JP2008208441A - Solvent extraction method for chloride aqueous solution - Google Patents

Solvent extraction method for chloride aqueous solution Download PDF

Info

Publication number
JP2008208441A
JP2008208441A JP2007048344A JP2007048344A JP2008208441A JP 2008208441 A JP2008208441 A JP 2008208441A JP 2007048344 A JP2007048344 A JP 2007048344A JP 2007048344 A JP2007048344 A JP 2007048344A JP 2008208441 A JP2008208441 A JP 2008208441A
Authority
JP
Japan
Prior art keywords
copper
extraction
iron
aqueous solution
extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007048344A
Other languages
Japanese (ja)
Inventor
Takashi Kudo
敬司 工藤
Kenji Takeda
賢二 竹田
Satoshi Asano
聡 浅野
Original Assignee
Sumitomo Metal Mining Co Ltd
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, 住友金属鉱山株式会社 filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007048344A priority Critical patent/JP2008208441A/en
Publication of JP2008208441A publication Critical patent/JP2008208441A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solvent extraction method capable of enhancing the copper extraction rate when repeatedly using an extraction agent in an extraction process after back extraction, and also lowering a copper concentration in extraction residual liquid at the most so as to lower the load on copper removal thereafter, by selectively extracting cuprous ions from a chloride aqueous solution after reduction with the extraction agent containing tributyl phosphate, then reducing at the most the residual copper concentration in the extraction agent formed by back extraction, when separating copper and iron by a solvent extraction method in copper hydrometallurgy method. <P>SOLUTION: A regenerated extraction agent is obtained by selectively extracting cuprous ions from the chloride aqueous solution after reduction, then bringing the extraction agent formed by back extraction into contact with an aqueous solution containing chloride ions to be used as a regeneration starting liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塩化物水溶液の溶媒抽出方法に関し、さらに詳しくは、硫化銅鉱物を含む銅原料を塩素浸出し、得られた銅イオンと鉄イオンを含む塩化物水溶液を還元した後、溶媒抽出法により銅と鉄を分離し、得られた塩化第1銅水溶液と塩化第1鉄水溶液から銅と鉄を電解採取する湿式銅製錬法において、溶媒抽出法により銅と鉄を分離する際に、トリブチルフォスフェイトを含む抽出剤により、還元後の塩化物水溶液から1価の銅イオンを選択的に抽出し、次いで逆抽出することにより形成される抽出剤(以下、逆抽出後抽出剤と呼称する場合がある。)中の残留銅濃度を極力低くし、それによって抽出工程で逆抽出後抽出剤を繰り返し使用する際に、銅抽出率を上昇させるとともに、抽出残液中の銅濃度をその後の銅除去の負荷が低くなるように極力低下させることができる溶媒抽出方法に関する。   The present invention relates to a solvent extraction method for an aqueous chloride solution, and more specifically, leaching a copper raw material containing a copper sulfide mineral with chlorine, reducing the resulting aqueous chloride solution containing copper ions and iron ions, and then extracting the solvent. In the wet copper smelting method in which copper and iron are separated by electrolytic extraction of the copper and iron from the obtained cuprous chloride aqueous solution and ferrous chloride aqueous solution, tributyl is separated. An extractant formed by selectively extracting monovalent copper ions from an aqueous chloride solution after reduction with an extractant containing phosphate and then back-extracting (hereinafter referred to as an extractant after back-extraction) In the extraction process, when the extractant is repeatedly used in the extraction process, the copper extraction rate is increased and the copper concentration in the extraction residual liquid is changed to the subsequent copper concentration. The removal load is low About solvent extraction method can be as much as possible reduced to.
従来、黄銅鉱を始めとする硫化銅鉱物を含む硫化銅鉱の製錬方法としては、硫化銅鉱物を浮遊選鉱法で濃集した銅精鉱を用いる乾式熔錬法が行われていた。乾式溶錬法による銅製錬は、銅硫化物精鉱を溶錬炉、転炉、精製炉等一連の乾式製錬後、得られた粗銅を電解精製する方法であり、大量の鉱石を効率よく処理し銅精鉱中の鉄を溶錬炉、転炉等のスラグ成分として固定化するのに適した方法であるが、その反面、小型設備では反応効率が悪いので、大型設備のために膨大な設備投資が必要であること、また生成する大量のSO2ガスの回収が不可欠であること等の課題がある。   Conventionally, as a smelting method of copper sulfide ores including copper sulfide minerals including chalcopyrite, a dry smelting method using copper concentrate obtained by concentrating copper sulfide minerals by a flotation method has been performed. Copper smelting by dry smelting is a method in which copper sulfide concentrate is subjected to a series of dry smelting processes such as a smelting furnace, converter, and refining furnace, and then the resulting crude copper is electrolytically purified. This method is suitable for fixing iron in copper concentrate as a slag component in smelting furnaces, converters, etc., but on the other hand, the reaction efficiency is poor in small equipment, so it is enormous for large equipment. There is a problem that a large capital investment is necessary and that it is essential to recover a large amount of SO2 gas to be generated.
このような状況下、近年、湿式法による製錬方法が研究されている。従来、湿式法による銅製錬としては、酸化銅鉱物を含有する銅鉱石を用いて、積み上げた鉱石に硫酸を散布して銅を浸出し、該浸出生成液の銅濃度を上げるために溶媒抽出法で処理した後、電解採取する方法が工業的に広く用いられている。しかしながら、銅鉱石の大部分を占める硫化鉱に前記方法を適用した場合、含有鉱物として最も賦存量の多い黄銅鉱では、硫酸による浸出速度が遅く、かつ銅浸出率が低い結果となるという問題があった。   Under such circumstances, in recent years, a smelting method using a wet method has been studied. Conventionally, as copper smelting by wet method, using copper ore containing copper oxide minerals, sulfuric acid is sprayed on the piled ore to leaching copper, and solvent extraction method to increase the copper concentration of the leaching product liquid The method of electrolytic collection after treatment with is widely used industrially. However, when the above method is applied to sulfide ore that occupies most of the copper ore, chalcopyrite with the most abundant abundance as a contained mineral has a problem that the leaching rate with sulfuric acid is slow and the copper leaching rate is low. there were.
近年、この対策として、前記硫化銅鉱の湿式製錬法において、塩素ガス又は塩化物などのハロゲン化物溶液にて銅、鉄等を浸出して、得られた浸出生成液から銅を1価銅電解で回収し、鉄等の不純物元素を中和沈殿する方法が注目されている(例えば、特許文献1参照。)。このような湿式製錬法では、一般に、浸出工程において、銅を高抽出率で得るため酸化還元電位を高い状態に保持して行われる。この条件下では、硫化銅鉱に含まれる鉄も銅とともに溶出される。しかしながら、鉄は中和沈殿として回収され廃棄物処理され、有効利用がなされていなかった。   In recent years, as a countermeasure, in the above-described copper sulfide ore hydrometallurgy process, copper, iron, etc. are leached with a halide solution such as chlorine gas or chloride, and copper is monovalently electrolyzed from the obtained leaching product. Attention has been paid to a method of neutralizing and precipitating an impurity element such as iron (see Patent Document 1, for example). In such a wet smelting method, generally, in the leaching step, copper is obtained at a high extraction rate, and thus the oxidation-reduction potential is kept high. Under this condition, iron contained in the copper sulfide ore is also eluted together with copper. However, iron was recovered as a neutralized precipitate and treated as waste, and was not effectively used.
この解決策として、硫化銅鉱の湿式銅製錬法において、黄銅鉱を主鉱物とする硫化銅鉱を塩素浸出して得られる浸出生成液から、銅を一価銅電解で回収し、かつ鉄を電解鉄として回収する方法(例えば、特許文献2参照。)が開示されている。この方法は、硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し、銅を濃縮した逆抽出生成液(塩化第1銅水溶液)と鉄を濃縮した抽出残液(塩化第1鉄水溶液)とを得る工程、該逆抽出生成液中の1価の銅イオンを電解採取する工程、該抽出残液から有価金属を分離回収する工程、及び処理後の抽出残液から鉄を回収する工程を含む一連のプロセスにより、銅とともに鉄及び貴金属等を効率よく分離回収する方法であるが、ここで鉄は電解鉄として電解採取法により回収され、鉄の有効利用からも効果的な方法である。ここで、銅の電解採取工程は、電流効率上有利な1価銅電解を行なう。また、還元生成液の溶媒抽出工程では、トリブチルフォスフェイト等の中性抽出剤を用いて、還元生成液中の1価の銅イオンを抽出し、次いで逆抽出する方法が用いられる。   As a solution, copper is recovered by monovalent copper electrolysis from the leaching product obtained by leaching copper sulfide ore containing chalcopyrite as the main mineral in the wet copper smelting method of copper sulfide ore, and iron is electrolytic iron. (See, for example, Patent Document 2). This method includes a step of leaching a copper raw material containing a copper sulfide mineral, a step of reducing a leaching product solution, a back extraction product solution (copper chloride aqueous solution) obtained by subjecting the reduction product solution to solvent extraction and concentrating copper. And a step of obtaining an extraction residue (iron ferrous chloride aqueous solution) in which iron is concentrated, a step of electrolytically collecting monovalent copper ions in the back extraction product solution, and a step of separating and recovering valuable metals from the extraction residue , And a series of processes including the process of recovering iron from the extracted residue after processing, and a method for efficiently separating and recovering iron and precious metals together with copper. Here, iron is recovered as electrolytic iron by electrowinning. It is an effective method from the effective use of iron. Here, the copper electrowinning step performs monovalent copper electrolysis that is advantageous in terms of current efficiency. In the solvent extraction step of the reduced product solution, a method is used in which a monovalent copper ion in the reduced product solution is extracted using a neutral extractant such as tributyl phosphate and then back-extracted.
しかしながら、上記溶媒抽出工程の抽出残液中には、通常、鉄イオンのほかに、銅イオンが数〜十数g/Lの濃度で含有される。これは、溶媒抽出工程の逆抽出後抽出剤が、工業上コスト面から抽出段に繰り返し使用されることが不可欠であることによる。すなわち、溶媒抽出工程の逆抽出段においては、プロセス全体の液バランスと経済性の観点から、逆抽出始液として銅の電解採取工程からの電解廃液を用いる。この電解廃液中には、陰極で電着しきれなかった銅イオンが数〜数十g/Lの濃度で残存しているため、逆抽出段において、平衡状態の関係から抽出剤中の銅を逆抽出生成液中に完全に逆抽出することができない。したがって、逆抽出後抽出剤には、若干の銅が残留する。この逆抽出後抽出剤を抽出段で繰り返し使用した場合、抽出剤中に残留した銅が阻害要因となって銅の抽出率を低下させるため、多くの銅イオンが抽出残液中に残留することとなる。   However, the extraction residual liquid in the solvent extraction step usually contains copper ions in addition to iron ions at a concentration of several to several tens of g / L. This is because it is indispensable that the extractant after back extraction in the solvent extraction process is repeatedly used in the extraction stage from the industrial cost viewpoint. That is, in the back extraction stage of the solvent extraction step, the electrolytic waste solution from the copper electrowinning step is used as the back extraction start solution from the viewpoint of liquid balance and economy in the entire process. In this electrolytic waste liquid, copper ions that could not be electrodeposited at the cathode remain at a concentration of several to several tens of g / L. Therefore, in the back extraction stage, the copper in the extractant is removed from the relationship of the equilibrium state. It is not possible to completely back-extract into the back-extraction product solution. Therefore, some copper remains in the extractant after back extraction. When this extractant after back extraction is used repeatedly in the extraction stage, the copper remaining in the extractant becomes a hindrance factor and lowers the copper extraction rate, so that many copper ions remain in the extraction residual liquid. It becomes.
このような抽出残液を鉄電解液として使用する際には、残留する銅が鉄よりも先に電着するので、電解鉄の不純物として品質上大きな問題となる。その対策として、鉄電解液から銅を除去する工程を設けるが、溶媒抽出工程で極力銅を抽出分離していないと、銅除去における負荷が高くなり、そのための添加剤使用量が増加することなどから、コスト的にも不利となる。また、このような銅の抽出率の低下は、銅の実収率が悪化することに繋がるという問題もある。
以上の状況から、上記湿式銅製錬法に用いる溶媒抽出方法において、逆抽出後抽出剤中の残留銅濃度を極力低くすることが求められている。
When such an extraction residual liquid is used as an iron electrolyte, the remaining copper is electrodeposited prior to iron, which is a serious quality problem as an electrolytic iron impurity. As a countermeasure, a process for removing copper from the iron electrolyte is provided. However, if copper is not extracted and separated as much as possible in the solvent extraction process, the load in copper removal increases, and the amount of additive used for that purpose increases. Therefore, it is disadvantageous in terms of cost. Moreover, there also exists a problem that the fall of the extraction rate of such copper leads to the deterioration of the actual yield of copper.
From the above situation, in the solvent extraction method used in the above-described wet copper smelting method, it is required to reduce the residual copper concentration in the extractant after back extraction as much as possible.
特許第2857930号公報(第1〜4頁)Japanese Patent No. 2857930 (pages 1 to 4) 特開2005-60813号公報(第1頁、第2頁)JP 2005-60813 A (first page, second page)
本発明の目的は、上記の従来技術の問題点に鑑み、硫化銅鉱物を含む銅原料を塩素浸出し、得られた銅イオンと鉄イオンを含む塩化物水溶液を還元した後、溶媒抽出法により銅と鉄を分離し、得られた塩化第1銅水溶液と塩化第1鉄水溶液から銅と鉄を電解採取する湿式銅製錬法において、溶媒抽出法により銅と鉄を分離する際に、トリブチルフォスフェイトを含む抽出剤により、還元後の塩化物水溶液から1価の銅イオンを選択的に抽出し、次いで逆抽出することにより形成される抽出剤中の残留銅濃度を極力低くし、それによって、抽出工程において、逆抽出後抽出剤を繰り返し使用する際に、銅抽出率を上昇させるとともに、抽出残液中の銅濃度をその後の銅除去の負荷が低くなるように極力低下させることができる溶媒抽出方法を提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to chlorinate a copper raw material containing a copper sulfide mineral, reduce the obtained aqueous chloride solution containing copper ions and iron ions, and then perform a solvent extraction method. In the wet copper smelting method in which copper and iron are separated from the obtained cuprous chloride aqueous solution and ferrous chloride aqueous solution by electrolytic extraction, tributylphosphine is used to separate copper and iron by solvent extraction. With the extractant containing fate, the residual copper concentration in the extractant formed by selectively extracting monovalent copper ions from the reduced chloride aqueous solution and then back-extracting is reduced as much as possible, thereby In the extraction process, when repeatedly using the extractant after back-extraction, the solvent can increase the copper extraction rate and reduce the copper concentration in the extraction residual liquid as much as possible so that the subsequent copper removal load is reduced. Proposed extraction method It is to.
本発明者らは、上記目的を達成するために、上記湿式銅製錬法において、溶媒抽出法により銅と鉄を分離する際に利用するトリブチルフォスフェイトを含む抽出剤を用いる銅イオンと鉄イオンを含む塩化物水溶液の溶媒抽出方法について、鋭意研究を重ねた結果、逆抽出後抽出剤を、特定の再生始液と接触させたところ、残留銅濃度が低い再生抽出剤が得られることを見出し、本発明を完成した。   In order to achieve the above object, the inventors of the above-mentioned wet copper smelting method used copper ions and iron ions using an extractant containing tributyl phosphate used when separating copper and iron by a solvent extraction method. As a result of intensive research on the solvent extraction method of the chloride aqueous solution containing, when the extractant after back extraction was brought into contact with a specific regeneration starting solution, it was found that a regenerated extractant with a low residual copper concentration was obtained, The present invention has been completed.
すなわち、本発明の第1の発明によれば、硫化銅鉱物を含む銅原料を塩素浸出し、得られた銅イオンと鉄イオンを含む塩化物水溶液を還元した後、溶媒抽出法により銅と鉄を分離し、得られた塩化第1銅水溶液と塩化第1鉄水溶液から銅と鉄を電解採取する湿式銅製錬法において、溶媒抽出法により銅と鉄を分離する際に、
トリブチルフォスフェイトを含む抽出剤を用いて、還元後の塩化物水溶液から1価の銅イオンを選択的に抽出し、次いで逆抽出することにより形成される抽出剤を、再生始液として用いる塩素イオンを含む水溶液と接触させて再生抽出剤を得ることを特徴とする塩化物水溶液の溶媒抽出方法が提供される。
That is, according to the first invention of the present invention, the copper raw material containing copper sulfide mineral is leached with chlorine, and the resulting aqueous chloride solution containing copper ions and iron ions is reduced. In the wet copper smelting method for electrolytically collecting copper and iron from the obtained cuprous chloride aqueous solution and ferrous chloride aqueous solution, when separating copper and iron by a solvent extraction method,
Chlorine ions using an extractant formed by selectively extracting monovalent copper ions from an aqueous chloride solution after reduction using an extractant containing tributyl phosphate and then back-extracting it There is provided a method for extracting a chloride aqueous solution, wherein the regenerated extractant is obtained by contacting with an aqueous solution comprising
また、本発明の第2の発明によれば、第1の発明において、前記抽出剤中のトリブチルフォスフェイト濃度は、40容量%以上であることを特徴とする塩化物水溶液の溶媒抽出方法が提供される。   According to a second aspect of the present invention, there is provided the solvent extraction method for an aqueous chloride solution according to the first aspect, wherein the tributyl phosphate concentration in the extractant is 40% by volume or more. Is done.
また、本発明の第3の発明によれば、第1の発明において、前記塩素イオンを含む水溶液は、塩素イオン濃度が10〜100g/L、銅イオン濃度が2g/L以下、及び鉄イオン濃度が50g/L以下であることを特徴とするの塩化物水溶液の溶媒抽出方法が提供される。   According to a third aspect of the present invention, in the first aspect, the aqueous solution containing chlorine ions has a chlorine ion concentration of 10 to 100 g / L, a copper ion concentration of 2 g / L or less, and an iron ion concentration. The solvent extraction method of the aqueous chloride solution characterized by being below 50 g / L is provided.
また、本発明の第4の発明によれば、第1の発明において、抽出剤を再生する際の温度は、50〜90℃であることを特徴とする塩化物水溶液の溶媒抽出方法提供される。   According to a fourth aspect of the present invention, there is provided the method for extracting a chloride aqueous solution according to the first aspect, wherein the temperature at which the extractant is regenerated is 50 to 90 ° C. .
また、本発明の第5の発明によれば、第1の発明において、抽出剤を再生する際に、接触装置としてミキサーセトラーを用い、ミキサー部での滞留時間が2〜10分であることを特徴とする塩化物水溶液の溶媒抽出方法が提供される。   Further, according to the fifth invention of the present invention, in the first invention, when the extractant is regenerated, a mixer settler is used as the contact device, and the residence time in the mixer section is 2 to 10 minutes. A method for extracting an aqueous chloride solution is provided.
本発明の塩化物水溶液の溶媒抽出方法は、上記湿式銅製錬法において用いられるトリブチルフォスフェイトを含む抽出剤を用いる銅イオンと鉄イオンを含む塩化物水溶液の溶媒抽出方法において、逆抽出段で形成される逆抽出後抽出剤から、残留銅濃度を極力低下させた再生抽出剤を得ることができる方法であり、それによって抽出段で逆抽出後抽出剤を繰り返し使用する際に、銅抽出率を上昇させるとともに、抽出残液中の銅濃度をその後の銅除去の負荷が低くなるように極力低下させることができるので、その工業的価値は極めて大きい。これにより、銅の実収率を向上させるとともに、抽出残液の銅の処理負荷を低減させ、より高品質な塩化鉄水溶液を回収することができる。   Solvent extraction method of aqueous chloride solution of the present invention is a solvent extraction method of aqueous chloride solution containing copper ions and iron ions using an extractant containing tributyl phosphate used in the above-mentioned wet copper smelting method, formed in the back extraction stage In this method, a regenerated extractant having a reduced residual copper concentration as much as possible can be obtained from the extractant after back-extraction. Since the copper concentration in the extraction residual liquid can be lowered as much as possible so as to reduce the load of subsequent copper removal, the industrial value is extremely high. Thereby, while improving the actual yield of copper, the processing load of copper of an extraction residual liquid can be reduced, and higher quality iron chloride aqueous solution can be collect | recovered.
以下、本発明の塩化物水溶液の溶媒抽出方法を詳細に説明する。
本発明の塩化物水溶液の溶媒抽出方法は、硫化銅鉱物を含む銅原料を塩素浸出し、得られた銅イオンと鉄イオンを含む塩化物水溶液を還元した後、溶媒抽出法により銅と鉄を分離し、得られた塩化第1銅水溶液と塩化第1鉄水溶液から銅と鉄を電解採取する湿式銅製錬法において、溶媒抽出法により銅と鉄を分離する際に、トリブチルフォスフェイトを含む抽出剤を用いて還元後の塩化物水溶液から1価の銅イオンを選択的に抽出し、次いで逆抽出することにより形成される抽出剤を、再生始液として用いる塩素イオンを含む水溶液と接触させて再生抽出剤を得ることを特徴とする。
Hereinafter, the solvent extraction method of the aqueous chloride solution of the present invention will be described in detail.
In the solvent extraction method of the aqueous chloride solution of the present invention, the copper raw material containing copper sulfide mineral is leached with chlorine, and the obtained aqueous chloride solution containing copper ions and iron ions is reduced. In the wet copper smelting method for electrolytically collecting copper and iron from the obtained cuprous chloride aqueous solution and the obtained ferrous chloride aqueous solution, extraction containing tributyl phosphate when separating copper and iron by the solvent extraction method An extractant formed by selectively extracting monovalent copper ions from a reduced chloride aqueous solution using an agent and then back-extracting is brought into contact with an aqueous solution containing chloride ions used as a regeneration starting solution. A regenerated extractant is obtained.
本発明において、1価の銅イオンを選択的に抽出する抽出段とこれを逆抽出する逆抽出段に加えて、上記逆抽出後抽出剤を再生始液として用いる塩素イオンを含む水溶液と接触させる再生段を設けることが重要である。これによって、再生始液により逆抽出後抽出剤中に残留する銅をさらに逆抽出して抽出剤中から移行させることができるので、残留銅濃度を低下させた再生抽出剤を得ることができる。   In the present invention, in addition to the extraction stage for selectively extracting monovalent copper ions and the back extraction stage for back-extracting it, the extractant after back extraction is brought into contact with an aqueous solution containing chloride ions used as a regeneration starting liquid. It is important to provide a regeneration stage. Thereby, the copper remaining in the extractant after back extraction can be further back-extracted and transferred from the extractant by the regeneration starting solution, so that a regenerated extractant having a reduced residual copper concentration can be obtained.
すなわち、再生段において、逆抽出後抽出剤を、塩素イオンを含む水溶液と接触させることにより、平衡状態の関係から、逆抽出後抽出剤中の銅と鉄を塩素イオンを含む水溶液中に移行させ、銅と鉄イオンを含む再生終液を形成する。
そのため、再生始液として用いる塩素イオンを含む水溶液としては、逆抽出段で通常逆抽出始液として用いられる銅電解採取工程の電解廃液よりも、銅イオン濃度が低いものが用いられる。例えば、銅イオン濃度が2g/L以下、塩素イオン濃度が10〜100g/L、及び鉄イオン濃度が50g/L以下である塩化物水溶液が好ましい。すなわち、再生始液として用いる塩素イオンを含む水溶液中の銅イオン濃度が2g/L、又は鉄イオン濃度が50g/Lを超えると、それぞれ銅又は鉄が塩素イオンを含む水溶液中へ移行されなくなる。また、塩素濃度が10g/L未満では、再生に際して、逆抽出後抽出剤中に含まれている銅又は鉄の沈殿が生じ、溶液状態として回収することができなくなる。一方、塩素濃度が100g/Lを超えると、逆抽出後抽出剤中の銅又は鉄が塩素イオンを含む水溶液中へ移行されなくなる。
なお、上記塩素イオン濃度は、塩酸、NaCl等の塩化物イオンを加えることにより調整することができる。
That is, in the regeneration stage, the extractant after back extraction is brought into contact with an aqueous solution containing chlorine ions, so that the copper and iron in the extractant after back extraction are transferred into an aqueous solution containing chloride ions from the relationship of equilibrium. Forming a final regeneration solution containing copper and iron ions.
Therefore, as the aqueous solution containing chlorine ions used as the regeneration starting solution, one having a lower copper ion concentration than the electrolytic waste solution in the copper electrowinning process usually used as the back extraction starting solution in the back extraction stage is used. For example, an aqueous chloride solution having a copper ion concentration of 2 g / L or less, a chlorine ion concentration of 10 to 100 g / L, and an iron ion concentration of 50 g / L or less is preferable. That is, when the copper ion concentration in the aqueous solution containing chlorine ions used as the regeneration starting solution exceeds 2 g / L or the iron ion concentration exceeds 50 g / L, copper or iron is not transferred into the aqueous solution containing chlorine ions, respectively. On the other hand, if the chlorine concentration is less than 10 g / L, during regeneration, precipitation of copper or iron contained in the extractant after back extraction occurs, and it cannot be recovered as a solution. On the other hand, when the chlorine concentration exceeds 100 g / L, copper or iron in the extractant after back extraction is not transferred into the aqueous solution containing chlorine ions.
The chlorine ion concentration can be adjusted by adding chloride ions such as hydrochloric acid and NaCl.
上記方法に用いる抽出剤中のトリブチルフォスフェイト濃度としては、特に限定されるものではなく、40容量%以上が好ましい。すなわち、抽出剤としては、流動性を保つために、ケロシン等の希釈剤で希釈しても良いが、銅イオンの抽出率は、塩化物水溶液中の塩化物イオンの濃度と、接触混合させるトリブチルフォスフェイトの濃度に依存するので、トリブチルフォスフェイトの希釈は極力行わない方が好ましい。したがって、工業的に期待するCu/Feの分離係数を得るため、トリブチルフォスフェイト濃度は、好ましくは40〜100容量%、より好ましくは50〜100容量%の範囲で前述の流動性を考慮して選ばれる。   The concentration of tributyl phosphate in the extractant used in the above method is not particularly limited and is preferably 40% by volume or more. In other words, the extractant may be diluted with a diluent such as kerosene in order to maintain fluidity, but the extraction rate of copper ions is determined by the concentration of chloride ions in the chloride aqueous solution and tributyl to be contact-mixed. Since it depends on the concentration of phosphate, it is preferable not to dilute tributyl phosphate as much as possible. Therefore, in order to obtain an industrially expected Cu / Fe separation factor, the tributyl phosphate concentration is preferably in the range of 40 to 100% by volume, more preferably in the range of 50 to 100% by volume in consideration of the above fluidity. To be elected.
上記方法に用いる抽出剤を再生する際の温度としては、特に限定されるものではなく、50〜90℃が好ましい。すなわち、トリブチルフォスフェイト抽出剤は、温度が低いと抽出が進行し、逆に温度が高いと逆抽出が進行する特性がある。このため、再生段での逆抽出反応を効率良く行うため、抽出段より高い温度が求められる。通常、抽出段では、抽出剤の流動性を確保するため、また、冷却するとエネルギーコストがかかるため、室温である25〜35℃程度を目安に運転される。したがって、これらの温度より十分に高い50℃以上が要求される。一方、温度が90℃を超えると、抽出剤の蒸散及び加熱エネルギーコストがかかる。   The temperature at which the extractant used in the above method is regenerated is not particularly limited and is preferably 50 to 90 ° C. That is, the tributyl phosphate extractant has a characteristic that the extraction proceeds when the temperature is low, and the reverse extraction proceeds when the temperature is high. For this reason, in order to perform the back extraction reaction in the regeneration stage efficiently, a temperature higher than that of the extraction stage is required. Usually, the extraction stage is operated at a temperature of about 25 to 35 ° C., which is room temperature, in order to ensure the fluidity of the extractant and to increase the energy cost when cooled. Therefore, 50 ° C. or higher, which is sufficiently higher than these temperatures, is required. On the other hand, if the temperature exceeds 90 ° C., the transpiration of the extractant and the heating energy cost are required.
上記方法に用いる抽出剤を再生する際の接触装置としては、特に限定されるものではなく、例えば、一般的な抽出装置であるミキサー部とセトラー部からなるミキサーセトラーが用いられる。ここで、ミキサーセトラーを複数段に組み合わせたものを用いることができる。このとき、特に逆抽出反応は時間がかかるので、ミキサー部での反応時間を十分にとる必要がある。したがって、ミキサー部での滞留時間としては、2〜10分が好ましい。すなわち、その滞留時間が2分未満では、再生のための逆抽出反応が不十分である。一方、その滞留時間が10分を超えると、反応はそれ以上進まず、滞留時間を増加させるためのミキサー部の容量が必要以上に大きくなってしまう。   The contact device for regenerating the extractant used in the above method is not particularly limited, and for example, a mixer settler composed of a mixer unit and a settler unit, which is a general extraction device, is used. Here, it is possible to use a combination of mixer settlers in a plurality of stages. At this time, particularly the back extraction reaction takes time, so it is necessary to take a sufficient reaction time in the mixer section. Therefore, the residence time in the mixer section is preferably 2 to 10 minutes. That is, when the residence time is less than 2 minutes, the back extraction reaction for regeneration is insufficient. On the other hand, when the residence time exceeds 10 minutes, the reaction does not proceed any further and the capacity of the mixer section for increasing the residence time becomes larger than necessary.
上記湿式銅製錬法としては、硫化銅鉱物を含む銅原料を塩素浸出し、得られた銅イオンと鉄イオンを含む塩化物水溶液を還元した後、溶媒抽出法により銅と鉄を分離し、得られた塩化第1銅水溶液と塩化第1鉄水溶液から銅と鉄を電解採取するものであるが、例えば、銅原料から銅イオンを含む浸出生成液を得る塩素浸出工程、該浸出生成液を還元して1価の銅イオンを含む還元生成液を得る銅イオン還元処理工程、該還元生成液を溶媒抽出に付し、銅を含む逆抽出生成液と抽出残液とを得る溶媒抽出工程、該逆抽出生成液を電解採取に付し、電着銅を得る銅電解採取工程、及び該溶媒抽出工程で得られる抽出残液を鉄電解採取に付し、電着鉄を得る鉄電解採取工程を含む一連の工程からなる湿式プロセスが挙げられる。   As the above-mentioned wet copper smelting method, the copper raw material containing copper sulfide mineral is leached with chlorine, and after the obtained aqueous chloride solution containing copper ions and iron ions is reduced, copper and iron are separated by a solvent extraction method. For example, a copper leaching process is performed to obtain a leaching product liquid containing copper ions from a copper raw material, and the leaching product liquid is reduced. A copper ion reduction treatment step for obtaining a reduced product solution containing monovalent copper ions, subjecting the reduced product solution to solvent extraction, and a solvent extraction step for obtaining a back extraction product solution containing copper and an extraction residual solution, A copper electrowinning process for obtaining the electrodeposited copper by subjecting the back extraction product liquid to electrowinning, and an iron electrowinning process for obtaining the electrodeposited iron by subjecting the extraction residual liquid obtained in the solvent extraction process to iron electrowinning. The wet process which consists of a series of process including is mentioned.
上記湿式プロセスを図面を用いて説明する。図1は、硫化銅鉱物を含む銅原料から銅と鉄を回収するプロセス工程図の一例を表す。
図1において、銅原料19は、最初に塩素浸出工程12に付され、銅、鉄等を含有する浸出生成液とイオウ含有残渣とに分離される。浸出生成液は、銅イオン還元処理工程13に付され、浸出生成液中の銅イオンは還元され、1価の銅イオンを含む還元生成液が得られる。ここで、還元剤として硫化銅鉱物を含む銅原料を用いる場合は、この残渣は塩素浸出工程12へ循環される。還元生成液は、溶媒抽出工程14に付され、抽出及び逆抽出により1価の銅イオンを含有する逆抽出生成液と抽出残液に分離される。逆抽出生成液は、銅電解採取工程15に付され、銅は電着銅20として回収される。
The wet process will be described with reference to the drawings. FIG. 1 shows an example of a process flow chart for recovering copper and iron from a copper raw material containing a copper sulfide mineral.
In FIG. 1, a copper raw material 19 is first subjected to a chlorine leaching step 12 and separated into a leaching product liquid containing copper, iron and the like and a sulfur-containing residue. The leaching product liquid is subjected to the copper ion reduction treatment step 13, and the copper ions in the leaching product solution are reduced to obtain a reduction product solution containing monovalent copper ions. Here, when using a copper raw material containing a copper sulfide mineral as a reducing agent, this residue is circulated to the chlorine leaching step 12. The reduction product liquid is subjected to a solvent extraction step 14 and separated into a back extraction product liquid containing monovalent copper ions and an extraction residual liquid by extraction and back extraction. The back extraction product liquid is subjected to a copper electrowinning step 15, and copper is recovered as electrodeposited copper 20.
また、製錬処理の原料の種類にもよるが、通常硫化銅鉱物を含む銅鉱石は、銅とほぼ同量に近い鉄を含有しており、前記溶媒抽出工程14における抽出残液には、多量の鉄イオンが含まれる。したがって、溶媒抽出工程14における抽出残液は、必要に応じて浄液工程16に付され、鉄イオン含有精製液と鉄以外の有価金属固形物とに分離される。鉄イオン含有精製液は、鉄電解採取工程17に付され、鉄は電着鉄21として回収される。   Moreover, although depending on the kind of raw material of the smelting treatment, the copper ore containing the copper sulfide mineral usually contains iron that is almost the same amount as copper, and the extraction residual liquid in the solvent extraction step 14 includes: Contains a large amount of iron ions. Therefore, the extraction residual liquid in the solvent extraction process 14 is attached to the liquid purification process 16 as necessary, and separated into an iron ion-containing purified liquid and valuable metal solids other than iron. The iron ion-containing purified solution is subjected to the iron electrowinning step 17, and iron is recovered as electrodeposited iron 21.
また、塩素浸出工程12で分離されたイオウ含有残渣は浸出残渣処理工程18に付され、元素状イオウが回収される。さらに、銅電解採取工程15で分離された電解廃液は、陰極廃液が逆抽出始液として溶媒抽出工程14に、陽極廃液が浸出液として塩素浸出工程12に再循環される。また、鉄電解採取工程17で得られる電解廃液は陽極給液として銅電解採取工程15へ送られる。   Further, the sulfur-containing residue separated in the chlorine leaching step 12 is subjected to a leaching residue treatment step 18 to recover elemental sulfur. Furthermore, the electrolytic waste liquid separated in the copper electrowinning step 15 is recycled to the solvent extraction step 14 as a back extraction start solution for the cathode waste solution and to the chlorine leaching step 12 as the leaching solution for the anode waste solution. The electrolytic waste liquid obtained in the iron electrowinning process 17 is sent to the copper electrowinning process 15 as an anode feed liquid.
上記湿式製錬法の原料としては、特に限定されるものではなく、例えば、硫化銅鉱物を含む銅原料、また、銅メッキ被覆鉄系材料、自動車、家電製品等のシュレッダー処理産出物等のリサイクル工程から産出する合金など銅及び鉄を含む銅原料が用いられる。硫化銅鉱物を含む銅原料としては、黄銅鉱(CuFeS)、輝銅鉱(CuS)、斑銅鉱(CuFeS)などの硫化銅鉱物を含む銅鉱石、硫化銅鉱物を含む鉱石から浮遊選鉱法などによって硫化銅鉱物を濃集した銅精鉱および銅精鉱など濃集物から乾式溶錬法で得られる銅マットが含まれ、さらには、これらと同時処理される硫化物状、酸化物状、金属状の各種含銅原料がある場合も含まれる。 The raw material for the above-mentioned hydrometallurgical process is not particularly limited. For example, copper raw materials containing copper sulfide minerals, and recycling of shredder processing products such as copper-plated coated iron-based materials, automobiles, home appliances, etc. A copper raw material containing copper and iron such as an alloy produced from the process is used. Copper raw materials containing copper sulfide minerals include copper ores containing copper sulfide minerals such as chalcopyrite (CuFeS 2 ), chalcocite (Cu 2 S), and chalcopyrite (Cu 5 FeS 4 ), and ores containing copper sulfide minerals. Copper concentrate obtained by concentration of copper sulfide minerals by the flotation method, etc., and copper mats obtained by the dry smelting method from concentrates such as copper concentrate are included. It includes cases where there are various copper-containing raw materials in the form of oxides and metals.
上記塩素浸出工程は、硫化銅鉱物を含む銅原料を塩化第2銅、塩化第2鉄などを含む酸性塩化物水溶液中に懸濁させ、塩素を吹きこんで主に硫化銅鉱物を浸出して銅、鉄等を溶出させ、銅イオン、鉄イオンを含む浸出生成液と元素状イオウを含む残渣とを形成する工程である。   In the chlorine leaching step, a copper raw material containing a copper sulfide mineral is suspended in an acidic chloride aqueous solution containing cupric chloride, ferric chloride, etc., and chlorine is blown to mainly leach copper sulfide mineral. It is a step of eluting copper, iron and the like to form a leaching product liquid containing copper ions and iron ions and a residue containing elemental sulfur.
上記銅イオン還元処理工程は、2価の銅イオン、2価の鉄イオン及び3価の鉄イオン等を含有する浸出生成液に還元剤を添加してイオンの還元処理を行い、浸出生成液に含有される2価の銅イオンを1価の銅イオンに還元し、同時に3価の鉄イオンも2価の鉄イオンに還元する工程である。   In the copper ion reduction treatment step, a reducing agent is added to a leaching product liquid containing divalent copper ions, divalent iron ions, trivalent iron ions, etc., to reduce the ions, In this step, divalent copper ions contained are reduced to monovalent copper ions, and at the same time trivalent iron ions are reduced to divalent iron ions.
上記銅電解採取工程は、上記溶媒抽出工程で得られる1価の銅イオンを含む逆抽出生成液から銅を電解採取し、陰極上に析出された電着銅と電解尾液とを形成する工程である。
ここで、銅の電解採取方法としては、例えば、陰極室、陽極室、及び前記両室を分離する隔膜から構成される電解槽を用いて、該陰極室に溶媒抽出工程からの逆抽出生成液(塩化第1銅水溶液)を給液して銅を電析させ、かつ該陽極室に鉄電解採取工程からの鉄電解尾液(塩化鉄水溶液)を給液して陽極酸化させるとともに、該陽極室への給液が隔膜を通じて該陰極室へ流入するのを防止することを含む隔膜電解による方法を用いる。さらに、上記方法で前記陰極室の廃液を溶媒抽出の逆抽出始液として溶媒抽出工程へ戻すとともに、前記陽極室の廃液を浸出液として塩素浸出工程へ戻すことができる。
The copper electrowinning step is a step of electrolytically collecting copper from a back extraction product solution containing monovalent copper ions obtained in the solvent extraction step, and forming electrodeposited copper and an electrolytic tail solution deposited on the cathode. It is.
Here, as a method for electrolytically collecting copper, for example, an electrolytic cell composed of a cathode chamber, an anode chamber, and a diaphragm separating the two chambers is used, and a reverse extraction product liquid from a solvent extraction step is used in the cathode chamber. (Copper chloride aqueous solution) is fed to deposit copper, and the anode chamber is fed with an iron electrolytic tail solution (iron chloride aqueous solution) from the iron electrowinning process to be anodized, and the anode A method using diaphragm electrolysis is used which includes preventing liquid supply to the chamber from flowing into the cathode chamber through the diaphragm. Further, the waste liquid in the cathode chamber can be returned to the solvent extraction step as a back extraction start liquid for solvent extraction and the waste liquid in the anode chamber can be returned to the chlorine leaching step as a leachate.
上記鉄電解採取工程は、溶媒抽出工程の抽出残液から鉄を電解採取して、陰極に析出された電着鉄と銅電解採取工程に好適な陽極給液を形成する工程である。鉄の電解採取方法は、特に限定されるものではないが、例えば、通常の隔膜電解法を用いて前記溶媒抽出工程の抽出残液を鉄電解給液として電解槽の陰極給液とし、陽極室から陽極廃液を得る。   The iron electrowinning step is a step of performing electrowinning of iron from the extraction residual liquid of the solvent extraction step to form an electrodeposited iron deposited on the cathode and an anode feed solution suitable for the copper electrowinning step. The method for electrolytically collecting iron is not particularly limited. For example, using a normal diaphragm electrolysis method, the extraction residual liquid in the solvent extraction step is used as an iron electrolysis liquid, and is used as a cathode liquid in an electrolytic cell. To obtain anode waste liquid.
上記湿式プロセスの溶媒抽出工程に、本発明の溶媒抽出方法を適用する場合、溶媒抽出工程の抽出段には、還元後の塩化物水溶液として銅イオン還元処理工程からの還元生成液が用いられ、逆抽出段には、逆抽出始液として銅電解採取工程からの電解廃液が用いられ、さらに、再生段には、再生始液として塩素イオンを含む水溶液が用いられる。溶媒抽出工程においては、還元生成液は、溶媒抽出に付され、銅イオンの大部分は逆抽出生成液に、鉄イオンは抽出残液に分離される。次いで、逆抽出生成液と抽出残液は、それぞれの電解採取工程に供給される。また、再生段から排出される再生終液は、塩素浸出工程又は銅イオン還元工程での蒸発濃縮に対する濃度調整用の補給水、或いは逆抽出始液として利用
される。
When the solvent extraction method of the present invention is applied to the solvent extraction step of the wet process, the reduction product solution from the copper ion reduction treatment step is used as the aqueous chloride solution after the reduction in the extraction stage of the solvent extraction step. In the back extraction stage, the electrolytic waste liquid from the copper electrowinning process is used as the back extraction start liquid, and in the regeneration stage, an aqueous solution containing chlorine ions is used as the regeneration start liquid. In the solvent extraction step, the reduction product solution is subjected to solvent extraction, and most of the copper ions are separated into a back extraction product solution and iron ions are separated into an extraction residual solution. Next, the back extraction product liquid and the extraction residual liquid are supplied to the respective electrowinning steps. Further, the final regeneration solution discharged from the regeneration stage is used as a replenishing water for adjusting the concentration for the evaporation concentration in the chlorine leaching process or the copper ion reduction process, or as a back extraction start liquid.
以下、本発明の実施例及び比較例によって本発明を詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、実施例及び比較例で用いた金属の分析は、蛍光X線分析法で行った。   EXAMPLES Hereinafter, although an Example and a comparative example of this invention demonstrate this invention in detail, this invention is not limited at all by these Examples. In addition, the analysis of the metal used by the Example and the comparative example was performed by the fluorescent X ray analysis method.
(実施例1)
チタン製の角型ミキサーセトラー(ミキサー部:170ml、セトラー部:860ml)を用いた。図2は、溶媒抽出装置の各ミキサーセトラーの配置の概略を表す図である。
図2において、溶媒抽出装置には、抽出段11、逆抽出段12、及び再生段13を設け、各段において、前記ミキサーセトラーを3段使用した。また、各ミキサーセトラーのミキサー部の滞留時間を2〜10分とした。ここで、ミキサー部では、酸化防止のため、窒素パージを行った。
(Example 1)
A square mixer setler made of titanium (mixer part: 170 ml, settler part: 860 ml) was used. FIG. 2 is a diagram showing an outline of the arrangement of each mixer settler of the solvent extraction device.
In FIG. 2, the solvent extraction apparatus is provided with an extraction stage 11, a back extraction stage 12, and a regeneration stage 13, and three stages of the mixer settler are used in each stage. Moreover, the residence time of the mixer part of each mixer settler was 2 to 10 minutes. Here, in the mixer part, nitrogen purge was performed to prevent oxidation.
各段の給、排液としては、抽出段11では、抽出剤14をその最終の3段目から32ml/分で挿入し、1段目から排出させて、逆抽出段12へ流送した。一方、抽出始液15を1段目から11ml/分で挿入し、3段目から抽出終液(抽出残液)16を排出させた。逆抽出段12では、抽出段11からの抽出剤をその最終の3段目から挿入し、1段目から排出させて、再生段13へ流送した。一方、逆抽出始液17をその1段目から16ml/分で挿入し、3段目から逆抽出終液(逆抽出生成液)18を排出させた。再生段13では、逆抽出段12からの抽出剤をその最終の3段目から挿入し、1段目から排出させて、再生抽出剤21を得た。一方、再生始液19をその1段目から10ml/分で挿入し、3段目から再生終液20を排出させた。   As the supply and drainage of each stage, in the extraction stage 11, the extractant 14 was inserted from the final third stage at 32 ml / min, discharged from the first stage, and then fed to the back extraction stage 12. On the other hand, the extraction start liquid 15 was inserted at 11 ml / min from the first stage, and the final extraction liquid (extraction residual liquid) 16 was discharged from the third stage. In the back extraction stage 12, the extractant from the extraction stage 11 was inserted from the final third stage, discharged from the first stage, and sent to the regeneration stage 13. On the other hand, the back extraction start liquid 17 was inserted at 16 ml / min from the first stage, and the back extraction final liquid (back extraction product liquid) 18 was discharged from the third stage. In the regeneration stage 13, the extractant from the back extraction stage 12 was inserted from the final third stage and discharged from the first stage to obtain a regenerated extractant 21. On the other hand, the regeneration start solution 19 was inserted at 10 ml / min from the first stage, and the regeneration end solution 20 was discharged from the third stage.
まず、抽出段で、上記湿式銅製錬法からの還元生成液にあたる抽出始液(表1に示す。)とトリブチルフォスフェイト(濃度100容量%)からなる使用前抽出剤(表1に示す。)を接触混合し、銅を抽出した。続いて、逆抽出段で、逆抽出始液(表1に示す。)により抽出後抽出剤中の銅を逆抽出した。最後に、再生段で、再生始液(表1に示す。)により逆抽出後抽出剤中の銅をさらに逆抽出した。なお、抽出段は35℃、逆抽出段は60℃、及び再生段は60℃に保温した。ここで、一連の操作を7時間連続した後、各段からの終液と抽出剤の分析を行った。結果を表2に示す。   First, in the extraction stage, a pre-use extractant (shown in Table 1) consisting of a starting extraction liquid (shown in Table 1) corresponding to a reduction product obtained from the above-mentioned wet copper smelting method and tributyl phosphate (concentration 100% by volume). Were mixed to extract copper. Subsequently, in the back extraction stage, the copper in the extractant after back extraction was back extracted with a back extraction start solution (shown in Table 1). Finally, in the regeneration stage, copper in the extractant was further back-extracted after the back-extraction with a regeneration start solution (shown in Table 1). The extraction stage was kept at 35 ° C., the back extraction stage was kept at 60 ° C., and the regeneration stage was kept at 60 ° C. Here, after a series of operations were continued for 7 hours, the final solution from each stage and the extractant were analyzed. The results are shown in Table 2.
(比較例1)
溶媒抽出装置としては、再生段を取り除いたこと以外は実施例1と同様の装置を用いた。また、各段の給、排液としては、抽出段1では、抽出剤4をその最終の3段目から60ml/分で挿入したこと、抽出始液5を1段目から20ml/分で挿入したこと、及び逆抽出始液7をその1段目から30ml/分で挿入したこと以外は実施例1と同様に行った。
まず、抽出段で、上記湿式銅製錬法からの還元生成液にあたる抽出始液(表3に示す。)とトリブチルフォスフェイト(濃度100容量%)からなる使用前抽出剤(表3に示す。)を接触混合し、銅を抽出した。続いて、逆抽出段で、逆抽出始液(表3に示す。)により抽出後抽出剤中の銅を逆抽出した。なお、抽出段は35℃、及び逆抽出段は60℃に保温した。ここで、一連の操作を7時間連続した後、各段から終液と抽出剤の分析を行った。結果を表4に示す。
(Comparative Example 1)
As the solvent extraction apparatus, the same apparatus as in Example 1 was used except that the regeneration stage was removed. As for supply and drainage of each stage, in the extraction stage 1, the extraction agent 4 was inserted at 60 ml / min from the final third stage, and the extraction start liquid 5 was inserted at 20 ml / min from the first stage. This was performed in the same manner as in Example 1 except that the back extraction starting solution 7 was inserted at 30 ml / min from the first stage.
First, in the extraction stage, a pre-use extractant (shown in Table 3) consisting of an extraction start solution (shown in Table 3) corresponding to a reduction product obtained from the above-mentioned wet copper smelting method and tributyl phosphate (concentration 100% by volume). Were mixed to extract copper. Subsequently, in the back extraction stage, copper in the extractant after the extraction was back extracted with a back extraction start solution (shown in Table 3). The extraction stage was kept at 35 ° C., and the back extraction stage was kept at 60 ° C. Here, after a series of operations was continued for 7 hours, the final solution and the extractant were analyzed from each stage. The results are shown in Table 4.
表2、4より、実施例1では、逆抽出後抽出剤を再生段で処理して、本発明の方法に従って行われたので、残留銅濃度が低い再生抽出剤が得られ、かつ抽出終液中の銅濃度も比較例1に比べて低くなることが分かる。これに対して、比較例1では、逆抽出後抽出剤の再生処理が行われなかったので、抽出剤中の残留銅濃度及び抽出終液中の銅濃度において満足すべき結果が得られないことが分かる。   From Tables 2 and 4, in Example 1, since the extraction agent after back extraction was processed in the regeneration stage and carried out according to the method of the present invention, a regeneration extractant having a low residual copper concentration was obtained, and the final extraction liquid was obtained. It can be seen that the copper concentration inside is also lower than in Comparative Example 1. On the other hand, in Comparative Example 1, since the regeneration treatment of the extractant after back extraction was not performed, satisfactory results could not be obtained in the residual copper concentration in the extractant and the copper concentration in the final extraction liquid. I understand.
以上より明らかなように、本発明の塩化物水溶液の溶媒抽出方法は、銅と鉄等の共存元素を含む塩化物水溶液の溶媒抽出工程において、抽出の効率を上げるため、抽出剤中の銅濃度を低下する方法として、効率的、かつ安定的に実施することができるので好適である。   As is clear from the above, the solvent extraction method of the aqueous chloride solution of the present invention is the concentration of copper in the extractant in order to increase the extraction efficiency in the solvent extraction step of the aqueous chloride solution containing coexisting elements such as copper and iron. As a method for reducing the temperature, it can be carried out efficiently and stably.
硫化銅鉱物を含む銅原料から銅と鉄を回収するプロセスの一例を表す工程図である。It is process drawing showing an example of the process which collect | recovers copper and iron from the copper raw material containing a copper sulfide mineral. 実施例で用いた溶媒抽出装置の各ミキサーセトラーの配置を表す概略図である。It is the schematic showing arrangement | positioning of each mixer settler of the solvent extraction apparatus used in the Example.
符号の説明Explanation of symbols
1 塩素浸出工程
2 銅イオン還元処理工程
3 溶媒抽出工程
4 銅電解採取工程
5 浄液工程
6 鉄電解採取工程
7 浸出残渣処理工程
8 銅原料
9 電着銅
10 電着鉄
11 抽出段
12 逆抽出段
13 再生段
14 抽出剤
15 抽出始液
16 抽出終液(抽出残液)
17 逆抽出始液
18 逆抽出終液(逆抽出生成液)
19 再生始液
20 再生終液
21 再生抽出剤
DESCRIPTION OF SYMBOLS 1 Chlorine leaching process 2 Copper ion reduction process 3 Solvent extraction process 4 Copper electrowinning process 5 Purification process 6 Iron electrowinning process 7 Leaching residue treatment process 8 Copper raw material 9 Electrodeposited copper 10 Electrodeposited iron 11 Extraction stage 12 Back extraction Stage 13 Regeneration stage 14 Extractant 15 Extraction start 16 Extraction end (extraction residue)
17 Back extraction start liquid 18 Back extraction end liquid (back extraction product liquid)
19 Regeneration start solution 20 Regeneration end solution 21 Regeneration extractant

Claims (5)

  1. 硫化銅鉱物を含む銅原料を塩素浸出し、得られた銅イオンと鉄イオンを含む塩化物水溶液を還元した後、溶媒抽出法により銅と鉄を分離し、得られた塩化第1銅水溶液と塩化第1鉄水溶液から銅と鉄を電解採取する湿式銅製錬法において、溶媒抽出法により銅と鉄を分離する際に、
    トリブチルフォスフェイトを含む抽出剤を用いて、還元後の塩化物水溶液から1価の銅イオンを選択的に抽出し、次いで逆抽出することにより形成される抽出剤を、再生始液として用いる塩素イオンを含む水溶液と接触させて再生抽出剤を得ることを特徴とする塩化物水溶液の溶媒抽出方法。
    After leaching the copper raw material containing copper sulfide mineral with chlorine and reducing the obtained aqueous solution of chloride containing copper ions and iron ions, the copper and iron are separated by a solvent extraction method, and the obtained cuprous chloride aqueous solution and In the wet copper smelting method in which copper and iron are electrolyzed from ferrous chloride aqueous solution, when separating copper and iron by solvent extraction method,
    Chlorine ions using an extractant formed by selectively extracting monovalent copper ions from an aqueous chloride solution after reduction using an extractant containing tributyl phosphate and then back-extracting it A method for extracting a chloride aqueous solution, wherein the regenerated extractant is obtained by contact with an aqueous solution comprising
  2. 前記抽出剤中のトリブチルフォスフェイト濃度は、40容量%以上であることを特徴とする請求項1に記載の塩化物水溶液の溶媒抽出方法。   The method of extracting a chloride aqueous solution according to claim 1, wherein the concentration of tributyl phosphate in the extractant is 40% by volume or more.
  3. 前記塩素イオンを含む水溶液は、塩素イオン濃度が10〜100g/L、銅イオン濃度が2g/L以下、及び鉄イオン濃度が50g/L以下であることを特徴とする請求項1に記載の塩化物水溶液の溶媒抽出方法。   The chloride solution according to claim 1, wherein the aqueous solution containing chlorine ions has a chlorine ion concentration of 10 to 100 g / L, a copper ion concentration of 2 g / L or less, and an iron ion concentration of 50 g / L or less. Solvent extraction method for aqueous solution.
  4. 抽出剤を再生する際の温度は、50〜90℃であることを特徴とする請求項1に記載の塩化物水溶液の溶媒抽出方法。   The method for extracting a chloride aqueous solution according to claim 1, wherein the temperature at which the extractant is regenerated is 50 to 90 ° C.
  5. 抽出剤を再生する際に、接触装置としてミキサーセトラーを用い、ミキサー部での滞留時間が2〜10分であることを特徴とする請求項1に記載の塩化物水溶液の溶媒抽出方法。   2. The method for extracting a chloride aqueous solution according to claim 1, wherein when the extractant is regenerated, a mixer settler is used as a contact device, and the residence time in the mixer section is 2 to 10 minutes.
JP2007048344A 2007-02-28 2007-02-28 Solvent extraction method for chloride aqueous solution Pending JP2008208441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048344A JP2008208441A (en) 2007-02-28 2007-02-28 Solvent extraction method for chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048344A JP2008208441A (en) 2007-02-28 2007-02-28 Solvent extraction method for chloride aqueous solution

Publications (1)

Publication Number Publication Date
JP2008208441A true JP2008208441A (en) 2008-09-11

Family

ID=39784994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048344A Pending JP2008208441A (en) 2007-02-28 2007-02-28 Solvent extraction method for chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP2008208441A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181636A (en) * 2011-05-17 2011-09-14 重庆海祥医药化工有限公司 Modified beta-diketone extracting agent
CN103952552A (en) * 2014-05-11 2014-07-30 四川之江高新材料股份有限公司 Preparation method of copper extracting agent LPB
CN104357661A (en) * 2014-10-30 2015-02-18 云南铜业股份有限公司 Method for comprehensively recovering copper and indium from lead matte
CN105506670A (en) * 2015-12-18 2016-04-20 阳谷祥光铜业有限公司 Device for copper electrolysis or copper electrodeposition, and running method
CN105861826A (en) * 2016-05-19 2016-08-17 昆明理工大学 Method for extracting copper ions through ultrasonic wave channelization
WO2021010165A1 (en) * 2019-07-12 2021-01-21 住友金属鉱山株式会社 Method for recovering scandium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181636A (en) * 2011-05-17 2011-09-14 重庆海祥医药化工有限公司 Modified beta-diketone extracting agent
CN102181636B (en) * 2011-05-17 2012-11-28 重庆海祥医药化工有限公司 Modified beta-diketone extracting agent
CN103952552A (en) * 2014-05-11 2014-07-30 四川之江高新材料股份有限公司 Preparation method of copper extracting agent LPB
CN103952552B (en) * 2014-05-11 2016-01-20 四川之江高新材料股份有限公司 The preparation method of copper extractant LPB
CN104357661A (en) * 2014-10-30 2015-02-18 云南铜业股份有限公司 Method for comprehensively recovering copper and indium from lead matte
CN105506670A (en) * 2015-12-18 2016-04-20 阳谷祥光铜业有限公司 Device for copper electrolysis or copper electrodeposition, and running method
CN105861826A (en) * 2016-05-19 2016-08-17 昆明理工大学 Method for extracting copper ions through ultrasonic wave channelization
WO2021010165A1 (en) * 2019-07-12 2021-01-21 住友金属鉱山株式会社 Method for recovering scandium

Similar Documents

Publication Publication Date Title
JP4085908B2 (en) Method for concentrating noble metals contained in leaching residue of wet copper refining process
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
FI125027B (en) Method of metal recycling from materials containing them
JP5069173B2 (en) Method for recovering copper from minerals
JP2009235519A (en) Method for recovering metal from ore
CN102618719A (en) Method for directly leaching zinc and recovering gallium, germanium and indium from zinc sulfide concentrate
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
EP1507878B1 (en) Chloride assisted hydrometallurgical extraction of metals
JP2006509103A (en) Slag processing method
Antunano et al. Hydrometallurgical processes for Waelz oxide valorisation–an overview
JP2008266774A (en) Zinc recovery method
JP5439997B2 (en) Method for recovering copper from copper-containing iron
Shen et al. Review of rhenium extraction and recycling technologies from primary and secondary resources
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2009167451A (en) Method for electrolytically extracting copper
JP4506660B2 (en) Silver recovery method in wet copper smelting process
Kohga et al. Recovering iron, manganese, copper, cobalt, and high-purity nickel from sea nodules
JP6176491B2 (en) Method for removing copper from aqueous nickel chloride solution
JP5181684B2 (en) Solvent extraction method for aqueous chloride solution
WO2008139412A1 (en) Producing a metal like zinc from sulphide ores by chloride leaching and electrowinning
JP2007224400A (en) Method of recovering electrolytic iron from aqueous ferric chloride solution
WO2020107122A1 (en) Process for the recovery of value metals from zinc-bearing ores, concentrates, intermediates and wastes
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
Kumar et al. Recovery of cadmium from hydrometallurgical zinc smelter by selective leaching