JP2005029624A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2005029624A
JP2005029624A JP2003193903A JP2003193903A JP2005029624A JP 2005029624 A JP2005029624 A JP 2005029624A JP 2003193903 A JP2003193903 A JP 2003193903A JP 2003193903 A JP2003193903 A JP 2003193903A JP 2005029624 A JP2005029624 A JP 2005029624A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
spherical silica
fused spherical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193903A
Other languages
Japanese (ja)
Inventor
Yuko Oishi
悠子 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003193903A priority Critical patent/JP2005029624A/en
Publication of JP2005029624A publication Critical patent/JP2005029624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing an area mounting type semiconductor which reduces the warpage after molding and after soldering treatment and has excellent properties in reliability after the soldering treatment. <P>SOLUTION: The epoxy resin composition for sealing an area mounting type semiconductor has (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, and (D) fused spherical silica as essential components, and this epoxy resin composition comprises 85-95 wt.% fused spherical silica in the entire epoxy resin composition. The median diameter of the fused spherical silica is 20 μm to 40 μm, and the compounding amount of particles having a particle diameter of <2 μm in the fused spherical silica is ≤20 wt.%, and the specific surface area of the fused spherical silica is 1 m<SP>2</SP>/g to 3 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置に関するものである。例えば、プリント配線板や金属リードフレームの片面に半導体素子を搭載し、その搭載面側の実質的に片面のみを樹脂封止されたいわゆるエリア実装型半導体装置に好適に用いられる。
【0002】
【従来の技術】
近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、新規にエリア実装型半導体装置が開発され、従来構造の半導体装置から移行し始めている。エリア実装型半導体装置としては、BGA(ボールグリッドアレイ)或いは更に小型化を追求したCSP(チップスケールパッケージ)等が代表的であるが、これらは従来QFP、SOP等に代表される表面実装型半導体装置では限界に近づいている多ピン化・高速化への要求に対応するために開発されたものである。構造としては、BT樹脂/銅箔回路基板(ビスマレイミド・トリアジン樹脂/ガラスクロス基板)に代表される硬質回路基板或いはポリイミド樹脂フィルム/銅箔回路基板に代表されるフレキシブル回路基板の片面上に半導体素子を搭載し、その半導体素子搭載面、即ち基板の片面のみがエポキシ樹脂組成物等で成形・封止されている。また基板の半導体素子搭載面の反対面には半田ボールを2次元的に並列して形成し、半導体装置を実装する回路基板との接合を行う特徴を有している。更に半導体素子を搭載する基板としては、上記の有機回路基板以外にもリードフレーム等の金属基板を用いる構造も開発されている。
【0003】
これらエリア実装型半導体装置の構造は、基板の半導体素子搭載面のみをエポキシ樹脂組成物で封止し、半田ボール形成面側は封止しないという片面封止の形態をとっている。リードフレーム等の金属基板等では、半田ボール形成面でも数十μm程度の封止樹脂層が存在することもあるが、半導体素子搭載面では数百μmから数mm程度の封止樹脂層が形成されるため、実質的に片面封止となっている。このため有機基板や金属基板とエポキシ樹脂組成物の硬化物との間での熱膨張・熱収縮の不整合、或いはエポキシ樹脂組成物の成形硬化時の硬化収縮による影響で、これらの半導体装置では成形直後から反りが発生しやすい。更にこれらの半導体装置を実装する回路基板上に半田接合を行う場合、200℃以上の加熱工程を経るが、この際に半導体装置の反りが発生し、多数の半田ボールが平坦とならず、半導体装置を実装する回路基板から浮き上がってしまい、電気的接合の信頼性が低下する問題も起こる。
【0004】
基板上の実質的に片面のみをエポキシ樹脂組成物で封止した半導体装置において、反りを低減するには、基板の熱膨張係数とエポキシ樹脂組成物の硬化物の熱膨張係数とを近づけること、及びエポキシ樹脂組成物の成形硬化時の硬化収縮を小さくすることの二つの方法が重要である。基板としては、有機基板ではBT樹脂やポリイミド樹脂のような高いガラス転移温度(以下、Tgという)を有する樹脂が広く用いられており、これらはエポキシ樹脂組成物の成形温度である170℃近辺よりも高いTgを有する。従って成形温度から室温までの冷却過程では有機基板のα1の領域のみで収縮する。よってエポキシ樹脂組成物の硬化物も、Tgが高く且つα1が有機基板と同じで、更に成形硬化時の硬化収縮がゼロとなれば、反りはほぼゼロとなると考えられる。このため多官能型エポキシ樹脂と多官能型フェノール樹脂との組み合わせによりTgを高くし、無機充填材の配合量でα1を合わせる手法が既に提案されている。
【0005】
また赤外線リフロー、ベーパーフェイズソルダリング、半田浸漬等の手段での半田処理による半田接合を行う場合、エポキシ樹脂組成物の硬化物並びに有機基板からの吸湿により、半導体装置内部に存在する水分が高温で急激に気化することによる応力で、半導体装置にクラックが発生したり、有機基板の半導体素子搭載面とエポキシ樹脂組成物の硬化物との界面で剥離が発生したりすることもあり、エポキシ樹脂組成物の低応力化・低吸湿化とともに、有機基板との接着性も求められる。
【0006】
更に有機基板とエポキシ樹脂組成物の硬化物の熱膨張の不整合により、信頼性テストの代表例である温度サイクル試験でも、有機基板/エポキシ樹脂組成物の硬化物との界面の剥離やクラックが発生する。従来のQFPやSOP等の表面実装型半導体装置では、半田実装時のクラックや各素材との界面での剥離の防止のために、ビフェニル型エポキシ樹脂に代表されるような結晶性エポキシ樹脂と可撓性骨格を有するフェノール樹脂とを組み合わせて用い、且つ無機充填材の配合量を増加することにより、低Tg化と低吸湿化を図る対策がとられてきた(例えば、特許文献1参照。)。しかし、この手法では、片面封止の半導体装置における反りの問題は解決できないのが現状であった。
【0007】
【特許文献1】
特開平07−242731号公報(第11〜14頁)
【0008】
【発明が解決しようとする課題】
本発明は、成形後や半田処理後の反りが小さく、半田処理後の信頼性に優れた特性を有するエリア実装型半導体封止用に適したエポキシ樹脂組成物及びこれを用いた半導体装置を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、
[1] (A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)溶融球状シリカを必須成分とするエポキシ樹脂組成物であって、該溶融球状シリカが全エポキシ樹脂組成物中に85〜95重量%配合されており、該溶融球状シリカのメディアン径が20μm以上、40μm以下であり、該溶融球状シリカ中における粒径2μm未満の粒子の配合割合が20重量%以下であり、該溶融球状シリカの比表面積が1m/g以上、3m/g以下であることを特徴とするエリア実装型半導体封止用エポキシ樹脂組成物、
[2] 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが請求項1記載のエポキシ樹脂組成物を用いて封止されてなることを特徴とするエリア実装半導体装置、
である。
【0010】
【発明の実施の形態】
本発明は、主要な構成として、メディアン径が20μm以上、40μm以下であり、粒径2μm未満の粒子の割合が20重量%以下であり、比表面積が1m/g以上、3m/g以下である溶融球状シリカを全エポキシ樹脂組成物中に85〜95重量%配合することにより、成形後や半田処理後の反りが小さく、半田処理後の信頼性に優れた特性を有するエリア実装型半導体封止用に適したエポキシ樹脂組成物が得られるものである。
以下、本発明について詳細に説明する。
【0011】
本発明で用いるエポキシ樹脂としては、特に限定するものではないが、例えばビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等が挙げられる。これらは1種類を単独で用いても2種類以上を併用してもよい。
これらの内では、特に、溶融粘度が低く、無機充填材を高充填化することができ、ひいてはエポキシ樹脂組成物の低吸湿化が可能となり、耐半田クラック性を向上できる結晶性のエポキシ樹脂が好ましい。
【0012】
本発明で用いるフェノール樹脂としては、特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられる。これらは1種類を単独で用いても2種類以上を併用してもよい。
【0013】
本発明に用いられる硬化促進剤としては、前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒となり得るものを指し、例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン化合物、トリフェニルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート塩等の有機リン系化合物、2−メチルイミダゾール等のイミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらは1種類を単独で用いても2種類以上を併用してもよい。
【0014】
本発明で用いられる溶融球状シリカの含有量は、全エポキシ樹脂組成物中に85〜95重量%にする必要がある。下限値を下回ると、成形硬化時の硬化収縮及び成形温度から室温までの熱収縮が増大するため反りが大きくなり、また吸湿率が増大するため耐半田クラック性が低下するので好ましくない。上限値を越えると、流動性が低下し、成形時に充填不良等が生じたり、高粘度化による半導体装置内の金線変形等の不都合が生じたりするおそれがあるので好ましくない。
また、本発明で用いられる溶融球状シリカは、比表面積が1m/g以上、3m/g以下であり、メディアン径が20μm以上、40μm以下であり、粒径2μm未満の粒子の割合が20重量%以下である。
本発明において溶融球状シリカの比表面積は、JIS R 1626−1996 ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法に準じて、窒素を吸着質として用い、BET1点法によって測定した値である。また溶融球状シリカのメディアン径及び粒度分布は、JIS M8100 粉塊混合物−サンプリング方法通則に準じて溶融球状シリカを採取し、JIS R 1622−1995 ファインセラミックス原料粒子径分布測定のための試料調整通則に準じて溶融球状シリカを測定用試料として調整し、JIS R 1629−1997 ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法に準じて(株)島津製作所製のレーザー回折式粒度分布測定装置SALD−7000(レーザー波長:405nm)を用いて、溶媒に水を用い溶融球状シリカの屈折率が実数部1.45、虚数部0.00の条件のもと測定した値である。
【0015】
本発明者が鋭意検討を行った結果、比表面積が1m/g以上、3m/g以下であり、メディアン径が20μm以上、40μm以下であり、粒径2μm未満の粒子の割合が20重量%以下である球状シリカを配合することで、流動性が良好で、且つ成形後や半田処理後の反りが小さい特性を有するエポキシ樹脂組成物が得られることを見いだし、本発明をなすに至った。本発明において、溶融シリカの比表面積が下限値を下回ると、流動性、充填性が低下するため好ましくない。また、溶融シリカの比表面積が上限値を越えると、増粘し、流動性が低下するため好ましくなく、加えて、成型時の収縮率が増大し、反り特性が低下するので好ましくない。また、本発明における溶融球状シリカのメディアン径が下限値を下回ると、増粘し、流動性が低下するので好ましくない。また、溶融球状シリカのメディアン径が上限値を超えると、流動性、充填性が低下するため好ましくない。また、粒径2μm未満の粒子が上限値を超えると成型時の収縮率が増大し、反り特性が低下するので好ましくない。
【0016】
本発明の溶融球状シリカは、予め十分に混合しておくことが好ましい。また必要に応じて溶融球状シリカをカップリング剤やエポキシ樹脂或いはフェノール樹脂で予め処理して用いてもよく、処理の方法としては、溶剤を用いて混合した後に溶媒を除去する方法や直接溶融球状シリカに添加し、混合機を用いて処理する方法等がある。
【0017】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他、必要に応じて無機イオン交換体、カップリング剤、カーボンブラックに代表される着色剤、臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、シリコーンオイル、ゴム等の低応力成分、酸化防止剤等の各種添加剤、溶融破砕シリカ、結晶シリカ、アルミナ、水酸化アルミニウム、タルク等の無機充填材が適宜配合可能である。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等を、ミキサー等を用いて常温混合し、ロール、ニーダー、押出機等の混練機で加熱混練、冷却後粉砕して得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。その他の半導体装置の製造方法は、公知の方法を用いることができる。
【0018】
【実施例】
以下に、実施例を挙げて本発明を説明するが、これらの実施例に限定されるものではない。配合割合は重量%とする。
使用した溶融球状シリカの粒度分布及び比表面積を表1に示す。これらの溶融球状シリカの粒度分布は、(株)島津製作所・製レーザー回折式粒度分布測定装置SALD−7000(レーザー波長:405nm)を用いて測定した。また、比表面積は、ユアサアイオニクス(株)・製モノソーブMS−17を用いて測定した。
【0019】
【表1】

Figure 2005029624
【0020】
Figure 2005029624
を常温でミキサーを用いて混合し、二軸混練機を用いて吐出物温度が100℃となるように、混練機回転数120rpmの条件で混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表2に示す。
【0021】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で測定した。単位はcm。
パッケージ反り量:トランスファー成形機を用いて、金型温度180℃、注入圧力9.8MPa、硬化時間90秒の条件で352pBGA(パッケージサイズ32mm×32mm×厚さ1.2mm、半導体素子のサイズ10mm×10mm)を成形し、ポストキュアとして175℃で、2時間加熱処理した。室温まで冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変位を測定し、変位差の最も大きい値を半田処理前のパッケージ反り量とした。次いで、測定後のパッケージを、85℃、相対湿度60%の環境下で168時間加湿処理し、その後260℃の半田槽に10秒間浸漬したのち、上記と同様にして半田処理後のパッケージ反り量を測定した。単位はμm。
耐半田ストレス性:前記のパッケージ反り量と同様にして352pBGAを成形し、ポストキュアとして175℃で、2時間処理したパッケージ10個を85℃、相対湿度60%の環境下で168時間加湿処理し、その後260℃の半田槽に10秒間浸漬した。処理後の内部クラックの有無を超音波探傷機で観察し、不良パッケージの個数を数えた。不良パッケージの個数がn個であるときn/10と表示する。
【0022】
実施例2〜4、比較例1〜6
表2の配合に従い、実施例1と同様に二軸混練機を用い、吐出物温度が100℃となるよう混練機回転数を調整して混練を行ない、エポキシ樹脂組成物を得た。得られた樹脂組成物について、実施例1と同様の評価を行った。結果を表2に示す。
実施例2では溶融球状シリカB(メディアン径39.0μm、比表面積2.0m/g、粒径2.0μm以下が18.3重量%)を用いた。
比較例3では溶融球状シリカC(メディアン径46.6μm、比表面積1.3m/g、粒径2.0μm以下が4.3重量%)を用いた。
比較例4では溶融球状シリカD(メディアン径23.4μm、比表面積3.6m/g、粒径2.0μm以下が23.8重量%)を用いた。
比較例5では溶融球状シリカE(メディアン径18.8μm、比表面積4.0m/g、粒径2.0μm以下が26.2重量%)を用いた。
比較例6では溶融球状シリカF(メディアン径26.6μm、比表面積2.9m/g、粒径2.0μm以下が24.3重量%)を用いた。
実施例4及び比較例3、4、5では、エポキシ樹脂としてオルソクレゾールノボラック型エポキシ樹脂(軟化点62℃、エポキシ当量210)を用いた。
【0023】
【表2】
Figure 2005029624
【0024】
【発明の効果】
本発明によれば、成形後や半田処理後の反りが小さく、半田処理後の信頼性に優れた特性を有するエリア実装型半導体封止用に適したエポキシ樹脂組成物が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device using the same. For example, it is suitably used for a so-called area mounting type semiconductor device in which a semiconductor element is mounted on one side of a printed wiring board or a metal lead frame, and only one side on the mounting side is resin-sealed.
[0002]
[Prior art]
In recent years, electronic devices have become smaller, lighter, and higher in performance, and semiconductor elements have been increasingly integrated and the surface mounting of semiconductor devices has been promoted. Has been developed and is beginning to migrate from semiconductor devices having a conventional structure. Typical examples of area-mounted semiconductor devices include BGA (ball grid array) or CSP (chip scale package) in pursuit of further miniaturization, but these are conventionally surface-mounted semiconductors typified by QFP, SOP, etc. The device was developed to meet the demand for higher pin count and higher speed, which are approaching the limit. The structure is a semiconductor on one side of a rigid circuit board represented by BT resin / copper foil circuit board (bismaleimide / triazine resin / glass cloth board) or a flexible circuit board represented by polyimide resin film / copper foil circuit board. An element is mounted, and only the semiconductor element mounting surface, that is, one surface of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, solder balls are two-dimensionally formed in parallel on the surface opposite to the semiconductor element mounting surface of the substrate, and are joined to a circuit substrate on which the semiconductor device is mounted. Further, as a substrate on which a semiconductor element is mounted, a structure using a metal substrate such as a lead frame in addition to the organic circuit substrate has been developed.
[0003]
These area-mounted semiconductor devices have a single-side sealing configuration in which only the semiconductor element mounting surface of the substrate is sealed with an epoxy resin composition and the solder ball forming surface side is not sealed. A metal substrate such as a lead frame may have a sealing resin layer of about several tens of μm on the solder ball forming surface, but a sealing resin layer of about several hundred μm to several mm is formed on the semiconductor element mounting surface. Therefore, it is substantially single-sided sealed. For this reason, in these semiconductor devices, due to mismatch of thermal expansion / shrinkage between the organic substrate or metal substrate and the cured product of the epoxy resin composition, or the influence of cure shrinkage at the time of molding and curing of the epoxy resin composition, Warpage is likely to occur immediately after molding. Further, when solder bonding is performed on a circuit board on which these semiconductor devices are mounted, a heating process of 200 ° C. or more is performed, but at this time, the warp of the semiconductor device occurs, and a large number of solder balls are not flattened. A problem arises that the reliability of the electrical connection is lowered due to floating from the circuit board on which the device is mounted.
[0004]
In a semiconductor device in which only one surface on a substrate is sealed with an epoxy resin composition, in order to reduce warpage, the thermal expansion coefficient of the substrate and the thermal expansion coefficient of a cured product of the epoxy resin composition are brought close to each other. Two methods of reducing the shrinkage of curing at the time of molding and curing the epoxy resin composition are important. As the substrate, a resin having a high glass transition temperature (hereinafter referred to as Tg) such as BT resin and polyimide resin is widely used in the organic substrate, and these are from around 170 ° C. which is the molding temperature of the epoxy resin composition. Also has a high Tg. Accordingly, in the cooling process from the molding temperature to room temperature, the shrinkage occurs only in the α1 region of the organic substrate. Therefore, the cured product of the epoxy resin composition also has a high Tg, α1 is the same as that of the organic substrate, and if the curing shrinkage at the time of molding and curing is zero, the warpage is considered to be almost zero. For this reason, a technique for increasing Tg by combining a polyfunctional epoxy resin and a polyfunctional phenolic resin and adjusting α1 with the blending amount of the inorganic filler has already been proposed.
[0005]
In addition, when solder joining is performed by means of soldering using means such as infrared reflow, vapor phase soldering, or solder dipping, moisture present in the semiconductor device is high due to moisture absorption from the cured product of the epoxy resin composition and the organic substrate. Due to stress caused by rapid vaporization, cracks may occur in the semiconductor device, and peeling may occur at the interface between the semiconductor element mounting surface of the organic substrate and the cured product of the epoxy resin composition. Along with lowering stress and moisture absorption of objects, adhesion to organic substrates is also required.
[0006]
Furthermore, due to the mismatch in thermal expansion between the organic substrate and the cured epoxy resin composition, even in the temperature cycle test, which is a typical example of the reliability test, peeling or cracks at the interface between the organic substrate and the cured epoxy resin composition may occur. appear. In conventional surface mount semiconductor devices such as QFP and SOP, it is possible to use a crystalline epoxy resin typified by biphenyl type epoxy resin in order to prevent cracks during solder mounting and peeling at the interface with each material. Measures have been taken to achieve low Tg and low moisture absorption by using in combination with a phenol resin having a flexible skeleton and increasing the blending amount of the inorganic filler (see, for example, Patent Document 1). . However, this method cannot solve the problem of warping in a single-side sealed semiconductor device.
[0007]
[Patent Document 1]
JP 07-242731 A (pages 11-14)
[0008]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition suitable for area-mounting type semiconductor encapsulation and a semiconductor device using the same, which has small warpage after molding or after soldering and has excellent reliability after soldering. To do.
[0009]
[Means for Solving the Problems]
The present invention
[1] An epoxy resin composition comprising (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) fused spherical silica as essential components, wherein the fused spherical silica is a total epoxy resin composition. 85 to 95% by weight in the product, the median diameter of the fused spherical silica is 20 μm or more and 40 μm or less, and the blending ratio of particles having a particle diameter of less than 2 μm in the fused spherical silica is 20% by weight or less. An area-mounting type epoxy resin composition for semiconductor encapsulation, wherein the fused spherical silica has a specific surface area of 1 m 2 / g or more and 3 m 2 / g or less,
[2] A semiconductor element is mounted on one side of a substrate, and substantially only one side of the substrate side on which the semiconductor element is mounted is sealed using the epoxy resin composition according to claim 1. An area-mounted semiconductor device,
It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention mainly has a median diameter of 20 μm or more and 40 μm or less, a ratio of particles having a particle diameter of less than 2 μm is 20% by weight or less, and a specific surface area of 1 m 2 / g or more and 3 m 2 / g or less. Area-mounting type semiconductor having excellent characteristics after soldering and having small warpage after molding or soldering treatment, by blending 85 to 95% by weight of fused spherical silica which is An epoxy resin composition suitable for sealing can be obtained.
Hereinafter, the present invention will be described in detail.
[0011]
Although it does not specifically limit as an epoxy resin used by this invention, For example, a biphenyl type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a stilbene type epoxy resin, a phenol novolak type epoxy resin, an ortho cresol novolak type Examples thereof include epoxy resins, naphthol novolac type epoxy resins, triphenolmethane type epoxy resins, dicyclopentadiene modified phenol type epoxy resins, terpene modified phenol type epoxy resins, hydroquinone type epoxy resins and the like. These may be used alone or in combination of two or more.
Among these, in particular, a crystalline epoxy resin having a low melt viscosity and capable of highly filling an inorganic filler, which can lower the moisture absorption of the epoxy resin composition, and can improve solder crack resistance. preferable.
[0012]
Although it does not specifically limit as a phenol resin used by this invention, For example, a phenol novolak resin, a cresol novolak resin, a phenol aralkyl resin, a naphthol aralkyl resin, a triphenol methane resin, a terpene modified phenol resin, a dicyclopentadiene modified phenol resin Etc. These may be used alone or in combination of two or more.
[0013]
The curing accelerator used in the present invention is one that can be a catalyst for the crosslinking reaction between the epoxy resin and the phenol resin. For example, diazabicyclo such as 1,8-diazabicyclo (5,4,0) undecene-7. Alkenes and their derivatives, amine compounds such as tributylamine and benzyldimethylamine, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate salts, imidazole compounds such as 2-methylimidazole, etc. It is not limited to. These may be used alone or in combination of two or more.
[0014]
The content of the fused spherical silica used in the present invention needs to be 85 to 95% by weight in the total epoxy resin composition. If the value is below the lower limit, the curing shrinkage at the time of molding hardening and the thermal shrinkage from the molding temperature to room temperature increase, so that the warpage increases, and the moisture absorption rate increases, so the solder crack resistance decreases, which is not preferable. Exceeding the upper limit is not preferable because the fluidity is lowered, and there is a risk of incomplete filling during molding or inconvenience such as deformation of the gold wire in the semiconductor device due to high viscosity.
The fused spherical silica used in the present invention has a specific surface area of 1 m 2 / g or more and 3 m 2 / g or less, a median diameter of 20 μm or more and 40 μm or less, and a ratio of particles having a particle size of less than 2 μm is 20%. % By weight or less.
In the present invention, the specific surface area of the fused spherical silica is a value measured by the BET one-point method using nitrogen as an adsorbate according to the method for measuring the specific surface area by the gas adsorption BET method of JIS R 1626-1996 fine ceramic powder. is there. The median diameter and particle size distribution of fused spherical silica were determined by collecting fused spherical silica in accordance with JIS M8100 powder lump mixture-sampling method general rules and JIS R 1622-1995 sample preparation general rules for fine ceramic raw material particle size distribution measurement. In accordance with JIS R 1629-1997 fine ceramic raw material particle size distribution measurement method by laser diffraction / scattering method, a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation This is a value measured using SALD-7000 (laser wavelength: 405 nm) under the conditions that the refractive index of fused spherical silica is 1.45 for the real part and 0.00 for the imaginary part using water as the solvent.
[0015]
As a result of intensive studies by the inventor, the specific surface area is 1 m 2 / g or more and 3 m 2 / g or less, the median diameter is 20 μm or more and 40 μm or less, and the proportion of particles having a particle size of less than 2 μm is 20 wt. %, It was found that an epoxy resin composition having good fluidity and small warpage after molding or soldering treatment can be obtained by blending with spherical silica of less than or equal to%. . In the present invention, if the specific surface area of the fused silica is less than the lower limit, the fluidity and filling properties are lowered, which is not preferable. On the other hand, if the specific surface area of the fused silica exceeds the upper limit, the viscosity is increased and the fluidity is lowered, which is not preferable. In addition, the shrinkage rate at the time of molding is increased, and the warp characteristics are lowered. Moreover, when the median diameter of the fused spherical silica in the present invention is less than the lower limit, the viscosity increases and the fluidity is lowered, which is not preferable. In addition, if the median diameter of the fused spherical silica exceeds the upper limit value, the fluidity and filling properties are lowered, which is not preferable. On the other hand, if the particle size is less than 2 μm, the shrinkage rate at the time of molding increases and the warp characteristics deteriorate, which is not preferable.
[0016]
The fused spherical silica of the present invention is preferably mixed well in advance. Further, if necessary, fused spherical silica may be used after pre-treatment with a coupling agent, epoxy resin or phenol resin, and as a treatment method, a method of removing the solvent after mixing with a solvent or a direct fused spherical silica may be used. There is a method of adding to silica and treating using a mixer.
[0017]
In addition to the components (A) to (D), the epoxy resin composition of the present invention includes an inorganic ion exchanger, a coupling agent, a colorant represented by carbon black, a brominated epoxy resin, antimony oxide, Flame retardants such as phosphorus compounds, low stress components such as silicone oil and rubber, various additives such as antioxidants, inorganic fillers such as fused crushed silica, crystalline silica, alumina, aluminum hydroxide, talc can be blended as appropriate is there.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed at room temperature using a mixer or the like, heated and kneaded with a kneader such as a roll, kneader, or extruder, and cooled. Obtained by post-grinding.
In order to seal an electronic component such as a semiconductor element and manufacture a semiconductor device using the epoxy resin composition of the present invention, it can be cured by a conventional molding method such as transfer molding, compression molding, injection molding, etc. Good. As other semiconductor device manufacturing methods, known methods can be used.
[0018]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The blending ratio is weight%.
Table 1 shows the particle size distribution and specific surface area of the fused spherical silica used. The particle size distribution of these fused spherical silicas was measured using a laser diffraction particle size distribution analyzer SALD-7000 (laser wavelength: 405 nm) manufactured by Shimadzu Corporation. Moreover, the specific surface area was measured using Yuasa Ionics Co., Ltd. product monosorb MS-17.
[0019]
[Table 1]
Figure 2005029624
[0020]
Figure 2005029624
Are mixed at room temperature using a mixer, and are kneaded using a twin-screw kneader at a discharge speed of 100 ° C. so that the discharge temperature is 100 ° C., cooled and pulverized to obtain an epoxy resin composition. It was. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 2.
[0021]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed under conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. The unit is cm.
Package warpage amount: 352 pBGA (package size 32 mm × 32 mm × thickness 1.2 mm, semiconductor element size 10 mm × under conditions of mold temperature 180 ° C., injection pressure 9.8 MPa, curing time 90 seconds, using transfer molding machine 10 mm) and post-cure heat treatment at 175 ° C. for 2 hours. After cooling to room temperature, the displacement in the height direction was measured using a surface roughness meter in the diagonal direction from the gate of the package, and the largest value of the displacement difference was taken as the amount of package warpage before soldering. Next, the package after the measurement is humidified for 168 hours in an environment of 85 ° C. and a relative humidity of 60%, and then immersed in a solder bath at 260 ° C. for 10 seconds. Was measured. The unit is μm.
Resistance to solder stress: 352 pBGA was molded in the same manner as the package warpage described above, and 10 packages treated at 175 ° C. for 2 hours as post-cure were humidified for 168 hours in an environment of 85 ° C. and relative humidity 60%. Then, it was immersed in a solder bath at 260 ° C. for 10 seconds. The presence or absence of internal cracks after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 10 is displayed.
[0022]
Examples 2-4, Comparative Examples 1-6
According to the composition in Table 2, a biaxial kneader was used in the same manner as in Example 1, and kneading was carried out by adjusting the number of revolutions of the kneader so that the discharged product temperature was 100 ° C. to obtain an epoxy resin composition. About the obtained resin composition, evaluation similar to Example 1 was performed. The results are shown in Table 2.
In Example 2, fused spherical silica B (median diameter 39.0 μm, specific surface area 2.0 m 2 / g, particle size 2.0 μm or less is 18.3% by weight) was used.
In Comparative Example 3, fused spherical silica C (median diameter 46.6 μm, specific surface area 1.3 m 2 / g, particle size 2.0 μm or less is 4.3 wt%) was used.
In Comparative Example 4, fused spherical silica D (median diameter 23.4 μm, specific surface area 3.6 m 2 / g, particle size 2.0 μm or less is 23.8% by weight) was used.
In Comparative Example 5, fused spherical silica E (median diameter 18.8 μm, specific surface area 4.0 m 2 / g, particle size 2.0 μm or less is 26.2 wt%) was used.
In Comparative Example 6, fused spherical silica F (median diameter 26.6 μm, specific surface area 2.9 m 2 / g, particle size 2.0 μm or less is 24.3% by weight) was used.
In Example 4 and Comparative Examples 3, 4, and 5, an ortho-cresol novolac type epoxy resin (softening point 62 ° C., epoxy equivalent 210) was used as the epoxy resin.
[0023]
[Table 2]
Figure 2005029624
[0024]
【The invention's effect】
According to the present invention, it is possible to obtain an epoxy resin composition suitable for area-mounting type semiconductor encapsulation having a small warp after molding or after soldering and having excellent reliability after soldering.

Claims (2)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)溶融球状シリカを必須成分とするエポキシ樹脂組成物であって、該溶融球状シリカが全エポキシ樹脂組成物中に85〜95重量%配合されており、該溶融球状シリカのメディアン径が20μm以上、40μm以下であり、該溶融球状シリカ中における粒径2μm未満の粒子の配合割合が20重量%以下であり、該溶融球状シリカの比表面積が1m/g以上、3m/g以下であることを特徴とするエリア実装型半導体封止用エポキシ樹脂組成物。(A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, and (D) an epoxy resin composition containing fused spherical silica as essential components, wherein the fused spherical silica is contained in the entire epoxy resin composition. 85 to 95% by weight, the median diameter of the fused spherical silica is 20 μm or more and 40 μm or less, and the blending ratio of particles having a particle size of less than 2 μm in the fused spherical silica is 20% by weight or less, An epoxy resin composition for area-mounting semiconductor encapsulation, wherein the fused spherical silica has a specific surface area of 1 m 2 / g or more and 3 m 2 / g or less. 基板の片面に半導体素子が搭載され、この半導体素子が搭載された基板面側の実質的に片面のみが請求項1記載のエポキシ樹脂組成物を用いて封止されてなることを特徴とするエリア実装半導体装置。An area in which a semiconductor element is mounted on one surface of a substrate, and substantially only one surface on the substrate surface side on which the semiconductor element is mounted is sealed using the epoxy resin composition according to claim 1. Mounting semiconductor device.
JP2003193903A 2003-07-08 2003-07-08 Epoxy resin composition and semiconductor device Pending JP2005029624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193903A JP2005029624A (en) 2003-07-08 2003-07-08 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193903A JP2005029624A (en) 2003-07-08 2003-07-08 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2005029624A true JP2005029624A (en) 2005-02-03

Family

ID=34205240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193903A Pending JP2005029624A (en) 2003-07-08 2003-07-08 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2005029624A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102596A (en) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd Phenolic resin molding material and molded article using the same
JP2011523398A (en) * 2008-04-24 2011-08-11 スリーエム イノベイティブ プロパティズ カンパニー Proton conductive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102596A (en) * 2007-10-25 2009-05-14 Panasonic Electric Works Co Ltd Phenolic resin molding material and molded article using the same
JP2011523398A (en) * 2008-04-24 2011-08-11 スリーエム イノベイティブ プロパティズ カンパニー Proton conductive material

Similar Documents

Publication Publication Date Title
KR100663680B1 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP2006274184A (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP4770024B2 (en) Epoxy resin composition and semiconductor device
JP2005029624A (en) Epoxy resin composition and semiconductor device
JP3846854B2 (en) Epoxy resin composition and semiconductor device
JP4470264B2 (en) Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device
JP3932254B2 (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP4736406B2 (en) Epoxy resin composition and semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JP2006225464A (en) Epoxy resin composition and semiconductor device
JP5093977B2 (en) Area mounted semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP2002121356A (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP2001146511A (en) Epoxy resin composition and semiconductor device
JP2003155327A (en) Epoxy resin composition and semiconductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630