JP2009076861A - 磁気センサ、ホール素子、ホールic、磁気抵抗効果素子、ホール素子の作製方法、および磁気抵抗効果素子の作製方法 - Google Patents

磁気センサ、ホール素子、ホールic、磁気抵抗効果素子、ホール素子の作製方法、および磁気抵抗効果素子の作製方法 Download PDF

Info

Publication number
JP2009076861A
JP2009076861A JP2008167455A JP2008167455A JP2009076861A JP 2009076861 A JP2009076861 A JP 2009076861A JP 2008167455 A JP2008167455 A JP 2008167455A JP 2008167455 A JP2008167455 A JP 2008167455A JP 2009076861 A JP2009076861 A JP 2009076861A
Authority
JP
Japan
Prior art keywords
layer
hall element
forming
hall
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167455A
Other languages
English (en)
Other versions
JP5044489B2 (ja
Inventor
Makoto Miyoshi
実人 三好
Mitsuhiro Tanaka
光浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008167455A priority Critical patent/JP5044489B2/ja
Priority to US12/193,851 priority patent/US8026718B2/en
Publication of JP2009076861A publication Critical patent/JP2009076861A/ja
Application granted granted Critical
Publication of JP5044489B2 publication Critical patent/JP5044489B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】300℃以上の高温域において従来のものよりも良好に動作する磁気センサを提供する。
【解決手段】GaNからなり室温での電子濃度が1×1016/cm3以下である第1層2aと、AlxGa1-xN(0<x≦0.3)からなる第2層2bとを積層することで、ヘテロ接合界面を有する動作層2を形成する。これにより、二次元電子ガス領域2gにおけるキャリア移動度はより高められるとともに、キャリア濃度がより低減される。その結果、室温においては定電流駆動および定電圧駆動の双方で高い測定感度を有するとともに、高温でも定電流駆動によって室温と同程度の測定感度で使用できるホール素子が実現される。
【選択図】図2

Description

本発明は、III族窒化物半導体にて動作層を構成した磁気センサに関する。
半導体材料にて動作層を構成したホール素子や磁気抵抗効果素子などの磁気センサは、使用する半導体材料のキャリア移動度が大きいほど高い感度を示すことが知られている。そのため、従来より、磁気センサの動作層には、InSbやInAsといった高い電子移動度を示す化合物半導体が用いられている(例えば、非特許文献1参照)。例えば、DCブラシレスモータ用の磁気センサとして、InSbやInAsなどの薄膜のホール効果を利用したホール素子が多量に使われている。
また、ワイドバンドギャップ半導体であるIII族窒化物半導体にて動作層を構成した磁気センサも公知である(例えば、特許文献1および特許文献2参照)。係る磁気センサは、InSbやInAsを用いた磁気センサと比べるとキャリア移動度および感度では劣るものの、高温下でも特性変化が生じにくいという利点がある。特に、特許文献2には、動作層がAlx1-xN/GaN(0.3<x≦0.5)ヘテロ構造を有する磁気センサが、300℃以上でも(0℃以上800℃以下の範囲において)良好に動作可能である旨の開示がなされている。
なお、N型の導電型を有するIII族窒化物半導体層を形成する際のドナー濃度を好適に制御する手法も公知である(例えば、特許文献3参照)。
「InSb単結晶薄膜の物性と磁気センサ応用」 電気学会論文誌E,123巻3号(2003),pp.69-78 特開2003−060255号公報 特開2006−080338号公報 特開2005−035869号公報
特許文献1においても指摘されているように、InSbやInAsを用いて作製した磁気センサの場合、磁束密度一定の条件の下で測定されるホール電圧に温度依存性があるために、高温下で使用することができないという欠点があることが広く知られている。
また、特許文献1において具体的に開示されているのは、III族窒化物半導体を用いて動作層を形成した磁気センサが、200℃以下の温度範囲で動作するということに過ぎない。係る磁気センサが300℃以上の高温域においても良好に機能するものであることを示す具体的事実や、あるいは、300℃以上の高温域で良好に動作する磁気センサを実現するための要件に関しては、何らの開示もなされてはいない。すなわち、特許文献1には、300℃以上の高温域で良好に動作する磁気センサが実質的に開示されているとはいえない。なお、特許文献2においてもこの旨は指摘されている。
一方、特許文献2においては、磁気センサの動作層を構成するAlx1-xN/GaNヘテロ構造においてx≦0.3の範囲が除外されているが、Alx1-xN/GaNヘテロ構造の場合、x≦0.3の場合の方が0.3<x≦0.5の場合よりも電子移動度が大きくなることから、x≦0.3の範囲を利用できれば、300℃以上で良好に動作する、より高感度の磁気センサが実現されることになる。
本発明は、上記課題に鑑みてなされたものであり、300℃以上の高温域において従来のものよりも良好に動作する磁気センサを提供することを目的とする。
上記課題を解決するため、請求項1の発明は、動作層にGaN層とAlGaN層とのヘテロ接合構造を有する磁気センサであって、前記GaN層の電子濃度が1×1016/cm3以下であり、前記AlGaN層が、AlxGa1-xN(0<x≦0.3)によって形成されてなる、ことを特徴とする。
請求項2の発明は、ホール素子が、請求項1に記載の磁気センサであって平面視において前記動作層の互いに対向する第1の端部のそれぞれに入力電極を備えるとともに、前記第1の端部同士を結ぶ方向と略直交する方向において互いに対向する第2の端部のそれぞれに出力電極を備えたものである、ことを特徴とする。
請求項3の発明は、請求項2に記載のホール素子であって、前記動作層が平面視において略十字形をなす十字形部分を有しており、前記十字形部分の互いに対向する2つの先端部のそれぞれに前記入力電極を備えるとともに、前記第1の先端部と異なる2つの先端部のそれぞれに前記出力電極を備える、ことを特徴とする。
請求項4の発明は、請求項2または請求項3に記載のホール素子であって、前記GaN層の比抵抗が1×106Ωcm以上である、ことを特徴とする。
請求項5の発明は、請求項2または請求項3に記載のホール素子であって、前記GaN層の電子濃度が1×1012/cm3以下である、ことを特徴とする。
請求項6の発明は、請求項4または請求項5に記載のホール素子であって、前記十字形部分の高さが前記AlGaN層の厚みよりも大きくかつ前記動作層全体の厚みよりも小さいことを特徴とする。
請求項7の発明は、請求項2ないし請求項6のいずれかに記載のホール素子であって、前記AlGaN層と前記GaN層の接合界面に0.75nm〜1.5nmの厚みのAlN層が挿入されてなることを特徴とする。
請求項8の発明は、請求項4ないし請求項6のいずれかに記載のホール素子を備えるホールICであって、前記ホール素子においては前記GaN層が所定の基板の上に形成されてなり、前記所定の基板上にHEMTを含む制御回路が形成されてなる、ことを特徴とする。
請求項9の発明は、請求項1に記載の磁気センサであって前記動作層の表面の対向する端部のそれぞれに端子電極を備えるとともに、前記端子電極の間に複数の短絡電極を備えたものである、ことを特徴とする。
請求項10の発明は、請求項9に記載の磁気抵抗効果素子であって、前記AlGaN層と前記GaN層の接合界面に0.75nm〜1.5nmの厚みのAlN層が挿入されてなることを特徴とする。
請求項11の発明は、ホール素子の作製方法であって、所定の基板の上に電子濃度が1×1016/cm3以下のGaN層をエピタキシャル形成するGaN層形成工程と、前記GaN層の上に、AlxGa1-xN(0<x≦0.3)からなるAlGaN層をエピタキシャル形成するAlGaN層形成工程と、によって、前記GaN層と前記AlGaN層とのヘテロ接合構造を形成する動作層を積層形成する動作層形成工程と、平面視において前記動作層の互いに対向する第1の端部のそれぞれに入力電極を形成するとともに、前記第1の端部同士を結ぶ方向と略直交する方向において互いに対向する第2の端部のそれぞれに出力電極を形成する電極形成工程と、を備えることを特徴とする。
請求項12の発明は、請求項11に記載のホール素子の作製方法であって、前記動作層形成工程が、前記動作層の一部を除去することによって前記動作層に平面視において略十字形をなす十字形部分を形成する除去工程、をさらに備え、前記電極形成工程においては、前記十字形部分の互いに対向する2つの先端部のそれぞれに前記入力電極を形成するとともに、前記第1の先端部と異なる2つの先端部のそれぞれに前記出力電極を形成する、ことを特徴とする。
請求項13の発明は、請求項12記載のホール素子の作製方法であって、前記GaN層形成工程においては、比抵抗が1×106Ωcm以上であるか、電子濃度が1×1012/cm3以下であるように前記GaN層を形成し、前記除去工程においては、前記十字形部分の高さが前記AlGaNの厚みより大きくかつ前記動作層全体の厚みよりも小さくなるように前記十字形部分を形成する、こと特徴とする。
請求項14の発明は、請求項11ないし請求項13のいずれかに記載のホール素子の作製方法であって、前記動作層形成工程において、前記AlGaN層形成工程と前記GaN層形成工程の間に、0.75nm〜1.5nmの厚みのAlN層を形成するAlN層形成工程、をさらに備えることを特徴とする。
請求項15の発明は、磁気抵抗効果素子の作製方法であって、所定の基板の上に電子濃度が1×1016/cm3以下のGaN層をエピタキシャル形成するGaN層形成工程と、前記GaN層の上に、AlxGa1-xN(0<x≦0.3)からなるAlGaN層をエピタキシャル形成するAlGaN層形成工程と、によって、前記GaN層と前記AlGaN層とのヘテロ接合構造を形成する動作層を積層形成する動作層形成工程と、前記動作層の表面の対向する端部のそれぞれに端子電極を形成するとともに前記端子電極の間に複数の短絡電極を形成する電極形成工程と、を備えることを特徴とする。
請求項16の発明は、請求項15に記載の磁気抵抗効果素子の作製方法であって、前記動作層形成工程において、前記AlGaN層形成工程と前記GaN層形成工程の間に、0.75nm〜1.5nmの厚みのAlN層を形成するAlN層形成工程、をさらに備えることを特徴とする。
請求項1の発明によれば、室温から高温まで略同一の測定感度で動作する磁気センサが実現される。
請求項2ないし請求項7、および請求項11ないし請求項14の発明によれば、室温においては定電流駆動および定電圧駆動の双方で高い測定感度を有するとともに、高温でも定電流駆動によって室温と同程度の測定感度で使用できるホール素子が実現される。
特に、請求項6および請求項13の発明によれば、動作層の十字形部分を動作層全体の厚みに比して薄く形成した場合であっても、室温においては定電流駆動および定電圧駆動の双方で高い測定感度を有するとともに、高温でも定電流駆動によって室温と同程度の測定感度で使用できるホール素子が実現される。
請求項8の発明によれば、室温から高温まで略同一の測定感度で動作するホールICが実現される。
請求項9、請求項10、請求項15、および請求項16の発明によれば、室温から高温まで略同一の測定感度で動作する磁気抵抗効果素子が実現される。
<第1の実施の形態>
本実施の形態においては、半導体のホール効果を利用して磁界を検出することができる磁気センサであるホール素子について説明する。
<ホール素子の概要>
図1は、本発明の第1の実施の形態に係るホール素子10の上面図である。図2は、図1のA−B断面における(略中央部を通る)ホール素子10の断面図である。
ホール素子10は、基板1の上に、動作層2と、2つの入力電極3a、3bと、2つの出力電極4a、4bとを備える。動作層2は、ホール素子10を平面視(上面視)した場合にその中央部に十字型の形状(十字形)を有するように形成されてなる。十字形は、各ラインについて、幅が数十μm程度、長さが数百μmとなるように形成するのが好適である。例えば、幅を50μm、長さを200μmとするのがその一例である。
2つの入力電極3a、3bは、係る動作層2の十字形の互いに対向する2つの先端部のそれぞれに該先端部を被覆するように設けられてなり、2つの出力電極4a、4bは、動作層2の十字形の、入力電極とは異なる2つの先端部のそれぞれに該先端部を被覆するように設けられてなる。
係るホール素子10をその表面から裏面に向かう垂直な磁場中においた状態で、2つの入力電極3a、3bの間に定電流を流す(定電流駆動の場合)か、あるいは定電圧を印加する(定電圧駆動の場合)と、動作層2におけるホール効果によって2つの出力電極4a、4bの間には電位差(ホール電圧)が生じる。このホール電圧を測定することで、(温度一定の条件のもとでは)これに比例する値として当該磁場の磁束密度を求めることができる。
図3は、ホール素子10の形成に用いる積層構造体5の断面模式図である。積層構造体5は、基板1の上に、動作層2をエピタキシャル形成したものである。動作層2は、第1層2aと、第2層2bとが積層された構造を有する。なお、基板1と動作層2aとの間には、動作層2aおよび動作層2bの結晶品質を良好なものとすることを目的として、GaNからなる図示しないバッファ層(低温バッファ層)が数十nm程度の厚みに設けられてなるのが好ましい。
概略的に言えば、本実施の形態に係るホール素子10は、基板1の上に動作層2をエピタキシャル形成することで積層構造体5を得た後、図1に示すように、平面視した場合においてその中央部に十字形が残るように動作層2をフォトリソグラフィープロセスとRIE(反応性イオンエッチング)の手法を用いて除去したうえで、入力電極3a、3bと、2つの出力電極4a、4bとをフォトリソグラフィープロセスとEB(電子ビーム)蒸着の手法を用いて設けることによって、作製される。なお、図2に例示しているのは、RIE法によって動作層2を十字形に形成する際に、動作層2の厚みよりも深くエッチングを行うことで基板1の一部も除去した場合のホール素子10である。
基板1としては、例えば(0001)面方位の単結晶サファイア基板を用いるのが好適な一例であるが、結晶性の良好な動作層2を形成できるものであれば、材質に特に制限はない。すなわち、サファイア、SiC、Si、GaAs、スピネル、MgO、ZnO、フェライト等のなかから適宜に選択して用いればよい。
動作層2の第1層2aは、III族窒化物の1つであるGaNによって構成される半導体層である。また、第2層2bは、同じくIII族窒化物の1つであるAlGaNによって構成される半導体層である。なお、第1層2aは、数μm程度の厚みに形成されるのが好適である。第2層2bは、数十nm程度の厚みに形成されるのが好適である。動作層2の詳細については後述する。
入力電極3a、3bと、出力電極4a、4bとは、いずれも、Ti/Al/Ni/Auからなる多層電極として設けるのが好適な一例である。
<動作層の構成とホール素子の特性の関係>
上述したように、動作層2においては、組成およびバンドギャップの相異なるIII族窒化物からなる第1層2aと第2層2bとが積層形成されてなることから、両層の境界にはヘテロ接合界面が形成されてなる。係るヘテロ接合界面においては、自発分極およびピエゾ分極が生じ、これによって、第1層2aにおける両層の積層界面から数nm程度の範囲に、電子が高濃度に蓄えられた二次元電子ガス領域2gが形成される。すなわち、ホール素子10の動作は、係る二次元電子ガス領域2gに蓄えられた二次元電子ガスがキャリアとなることで実現される。
ただし、動作層を半導体にて構成したホール素子においては一般に、定電圧駆動の場合は動作層におけるキャリア移動度が高いほど、定電流駆動の場合は動作層におけるキャリア濃度が低いほど、測定感度が高くなる(高いホール電圧が得られる)ことから、本実施の形態に係るホール素子10においても、動作層2はこれらの要件をみたすように構成されてなる。
具体的には、第1層2aを、室温での電子濃度が1×1016/cm3以下であるように形成してなる。第1層2aをこのような態様とすることで、二次元電子ガス領域2gはより薄く(より二次元的に)なり、結果として、該二次元電子ガス領域2gにおけるキャリア移動度はより高められてなる。
さらには、第2層2bを、AlxGa1-xN(0<x≦0.3)というAlの混合比率が小さいAlGaN層によって形成してなる。これにより、GaNからなる第1層2aとの組成差が比較的小さなものとなるので、二次元電子ガス領域2gにおける二次元電子ガスの生成が抑制され、結果として、キャリア濃度がより低減され、且つキャリア移動度が向上されてなる。
なお、第1層2aの電子濃度を1×1016/cm3以下とすることによって、および、第2層2bをAlの混合比率が小さいAlGaN層として形成することで第1層2aにおける三次元的な電子輸送が抑制されてなることによって、ホール素子10は高い入出力抵抗を有するものとなっているが、このことも、高い測定感度の実現に貢献している。
図4および図5は、動作層2が上述のような構成を有することの効果を示すための図である。図4は、第1層2aにおける電子濃度n(単位1/cc=1/cm3)が異なる3種のホール素子を室温で定電流駆動した場合の、第2層2bにおける全III族元素中のAlの組成比x(図4ではx_Alと表記)とホール電圧(単位V)との関係を示す図である。図4に示すデータはいずれも、磁束密度が500G(Gauss)の磁場中で、入力電流を2mAに保って得たものである。また、図5は、同じく第1層2aにおける電子濃度が異なるホール素子を室温で定電圧駆動した場合の、第2層2bにおける全III族元素中のAlの組成比x(図5ではx_Alと表記)とホール電圧(単位V)との関係を示す図である。図5に示すデータはいずれも、磁束密度が500Gの磁場中で、入力電圧を3Vに保って得たものである。
図4からは、第1層2aにおける電子濃度が高いほど、かつ、第2層2bにおける全III族元素中のAlの組成比が小さいほど、高いホール電圧が得られることがわかる。また、図5からは、第1層2aにおける電子濃度が1×1016/cm3以下の場合に、第2層2bにおける全III族元素中のAlの組成比が0.3以下であれば高いホール電圧が得られることがわかる。
すなわち、GaNからなる第1層2aの電子濃度を1×1016/cm3以下とするとともに、第2層2bにおける全III族元素中のAlの組成比を0.3以下とすることで、室温で定電流駆動および定電圧駆動のいずれにおいても高い測定感度で測定を行えるホール素子10が実現される。
次に、動作層2の構成と温度特性との関係について説明する。本実施の形態に係るホール素子10は二次元電子ガスをキャリアとして動作するものであるが、温度が可変の環境でホール素子10を使用する場合には、定電流駆動が適している。なぜならば、定電流駆動の場合、ホール電圧と磁束密度は上述したように比例関係にある一方、ホール電圧とキャリア濃度は反比例する関係にあるが、二次元電子ガスの濃度(つまりはキャリア濃度)は原理上、温度変化に対する依存性をほとんど有していないことから、温度環境が変化してもキャリア濃度は定数とみなすことができ、測定感度に影響を与えない(磁場条件が同じである限り測定されるホール電圧は同じ)ことになるからである。
図6ないし図11は、動作層2の構成と、温度環境の変化との関係を示すための図である。
図6は、第1層2aの室温における電子濃度を異なるものする一方、第2層2bをいずれもAl0.2Ga0.8Nにて形成(つまりはx=0.2の場合)した種々のホール素子について、室温、200℃、400℃、600℃、800℃において定電流駆動した場合の、第1層2a(GaN層)の電子濃度(単位1/cc=1/cm3)とホール電圧(単位V)との関係を示す図である。なお、係る結果は、磁束密度が500Gの磁場中で、入力電流を2mAに保って得たものである。
図7は、図6に示した測定結果から求まる、第1層2aの電子濃度と、各測定温度間でのホール電圧の変化率(温度変化率、単位%/℃)との関係を示す図である。
図8は、第2層2bをいずれもAl0.3Ga0.7Nにて形成(つまりはx=0.3の場合)するほかは、図6の場合と同様にホール素子の作製およびホール電圧の測定を行うことによって得られた、第1層2aの電子濃度とホール電圧との関係を示す図である。
図9は、図8に示した測定結果から求まる、第1層2aの電子濃度と、ホール電圧の温度変化率との関係を示す図である。
図10は、第2層2bをいずれもAl0.4Ga0.6Nにて形成(つまりはx=0.4の場合)するほかは、図6の場合と同様にホール素子の作製およびホール電圧の測定を行うことによって得られた、第1層2aの電子濃度とホール電圧との関係を示す図である。
図11は、図10に示した測定結果から求まる、第1層2aの電子濃度と、ホール電圧の温度変化率との関係を示す図である。
図6ないし図11からは、第2層2bの組成が同じ場合、第1層2aの電子濃度が1×1016/cm3以下となるように作製したホール素子10であれば、ホール電圧は、少なくとも800℃までは温度によらず略一定(温度変化率が−0.01〜0%/℃)の値をとることがわかる。なお、第1層2aの電子濃度が高いホール素子において高温での温度変化率が大きくなることは、第1層2aの内部で二次元電子ガス領域2g以外に三次元的に分布する電子の比率が高くなることに基づくものである。
係る結果は、GaNからなり電子濃度が1×1016/cm3以下の第1層2aと、AlxGa1-xN(0<x≦0.3)からなる第2層2bとが積層形成されてなる動作層2を有するホール素子10が、室温から800℃までの温度範囲において安定した定電流駆動動作を実現することを示すものに他ならない。すなわち、本実施の形態に係るホール素子10は、室温のみならず高温においても、定電流駆動によって室温とほぼ同じ程度の良好な測定感度で使用することができるものである。
<積層構造体の形成方法>
次に、上述のような構成を有する動作層2を実現するための積層構造体5の形成方法について説明する。積層構造体5は、MOCVD法によって形成することができる。すなわち、基板1を所定の反応管内のサセプタに載置し、基板1を所定の反応温度(形成温度)に昇温した後、該反応温度を保った状態で、III族原料ガス(第1層2aの場合はGa原料ガス、第2層2bの場合はGa原料ガスとAl原料ガス)およびV族原料ガスであるNH3ガスをそれぞれキャリアガスと共に所定の流量で流すことによって、第1層2aと第2層2bとを順次にエピタキシャル形成することができる。第1層2aの形成温度は(950℃〜1200℃の範囲の所定温度、例えば1000℃とするのが好適であり、第2層2bの形成温度は950℃〜1200℃の範囲の所定温度、例えば同じく1000℃とするのが好適である。なお、上述のように、基板1の上にまず、400℃〜600℃の範囲の所定温度、例えば500℃でGaNからなるバッファ層をあらかじめ形成したうえで、第1層2aおよび第2層2bを形成するのがより好ましい。
なお、積層構造体5の形成は、第1層2a中の電子濃度の制御や、第2層2bの組成比の制御が可能である限りにおいて、MOCVD法以外のエピタキシャル成長手法、例えばMBE、HVPE、LPEなどの気相成長法や液相成長法の中から適宜選択した手法によって行う態様であってもよいし、異なった成長法を組み合わせて行う態様であってもよい。
また、キャリア移動度をより高めることを目的として、第1層2aと第2層2bとの間にAlN層を挿入するようにしてもよい。図12は、係る構成の積層構造体15の断面模式図である。AlN層2cは、0.75nm〜1.5nm程度の厚みに形成されるのが好適である。積層構造体5に代えて係る積層構造体15を用いた場合には、より測定感度の良好なホール素子10を実現することができる。
以上、説明したように、本実施の形態によれば、GaNからなり室温での電子濃度が1×1016/cm3以下である層と、AlxGa1-xN(0<x≦0.3)からなる層とが積層されてなる動作層を備えるようにすることで、室温においては定電流駆動および定電圧駆動の双方で高い測定感度を有するとともに、高温でも定電流駆動によって室温と同程度の測定感度で使用できるホール素子が実現される。
<第2の実施の形態>
<ホール素子の概要>
第1の実施の形態において図2に例示しているホール素子10は、RIE法によって動作層2を十字形に形成する際に、動作層2の厚みよりも深くエッチングを行うことで基板1の一部も除去した場合のホール素子10であるが、動作層2を十字形に形成する態様は、これに限られるものではない。本実施の形態においては、第1の実施の形態に係るホール素子とは異なる態様にて動作層を備えるホール素子について説明する。
図13は、本発明の第2の実施の形態に係るホール素子20の略中央部を通る断面についての断面図である。第2の実施の形態に係るホール素子20は、平面視した場合にその中央部に十字形を有するように動作層2が形成されてなる点では第1の実施の形態に係るホール素子10と同様であるが、十字形部分の高さが小さいという点が異なっている。このような構造のホール素子20は、第1の実施の形態と同様に作製した積層構造体5の中央部に、フォトリソグラフィープロセスとRIE(反応性イオンエッチング)の手法を用いて、十字形部分を区画するエッチング領域のエッチング深さが動作層2の厚みよりも小さくなるように十字形を形成することで実現される。係るエッチング深さは、第2層2bの厚みよりも大きいことが前提ではあるが、数十nm程度に、例えば60nmとするのが好適である。ただし、本実施の形態に係るホール素子20の場合、積層構造体5を作製するに際して、第1層2aを、比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)の高抵抗層として形成する。これにより、上述のように十字形部分を浅く形成してなるにも関わらず、動作層2においては該十字形部分以外における導通は抑制され、良好な測定感度が実現される。
例えば、第1層2aとして電子濃度が5×1011/cm3であるGaN層を2μmの厚みに形成し、第2層2bとしてAl0.2Ga0.8N層を25nmの厚みに形成し、動作層2を形成する際のエッチング深さを60nmとして形成したホール素子20の場合、磁束密度が500Gの磁場中で、入力電流を2mAに保った定電流駆動におけるホール電圧が約0.006V、入力電圧を3Vに保った低電圧駆動におけるホール電圧が約0.024Vという結果が得られる。また、係るホール電圧を同じく磁束密度が500Gの磁場中で、室温から800℃まで加熱しつつ、入力電流を2mAに保った定電流駆動を行ったところ、室温から800℃までの温度変化率は0.0005%/℃という結果が得られる。
係る結果は、GaNからなり室温での比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)である高抵抗層と、AlxGa1-xN(0<x≦0.3)からなる層との積層構造を有するように動作層を形成することで、動作層の十字形部分の高さが数十nm程度とごく小さい(該十字形部分を区画するエッチング領域の深さがごく浅い)場合であっても、室温においては定電流駆動および定電圧駆動の双方で高い測定感度を有するとともに、高温でも定電流駆動によって室温と同程度の測定感度で使用できるホール素子が実現される、ということを示すものである。また、エッチング深さが数十nm程度でよいということは、数μm程度の深さのエッチングを必要とする第1の実施の形態に係るホール素子10を作製する場合に比して、素子作製に係る時間およびコストが低減されるということでもある。
<高抵抗層の形成方法>
次に、本実施の形態に係るホール素子20の作製に用いる積層構造体5を得るにあたって、高抵抗層としての第1層2aを形成する方法について説明する。ここでは、第1の実施の形態と同様にMOCVD法によって積層構造体5を得るものとする。係る場合、例えば特許文献3に開示されているような雰囲気制御の手法によって、第1層2aを高抵抗層として形成することができる。具体的には、第1層2aの形成に先立つ基板1の昇温時に窒素ガスを含むガスを流すようにするとともに、第1層2aの形成時の少なくとも一時期に、III族原料用のキャリアガス(第1キャリアガス)とV族原料用のキャリアガス(第2キャリアガス)との少なくとも一方において、好ましくは双方において、それぞれのキャリアガス全体に対する窒素ガスの割合を3体積%以上となるようにする。これにより、電子濃度が1×1012/cm3以下(比抵抗が1×106Ωcm以上)という第1層2aの形成が実現される。
なお、昇温時に供給される窒素ガスとしては、その後の第1層2aおよび第2層2bの形成時に第1あるいは第2キャリアガスとして用いる窒素ガスを供給する態様であってよい。その際には、両方のキャリアガスの供給源から該窒素ガスを含むガスを供給する態様がより好ましい。
また、第1層2aをより高抵抗なものとするためには、第1層2aの形成初期段階(第1層2aの形成厚みが50nm程度以下の段階)が、上述の第1層2aの形成時の少なくとも一時期と呼ばれる時期に含まれるようにするのが好ましい。
一方で、形成初期段階を過ぎた後の第1層2aの形成時においては、第1キャリアガスと第2キャリアガスの少なくとも一方が、好ましくは双方が、実質的に水素のみを含むことが、やはり第1層2aをより高抵抗なものとするうえで好ましい。ここで、実質的に水素のみを含むとは、それぞれのキャリアガス全体に対する水素ガスの割合が99.99at%以上であることを意味するものとする。
以上のような方法を用いることで、電子濃度が1×1012/cm3以下に好適に制御された第1層2aを含む積層構造体5を得ることができる。
なお、第1の実施の形態の場合と同様に、積層構造体5の形成は、第1層2a中の電子濃度の制御や、第2層2bの組成比の制御が可能である限りにおいて、MOCVD法以外のエピタキシャル成長手法、例えばMBE、HVPE、LPEなどの気相成長法や液相成長法の中から適宜選択した手法によって行う態様であってもよいし、異なった成長法を組み合わせて行う態様であってもよい。
以上、説明したように、本実施の形態によれば、動作層の第1層を室温での比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)である高抵抗のGaN層にて形成することで、動作層の十字形を区画するエッチング領域の深さが数十nm程度とごく浅いにもかかわらず、第1の実施の形態に係るホール素子と同等の素子特性を有するホール素子が実現される。係るホール素子を形成する際の、動作層の十字形部分の形成に要するエッチング時間は、第1の実施の形態に係るホール素子の場合よりも十分に短くて済むので、第1の実施の形態に係るホール素子よりも、作製効率が高く、かつ作製コストが低減されたホール素子が実現される。
<第3の実施の形態>
上述の第2の実施の形態に係るホール素子20を作製するために用いられる、第1層2aの比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)の高抵抗GaN層である積層構造体5は、良好なピンチオフ特性を示す高電子移動度トランジスタ(HEMT)を作製するにあたっても好適な条件を満たすものといえる。従って、このような積層構造体5を用いることにより、第2の実施の形態に示したホール素子と、HEMTからなるIC部を集積したホールICの実現が可能となる。本実施の形態においては、係るホールICについて説明する。
図14は、本実施の形態に係るホールIC100の概念的構成を示す側面図である。図15は、同じく本実施の形態に係るホールIC100の概念的構成を示す上面図である。なお、図14および図15に示すのは、あくまでそれぞれの図に基づく理解を容易にするために構成要素が配置されてなるホールIC100であって、それぞれの図は、必ずしも同一構造のホールIC100を異なる方向から図示したものではない。
ホールIC100は、概略的にみれば、ホール素子部110と、複数のHEMT素子部120(図14においては2つの場合、図15においては5つの場合をそれぞれ例示)とを備える。ホール素子部110とHEMT素子部120とは、共通の基板101を有し、動作層102も共通の組成を有するように構成されてなる。なお、基板101は、第2の実施の形態に係るホール素子10の基板1と同様のものを用いる。
ホール素子部110は、当該部位のみに着目すれば、上述の第2の実施の形態に係るホール素子20と同様の構成を有する部位である。すなわち、基板101の上に、第1層102aと第2層102bとからなる動作層102が形成されてなり、さらに該動作層202の上には、2つの入力電極103a、103bと、2つの出力電極104a、104bが設けられてなる。そして、動作層102は、ホール素子部110を平面視した場合に十字形を有するように形成されてなる。なお、図14においては図示を簡略化しているが、それぞれの電極は、第2の実施の形態に係るホール素子20と同様に(つまりは第1の実施の形態に係るホール素子10と同様に)、動作層2の十字形の各端部を被覆するように形成されてなるものとする。
係る構成を有するホール素子部110においては、第1層102aと第2層102bとの間にヘテロ接合界面が形成されてなり、第1層102aの該ヘテロ接合界面近傍に形成される二次元電子ガス領域がキャリアの移動領域となっている。第1層102aは、第2の実施の形態に係るホール素子20の第1層2aと同様に比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)のGaNからなる高抵抗層として形成されてなり、第2層102bは、AlxGa1-xN(0<x≦0.3)からなる層として形成されてなる。これにより、ホール素子部110においては、第2の実施の形態に係るホール素子20と同様の測定感度が実現される。
一方、HEMT素子部120は、当該部位のみに着目すれば、いわゆるHEMT素子としての構成を有してなる部位である。具体的には、基板101の上に、比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)のGaNからなる高抵抗層として形成されてなる第1層102aと、AlxGa1-xN(0<x≦0.3)からなる第2層102bとからなる動作層102が形成されてなることで、第1層102aと第2層102bとの間にヘテロ接合界面が形成されてなり、さらに該動作層202の上には、ゲート電極105と、ソース電極106と、ドレイン電極107とが設けられてなる。これにより、第1層102aの該ヘテロ接合界面近傍に形成される二次元電子ガス領域をキャリアの移動領域とするHEMT素子構造が実現されてなる。
より具体的にいえば、ホールIC100に設けられる複数のHEMT素子部120は、それぞれに異なる機能を有するように設けられる。例えば図15に示す例であれば、ホールIC100には、それぞれがHEMT素子部120からなる信号処理IC部120a、定電流バイアス生成回路部120b、コンパレータ回路部120c、オフセット補償回路部120d、増幅回路部120eが設けられてなる。ただし、従来のホール素子に設けられているような、高温下で用いた場合の特性のずれを補償することを目的とする温度補償回路部は設けられていない。なお、各回路部における詳細な回路構成については公知の技術を適用可能であるので、ここでの説明は省略する。
また、定電流バイアス生成回路部120bとホール素子部110の入力電極103a、103bとの間、および、ホール素子部110の出力電極104a、104bと増幅回路部120eとの間は、図示を省略するAl配線にて接続されてなる。これにより、ホールIC100は、デジタル信号を出力するモノリシックタイプのホールICとして構成されてなる。
係る構成を有するホールIC100は、第2の実施の形態に係るホール素子10の作製に用いる積層構造体5を形成するのと同様に、基板101の上に第1層102aと第2層102bとをエピタキシャル形成したうえで、フォトリソグラフィープロセスとRIE法とによって素子分離部の役割を果たすとともに動作層102を十字形に形成するための溝部108を設け、その後、フォトリソグラフィープロセスとEB蒸着とによってそれぞれの素子部に電極を形成することで実現される。ここで、第1層102aは、第2の実施の形態に係るホール素子20の第1層2aと同様に比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)のGaNからなる高抵抗層として形成されてなるため、溝部108の深さ(エッチング深さ)は、動作層2の厚みよりも小さくなるように形成することができる。具体的には、数十nm程度とするのが、例えば60nmとするのが好適である。また、ホール素子部110の入力電極103a、103b、出力電極104a、104b、および、HEMT素子部120のソース電極106、ドレイン電極107は、Ti/Al/Ni/Auからなる多層電極として設けるのが好適な一例である。これらは、一度の処理において一括して形成することが可能である。ゲート電極105は、Ni/Auからなる多層電極として設けるのが好適な一例である。
例えば、第1層102aとして電子濃度が5×1011/cm3であるGaN層を2μmの厚みに形成し、第2層102bとしてAl0.2Ga0.8N層を25nmの厚みに形成し、溝部108の深さを60nmとして形成したホールIC100について、室温から400℃まで加熱しつつ、high/low切り換え動作磁束密度の温度変化率を測定した場合には、−0.01%/℃という結果が得られる。係る結果は、該ホールIC100が室温から少なくとも400℃までの範囲においては、同一の測定感度で動作することを示すものである。
すなわち、本実施の形態によれば、GaNからなり室温での比抵抗が1×106Ωcm以上(電子濃度が1×1012/cm3以下)である高抵抗層と、AlxGa1-xN(0<x≦0.3)からなる層との積層構造体に、素子分離部として機能するとともにホール素子の動作層の十字形部分を区画する溝部を設けることによって、共通の積層構造を有するホール素子部とHEMTからなるIC部とを有するようにすることで、温度補償回路部を備えずとも、室温から高温までの間で安定して動作するホールICが実現される。
<第4の実施の形態>
本実施の形態においては、半導体の磁気抵抗効果を利用して磁界を検出することができる磁気センサである磁気抵抗効果素子について説明する。
図16は、本実施の形態に係る磁気抵抗効果素子200の構成を示す断面模式図である。磁気抵抗効果素子200は、基板201と、該基板201の上に形成された第1層202aと第2層202bとからなる動作層202と、さらに該動作層202の表面に形成された2つの端子電極203a、203bと、これら2つの端子電極203a、203bの間に形成された多数の短絡電極204を備える。
係る磁気抵抗効果素子200をその表面から裏面に向かう垂直な磁場中においた状態で、2つの端子電極203a、203bの間に生じる抵抗変化を測定することで、当該磁場の磁束密度を求めることができる。
基板201には、第1の実施の形態に係るホール素子10の基板1と同じものを用いる。また、動作層202は、第1の実施の形態に係るホール素子10の動作層2と同様に形成する。すなわち、第1層202aをGaNからなり室温での電子濃度が1×1016/cm3以下である層として形成し、第2層202bをAlxGa1-xN(0<x≦0.3)からなる層として形成する。
また、端子電極203a、203bと、短絡電極204は、いずれも、Ti/Al/Ni/Auからなる多層電極として設けるのが好適な一例である。これらは、フォトリソグラフィープロセスとEB蒸着の手法を用いて設けることによって形成可能である。
動作層202を上述のように形成することは、すなわち、第1の実施の形態においてホール素子10の形成に用いた積層構造体5を作製していることと同じである。従って、本実施の形態に係る磁気抵抗効果素子200においても、第1の実施の形態に係るホール素子10と同様に、動作層202においては第1層202aと第2層202bとの間にヘテロ接合界面が形成されてなり、第2層202bにおいて該ヘテロ接合界面の近傍に形成される二次元電子ガス領域202gが、磁気抵抗効果素子200におけるキャリアの移動領域となる。
ゆえに、磁気抵抗効果素子200においても、二次元電子ガス領域202gはより薄く(より二次元的に)形成され、結果として、該二次元電子ガス領域202gにおけるキャリア移動度はより高められてなる。さらには、第2層2bと第1層2aとの組成差が比較的小さいので、二次元電子ガス領域202gにおいては二次元電子ガスの生成が抑制され、結果として、キャリア濃度がより低減されてなる。
加えて、第1層202aにおける室温での電子濃度が1×1016/cm3以下であるようにすることによって、および、第2層202bをAlの混合比率が小さいAlGaN層として形成することで二次元電子ガス領域202gにおける二次元電子ガスの生成が抑制されてなることによって、磁気抵抗効果素子200は高い入出力抵抗を有するものとなっている。
磁気抵抗効果素子200の動作層202に求められる要件は、第1あるいは第2の実施の形態に係るホール素子10、20の動作層2に求められる要件と同じであるので、動作層202が上述のようにホール素子10、20の動作層2と同様の特徴を有することによって、磁気抵抗効果素子200においては高い測定感度が実現される。
例えば、ホール素子の場合と同様に、キャリア移動度をより高めることを目的として、第1層202aと第2層202bとの間にAlN層を挿入するようにしてもよい。AlN層は、0.75nm〜1.5nm程度の厚みに形成されるのが好適である。
すなわち、本実施の形態に係る磁気抵抗効果素子は、第1あるいは第2の実施の形態に係るホール素子と同様に、高温でも良好な測定感度で使用することができるものとなっている。
(実施例1および比較例1)
実施例1として、第1の実施の形態に係るホール素子10として、第1層2aの電子濃度および第2層2bにおける全III族元素中のAlの組成比が異なる種々のホール素子を作製した。併せて、比較例1として、ホール素子10と同様の構成を有するが、第1層2aの電子濃度がホール素子10よりも高いホール素子、および第2層2bにおける全III族元素中のAlの組成比がホール素子10よりも高いホール素子も、いくつか作製した。
まず、基板1として面方位(0001)である2インチ径サファイア単結晶基板を複数枚用意し、所定のMOCVD装置によって、それぞれに積層構造体5を作製した。MOCVD装置においては、III族原料ガス供給系とV族原料ガス供給系とが個別に設けられてなり、III族原料ガスおよびV族原料ガスの双方をキャリアガスともども個別にサセプタ近傍まで供給できるようになっている。III族原料ガスとしてはTMGおよびTMAを用い、V族原料ガスとしてはNH3を用いた。キャリアガスとしては、水素ガスあるいは窒素ガスの一方または両方を適宜に用いた。
具体的には、まず、MOCVD装置内のサセプタ上にそれぞれの単結晶基板を載置し、基板温度を1100℃として20分間の熱処理(サーマルクリーニング)を行った後、500℃に降温して、GaNからなる低温バッファ層を30nmの厚みに形成した。
バッファ層の形成後、基板温度が1000℃となるまで加熱した後に、第1層2aとしてのGaN層を2μmの厚みに形成し、引き続き第2層2bとしてのAlGaN層を25nmの厚みに形成した。GaN層における室温での電子濃度は1×1012/cm3〜5×1017/cm3の範囲で設定した。AlGaN層におけるIII族元素中のAlの組成比xは0.1〜0.4の範囲で設定した。これにより、積層構造体5を得た。
図17は、係る積層構造体5の形成に際しての、III族原料ガス供給系とV族原料ガス供給系とにおける供給ガスの種類とその流量とを一覧にして示す図である。なお、AlGaN層を形成する際のTMAとTMGとの供給流量比は、形成しようとするAlGaN層におけるAlとGaとの組成比に準じたものとした。
また、室温での電子濃度が1×1015/cm3を下回るGaN層の作製に際しては、第1層2aの形成に先立つ基板1の昇温時に窒素ガスを含むガスを流すようにするとともに、第1層2aの形成時に、キャリアガス全体における水素ガスと窒素ガスの比率を違えることによって、種々の電子濃度を実現した。具体的には、残留電子濃度がより低いGaN層となるように、キャリアガス全体に対する窒素ガスの割合を0.1体積%、2体積%、10体積%と違えることにより作製した。
一方、電子濃度が1×1015/cm3以上のGaN層の作製は、GaN層へのSiドープにより行った。具体的には、MOCVDによるGaN層の形成時に、SiH4ガスを、所望される電子濃度に対応するドープ量となるように流量を制御しつつ導入することによって行った。具体的には、形成しようとするn型GaN層におけるSiとGaとの組成比に準じたガス流量とした。電子濃度が1×1015/cm3程度のGaN層については、SiH4ガスを導入しないで作製した。
なお、GaN層の電子濃度と比抵抗については、AlGaN層を形成しないほかは同様の手法で作製した試料を用いて評価した。
積層構造体5が得られると、フォトリソグラフィープロセスとRIE法とによって、幅50μmで長さ200μmの2本のラインが中央で直交したような十字形が形成されるように、積層構造体5の表面を2μm以上の深さにエッチング加工した。
続いてフォトリソグラフィープロセスとEB蒸着により、十字形の各先端部分に、Ti/Al/Ni/Auからなる(膜厚は順に25/75/15/100nm)金属パターンを100μm角の大きさに形成した後、赤外線急速加熱炉で温度850℃、30秒間の合金化処理を行うことによって入力電極3a、3b、出力電極4a、4bを形成した。以上によって、ホール素子が得られた。
係るホール素子について特性評価を可能とすべく、CVD法とフォトリソグラフィープロセスとを用いて、表面に窒化シリコンのパッシベーション膜を形成後、各電極部にコンタクトホールを開け、ワイアボンディングを行った。
係る状態で、ホール素子の電気特性の評価を行った。具体的には、磁束密度500Gaussの磁場中で、2mAの定駆動電流または3Vの定駆動電圧を印加した状態にて、ホール電圧を測定した。係る評価の結果を示したのが、上述の図4および図5である。
図4に示すように、第1層2aにおける電子濃度が高いほど、かつ、第2層2bにおける全III族元素中のAlの組成比が小さいほど、高いホール電圧が得られた。また、図5に示すように、第1層2aにおける電子濃度が1×1016/cm3以下の場合には、第2層2bにおける全III族元素中のAlの組成比が0.3以下であれば高いホール電圧が得られた。
また、室温から800℃まで加熱しつつ、定電流駆動動作におけるホール電圧の温度に対する変化率について併せて評価を行った。係る評価の結果を示したのが、上述の図6ないし図11である。
図6ないし図11に示すように、第2層2bの組成が同じ場合、第1層2aの電子濃度が1×1016/cm3以下であれば、ホール電圧は、少なくとも800℃までは略一定(温度変化率が−0.01〜0%/℃)に保たれることがわかった。
すなわち、実施例1および比較例1によって、GaNからなる第1層2aの電子濃度を1×1016/cm3以下とするとともに、第2層2bにおける全III族元素中のAlの組成比を0.3以下とすることで、室温で定電流駆動および定電圧駆動のいずれにおいても高い測定感度で測定を行えるとともに、室温から800℃までの温度範囲において安定した定電流駆動動作が可能なホール素子が実現されることが確認された。
(実施例2)
本実施例では、第2の実施の形態に係るホール素子20を形成した。なお、第1層2aとしてのGaN層中の電子濃度は5×1011/cm3とした。第2層2bとしてはAl0.2Ga0.8N層を形成した。また、動作層2を十字形に形成する際のエッチング深さは60nmとした。その他は、実施例1と同様の手順とした。
作製したホール素子について、実施例1と同様に、特性を評価した。具体的には、磁束密度500Gaussの磁場中で、2mAの定駆動電流または3Vの定駆動電圧を印加した状態にて、ホール電圧を測定した。前者の結果は6.119mVであり、後者の結果は23.88mVであった。これらの値は、実施例1において作製したAlGaN層の組成が同じホール素子についてのそれぞれの値とほぼ同じであった。
また、室温から800℃まで加熱しつつ、定電流駆動動作におけるホール電圧の温度に対する変化率についても評価を行った。その結果は、0.0005%/℃であった。すなわち、実施例1にて作製したホール素子と同様に、ホール電圧は、少なくとも800℃までは略一定に保たれることがわかった。
係る結果は、動作層2の十字形を形成する際のエッチング深さを、実施例1に比してきわめて浅くしたホール素子においても、実施例1のホール素子と同様の測定感度が得られることを示している。
(実施例3)
本実施例においては、第3の実施の形態に係るモノリシックタイプのホールIC100を作製した。なお、その際には、ホール素子部110が実施例2に係るホール素子と同様の構成を有するようにした。HEMT素子部120としては、信号処理IC部120a、定電流バイアス生成回路部120b、コンパレータ回路部120c、オフセット補償回路部120d、増幅回路部120eを形成した。
具体的には、まず、基板101として面方位(0001)である2インチ径サファイア基板を用い、第1層としてのGaN層と第2層としてのAl0.2Ga0.8N層とを実施例2と同様に形成した。
その後、フォトリソグラフィープロセスとRIE法とによって溝部108を60nmの深さに形成することで、素子分離部を設けると共に動作層102を平面視十字形に形成した。
引き続き、フォトリソグラフィープロセスとEB蒸着法とによって、ホール素子部110の入力電極103a、103b、出力電極104a、104bの配置位置と、HEMT素子部120のソース電極106、ドレイン電極107の配置位置に、Ti/Al/Ni/Au(膜厚は順に25/75/15/100nm)からなる金属パターンを形成した後、赤外線急速加熱炉で温度850℃、30秒間の合金化処理を行うことによって各電極を形成した。
さらに、フォトリソグラフィープロセスとEB蒸着法によって、HEMT素子部120のゲート電極105の配置位置に、Ni/Au(膜厚は順に30/100nm)からなる金属パターンを形成することによって、ゲート電極105を形成した。
その後、定電流バイアス生成回路部120bとホール素子部110の入力電極103a、103bとの間、および、ホール素子部110の出力電極104a、104bと増幅回路部120eとの間を、図示を省略するAl配線にて接続した。これにより、ホールIC100が得られた。
得られたホールIC100について、室温から400℃の範囲で、high/low切り換え動作磁束密度の温度に対する変化率を測定した。その結果、−0.01%/℃という値が得られた。係る結果は、温度補償回路部を備えずとも、室温から少なくとも400℃までの範囲においては、同一の測定感度で動作するホールICが得られたことを示している。
第1の実施の形態に係るホール素子10の上面図である。 図1のA−B断面におけるホール素子10の断面図である。 ホール素子10の形成に用いる積層構造体5の断面模式図である。 動作層2の構成に基づく効果を示すための図である。 動作層2の構成に基づく効果を示すための図である。 動作層2の構成と、温度環境の変化との関係を示すための図である。 動作層2の構成と、温度環境の変化との関係を示すための図である。 動作層2の構成と、温度環境の変化との関係を示すための図である。 動作層2の構成と、温度環境の変化との関係を示すための図である。 動作層2の構成と、温度環境の変化との関係を示すための図である。 動作層2の構成と、温度環境の変化との関係を示すための図である。 積層構造体15の断面模式図である。 第2の実施の形態に係るホール素子20の略中央部を通る断面についての断面図である。 第3の実施の形態に係るホールIC100の概念的構成を示す側面図である。 第3の実施の形態に係るホールIC100の概念的構成を示す上面図である。 第4の実施の形態に係る磁気抵抗効果素子200の構成を示す断面模式図である。 実施例1における積層構造体5の形成に際しての、III族原料ガス供給系とV族原料ガス供給系とにおける供給ガスの種類とその流量とを一覧にして示す図である。
符号の説明
1、101 基板
2、102、202 動作層
2a、102a、202a (動作層の)第1層
2b、102b、202b (動作層の)第2層
2g、202g 二次元電子ガス領域
3a、3b、103a、103b 入力電極
4a、4b、104a、104b 出力電極
5、15 積層構造体
10、20 ホール素子
100 ホールIC
105 ゲート電極
106 ソース電極
107 ドレイン電極
108 溝部
110 ホール素子部
120 HEMT素子部
120a 信号処理IC部
120b 定電流バイアス生成回路部
120c コンパレータ回路部
120d オフセット補償回路部
120e 増幅回路部
200 磁気抵抗効果素子
203a、203b 端子電極
204 短絡電極

Claims (16)

  1. 動作層にGaN層とAlGaN層とのヘテロ接合構造を有する磁気センサであって、
    前記GaN層の電子濃度が1×1016/cm3以下であり、
    前記AlGaN層が、AlxGa1-xN(0<x≦0.3)によって形成されてなる、
    ことを特徴とする磁気センサ。
  2. 請求項1に記載の磁気センサであって平面視において前記動作層の互いに対向する第1の端部のそれぞれに入力電極を備えるとともに、前記第1の端部同士を結ぶ方向と略直交する方向において互いに対向する第2の端部のそれぞれに出力電極を備えたものである、
    ことを特徴とするホール素子。
  3. 請求項2に記載のホール素子であって、
    前記動作層が平面視において略十字形をなす十字形部分を有しており、前記十字形部分の互いに対向する2つの先端部のそれぞれに前記入力電極を備えるとともに、前記第1の先端部と異なる2つの先端部のそれぞれに前記出力電極を備える、
    ことを特徴とするホール素子。
  4. 請求項2または請求項3に記載のホール素子であって、
    前記GaN層の比抵抗が1×106Ωcm以上である、
    ことを特徴とするホール素子。
  5. 請求項2または請求項3に記載のホール素子であって、
    前記GaN層の電子濃度が1×1012/cm3以下である、
    ことを特徴とするホール素子。
  6. 請求項4または請求項5に記載のホール素子であって、
    前記十字形部分の高さが前記AlGaN層の厚みよりも大きくかつ前記動作層全体の厚みよりも小さい、
    ことを特徴とするホール素子。
  7. 請求項2ないし請求項6のいずれかに記載のホール素子であって、
    前記AlGaN層と前記GaN層の接合界面に0.75nm〜1.5nmの厚みのAlN層が挿入されてなることを特徴とするホール素子。
  8. 請求項4ないし請求項6のいずれかに記載のホール素子、
    を備えるホールICであって、
    前記ホール素子においては前記GaN層が所定の基板の上に形成されてなり、
    前記所定の基板上にHEMTを含む制御回路が形成されてなる、
    ことを特徴とするホールIC。
  9. 請求項1に記載の磁気センサであって前記動作層の表面の対向する端部のそれぞれに端子電極を備えるとともに、前記端子電極の間に複数の短絡電極を備えたものである、
    ことを特徴とする磁気抵抗効果素子。
  10. 請求項9に記載の磁気抵抗効果素子であって、
    前記AlGaN層と前記GaN層の接合界面に0.75nm〜1.5nmの厚みのAlN層が挿入されてなることを特徴とする磁気抵抗効果素子。
  11. ホール素子の作製方法であって、
    所定の基板の上に電子濃度が1×1016/cm3以下のGaN層をエピタキシャル形成するGaN層形成工程と、
    前記GaN層の上に、AlxGa1-xN(0<x≦0.3)からなるAlGaN層をエピタキシャル形成するAlGaN層形成工程と、
    によって、前記GaN層と前記AlGaN層とのヘテロ接合構造を形成する動作層を積層形成する動作層形成工程と、
    平面視において前記動作層の互いに対向する第1の端部のそれぞれに入力電極を形成するとともに、前記第1の端部同士を結ぶ方向と略直交する方向において互いに対向する第2の端部のそれぞれに出力電極を形成する電極形成工程と、
    を備えることを特徴とするホール素子の作製方法。
  12. 請求項11に記載のホール素子の作製方法であって、
    前記動作層形成工程が、
    前記動作層の一部を除去することによって前記動作層に平面視において略十字形をなす十字形部分を形成する除去工程、
    をさらに備え、
    前記電極形成工程においては、
    前記十字形部分の互いに対向する2つの先端部のそれぞれに前記入力電極を形成するとともに、前記第1の先端部と異なる2つの先端部のそれぞれに前記出力電極を形成する、
    ことを特徴とするホール素子の作製方法。
  13. 請求項12記載のホール素子の作製方法であって、
    前記GaN層形成工程においては、比抵抗が1×106Ωcm以上であるか、電子濃度が1×1012/cm3以下であるように前記GaN層を形成し、
    前記除去工程においては、前記十字形部分の高さが前記AlGaNの厚みより大きくかつ前記動作層全体の厚みよりも小さくなるように前記十字形部分を形成する、
    こと特徴とするホール素子の作製方法。
  14. 請求項11ないし請求項13のいずれかに記載のホール素子の作製方法であって、
    前記動作層形成工程において、前記AlGaN層形成工程と前記GaN層形成工程の間に、
    0.75nm〜1.5nmの厚みのAlN層を形成するAlN層形成工程、
    をさらに備えることを特徴とするホール素子の作製方法。
  15. 磁気抵抗効果素子の作製方法であって、
    所定の基板の上に電子濃度が1×1016/cm3以下のGaN層をエピタキシャル形成するGaN層形成工程と、
    前記GaN層の上に、AlxGa1-xN(0<x≦0.3)からなるAlGaN層をエピタキシャル形成するAlGaN層形成工程と、
    によって、前記GaN層と前記AlGaN層とのヘテロ接合構造を形成する動作層を積層形成する動作層形成工程と、
    前記動作層の表面の対向する端部のそれぞれに端子電極を形成するとともに前記端子電極の間に複数の短絡電極を形成する電極形成工程と、
    を備えることを特徴とする磁気抵抗効果素子の作製方法。
  16. 請求項15に記載の磁気抵抗効果素子の作製方法であって、
    前記動作層形成工程において、前記AlGaN層形成工程と前記GaN層形成工程の間に、
    0.75nm〜1.5nmの厚みのAlN層を形成するAlN層形成工程、
    をさらに備えることを特徴とする磁気抵抗効果素子の作製方法。
JP2008167455A 2007-08-28 2008-06-26 ホール素子、ホールic、およびホール素子の作製方法 Expired - Fee Related JP5044489B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008167455A JP5044489B2 (ja) 2007-08-28 2008-06-26 ホール素子、ホールic、およびホール素子の作製方法
US12/193,851 US8026718B2 (en) 2007-08-28 2008-08-19 Magnetic sensor, hall element, hall IC, magnetoresistive effect element, method of fabricating hall element, and method of fabricating magnetoresistive effect element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007220815 2007-08-28
JP2007220815 2007-08-28
JP2008167455A JP5044489B2 (ja) 2007-08-28 2008-06-26 ホール素子、ホールic、およびホール素子の作製方法

Publications (2)

Publication Number Publication Date
JP2009076861A true JP2009076861A (ja) 2009-04-09
JP5044489B2 JP5044489B2 (ja) 2012-10-10

Family

ID=40611506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167455A Expired - Fee Related JP5044489B2 (ja) 2007-08-28 2008-06-26 ホール素子、ホールic、およびホール素子の作製方法

Country Status (1)

Country Link
JP (1) JP5044489B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147640A (ja) * 2014-02-06 2015-08-20 コニカミノルタ株式会社 画像形成システム及び用紙搬送装置
JP2015198198A (ja) * 2014-04-02 2015-11-09 旭化成エレクトロニクス株式会社 ホール素子
KR101614251B1 (ko) 2014-06-17 2016-04-20 아사히 가세이 일렉트로닉스 가부시끼가이샤 홀 센서
CN106654003A (zh) * 2017-01-11 2017-05-10 福州大学 改变GaAs/AlGaAs中Rashba自旋轨道耦合随温度变化的方法
CN109301062A (zh) * 2018-10-12 2019-02-01 苏州矩阵光电有限公司 一种集成放大器件的霍尔器件及其制备方法
CN109643645A (zh) * 2016-08-31 2019-04-16 国立研究开发法人科学技术振兴机构 化合物半导体及其制造方法以及氮化物半导体
CN111129287A (zh) * 2019-11-28 2020-05-08 深圳第三代半导体研究院 一种GaN基磁感应器及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076024A (ja) * 2000-09-01 2002-03-15 Sharp Corp 窒化物系iii−v族化合物半導体装置
JP2002184972A (ja) * 2000-12-19 2002-06-28 Furukawa Electric Co Ltd:The GaN系高移動度トランジスタ
JP2003060255A (ja) * 2001-08-10 2003-02-28 Asahi Kasei Corp ホール素子及びホールic
JP2005035869A (ja) * 2003-06-23 2005-02-10 Ngk Insulators Ltd 高比抵抗GaN層を含む窒化物膜の製造方法、およびそれによって得られたエピタキシャル基板
JP2006080338A (ja) * 2004-09-10 2006-03-23 Tokyo Institute Of Technology 高温用磁気センサ
WO2007077865A1 (ja) * 2005-12-27 2007-07-12 Asahi Kasei Kabushiki Kaisha InSb薄膜磁気センサ並びにその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076024A (ja) * 2000-09-01 2002-03-15 Sharp Corp 窒化物系iii−v族化合物半導体装置
JP2002184972A (ja) * 2000-12-19 2002-06-28 Furukawa Electric Co Ltd:The GaN系高移動度トランジスタ
JP2003060255A (ja) * 2001-08-10 2003-02-28 Asahi Kasei Corp ホール素子及びホールic
JP2005035869A (ja) * 2003-06-23 2005-02-10 Ngk Insulators Ltd 高比抵抗GaN層を含む窒化物膜の製造方法、およびそれによって得られたエピタキシャル基板
JP2006080338A (ja) * 2004-09-10 2006-03-23 Tokyo Institute Of Technology 高温用磁気センサ
WO2007077865A1 (ja) * 2005-12-27 2007-07-12 Asahi Kasei Kabushiki Kaisha InSb薄膜磁気センサ並びにその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147640A (ja) * 2014-02-06 2015-08-20 コニカミノルタ株式会社 画像形成システム及び用紙搬送装置
JP2015198198A (ja) * 2014-04-02 2015-11-09 旭化成エレクトロニクス株式会社 ホール素子
KR101614251B1 (ko) 2014-06-17 2016-04-20 아사히 가세이 일렉트로닉스 가부시끼가이샤 홀 센서
CN109643645A (zh) * 2016-08-31 2019-04-16 国立研究开发法人科学技术振兴机构 化合物半导体及其制造方法以及氮化物半导体
CN109643645B (zh) * 2016-08-31 2023-02-28 国立研究开发法人科学技术振兴机构 化合物半导体及其制造方法以及氮化物半导体
CN106654003A (zh) * 2017-01-11 2017-05-10 福州大学 改变GaAs/AlGaAs中Rashba自旋轨道耦合随温度变化的方法
CN106654003B (zh) * 2017-01-11 2019-04-02 福州大学 改变GaAs/AlGaAs中Rashba自旋轨道耦合随温度变化的方法
CN109301062A (zh) * 2018-10-12 2019-02-01 苏州矩阵光电有限公司 一种集成放大器件的霍尔器件及其制备方法
CN109301062B (zh) * 2018-10-12 2024-04-16 苏州矩阵光电有限公司 一种集成放大器件的霍尔器件及其制备方法
CN111129287A (zh) * 2019-11-28 2020-05-08 深圳第三代半导体研究院 一种GaN基磁感应器及制备方法

Also Published As

Publication number Publication date
JP5044489B2 (ja) 2012-10-10

Similar Documents

Publication Publication Date Title
US8026718B2 (en) Magnetic sensor, hall element, hall IC, magnetoresistive effect element, method of fabricating hall element, and method of fabricating magnetoresistive effect element
EP3067921B1 (en) Process for producing an epitaxial substrate for a semiconductor element
JP5044489B2 (ja) ホール素子、ホールic、およびホール素子の作製方法
US8890208B2 (en) Group III nitride epitaxial substrate for semiconductor device, semiconductor device, and process for producing group III nitride epitaxial substrate for semiconductor device
JP3960957B2 (ja) 半導体電子デバイス
US8710489B2 (en) Epitaxial substrate for electronic device, in which current flows in lateral direction and method of producing the same
CN103081080B (zh) 半导体元件用外延基板、半导体元件、半导体元件用外延基板的制作方法、以及半导体元件的制作方法
EP2290696B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
JP2007165719A (ja) 窒化物半導体素子
JP2011049461A (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の作製方法
JPWO2011118433A1 (ja) 半導体素子用エピタキシャル基板および半導体素子
JP4276135B2 (ja) 窒化物半導体成長用基板
US20150194493A1 (en) Nitride semiconductor epitaxial wafer and nitride semiconductor device
JP2006004970A (ja) 窒化物半導体薄膜の作製方法
WO2010058561A1 (ja) 電界効果トランジスタ
JP2005285869A (ja) エピタキシャル基板及びそれを用いた半導体装置
JP5073429B2 (ja) 磁気センサ、ホール素子、磁気抵抗効果素子、ホール素子の作製方法、磁気抵抗効果素子の作製方法
WO2016051935A1 (ja) 半導体素子用のエピタキシャル基板およびその製造方法
JP4998801B2 (ja) トンネル素子の製造方法
JP4933513B2 (ja) 窒化物半導体成長用基板
JP5048033B2 (ja) 半導体薄膜素子の製造方法
JP2001291714A (ja) 絶縁膜の形成方法
JP2006080338A (ja) 高温用磁気センサ
JP2009231302A (ja) 窒化物半導体結晶薄膜およびその作製方法、半導体装置およびその製造方法
JP5870619B2 (ja) Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法、及びエピタキシャルウエハ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5044489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees