JP2009097076A - Method for recovering valuable material from metal sulfide containing noble metal - Google Patents
Method for recovering valuable material from metal sulfide containing noble metal Download PDFInfo
- Publication number
- JP2009097076A JP2009097076A JP2008146580A JP2008146580A JP2009097076A JP 2009097076 A JP2009097076 A JP 2009097076A JP 2008146580 A JP2008146580 A JP 2008146580A JP 2008146580 A JP2008146580 A JP 2008146580A JP 2009097076 A JP2009097076 A JP 2009097076A
- Authority
- JP
- Japan
- Prior art keywords
- leaching
- nickel
- copper
- metal
- noble metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、貴金属含有ニッケル-銅マット(Ni-Cuマット)からその主成分であるNi,Cuおよび貴金属を銅製錬工程で簡便に回収処理する方法に関するものであり、より詳しく述べるならば白金族金属を含むニッケル-銅マットを銅製錬工程で処理する際に前処理としてニッケルを常圧下で選択的に浸出して、銅及び貴金属を残渣に収率よく濃縮する有価物回収方法に関する。 The present invention relates to a method for easily recovering Ni, Cu and noble metals as main components from a noble metal-containing nickel-copper mat (Ni-Cu mat) in a copper smelting process. The present invention relates to a valuable material recovery method in which nickel is selectively leached under normal pressure as a pretreatment when a nickel-copper mat containing metal is processed in a copper smelting process, and copper and noble metals are concentrated in a high yield.
白金族元素資源の主要なものの一つとして、ニッケルに随伴する硫化鉱が知られている。
このタイプの鉱石は、銅やニッケルの硫化鉱として脈石から分離して金や白金族などの貴金属をベースメタルとともに分離した後、貴金属を濃縮して分離処理する。この処理工程では貴金属を含有する種々の中間品が発生する。特に重要なものは硫化ニッケルおよび硫化銅を主成分とする金属硫化物マットである。貴金属品位の高い鉱石を処理する場合、マットの脱硫条件を調節して貴金属濃度の高いメタル分を分離した後、貴金属を若干量含むニッケル-銅マットを分離する。このマットはニッケル原料として価値が高いので、ニッケル製錬工程に送り、易溶性のニッケルと難溶性の銅を浸出して貴金属は浸出残渣に濃縮して回収する。
As one of the main platinum group element resources, sulfide ore associated with nickel is known.
This type of ore is separated from the gangue as copper or nickel sulfide ore, and after separating the noble metal such as gold and platinum group together with the base metal, the noble metal is concentrated and separated. In this processing step, various intermediate products containing noble metals are generated. Of particular importance are metal sulfide mats based on nickel sulfide and copper sulfide. When processing ores with high precious metal grades, the desulfurization conditions of the mat are adjusted to separate the metal component having a high precious metal concentration, and then the nickel-copper mat containing a small amount of precious metal is separated. Since this mat has high value as a nickel raw material, it is sent to a nickel smelting process, and leached nickel and refractory copper are leached, and the precious metal is concentrated and recovered in the leaching residue.
ニッケル製錬工程では、ニッケル銅マットからのニッケルや銅の浸出には、十分な浸出率と反応速度が得られる処理系として、
(1)塩化物系の浸出液を使い、かつニッケル電解で生じる塩素ガスを浸出に利用する方法
、(2)硫酸系の浸出液を使い、オートクレーブで高温かつ酸素加圧下で浸出する方法、の二つが主に用いられる。
たとえば、前者の塩化物浸出に関しては、特許文献1において、コバルトを含むニッケル、銅硫化物マットを塩素ガスおよび酸素で酸化して大気圧下で110℃で浸出して処理する方法が述べられている。また、特許文献2においては、同じく大気圧下で塩素浸出したスラリーを、オートクレーブ中で110℃以上、pH4以下で処理して銅を硫化物として残渣に固定しニッケルを富化した液を回収する。
一方、硫酸加圧浸出は系としての溶解能力は塩化物溶液より劣るものの、条件を選び段階的に浸出することでニッケルを選択的に浸出し、ついで銅を対象とした浸出を行い、それぞれを主成分とした浸出液を別個に回収できる。たとえば、特許文献3では、ニッケル-銅硫化物マットを、第1浸出工程で圧力0.7kg/cm2(10psig, 0.07MPa)以上の酸素加圧下、約100℃以上の温度で酸性硫酸塩水溶液によりニッケルの大半を浸出し、第2浸出工程で約100℃以上の温度で圧力1.05kg/ cm2(15psig, 0.105MPa)で残る少量のニッケルと銅を浸出して得た硫酸溶液から銅を電解採取し後液を第1浸出工程に使用する処理方法が紹介されている。
以上の処理では、ニッケル-銅マットに含まれる貴金属は未反応の硫黄分などと共に浸出残渣に濃縮する。
これらの処理では、特に銅の浸出が進む浸出力の強い条件において微量のPGMが銅と共に液に溶解することが避けられない。このため貴金属を含むニッケル銅マット処理においては浸出液に浸出前原料を追加して溶出したPGMを回収するなどの工夫が必要となる。
There are two methods: (1) using a chloride-based leachate and using chlorine gas generated by nickel electrolysis for leaching; (2) using a sulfuric acid-based leachate and leaching at high temperature and oxygen pressure in an autoclave. Used mainly.
For example, regarding the former chloride leaching, Patent Document 1 describes a method in which nickel and copper sulfide mats containing cobalt are oxidized with chlorine gas and oxygen and leached at 110 ° C. under atmospheric pressure. Yes. Also, in Patent Document 2, a slurry leached with chlorine under atmospheric pressure is treated at 110 ° C. or higher and pH 4 or lower in an autoclave to fix copper as a sulfide and recover a nickel-enriched liquid. .
On the other hand, although the sulfuric acid pressure leaching is inferior to the chloride solution as the system, the nickel is selectively leached by leaching in stages by selecting the conditions, and then leaching is performed for copper. The leachate as the main component can be collected separately. For example, in Patent Document 3, a nickel-copper sulfide mat is subjected to an acidic sulfate aqueous solution at a temperature of about 100 ° C. or higher under an oxygen pressure of 0.7 kg / cm 2 (10 psig, 0.07 MPa) or higher in the first leaching process. Copper is electrolyzed from the sulfuric acid solution obtained by leaching most of nickel and leaching a small amount of nickel and copper remaining at a pressure of 1.05 kg / cm 2 (15 psig, 0.105 MPa) at a temperature of about 100 ° C or higher in the second leaching process. A treatment method that uses the collected liquid for the first leaching process is introduced.
In the above treatment, the noble metal contained in the nickel-copper mat is concentrated to the leaching residue together with unreacted sulfur.
In these treatments, it is inevitable that a small amount of PGM is dissolved in the liquid together with copper, particularly under conditions of strong immersion power in which copper leaching proceeds. For this reason, in nickel-copper mat processing including noble metals, it is necessary to devise measures such as collecting the eluted PGM by adding the raw material before leaching to the leaching solution.
一方、ニッケルを主要製品とせずに、金属銅を対象とする銅製錬工程でこうした貴金属含有マットを処理するには、形態の似た硫化銅からなる銅製錬工程のマットとともに転炉で処理するのが簡便である。転炉では貴金属含有マット中の成分のうちイオウはSOxとして除かれる。銅および貴金属は粗銅に分配し、後工程の電解工程で銅は電気銅として、貴金属は殿物として分離し回収することができる。なお、貴金属回収までの滞留時間が増加するが、ニッケル銅マットを、銅製錬工程の自溶炉に硫化鉱とともに投入して処理することもできる。 On the other hand, in order to treat such precious metal-containing mats in a copper smelting process for metallic copper without using nickel as the main product, it is processed in a converter together with a mat of copper smelting process made of copper sulfide of similar shape. Is simple. In the converter, sulfur is removed as SOx among the components in the noble metal-containing mat. Copper and noble metal are distributed to crude copper, and copper can be separated and recovered as electrolytic copper and noble metal as a porridge in a subsequent electrolysis step. In addition, although the residence time until noble metal collection | recovery increases, nickel copper mat | matte can also be thrown into a flash smelting furnace of a copper smelting process with a sulfide ore, and can be processed.
しかし、転炉処理ではニッケルの分離回収に問題がある。ニッケルは造カン期に相当量が酸化して鉄と共にスラグに移行するためニッケルの回収率は低下する。一方、粗銅に取り込まれたニッケルは電解精製で電解液に溶解して蓄積していく。電解液に蓄積したニッケルは電解液を浄液し濃縮することで最終的には硫酸ニッケルとして回収することができる。しかし、この場合電解液にニッケルが蓄積し濃度が増加するため電気銅の品位低下・電解液からのニッケル除去の負荷増加という問題が生じる。これらの問題は自溶炉に投入した場合も同様である。以上の問題があるため、銅製錬工程単独では、前記の貴金属含有ニッケル銅マットはスポット的に限定された量を処理することしかできず、かつ高価なニッケルを無駄にする点で商業性が乏しいことが課題となっていた。 However, there is a problem in the separation and recovery of nickel in the converter process. A considerable amount of nickel is oxidized during the can-making stage and moves to slag together with iron, so the nickel recovery rate decreases. On the other hand, nickel taken into the crude copper is dissolved and accumulated in the electrolytic solution by electrolytic purification. Nickel accumulated in the electrolytic solution can be finally recovered as nickel sulfate by purifying and concentrating the electrolytic solution. However, in this case, nickel accumulates in the electrolytic solution and the concentration increases, which causes problems such as a reduction in the quality of electrolytic copper and an increase in the load of removing nickel from the electrolytic solution. These problems are also the same when they are put into a flash furnace. Due to the above-mentioned problems, the copper smelting process alone can process only a limited amount of the above-mentioned noble metal-containing nickel-copper mat, and is not commercially viable in terms of wasting expensive nickel. It was an issue.
ニッケル硫化物は銅硫化物等に比べて反応性が高いため、オートクレーブを使わずに常圧で硫酸を用いてニッケルの一部を浸出することができる。
たとえば非特許文献1においては、硫酸加圧浸出の前処理として、一段目で濃度50g/Lの硫酸を使った常圧浸出でNi浸出率42%の結果を得ている。しかし、ニッケルの回収率は不十分であり、残渣に残るニッケルを完全に浸出するには後段で加圧浸出を使って銅と共に溶解する必要がある。これは、ニッケル銅マット中のニッケルの主要形態であるNi3S2が反応性の劣るNiSに変わること、Sの一部が単体イオウの形となってマット粒子の表面を被覆し中心部への反応進行を阻害することなどが原因と考えられる。
(非特許文献1)
Since nickel sulfide is more reactive than copper sulfide or the like, a portion of nickel can be leached using sulfuric acid at normal pressure without using an autoclave.
For example, in Non-Patent Document 1, as a pretreatment of sulfuric acid pressure leaching, the result of a 42% Ni leaching rate was obtained by atmospheric pressure leaching using sulfuric acid having a concentration of 50 g / L in the first stage. However, the recovery rate of nickel is insufficient, and in order to completely leach out the nickel remaining in the residue, it is necessary to dissolve it together with copper by using pressure leaching in the subsequent stage. This is because Ni3S2, which is the main form of nickel in the nickel-copper mat, is changed to NiS, which is inferior in reactivity, and a part of S forms a simple sulfur to cover the surface of the matte particle and the reaction proceeds to the center. It is thought that the cause is to inhibit.
(Non-Patent Document 1)
本発明は、オートクレーブや塩素ガスを使った電解槽や浸出装置などのニッケル製錬用の設備を使わずに、銅製錬工程の設備を単独で使って、貴金属含有ニッケル-銅マットを簡便に処理し高い収率で全ての有価物を回収するための処理方法、具体的には、オートクレーブを使わずに、常圧下の空気酸化条件での硫酸浸出により該マットからニッケルを選択的に浸出分離するとともに、浸出時の酸化還元電位を管理することで貴金属の浸出ロスを防ぎ貴金属の全量を残渣に濃縮してから銅製錬工程で処理するための適切な技術を提案するものである。 The present invention provides a simple treatment of precious metal-containing nickel-copper mats by using the equipment of the copper smelting process alone, without using nickel smelting equipment such as an autoclave, an electrolytic cell using chlorine gas, and a leaching device. A processing method for recovering all valuable materials with high yield, specifically, without using an autoclave, nickel is selectively leached and separated from the mat by sulfuric acid leaching under air oxidation conditions under normal pressure. At the same time, the present inventors propose an appropriate technique for controlling the oxidation-reduction potential at the time of leaching to prevent leaching loss of the precious metal and condense the total amount of the precious metal into a residue and then processing it in the copper smelting process.
すなわち本発明は、
(1)貴金属を含有するニッケル及び銅の硫化物を主成分とする金属硫化物マットを、ニッケルに対して2倍当量以上3倍当量以下の硫酸を使い大気圧下で空気酸化しながら、液の酸化還元電位が銅の浸出が進行する値以下の範囲でニッケルを選択浸出して分離し、浸出残渣に銅硫化物とともに貴金属を濃縮する貴金属含有金属硫化物からの有価物回収方法。
(2) 上記(1)において得た、当該浸出残渣を銅製錬工程の転炉およびまたは自溶炉に投入して貴金属を粗銅に移行し銅電解工程で回収する貴金属含有金属硫化物からの有価物回収方法。
(3)上記(1)又は(2)の何れかにおいて、マットからの浸出を液の酸化還元電位が+300mV(Ag-AgCl標準電極基準)以下の範囲で行うことを特徴とする、貴金属含有金属硫化物からの有価物回収方法。
(4)上記(1)から上記(3)の何れかにおいて、マットからの浸出を60℃以上、好ましくは80℃以上で行う貴金属含有金属硫化物からの有価物回収方法。
(5)上記(1)から上記(4)の何れかにおいて、浸出後のマット浸出液のニッケル濃度を45g/L以下の範囲となるよう元液組成とパルプ濃度を選定して浸出する貴金属含有金属硫化物からの有価物回収方法。
である。
That is, the present invention
(1) A metal sulfide mat mainly composed of nickel and copper sulfides containing precious metals is oxidized in air using atmospheric acid at atmospheric pressure using sulfuric acid of 2 to 3 equivalents of nickel. A method for recovering valuable materials from a noble metal-containing metal sulfide in which nickel is selectively leached and separated in a range where the oxidation-reduction potential of the copper is not more than a value at which copper leaching proceeds, and the noble metal is concentrated together with the copper sulfide in the leaching residue.
(2) Valuation from the noble metal-containing metal sulfide obtained in (1) above, wherein the leaching residue obtained in the copper smelting process converter and / or flash smelting furnace is transferred to crude copper and recovered in the copper electrolysis process. Collection method.
(3) In any of the above (1) or (2), the leaching from the mat is performed in a range where the oxidation-reduction potential of the liquid is +300 mV (Ag-AgCl standard electrode standard) or less. A method for recovering valuable materials from metal sulfides.
(4) A method for recovering valuable materials from a noble metal-containing metal sulfide, wherein the leaching from the mat is performed at 60 ° C. or higher, preferably 80 ° C. or higher in any one of (1) to (3).
(5) In any one of the above (1) to (4), a noble metal-containing metal that is leached by selecting the original solution composition and the pulp concentration so that the nickel concentration of the leached mat leachate is in the range of 45 g / L or less. A method for recovering valuable materials from sulfides.
It is.
本発明によれば、有害な塩素発生を伴う塩化物系のニッケル浸出-電解採取の工程や、高価なオートクレーブ設備を用いずに、銅製錬工程で定常的に使用している硫酸系の液だけを扱うことで、PGMなどの貴金属を含有するニッケル-銅マットから各有価物成分を収率よく分離回収できる。 According to the present invention, only a sulfuric acid-based liquid regularly used in a copper smelting process without using a chloride-based nickel leaching-electrolytic extraction process with harmful chlorine generation and an expensive autoclave equipment. By handling the above, each valuable component can be separated and recovered with high yield from a nickel-copper mat containing a noble metal such as PGM.
本発明においては、ニッケル-銅マットから大気圧下において硫酸で効率よくニッケルを浸出するため、過剰量の硫酸を使う。硫酸の量および濃度は処理するマットの組成と浸出時のパルプ濃度に応じて調整する。遊離酸濃度が低下すると浸出速度が低下する。また、硫酸が小過剰の条件では浸出が進み残渣中のニッケル品位が低下した後に、まだニッケルの浸出が完了する前に銅や一部の貴金属が溶け始める。また、液のニッケル濃度が高くなると残渣からのニッケル溶解が抑制される傾向がある。このため、浸出時の原料パルプ濃度は制約を受ける。標準的な組成(Ni品位約40%)のマットであればパルプ濃度は100〜200g/Lの範囲、望ましくは約100g/Lが適当である。パルプ濃度をこれ以上低下させると後工程でニッケルを回収する際にニッケル濃度の低い浸出液を多量に処理することになり好ましくない。
パルプ濃度100g/Lとした場合、ニッケル(および鉄、コバルトなどニッケルと共に優先的に浸出される成分)を溶解するには対ニッケル当量として約70g/Lの硫酸が必要であるが、前述の理由から原料中のニッケルを浸出率90%以上まで浸出するには2倍当量以上の硫酸を作用させる必要がある。このパルプ濃度では、硫酸濃度は200g/L以上(約3倍当量)とすれば、反応速度、浸出率とも好ましい成績が得られる。
一方、浸出液からニッケルを回収する上では、大過剰の酸が含まれるのは好ましくない。
ニッケルは低pHでは電解採取はできず、溶媒抽出やイオン交換などの分離方法も中性以上の高いpHでなければ有効には使えない。マット浸出時の硫酸濃度を極端に高くするのは、後工程で中和を行う際のアルカリ消費量を増やすこととなる。したがって、浸出時の硫酸濃度は上記の2倍当量から極端に増やしても処理全体のコスト増加をもたらすので、高々3倍当量にとどめるのが好ましい。ただし、銅製錬工程において銅電解液から硫酸ニッケルを回収する場合のように、硫酸ニッケル液を濃縮・冷凍して硫酸ニッケル結晶を回収する場合にはこうした硫酸濃度上限の制約はない。
In the present invention, an excess amount of sulfuric acid is used to efficiently leach nickel from the nickel-copper mat with sulfuric acid at atmospheric pressure. The amount and concentration of sulfuric acid are adjusted according to the composition of the mat to be treated and the pulp concentration during leaching. As the free acid concentration decreases, the leaching rate decreases. Also, when the sulfuric acid is in a small excess, after leaching progresses and the nickel quality in the residue decreases, copper and some precious metals begin to melt before the leaching of nickel is completed. Moreover, when the nickel concentration of a liquid becomes high, there exists a tendency for the nickel dissolution from a residue to be suppressed. For this reason, the raw material pulp density | concentration at the time of leaching receives restrictions. If the mat has a standard composition (Ni grade of about 40%), the pulp concentration is in the range of 100 to 200 g / L, preferably about 100 g / L. If the pulp concentration is further reduced, a leachate having a low nickel concentration is treated in a large amount when nickel is recovered in a subsequent step, which is not preferable.
When the pulp concentration is 100 g / L, about 70 g / L of sulfuric acid is required as an equivalent to nickel to dissolve nickel (and components that are preferentially leached with nickel such as iron and cobalt). In order to leach nickel in the raw material to a leaching rate of 90% or more, it is necessary to make sulfuric acid act twice or more. With this pulp concentration, if the sulfuric acid concentration is 200 g / L or more (about 3 times equivalent), favorable results can be obtained for both the reaction rate and the leaching rate.
On the other hand, when recovering nickel from the leachate, it is not preferable that a large excess of acid is contained.
Nickel cannot be electrolyzed at low pH, and separation methods such as solvent extraction and ion exchange cannot be used effectively unless the pH is higher than neutral. An extremely high sulfuric acid concentration during mat leaching increases the amount of alkali consumed when neutralization is performed in a subsequent step. Therefore, even if the sulfuric acid concentration at the time of leaching is extremely increased from the above-mentioned 2-fold equivalent, the cost of the whole treatment is increased, so it is preferable to keep it at most 3-fold equivalent. However, there is no restriction on the upper limit of the sulfuric acid concentration when the nickel sulfate crystal is recovered by concentrating and freezing the nickel sulfate solution as in the case of recovering nickel sulfate from the copper electrolyte in the copper smelting process.
浸出速度は温度が高いほど速い。室温では反応は部分的にしか進まないため、実用的な浸出速度を確保するには温度は少なくとも60℃以上で沸点の100℃以下、好ましくは80℃以上で行う。 The leaching rate is faster as the temperature is higher. Since the reaction proceeds only partially at room temperature, in order to ensure a practical leaching rate, the temperature is at least 60 ° C. or higher and the boiling point is 100 ° C. or lower, preferably 80 ° C. or higher.
過剰量の硫酸を使って浸出する場合、前述のとおり、ニッケル、および共存する鉄、コバルトなどの易溶性成分が優先して溶解し、残渣中のニッケル品位が低下すると銅の溶出が始まる。十分に時間をかければ銅も大気圧下で浸出が進むがこの時に液の酸化還元電位は上昇する。過剰の遊離酸が共存する状態では、液中に微量(0.1g/L以上)の銅が溶出すると浸出液のORPは、300mV (Ag-AgCl電極基準)に達する。さらに銅の浸出が進むと、貴金属のうちパラジウム、ロジウム、ルテニウムが液に溶解するようになる。
このため、浸出時の酸化還元電位を管理してニッケルの浸出がほぼ終了し、かつ銅の溶解が始まるよりも低い電位で浸出を終了すれば、液への貴金属溶出ロスを防ぎ、原料中の貴金属を完全に残渣に固定したまま濃縮できる。また、ニッケル浸出液に多量の銅が混入して、液からのニッケル回収において浄液工程での負担となることを防ぐこともできる。
When leaching using an excessive amount of sulfuric acid, as described above, nickel and readily soluble components such as iron and cobalt are preferentially dissolved, and elution of copper starts when the nickel quality in the residue is lowered. If enough time is taken, copper will also leach out under atmospheric pressure, but at this time the oxidation-reduction potential of the liquid will rise. In the state where excess free acid coexists, the ORP of the leachate reaches 300mV (Ag-AgCl electrode standard) when a small amount (0.1g / L or more) of copper elutes in the solution. As copper leaching proceeds further, palladium, rhodium and ruthenium out of the noble metals are dissolved in the liquid.
For this reason, if the leaching of nickel is almost finished by controlling the oxidation-reduction potential at the time of leaching and leaching is finished at a lower potential than the melting of copper begins, loss of precious metal elution into the liquid is prevented, and The noble metal can be concentrated while completely fixed to the residue. In addition, it is possible to prevent a large amount of copper from being mixed into the nickel leaching solution, which becomes a burden in the cleaning process in recovering nickel from the solution.
浸出率に対しては、浸出時のニッケル濃度も影響する。前述のように液のニッケル濃度が高くなると常圧での硫化ニッケル浸出は抑制される傾向があるのでパルプ濃度の上限が制約される。他の条件の影響も受けるが、おおむねNi濃度45g/Lを越えると浸出は頭打ちになる。このため、たとえばニッケルを含む浸出液に硫酸を追加して再度原料マットを浸出しても浸出率は低下する。一方、一度ニッケル浸出が頭打ちになった浸出後の残渣でも浸出液を交換して新たにニッケルを含まない硫酸を加え浸出を繰り返せば、残渣中のニッケルをより効率よく溶解することができる。ただしこの場合は、銅などの溶出が始まるのも早いので選択的な浸出分離は困難である。
以上の理由から、ニッケル銅マット浸出時には浸出液のニッケル濃度が45g/Lを越えない範囲で浸出を行う。
The leaching rate is also affected by the nickel concentration during leaching. As described above, when the nickel concentration of the liquid is increased, nickel sulfide leaching at normal pressure tends to be suppressed, so that the upper limit of the pulp concentration is restricted. Although affected by other conditions, the leaching peaked out when the Ni concentration exceeded 45g / L. For this reason, for example, even if sulfuric acid is added to the leaching solution containing nickel and the raw material mat is leached again, the leaching rate decreases. On the other hand, the nickel in the residue can be dissolved more efficiently by replacing the leaching solution even after the leaching residue once nickel leaching has stopped, and adding new sulfuric acid not containing nickel and repeating the leaching. However, in this case, elution of copper or the like starts early, and selective leaching separation is difficult.
For these reasons, when leaching nickel copper matte, leaching is performed within a range where the nickel concentration of the leachate does not exceed 45 g / L.
このようにして、ニッケルを選択的に浸出した液は、原料に含まれる鉄やコバルトが含まれるが、銅は低濃度にとどまる。この浸出液は中和後、既知の方法により不純物を分離してニッケルを回収する。
一方、浸出残渣は硫化銅および単体イオウが主体であり、ニッケル品位は十分に低下しているので、銅製錬工程の転炉または自溶炉に投入すれば既存の設備のみで残渣に残る銅および貴金属を収率良く回収できる。
以上に述べたように、本発明により、オートクレーブや塩素系電解採取の設備を利用せずに、硫酸系常圧浸出と既存の銅製錬設備を活用することでニッケル銅マットから全ての有価物を分離回収できる。 本発明実施方法の処理フローを図1に示す。
Thus, the liquid in which nickel is selectively leached contains iron and cobalt contained in the raw material, but copper remains at a low concentration. This leachate is neutralized and then separated from impurities by a known method to recover nickel.
On the other hand, the leaching residue mainly consists of copper sulfide and elemental sulfur, and the nickel quality is sufficiently lowered, so if it is put into a converter or flash smelting furnace in the copper smelting process, copper remaining in the residue only with existing equipment and Precious metals can be recovered with good yield.
As described above, according to the present invention, all valuable materials can be removed from nickel-copper mats by utilizing sulfuric acid-based atmospheric leaching and existing copper smelting equipment without using autoclaves or chlorine-based electrowinning equipment. Can be separated and recovered. A processing flow of the method of the present invention is shown in FIG.
(実施例1) 標準条件でORP管理して浸出した場合
表1に組成を示した、貴金属含有ニッケル銅マット(平均粒径18ミクロンの破砕粉末、水分8.7%含有)を濃度100〜200g/Lの硫酸に加えパルプ濃度100g/Lのスラリー1Lを作った。
温度80℃で強攪拌しながら空気を標準状態で2L/minの速度で吹き込み浸出を行った。浸出開始時は硫化水素が発生し、酸化還元電位(ORP)は著しく低いが次第に上昇した。ORPが300mV(Ag-AgCl標準電極基準、以下同じ)に達っする前後で反応を終え、スラリーをろ過した。浸出液を分析した結果を表2のNo1〜13に示す。いずれも浸出液中には銅は認められないか、または高々1g/L前後の低濃度にとどまっていた。貴金属はAu, PGMいずれも濃度0.01mg/L未満でありまったく溶出しなかった。
浸出中のORPと各成分浸出率の時間変化の一例(表2のNo3)を図2に示す。浸出時間が15hを越えて液にCuが溶け始めた時点でORPが300mVに達した。この反応系で液へのCu浸出率を1%未満にとどめるには、同じ酸濃度では表2のNo5に示すようにORP 300mV以下の段階で反応を停止する必要がある。
表2に示すように、用いる硫酸濃度が100g/L(硫酸/原料中Niモル比=1.4)ではORPが300mV以上に上昇した時点でもNi浸出率は70%台でまだ低く、酸濃度が高くなるほどORP上昇までの時間(すなわち反応速度)が速くなりNi浸出率は増加した。硫酸濃度150-200g/L(硫酸/原料中Niモル比=2.1-2.9)では表2のNo6-13に示すようにNi浸出率は95%以上に達した。
このようにCuの浸出が始まる以前に浸出を止めてNi浸出率を95%以上とするには原料から溶解するニッケルに対して2.1〜2.9当量分の硫酸を用いて硫酸過剰の条件で浸出する必要がある。
Table 1 shows the composition of precious metal-containing nickel-copper mat (crushed powder with an average particle size of 18 microns, containing 8.7% water) added to sulfuric acid with a concentration of 100-200 g / L to make 1 L of slurry with a pulp concentration of 100 g / L. .
Leaching was performed by blowing air at a speed of 2 L / min in a standard state while stirring vigorously at a temperature of 80 ° C. Hydrogen sulfide was generated at the start of leaching, and the oxidation-reduction potential (ORP) was extremely low but gradually increased. The reaction was completed before and after ORP reached 300 mV (Ag-AgCl standard electrode reference, hereinafter the same), and the slurry was filtered. The results of analyzing the leachate are shown in No. 1 to 13 of Table 2. In either case, copper was not found in the leachate, or it remained at a low concentration of about 1 g / L at most. Noble metals were eluted at both Au and PGM concentrations of less than 0.01 mg / L.
Fig. 2 shows an example of the temporal change in the leaching ORP and each component leaching rate (No. 3 in Table 2). When the leaching time exceeded 15h and Cu began to dissolve in the solution, the ORP reached 300mV. In order to keep the Cu leaching rate in the solution below 1% in this reaction system, it is necessary to stop the reaction at the stage where the ORP is 300 mV or less as shown in No. 5 in Table 2 at the same acid concentration.
As shown in Table 2, when the sulfuric acid concentration used is 100 g / L (sulfuric acid / Ni molar ratio in raw material = 1.4), even when ORP rises to 300 mV or higher, the Ni leaching rate is still low at the 70% level and the acid concentration is high. The time to increase the ORP (that is, the reaction rate) became faster and the Ni leaching rate increased. At sulfuric acid concentration 150-200g / L (sulfuric acid / Ni molar ratio in raw material = 2.1-2.9), Ni leaching rate reached 95% or more as shown in No. 6-13 in Table 2.
Thus, in order to stop the leaching before the leaching of Cu and increase the Ni leaching rate to 95% or more, leaching is carried out in an excess of sulfuric acid using 2.1 to 2.9 equivalents of sulfuric acid with respect to nickel dissolved from the raw material. There is a need.
(比較例1)・・・パルプ濃度を増やし 硫酸/ニッケルモル比を変えた場合
実施例1と同様の硫酸濃度で、浸出時のパルプ濃度を増やし硫酸/ニッケルモル比が小さい条件で同様に浸出を行った。Cuの溶出を防ぐためORPが300mVに達する前に浸出を終えた。結果を前出の表2のNo14-16に示した。硫酸濃度が高くてもニッケルに対する硫酸モル比が2未満では銅溶出電位に達した時点でのNi浸出率は表3に示すように80%以下にとどまった。これらは浸出後のニッケル濃度は47〜59g/Lであり、これ以上ニッケル濃度を上げるためにマットのパルプ濃度を上げるのは浸出率を上げるのには制約があることがわかる。
(Comparative Example 1) ... When increasing pulp concentration and changing sulfuric acid / nickel molar ratio
The leaching was performed in the same manner as in Example 1 with the sulfuric acid concentration increased, the pulp concentration during leaching was increased, and the sulfuric acid / nickel molar ratio was small. In order to prevent elution of Cu, leaching was finished before ORP reached 300mV. The results are shown in No. 14-16 of Table 2 above. Even when the sulfuric acid concentration was high, when the molar ratio of sulfuric acid to nickel was less than 2, the Ni leaching rate when reaching the copper elution potential remained below 80% as shown in Table 3. It can be seen that the nickel concentration after leaching is 47 to 59 g / L, and increasing the pulp concentration of the mat to increase the nickel concentration further restricts the leaching rate.
(比較例2)・・・長時間浸出を続け Cu浸出進行と共にORPがより上昇しPGM溶出が始まった場合
実施例1と同様の方法、条件で60-78hにわたり長時間の浸出を行い、ORPがさらに上昇を続ける状態を保って浸出した。結果を表2のNo17-19に示した。
また浸出中のORP,浸出率の時間変化を図3に示す。ORPはいずれも300mVを越え最高で400mV以上となった。十分に時間をかければ、表2のNo17に示すように初期硫酸濃度が100g/Lと低くてもNi浸出率は実施例1の結果よりも増加を続けるが、ORPの上昇と共に多量のCuが液に溶け出す。また、これら長時間浸出の条件ではいずれも液に貴金属のうち、Pd,Rh,Ruが浸出していた。
このように、硫酸小過剰の条件でも長時間浸出を続けることでNi浸出率を上げることは可能であるが、この時にはCuが浸出し始め、またCu浸出進行と共に貴金属のうちで比較的反応性の高いPd,Rh,Ruは同時に溶解することがわかった。したがって貴金属の溶解を防止するには、Ni浸出が進行する硫酸濃度50-200g/L(硫酸/原料中Niモル比=2.1-2.9)の範囲においてCu浸出が進行P350mV-420mVの酸化性条件に達する以前に、Cuの溶出まで防ぐには前述の硫酸濃度の範囲でかつORP 300mVを越える以前に反応を止める必要があることがわかる。
(Comparative Example 2) ... Leaching continues for a long time, ORP rises as Cu leaching progresses, and PGM elution starts
Leaching was carried out for a long time over 60-78 h under the same method and conditions as in Example 1, and leaching was carried out while maintaining a state where ORP continued to rise. The results are shown in No. 17-19 of Table 2.
In addition, Fig. 3 shows the time change of ORP and leaching rate during leaching. All ORPs exceeded 300 mV and reached a maximum of 400 mV. If enough time is taken, as shown in No. 17 of Table 2, even if the initial sulfuric acid concentration is as low as 100 g / L, the Ni leaching rate continues to increase more than the result of Example 1, but as the ORP increases, a large amount of Cu increases. Dissolve in the liquid. Further, in these long-term leaching conditions, Pd, Rh, and Ru were leached out of the noble metals in the liquid.
In this way, it is possible to increase the Ni leaching rate by continuing leaching for a long time even under conditions with a small excess of sulfuric acid, but at this time Cu begins to leach and, as the Cu leaching progresses, it is relatively reactive among precious metals. High Pd, Rh and Ru were found to dissolve simultaneously. Therefore, in order to prevent the dissolution of precious metals, Cu leaching progresses in the oxidizing condition of P350mV-420mV in the range of sulfuric acid concentration 50-200g / L where nitric acid leaching proceeds (sulfuric acid / Ni molar ratio in raw material = 2.1-2.9). It can be seen that the reaction must be stopped before reaching the ORP of 300 mV in order to prevent Cu elution before reaching the above range of sulfuric acid concentration.
(実施例2):
温度の影響
実施例1と同様の方法で、温度25℃、60℃と80℃での浸出率を比較した結果を表3に示す。温度が高いほど浸出反応は速い。室温でも硫酸過剰の条件では、当初は硫化水素発生を伴いながらニッケル溶解は起きるが反応は部分的にとどまる。60℃ではNi浸出が進みORPが上昇するまでに時間がかかる。表に示した例ではいずれもORPは銅浸出開始電位よりも低く、PGMの溶解も全くなかった。
Effect of Temperature Table 3 shows the results of comparing the leaching rates at temperatures of 25 ° C., 60 ° C., and 80 ° C. in the same manner as in Example 1. The higher the temperature, the faster the leaching reaction. Even at room temperature, under conditions of excess sulfuric acid, nickel dissolution occurs initially with hydrogen sulfide generation, but the reaction remains partially. At 60 ℃, Ni leaching proceeds and it takes time until ORP rises. In all the examples shown in the table, ORP was lower than the copper leaching start potential, and PGM was not dissolved at all.
(比較例3)・・・
ニッケルを含む液を繰り返し使用して浸出した場合
硫酸濃度200g/L,パルプ濃度100g/Lとして浸出したニッケル液に硫酸を追加して酸濃度を200g/Lに戻し、新しいマットの浸出に液を繰り返し利用してニッケル濃度の高い浸出液を得る処理を行った。結果を表4に示す。浸出を3回繰り返した結果、ORPを管理すればいずれもPGMは全く溶解しなかった。しかしニッケルは、浸出を繰り返すと濃度はやや高くなるものの二回目以降は表4に示すように急激に原料からのニッケル浸出率は低下した。このように浸出時の酸濃度を原料に対し所定の過剰濃度用いても、液のニッケル濃度が高くなると浸出は抑制された。一段目の浸出約40g/Lの濃度まで浸出すると二段目でNi濃度45g/Lを越えるが、この条件では急激に浸出が抑制されることがわかる
When leaching by repeatedly using a solution containing nickel, sulfuric acid is added to the leached nickel solution with a sulfuric acid concentration of 200 g / L and a pulp concentration of 100 g / L to return the acid concentration to 200 g / L. The process of obtaining a leachate having a high nickel concentration by repeated use was performed. The results are shown in Table 4. As a result of repeating the leaching three times, PGM was not dissolved at all when ORP was controlled. However, although the concentration of nickel increased slightly when repeated leaching, the nickel leaching rate from the raw material decreased rapidly as shown in Table 4 after the second time. Thus, even if the acid concentration at the time of leaching was used at a predetermined excess concentration relative to the raw material, leaching was suppressed when the nickel concentration of the liquid was increased. When leaching up to a concentration of about 40 g / L in the first stage, the Ni concentration exceeds 45 g / L in the second stage, but it is understood that leaching is rapidly suppressed under this condition.
以上のように、貴金属含有ニッケル銅マットからニッケルを分離するのに、原料マット中のニッケルに対して2ないし3倍の硫酸を使い60℃以上、好ましくは80℃以上で空気酸化浸出することで、高価なオートクレーブ装置を使わずに大気圧下の反応でニッケルを選択的に浸出できる。液のニッケル濃度が高くなるとニッケル浸出率の低下を招くのでパルプ濃度には制約があり、ニッケル濃度が45g/Lを超えない範囲で処理するのが好ましい。また、この浸出時のORPを管理することで原料マット中の銅および貴金属を全て浸出残渣に濃縮して回収することができる。この残渣は硫化銅とイオウを主とするもので銅製錬工程の転炉に投入することで含まれる有価物を既存の設備と工程の中で効率よく回収することができる。 As described above, to separate nickel from the noble metal-containing nickel copper mat, sulfuric acid is leached by air oxidation at 60 ° C or higher, preferably 80 ° C or higher, using sulfuric acid 2 to 3 times the nickel in the raw material mat. Nickel can be selectively leached by a reaction under atmospheric pressure without using an expensive autoclave. If the nickel concentration of the liquid is increased, the nickel leaching rate is reduced, so the pulp concentration is limited, and it is preferable to treat the nickel concentration in a range not exceeding 45 g / L. In addition, by managing the ORP at the time of leaching, all the copper and noble metals in the raw material mat can be concentrated and recovered in the leaching residue. This residue is mainly composed of copper sulfide and sulfur, and valuable materials contained therein can be efficiently recovered in existing facilities and processes by putting them in a converter for a copper smelting process.
Claims (5)
5. A precious metal-containing composition according to claim 1, wherein the leaching of the matte leachate after leaching is carried out by selecting the original solution composition and the pulp concentration so that the nickel concentration is in a range of 45 g / L or less. A method for recovering valuable materials from metal sulfides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008146580A JP5405768B2 (en) | 2007-09-27 | 2008-06-04 | Valuables recovery from precious metal-containing metal sulfides |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007250632 | 2007-09-27 | ||
JP2007250632 | 2007-09-27 | ||
JP2008146580A JP5405768B2 (en) | 2007-09-27 | 2008-06-04 | Valuables recovery from precious metal-containing metal sulfides |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009097076A true JP2009097076A (en) | 2009-05-07 |
JP5405768B2 JP5405768B2 (en) | 2014-02-05 |
Family
ID=40700354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008146580A Active JP5405768B2 (en) | 2007-09-27 | 2008-06-04 | Valuables recovery from precious metal-containing metal sulfides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5405768B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012014685A1 (en) * | 2010-07-28 | 2012-02-02 | 住友金属鉱山株式会社 | Process for production of ferronickel smelting raw material from low grade lateritic nickel ore |
JP2014210951A (en) * | 2013-04-18 | 2014-11-13 | 住友金属鉱山株式会社 | Nickel exudation method |
WO2019124015A1 (en) * | 2017-12-18 | 2019-06-27 | 住友金属鉱山株式会社 | Method for separating copper, and nickel and cobalt |
JP2020002418A (en) * | 2018-06-27 | 2020-01-09 | 住友金属鉱山株式会社 | Separation method of copper, and nickel and cobalt |
US11959151B2 (en) | 2017-09-29 | 2024-04-16 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper from nickel and cobalt |
US12000018B2 (en) | 2017-10-23 | 2024-06-04 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper from nickel and cobalt |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
-
2008
- 2008-06-04 JP JP2008146580A patent/JP5405768B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012014685A1 (en) * | 2010-07-28 | 2012-02-02 | 住友金属鉱山株式会社 | Process for production of ferronickel smelting raw material from low grade lateritic nickel ore |
US8747787B2 (en) | 2010-07-28 | 2014-06-10 | Sumitomo Metal Mining Co., Ltd. | Method for producing raw material for ferronickel smelting from low grade nickel oxide ore |
JP2014210951A (en) * | 2013-04-18 | 2014-11-13 | 住友金属鉱山株式会社 | Nickel exudation method |
US11959151B2 (en) | 2017-09-29 | 2024-04-16 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper from nickel and cobalt |
US12000018B2 (en) | 2017-10-23 | 2024-06-04 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper from nickel and cobalt |
KR20200087239A (en) * | 2017-12-18 | 2020-07-20 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Separation method of copper and nickel and cobalt |
CN111492072A (en) * | 2017-12-18 | 2020-08-04 | 住友金属矿山株式会社 | Method for separating copper from nickel and cobalt |
US20210180154A1 (en) * | 2017-12-18 | 2021-06-17 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper, and nickel and cobalt |
EP3730637A4 (en) * | 2017-12-18 | 2021-08-25 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper, and nickel and cobalt |
KR102463488B1 (en) * | 2017-12-18 | 2022-11-03 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Separation method for copper, nickel and cobalt |
US11718894B2 (en) | 2017-12-18 | 2023-08-08 | Sumitomo Metal Mining Co., Ltd. | Method for separating copper, and nickel and cobalt |
JP2019108586A (en) * | 2017-12-18 | 2019-07-04 | 住友金属鉱山株式会社 | Method for separating copper, nickel and cobalt |
WO2019124015A1 (en) * | 2017-12-18 | 2019-06-27 | 住友金属鉱山株式会社 | Method for separating copper, and nickel and cobalt |
JP2020002418A (en) * | 2018-06-27 | 2020-01-09 | 住友金属鉱山株式会社 | Separation method of copper, and nickel and cobalt |
Also Published As
Publication number | Publication date |
---|---|
JP5405768B2 (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999108B2 (en) | Gold leaching method | |
JP5796716B2 (en) | Method for removing impurities from cobalt-containing liquid | |
JP5439997B2 (en) | Method for recovering copper from copper-containing iron | |
BRPI0616812B1 (en) | Method for processing raw materials supporting nickel in chlorine-based leaching | |
JP5405768B2 (en) | Valuables recovery from precious metal-containing metal sulfides | |
JP2009256764A (en) | Method for collecting copper from ore | |
JP6810887B2 (en) | Separation and recovery methods for selenium, tellurium, and platinum group elements | |
JP4923584B2 (en) | Method for removing copper ions from aqueous nickel chloride solution | |
JP4962078B2 (en) | Nickel sulfide chlorine leaching method | |
JPH0791599B2 (en) | Valuable metal separation method | |
JP2008115429A (en) | Method for recovering silver in hydrometallurgical copper refining process | |
JP6233478B2 (en) | Purification method of bismuth | |
JP2008208441A (en) | Solvent extraction method for chloride aqueous solution | |
JP6610368B2 (en) | Method for removing impurities from aqueous nickel chloride solution | |
JP2008013388A (en) | Method for purifying nickel chloride aqueous solution | |
JP6172526B2 (en) | Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process | |
JP2024526497A (en) | Method for treating by-products of zinc hydrometallurgy process with reduced carbon emissions | |
JP5803491B2 (en) | Chlorine leaching method for metal sulfide and metal smelting method | |
JP2011074406A (en) | Method for recovering valuables from noble metal-containing metal sulfide | |
JP6943141B2 (en) | Leaching method of mixed sulfide containing nickel and cobalt | |
JP2017155280A (en) | Method for removing copper ions from copper-containing aqueous nickel chloride solution and method for producing electrolytic nickel | |
JP5673471B2 (en) | Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel | |
JP6362029B2 (en) | Nickel sulfide raw material processing method | |
JP5803492B2 (en) | Chlorine leaching method for metal sulfides | |
JP4506660B2 (en) | Silver recovery method in wet copper smelting process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100910 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101014 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130812 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5405768 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |