料として期待されるが、金属やセラミックスと比較すると成形収縮率、異方性、線膨張係数が大きいため、寸法精度の向上が課題であった。   Phenolic resin molding materials (see Patent Documents 1 and 2) are excellent in heat resistance, and are expected as alternative materials for metals and ceramics, but have higher molding shrinkage, anisotropy, and linear expansion coefficient than metals and ceramics Therefore, improvement of dimensional accuracy has been a problem.

フェノール樹脂は成形過程において硬化反応や冷却等の化学変化および物理変化を伴い、体積変化を生じ、成形後に収縮する。また、無機充填材の体積変化は樹脂に比べて格段に小さいため、無機充填材と樹脂の境界面には成形後、大きな残留ひずみが生じる。特に繊維状、板状の異方性無機充填材を使用した場合、フェノール樹脂成形材料の流動時に配向するためにひずみ方向が不均一となり、成形収縮率や吸湿、熱処理後の寸法変化に方向による差が生じて反りやひずみを発生する。   The phenol resin undergoes a chemical change and physical change such as a curing reaction and cooling in the molding process, causes a volume change, and shrinks after molding. Further, since the volume change of the inorganic filler is much smaller than that of the resin, a large residual strain is generated after molding at the interface between the inorganic filler and the resin. In particular, when fiber-like or plate-like anisotropic inorganic fillers are used, the strain direction becomes non-uniform due to orientation during the flow of the phenol resin molding material, and depending on the direction due to molding shrinkage, moisture absorption, and dimensional changes after heat treatment A difference occurs, causing warping and distortion.

さらに、成形品の形状や成形条件によって寸法変化の度合いが異なるため、安定した寸法精度の製品を得ることが難しい。   Furthermore, since the degree of dimensional change varies depending on the shape and molding conditions of the molded product, it is difficult to obtain a product with stable dimensional accuracy.

また、金属をインサート成形する場合、フェノール樹脂成形材料と金属との線膨張係数が異なると成形品にクラックが発生したり界面剥離が生じたりする。フェノール樹脂成形材料は、耐熱性、寸法安定性を改善するためフェノール樹脂に配合する補強用の無機充填材としてガラス繊維などの補強用繊維が多く用いられている。また、成形収縮率や線膨張係数を低減する一般的な手法として無機充填材を高充填することが行われているが、補強用繊維などの無機充填材をフェノール樹脂に高充填すると製造時の混練安定性や成形性が著しく損なわれる。   In addition, when metal is insert-molded, if the coefficient of linear expansion between the phenol resin molding material and the metal is different, cracks or interfacial peeling occurs in the molded product. In the phenol resin molding material, reinforcing fibers such as glass fibers are often used as reinforcing inorganic fillers to be blended with the phenol resin in order to improve heat resistance and dimensional stability. In addition, as a general technique for reducing the molding shrinkage rate and the linear expansion coefficient, high filling with inorganic fillers has been carried out. However, when inorganic fillers such as reinforcing fibers are highly filled into phenolic resin, Kneading stability and moldability are significantly impaired.

一方、溶融シリカを高充填した半導体封止用エポキシ樹脂材料は、溶融シリカを高充填しても製造時の混練安定性や成形性を損なうことなく、成形収縮率とその異方性、および線膨張係数を低減することが可能である。
特開昭61−64755号公報 特開2005−79252号公報
On the other hand, an epoxy resin material for semiconductor encapsulation that is highly filled with fused silica does not impair the kneading stability and moldability during production even when filled with fused silica, and does not impair molding shrinkage, its anisotropy, and linearity. It is possible to reduce the expansion coefficient.
JP-A 61-64755 JP 2005-79252 A

しかしながら、半導体封止用エポキシ樹脂材料はフェノール樹脂成形材料と比較すると耐熱性が低く、また、10℃以下で冷蔵保管する必要がある。   However, the epoxy resin material for semiconductor encapsulation has low heat resistance compared to the phenol resin molding material, and needs to be refrigerated at 10 ° C. or lower.

本発明は、以上の通りの事情に鑑みてなされたものであり、フェノール樹脂成形材料の有する耐熱性や成形性を損なうことなく、成形収縮率とその異方性を低減することができ、線膨張係数も低減することができるフェノール樹脂成形材料とそれを用いた成形品を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and can reduce the molding shrinkage rate and its anisotropy without impairing the heat resistance and moldability of the phenol resin molding material. An object of the present invention is to provide a phenolic resin molding material capable of reducing an expansion coefficient and a molded product using the same.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、本発明のフェノール樹脂成形材料は、フェノール樹脂に充填材を配合したフェノール樹脂成形材料において、全体量に対しての配合割合として、フェノール樹脂:8〜20質量%、充填材としての溶融シリカ:78〜90質量%の範囲内とし、溶融シリカは、次の両者の合計量100質量%において、
(A)平均粒径20〜30μmの範囲内のものが85〜95質量%、
(B)平均粒径0.5〜5μmの範囲内のものが5〜15質量%、
の割合とされていることを特徴とする。
1stly, the phenol resin molding material of this invention is a phenol resin molding material which mix | blended the filler with the phenol resin, As a mixture ratio with respect to the whole quantity, phenol resin: 8-20 mass%, as a filler Fused silica: In the range of 78 to 90% by mass, the fused silica is in the total amount of 100% by mass of both of the following:
(A) 85-95 mass% of the thing in the range of 20-30 micrometers of average particle diameters,
(B) 5-15% by mass of an average particle size in the range of 0.5-5 μm,
It is characterized by the ratio of

第2に、上記第1のフェノール樹脂成形材料において、フェノール樹脂の配合割合は、10〜18質量%の範囲内であることを特徴とする。   2ndly, in the said 1st phenol resin molding material, the mixture ratio of a phenol resin exists in the range of 10-18 mass%.

第3に、上記第1または第2のフェノール樹脂成形材料において、フェノール樹脂の配合割合は、ノボラック型フェノール樹脂(P1)とレゾール型フェノール樹脂(P2)とからなり、その質量比(P1/P2)が、0.1〜15の範囲内であることを特徴とする。   Thirdly, in the first or second phenol resin molding material, the blending ratio of the phenol resin is composed of a novolac type phenol resin (P1) and a resol type phenol resin (P2), and its mass ratio (P1 / P2). ) Is in the range of 0.1-15.

第4に、本発明のフェノール樹脂成形品は、上記第1ないし第3のいずれかのフェノール樹脂成形材料が加熱加圧成形されたものであることを特徴とする。   Fourth, the phenol resin molded product of the present invention is characterized in that any one of the first to third phenol resin molding materials is heat-press molded.

上記第1の発明によれば、大きい平均粒径をもつ溶融シリカとそれよりも小さい平均粒径をもつ溶融シリカを組み合わせて使用し、高充填するようにしたので、フェノール樹脂成形材料が有する耐熱性や成形性を損なうことなく、成形収縮率とその異方性を低減することができ、線膨張係数も低減することができる。そのため、成形収縮率とその異方性の低減により反りやひずみの発生が抑えられると共に、線膨張係数の低減により金属をインサート成形した場合でもクラックの発生や界面の剥離を起こすことがなく、さらに耐湿寸法変化を小さくすることができる。   According to the first aspect of the invention, the fused silica having a large average particle diameter and the fused silica having a smaller average particle diameter are used in combination and high filling is achieved. The molding shrinkage rate and its anisotropy can be reduced without impairing the properties and moldability, and the linear expansion coefficient can also be reduced. Therefore, the occurrence of warpage and strain is suppressed by reducing the molding shrinkage rate and its anisotropy, and even when metal is insert-molded by reducing the linear expansion coefficient, there is no occurrence of cracks or peeling of the interface. The change in moisture resistance can be reduced.

上記第2の発明によれば、フェノール樹脂の配合割合を特定範囲としたことで、上記第1の発明の効果に加え、成形収縮率とその異方性、および線膨張係数をさらに低減することができる。   According to the second aspect of the invention, by setting the blending ratio of the phenol resin to a specific range, in addition to the effect of the first aspect, the mold shrinkage rate, its anisotropy, and the linear expansion coefficient are further reduced. Can do.

上記第3の発明によれば、フェノール樹脂として、ノボラック型フェノール樹脂とレゾール型フェノール樹脂を特定の比率で用いるようにしたので、上記第1および第2の発明の効果に加え、成形収縮率とその異方性、および線膨張係数をさらに低減することができる。   According to the third aspect of the invention, since the novolac type phenol resin and the resol type phenol resin are used at a specific ratio as the phenol resin, in addition to the effects of the first and second inventions, The anisotropy and linear expansion coefficient can be further reduced.

上記第4の発明によれば、上記第1ないし第3のいずれかのフェノール樹脂成形材料を原料として加熱加圧成形したものであるので、フェノール樹脂成形材料が有する耐熱性や成形性を損なうことなく、成形収縮率とその異方性を低減することができ、線膨張係数も低減することができる。そのため、成形収縮率とその異方性の低減により反りやひずみの発生が抑えられると共に、線膨張係数の低減により金属をインサート成形した場合でもクラックの発生や界面の剥離を起こすことがなく、さらに耐湿寸法変化を小さくすることができる。   According to the fourth aspect of the invention, since the material is formed by heating and pressure molding using the first to third phenol resin molding materials as raw materials, the heat resistance and moldability of the phenol resin molding material are impaired. In addition, the molding shrinkage rate and its anisotropy can be reduced, and the linear expansion coefficient can also be reduced. Therefore, the occurrence of warpage and strain is suppressed by reducing the molding shrinkage rate and its anisotropy, and even when metal is insert-molded by reducing the linear expansion coefficient, there is no occurrence of cracks or peeling of the interface. The change in moisture resistance can be reduced.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に用いられるフェノール樹脂は、特に制限はないが、好ましくはノボラック型フェノール樹脂とレゾール型フェノール樹脂を併用したものが用いられる。   Although there is no restriction | limiting in particular in the phenol resin used for this invention, Preferably what used the novolak type phenol resin and the resol type phenol resin together is used.

ノボラック型フェノール樹脂は、フェノール類とアルデヒド類とを酸触媒の存在下に縮合させることにより得られたものであり、その性状などについては特に制限はなく、従来より成形材料に使用されているノボラック型フェノール樹脂を用いることができる。   The novolak-type phenol resin is obtained by condensing phenols and aldehydes in the presence of an acid catalyst, and there are no particular restrictions on the properties thereof, and novolaks that have been conventionally used in molding materials Type phenolic resin can be used.

レゾール型フェノール樹脂には、メチロール型とジメチレンエーテル型のものがあるが、これらのいずれを用いてもよく、レゾール型フェノール樹脂は液状であっても固形状であってもよい。   The resol type phenol resin includes a methylol type and a dimethylene ether type, and any of these may be used, and the resol type phenol resin may be liquid or solid.

ノボラック型フェノール樹脂(P1)とレゾール型フェノール樹脂(P2)との配合割合は、その質量比(P1/P2)が、0.1〜15の範囲内であることが好ましい。質量比(P1/P2)を当該範囲内とすることによって、成形収縮率とその異方性、および線膨張係数をより低減することができる。   As for the compounding ratio of the novolac type phenol resin (P1) and the resol type phenol resin (P2), the mass ratio (P1 / P2) is preferably within the range of 0.1-15. By setting the mass ratio (P1 / P2) within the range, the molding shrinkage rate, its anisotropy, and the linear expansion coefficient can be further reduced.

本発明で用いられるフェノール樹脂の重量平均分子量は、特に制限はないが、たとえば2000〜4000である。   Although the weight average molecular weight of the phenol resin used by this invention does not have a restriction | limiting in particular, For example, it is 2000-4000.

フェノール樹脂は、フェノール樹脂成形材料全量に対して8〜20質量%、好ましくは10〜18質量%、より好ましくは12〜16質量%含有される。フェノール樹脂の含有量が8質量%未満であると混練性が著しく悪化し、また成形性が低下する。一方、フェノール樹脂の含有量が20質量%を超えると、成形収縮率や線膨張係数が大きくなると共に、耐湿処理後の寸法経時変化が大きくなるため、良好な寸法精度を得ることができなくなる。   A phenol resin is 8-20 mass% with respect to the phenol resin molding material whole quantity, Preferably it is 10-18 mass%, More preferably, 12-16 mass% is contained. When the content of the phenol resin is less than 8% by mass, the kneading property is remarkably deteriorated and the moldability is lowered. On the other hand, when the content of the phenol resin exceeds 20% by mass, the molding shrinkage rate and the linear expansion coefficient increase, and the dimensional change with time after the moisture resistance treatment increases, so that it becomes impossible to obtain good dimensional accuracy.

本発明で用いられる充填材としての溶融シリカは球状のものであり、フェノール樹脂成形材料全量に対して78〜90質量%の範囲内で含有され、溶融シリカの合計量100質量%に対して、(A)平均粒径20〜30μmの範囲内のものが85〜95質量%、(B)平均粒径0.5〜5μmの範囲内のものが5〜15質量%の割合で含有される。   The fused silica as a filler used in the present invention is spherical and is contained within a range of 78 to 90% by mass with respect to the total amount of the phenol resin molding material, and with respect to the total amount of fused silica of 100% by mass, (A) The thing in the range of 20-30 micrometers of average particle diameter is contained in the ratio of 85-15 mass%, and the thing in the range of (B) average particle diameter of 0.5-5 micrometers is contained in the ratio of 5-15 mass%.

溶融シリカの含有量が78質量%未満であると、フェノール樹脂の配合量が増加することにより成形収縮率や線膨張係数が大きくなると共に、耐湿処理後の寸法経時変化が大きくなるため、良好な寸法精度を得ることができなくなる。一方、溶融シリカの含有量が90質量%を超えると混練性が著しく悪化し、また成形性が低下する。   When the content of the fused silica is less than 78% by mass, the molding shrinkage rate and the linear expansion coefficient increase due to the increase in the blending amount of the phenol resin, and the dimensional change with time after the moisture-resistant treatment increases. It becomes impossible to obtain dimensional accuracy. On the other hand, when the content of the fused silica exceeds 90% by mass, the kneading property is remarkably deteriorated and the moldability is lowered.

また、上記2種類の溶融シリカの平均粒径と含有量が上記範囲外であると、良好な成形性を確保しつつ溶融シリカを高充填することが困難となり、低い成形収縮率と低い線膨張係数が得られなくなる。   Also, if the average particle size and content of the above two types of fused silica are outside the above ranges, it becomes difficult to highly fill the fused silica while ensuring good moldability, resulting in low molding shrinkage and low linear expansion. The coefficient cannot be obtained.

本発明のフェノール樹脂成形材料には、本発明の効果を損なわない範囲内において、さらに他の添加剤を配合することができる。このような添加剤の具体例としては、フェノール樹脂の硬化剤や硬化助剤、脂肪酸金属塩などの離型剤、顔料などが挙げられる。   The phenol resin molding material of the present invention may further contain other additives within the range not impairing the effects of the present invention. Specific examples of such additives include phenol resin curing agents and curing aids, release agents such as fatty acid metal salts, and pigments.

ノボラック型フェノール樹脂の硬化剤としては、ヘキサメチレンテトラミンなどの窒素系化合物などが好適に用いられ、その硬化助剤としては、消石灰などが好適に用いられる。   Nitrogen compounds such as hexamethylenetetramine are preferably used as the curing agent for the novolak type phenol resin, and slaked lime is preferably used as the curing aid.

本発明のフェノール樹脂成形材料は、上記のフェノール樹脂、溶融シリカ、およびその他の添加剤を、2軸混練機などを用いて混練して調製することができる。混練後は、冷却粉砕し造粒するようにしてもよい。   The phenol resin molding material of the present invention can be prepared by kneading the above-mentioned phenol resin, fused silica, and other additives using a biaxial kneader or the like. After kneading, it may be cooled and pulverized and granulated.

このようにして調製されたフェノール樹脂成形材料は、射出成形などにより加熱加圧成形することでフェノール樹脂成形品とされる。成形条件は射出成形の場合、たとえば温度150〜190℃、圧力88〜137MPa(900〜1400kgf/cm)、時間20秒間以上とすることができる。他の成形方法の場合もこの成形条件に準じて成形することができる。 The phenol resin molding material prepared in this way is made into a phenol resin molded product by heat and pressure molding by injection molding or the like. In the case of injection molding, the molding conditions can be, for example, a temperature of 150 to 190 ° C., a pressure of 88 to 137 MPa (900 to 1400 kgf / cm 2 ), and a time of 20 seconds or more. In the case of other molding methods, molding can be performed according to these molding conditions.

本発明のフェノール樹脂成形材料は、現在セラミックスが主に使用されている携帯電話のカメラレンズ保持部などの高耐熱性、高寸法安定性が要求される部品や、高い寸法安定性が要求されるガスメータ部品などの材料として好適である。   The phenolic resin molding material of the present invention requires parts having high heat resistance and high dimensional stability, such as a camera lens holding part of a mobile phone in which ceramics are mainly used, and high dimensional stability. It is suitable as a material for gas meter parts.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

表1に示す各成分を所定量配合し、1分間混合した。次にこの混合物を2軸混練機により温度100〜110℃で3分間混練した。その後、混練物を冷却粉砕し、造粒して実施例1〜7および比較例1〜4のフェノール樹脂成形材料を得た。   Each component shown in Table 1 was blended in a predetermined amount and mixed for 1 minute. Next, this mixture was kneaded at a temperature of 100 to 110 ° C. for 3 minutes with a twin-screw kneader. Thereafter, the kneaded product was cooled and pulverized and granulated to obtain phenol resin molding materials of Examples 1 to 7 and Comparative Examples 1 to 4.

配合成分として、以下のものを使用した。
[樹脂]
ノボラック型フェノール樹脂:松下電工(株)製 重量平均分子量2000〜4000
レゾール型フェノール樹脂:AX−10 松下電工(株)製 ジメチレンエーテル型 重量平均分子量3000
エポキシ樹脂:ESCN195XL 住友化学工業(株)製 クレゾールノボラック型
[充填材]
溶融シリカ(FB60 電気化学工業(株)製 球状 平均粒子径21.8μm)
溶融シリカ(FB−3SDX 電気化学工業(株)製 球状 平均粒子径3.3μm)
ガラスビーズ(UB−01MF ユニチカ(株)製 低アルカリ硼珪酸ガラス)
ウォラストナイト(ウォラストナイトNYAD400 NYCO社製)
[硬化剤]
ヘキサメチレンテトラミン(S−4 三井東圧(株)製)
消石灰
ジアザビシクロウンデセン
[離型剤]
ステアリン酸亜鉛(SZ−P 堺化学工業(株)製)
カルナバワックス
[顔料]
カーボンブラック
実施例1〜7および比較例1〜4のフェノール樹脂成形材料を用いて以下の試験を行った。
(1)成形収縮率
射出成形(成形温度165℃、硬化時間70秒)により、JIS K6911に準じて成形収縮率測定用テストピースを作製した。JIS K6911に準拠して成形収縮率の測定を行った。
(2)耐湿寸法変化
上記(1)において作製した成形収縮率測定用テストピース(90mmφ)を、40℃×90%の高温高湿槽に250時間入れて、初期寸法に対する寸法変化率を測定した。
(3)線膨張係数
目的とするテストピース形状の金型(直圧成形)を用いて、金型温度165℃、圧力10MPa、硬化時間180秒の条件で成形を行い、φ5mm×15mmのテストピースを作製した。このテストピースを用いてTMA法により線膨張係数の測定を行った。
(5)ガラス転移温度
ガラス転移温度はTMA法により測定した。
The following ingredients were used as blending components.
[resin]
Novolac type phenolic resin: Matsushita Electric Works, Ltd. weight average molecular weight 2000-4000
Resol type phenolic resin: AX-10 Matsushita Electric Works, Ltd. Dimethylene ether weight average molecular weight 3000
Epoxy resin: ESCN195XL Cresol novolak type manufactured by Sumitomo Chemical Co., Ltd.
[Filler]
Fused silica (FB60 Denshi Kagaku Kogyo Co., Ltd., spherical average particle size 21.8 μm)
Fused silica (FB-3SDX Denki Kagaku Kogyo Co., Ltd. spherical average particle size 3.3 μm)
Glass beads (UB-01MF Unitika Ltd. low alkali borosilicate glass)
Wollastonite (Wollastonite NYAD400 manufactured by NYCO)
[Curing agent]
Hexamethylenetetramine (S-4, manufactured by Mitsui Toatsu Co., Ltd.)
Slaked Lime Diazabicycloundecene
[Release agent]
Zinc stearate (SZ-P manufactured by Sakai Chemical Industry Co., Ltd.)
Carnauba wax
[Pigment]
Carbon Black The following tests were conducted using the phenol resin molding materials of Examples 1 to 7 and Comparative Examples 1 to 4.
(1) Molding Shrinkage A test piece for molding shrinkage measurement was produced by injection molding (molding temperature 165 ° C., curing time 70 seconds) according to JIS K6911. The molding shrinkage rate was measured according to JIS K6911.
(2) Dimensional change in moisture resistance The test piece (90 mmφ) for measuring the mold shrinkage produced in (1) above was placed in a high-temperature and high-humidity tank of 40 ° C. × 90% for 250 hours, and the dimensional change rate relative to the initial dimensions was measured. .
(3) Linear expansion coefficient Using a target test piece-shaped mold (direct pressure molding), molding was performed under conditions of a mold temperature of 165 ° C., a pressure of 10 MPa, and a curing time of 180 seconds, and a test piece of φ5 mm × 15 mm Was made. Using this test piece, the linear expansion coefficient was measured by the TMA method.
(5) Glass transition temperature The glass transition temperature was measured by the TMA method.

試験結果を表1に示す。   The test results are shown in Table 1.

Figure 2009102596
Figure 2009102596

表1より、充填材として2種類の特定の平均粒径をもつ溶融シリカをフェノール樹脂に配合した実施例1〜7では、充填材としてガラス繊維等を用いた比較例1,3と比べて成形収縮率が低減し、特に異方性が大幅に低減した。さらに耐湿寸法変化と線膨張係数も低減した。また、充填材としてガラスビーズ等を用いた比較例2と比べて成形収縮率が大幅に低減し、さらに耐湿寸法変化と線膨張係数も低減した。また、樹脂材としてエポキシ樹脂を配合した比較例4と比べてガラス転移温度は大幅に高く、高い耐熱性を有していた。   From Table 1, in Examples 1 to 7 in which fused silica having two kinds of specific average particle diameters as a filler is blended with a phenol resin, molding is performed as compared with Comparative Examples 1 and 3 using glass fibers as a filler. Shrinkage was reduced, and in particular, anisotropy was greatly reduced. Furthermore, the change in moisture resistance and the coefficient of linear expansion were also reduced. In addition, the molding shrinkage rate was significantly reduced as compared with Comparative Example 2 using glass beads as the filler, and the moisture resistance dimensional change and the linear expansion coefficient were also reduced. Moreover, compared with the comparative example 4 which mix | blended the epoxy resin as a resin material, the glass transition temperature was significantly high and it had high heat resistance.

Claims (4)

フェノール樹脂に充填材を配合したフェノール樹脂成形材料において、全体量に対しての配合割合として、フェノール樹脂:8〜20質量%、充填材としての溶融シリカ:78〜90質量%の範囲内とし、溶融シリカは、次の両者の合計量100質量%において、
(A)平均粒径20〜30μmの範囲内のものが85〜95質量%、
(B)平均粒径0.5〜5μmの範囲内のものが5〜15質量%、
の割合とされていることを特徴とするフェノール樹脂成形材料。
In the phenol resin molding material in which a filler is blended with a phenol resin, the blend ratio with respect to the total amount is within a range of phenol resin: 8 to 20% by mass, fused silica as a filler: 78 to 90% by mass, In the fused silica, the total amount of both of the following is 100% by mass,
(A) 85-95 mass% of the thing in the range of 20-30 micrometers of average particle diameters,
(B) 5-15% by mass of an average particle size in the range of 0.5-5 μm,
A phenolic resin molding material characterized in that
フェノール樹脂の配合割合は、10〜18質量%の範囲内であることを特徴とする請求項1に記載のフェノール樹脂成形材料。   2. The phenol resin molding material according to claim 1, wherein a blending ratio of the phenol resin is within a range of 10 to 18% by mass. フェノール樹脂の配合割合は、ノボラック型フェノール樹脂(P1)とレゾール型フェノール樹脂(P2)とからなり、その質量比(P1/P2)が、0.1〜15の範囲内であることを特徴とする請求項1または2に記載のフェノール樹脂成形材料。   The blending ratio of the phenol resin is composed of a novolac type phenol resin (P1) and a resol type phenol resin (P2), and the mass ratio (P1 / P2) is in the range of 0.1 to 15. The phenolic resin molding material according to claim 1 or 2. 請求項1ないし3いずれか一項に記載のフェノール樹脂成形材料が加熱加圧成形されたものであることを特徴とするとするフェノール樹脂成形品。   A phenolic resin molded product, wherein the phenolic resin molding material according to any one of claims 1 to 3 is heat-pressed.
JP2007278189A 2007-10-25 2007-10-25 Phenolic resin molding materials and molded products using the same Active JP5356669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278189A JP5356669B2 (en) 2007-10-25 2007-10-25 Phenolic resin molding materials and molded products using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278189A JP5356669B2 (en) 2007-10-25 2007-10-25 Phenolic resin molding materials and molded products using the same

Publications (2)

Publication Number Publication Date
JP2009102596A true JP2009102596A (en) 2009-05-14
JP5356669B2 JP5356669B2 (en) 2013-12-04

Family

ID=40704607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278189A Active JP5356669B2 (en) 2007-10-25 2007-10-25 Phenolic resin molding materials and molded products using the same

Country Status (1)

Country Link
JP (1) JP5356669B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173970A (en) * 2010-02-23 2011-09-08 Panasonic Electric Works Co Ltd Phenolic resin molding material and molding using the same
JP2020070393A (en) * 2018-11-01 2020-05-07 群栄化学工業株式会社 Resin composition, and rotor core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239321A (en) * 1992-02-28 1993-09-17 Toshiba Chem Corp Epoxy resin composition and semiconductor-sealing arrangement
JPH06200125A (en) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd Low-pressure transfer molding material for semiconductor sealing
JPH07228755A (en) * 1994-02-18 1995-08-29 Dainippon Ink & Chem Inc Resin composition for sealing electronic part
JP2000226497A (en) * 1999-02-03 2000-08-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003003074A (en) * 2001-06-20 2003-01-08 Mitsui Chemicals Inc Silica-containing resin composition and its precision molding
JP2005029624A (en) * 2003-07-08 2005-02-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006143784A (en) * 2004-11-16 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
WO2007108437A1 (en) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder and use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239321A (en) * 1992-02-28 1993-09-17 Toshiba Chem Corp Epoxy resin composition and semiconductor-sealing arrangement
JPH06200125A (en) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd Low-pressure transfer molding material for semiconductor sealing
JPH07228755A (en) * 1994-02-18 1995-08-29 Dainippon Ink & Chem Inc Resin composition for sealing electronic part
JP2000226497A (en) * 1999-02-03 2000-08-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003003074A (en) * 2001-06-20 2003-01-08 Mitsui Chemicals Inc Silica-containing resin composition and its precision molding
JP2005029624A (en) * 2003-07-08 2005-02-03 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006143784A (en) * 2004-11-16 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006249343A (en) * 2005-03-14 2006-09-21 Mitsui Chemicals Inc Epoxy resin composition and package for housing semiconductor element
WO2007108437A1 (en) * 2006-03-17 2007-09-27 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173970A (en) * 2010-02-23 2011-09-08 Panasonic Electric Works Co Ltd Phenolic resin molding material and molding using the same
JP2020070393A (en) * 2018-11-01 2020-05-07 群栄化学工業株式会社 Resin composition, and rotor core
JP7117218B2 (en) 2018-11-01 2022-08-12 群栄化学工業株式会社 ROTOR CORE MAGNET FIXING RESIN COMPOSITION AND ROTOR CORE

Also Published As

Publication number Publication date
JP5356669B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5696304B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP5887510B2 (en) Phenolic resin molding materials and molded products using the same
WO2011052127A1 (en) Phenol resin molding material and phenol resin molded article
JP5356669B2 (en) Phenolic resin molding materials and molded products using the same
JP5551915B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP2016014121A (en) Epoxy resin composition for injection molding and sensor component
JP5504786B2 (en) Phenolic resin molding material
JP5416717B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
JP2009102595A (en) Phenolic resin molding material and its molded article
JP5874017B2 (en) Phenolic resin molding materials and molded products using the same
JP5395330B2 (en) Phenolic resin molding materials and molded products
JP5292673B2 (en) Resin molding materials and thin molded products
JP2009120814A (en) Resin composition
JP7205156B2 (en) Sealing resin composition and in-vehicle electronic control device using the same
JP2005281362A (en) Epoxy resin molding material, thin-wall molding molded from the material, and method for producing the molding
JP2007077325A (en) Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material
JP2005281364A (en) Phenolic resin molding material
JP4432408B2 (en) Phenol resin molding material and sealing plate for electrolytic capacitor sealing plate
JPH09181226A (en) Resin composition for ball-grid-array
JP2009035661A (en) Phenol resin composition for friction material, its manufacturing method, and friction material
JP2023131425A (en) Thermosetting resin composition, resin-metal composite, electric component and member for housing
JP5487533B2 (en) Phenol resin composition for friction material, method for producing the same, and friction material
CN114437511A (en) Epoxy resin composition and application thereof, epoxy resin molding material and preparation method and application thereof
JP2005314484A (en) Thin-gage molded product and its manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5356669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150