JP2015198198A - ホール素子 - Google Patents

ホール素子 Download PDF

Info

Publication number
JP2015198198A
JP2015198198A JP2014076302A JP2014076302A JP2015198198A JP 2015198198 A JP2015198198 A JP 2015198198A JP 2014076302 A JP2014076302 A JP 2014076302A JP 2014076302 A JP2014076302 A JP 2014076302A JP 2015198198 A JP2015198198 A JP 2015198198A
Authority
JP
Japan
Prior art keywords
region
hall element
electrode
input electrode
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014076302A
Other languages
English (en)
Inventor
剛 赤木
Takeshi Akagi
剛 赤木
俊輔 松野
Toshisuke Matsuno
俊輔 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2014076302A priority Critical patent/JP2015198198A/ja
Publication of JP2015198198A publication Critical patent/JP2015198198A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】良好なSN比およびESD耐圧を両立する小型のホール素子を実現する。
【解決手段】一辺の長さが0.3mm以下の矩形の基板面10上に、中央領域11、中央領域11の辺s1、s3にそれぞれ接続される第1領域12a、第2領域12b、辺s3、s4にそれぞれ接続される第3領域12c、第4領域12dを有する感磁部3と、第1領域12aと接続される第1入力電極31a、第2領域12bと接続される第2入力電極31b、第3領域12cと接続される第1出力電極32a、第4領域12dと接続される第2出力電極32bによってホール素子を構成する。第1入力電極31aの端部から第2入力電極31bの端部までの長さLと、第1領域12aの幅Wとの比L/Wを1.4≦L/W≦20とし、かつ、感磁部3のシートキャリア密度Nsを5.0×1012cm−2以上3.0×1013cm−2以下にする。
【選択図】図1

Description

本発明は、ホール素子に関する。
現在、磁気センサは、電流検出素子や位置検出素子等として広く利用されている。近年では、磁気センサの高精度化が進むと共に、磁気センサには、いっそうの高い信頼性と小型軽量化が要求されている。
磁気センサの一例として、ホール素子がある。ホール素子は、出力信号のヒステリシスがなく、出力信号が数100mテスラ(T)まで出力が飽和しないという利点がある。ホール素子の構成としては、入力端子対と出力端子対を有する感磁部を含む構成が一般的である。このような構成のホール素子は、入力端子対に所望のバイアスを印加し、出力端子対から出力される出力信号に基づいて感磁部に加わる磁気を検出する。
ホール素子を電流検出素子や位置検出素子として使用するためには、ホール素子の小型化が要求される。ホール素子を小型化することは、感磁部の小型化につながり、ホール素子において静電気放電(ESD:ElectroStatic Discharge)による素子破壊が生じやすくなる。また、感磁部が小型化することによって出力ノイズが増大し、ホール素子のSN比が劣化する。
上記した点を解消するための公知技術としては、例えば、特許文献1及び特許文献2に記載されたものがある。特許文献1には、ホール素子の小型化及び高感度化のため、第1の能動層と第2の能動層とを積層した構成のホール素子が記載されている。ただし、特許文献1に記載された公知技術は、製造工程が煩雑である上、ESDに対する耐圧の向上を図ることはできない。
特許文献2には、ESDに対する耐圧を高める技術が記載されている。特許文献2に記載されたホール素子は、入力電極にP/N接合を設け、サージ電圧のクッションとして機能させている。
特開平6−196771号公報 特開平6−181348号公報
しかしながら、特許文献2に記載のホール素子は、製造工程が煩雑であり、また、小型化に伴うSN比の劣化を解消できるものではない。
本発明は、上記した点に鑑みてなされたものであり、良好なSN比およびESD耐圧を両立する小型のホール素子を提供することを目的とする。
上記課題を解決するため、本発明の一態様のホール素子は、平面視において一辺の長さが0.3mm以下の矩形形状の基板面を有する基板と、前記基板面上に形成され、平面視において矩形形状の中央領域と、当該中央領域の対向する二辺にそれぞれ接続され、前記二辺と直交する第1直線を含む領域に形成される第1領域及び第2領域と、前記中央領域の前記二辺と異なる他の互いに対向する二辺にそれぞれ接続され、前記第1直線と直交する第2直線を含む領域に形成される第3領域及び第4領域と、を有する感磁部と、前記第1領域と電気的に接続される第1入力電極と、前記第2領域と電気的に接続される第2入力電極と、前記第3領域と電気的に接続される第1出力電極と、前記第4領域と電気的に接続される第2出力電極と、を備え、前記第1領域と接する前記第1入力電極の端部から前記第2領域と接する前記第2入力電極の端部までの長さLと、前記第1領域の前記第1直線と直交する方向の長さWとの比L/Wが、1.4≦L/W≦20の関係を満たし、かつ、前記感磁部のシートキャリア密度Nsが5.0×1012cm−2以上3.0×1013cm−2以下である。
本発明のホール素子によれば、良好なSN比およびESD耐圧を両立する小型のホール素子が実現可能である。
本発明の一実施形態のホール素子を説明するための断面図である。 図1に示したホール素子の断面図である。 本発明の一実施形態のホール素子の効果の検証に使ったホール素子の実施例を説明するための図である。 本発明の一実施形態のホール素子のSN比を比較例と比較して示した図である。 本発明の一実施形態のホール素子のESD耐圧を比較例と比較して示した図である。
以下、本発明の一実施形態を説明する。
図1は、本実施形態のホール素子を説明するための上面図である。図2は、図1中に示した線分A−Aに沿う断面図である。
本実施形態のホール素子1は、平面視において矩形形状の基板面10を有する基板2を有している。本実施形態の基板面10は、辺s1、s2、s3、s4の長さが等しい正方形の形状を有している。辺s1から辺s4の長さは、いずれも0.3mm以下である。
さらに、ホール素子1は、感磁部3を備えている。ホール素子1の感磁部3は、平面視において矩形形状の中央領域11と、中央領域11の対向する辺s1、s3にそれぞれ接続され、辺s1、s3と直交する直線t1を含む領域に形成される第1領域12a及び第2領域12bと、第1領域12a、第2領域12bが接続された中央領域11の辺s1、s3と異なる他の互いに対向する辺s2、s4にそれぞれ接続され、直線t1と直交する直線t2を含む領域に形成される第3領域12c及び第4領域12dと、を有している。本実施形態は、第1領域12a、第2領域12b、第3領域12c、第4領域12dを全て同じサイズ(縦の長さ×横の長さ)の矩形形状としている。
なお、第1実施形態の第1領域12a、第2領域12b、第3領域12c、第4領域12dは、いずれも中央部11と重ならず、中央部11の外部に形成される。
上記感磁部3は、第1領域12a、第2領域12b、第3領域12c、第4領域12dがいずれも平面視において矩形の形状を有している。正方形の中央領域11と、第1領域12a、第2領域12b、第3領域12c及び第4領域12dを組み合わせた形状が平面視において十字型の形状を有することから、感磁部3は、十字型感磁部とも呼ばれている。
また、ホール素子1は、第1領域12aと電気的に接続される第1入力電極31a、第2領域12bと電気的に接続される第2入力電極31b、第3領域12cと電気的に接続される第1出力電極32a及び第4領域12dと電気的に接続される第2出力電極32bを備えている。
図1においては、第1領域12aと第1入力電極31aとが重なる領域を第1入力接続領域21aとし、第2領域12bと第2入力電極31bとが重なる領域を第2入力接続領域21bとする。また、第3領域12cと第1出力電極32aとが重なる領域を第1出力接続領域22a、第4領域12dと第2出力電極32bとが重なる領域を第2出力接続領域22bとする。
図2から明らかなように、第1入力電極31a、第2入力電極31bは、材料が異なる電極層311、電極層312の積層構造を有している。なお、図2では、第1入力電極31a、第2入力電極31bを図示しているが、第1出力電極32a、第2出力電極32bも同様の構成を有するものとする。なお、電極層311としては、例えば、AuGe/Ni/Auを用いることができる。また、電極層312としては、例えば、Ti/Auを用いることができる。
また、図2から分かるように、電極層311と電極層312との間には絶縁層40が形成されている。また、感磁部3上には保護層50が形成されている。なお、図1においては、ホール素子1の構造を理解しやすくするため、絶縁層40及び保護層50が図示されていない。
さらに、本実施形態は、第1領域12aと接する第1入力電極31aの端部から、第2領域12bと接する第2入力電極31bの端部までの長さを長さLとする。また、第1領域12aの直線t1と直交する方向の長さを(以下、「幅と記す」)Wとする。そして、本実施形態は、長さLと幅Wとの比L/Wが、1.4≦L/W≦20の関係を満たし、かつ、感磁部3のシートキャリア密度Nを5.0×1012cm−2以上3.0×1013cm−2以下とした。
このような本実施形態のホール素子1は、基板の各辺の長さが0.3mm以下と小型でありながら、良好なSN比とESD耐圧とを両立することができる。
[定量方法]
次に、上記した本実施形態における長さLやシートキャリア密度Nsを定量する方法について説明する。
図1に示した長さLは、図1に示したように、第1入力接続領域21aと第2入力接続領域21bとの間の最短距離である。なお、本実施形態では、第1出力接続領域22aと第2出力接続領域22bとの間の最短距離も同様に長さLになる。長さLは、光学顕微鏡によって測定された値である。
また、感磁部のシートキャリア密度Nsは、ホール素子の定電流感度と印加電流・磁場の大きさより測定された値である。
[構成]
次に、本実施形態のホール素子1の構成要件について詳細に説明する。
1 基板
ホール素子1の基板2は、基板面10が正方形の形状を有している。正方形の一辺の長さは0.3mm以下であり、一辺の長さはノギスや光学顕微鏡等によって測定することができる。基板2の材質としてはSi,GaAs、InSb等が使用される。また、基板2は、このような材料に限定されるものでなく、基板面10に十字型の感磁部3を形成することが可能なものであれば特に限定されるものではない。
2 感磁部
感磁部3は、中央領域11の辺s1、s3にそれぞれ第1領域12a、第2領域12bを接続し、辺s2、s4にそれぞれ第3領域12c、第4領域12dを接続して構成される。本実施形態の感磁部は、上面視において2つの矩形が互いに直交して重なるような十字形状を有するものであれば、図1に示した形状に限定されるものではない。
感磁部3の材料としては、良好な温度特性の観点からGaAsが好適である。ただし、本実施形態は、GaAsを材料にして感磁部3を形成する構成に限定されるものではなく、例えばInSbやInAs等の化合物半導体も用いることができる。
3 電極
本実施形態のホール素子において、入力電極は、第1入力電極31a、第2入力電極31bからなる。また、出力電極は、第1出力電極13a、第2出力電極13bからなる。各電極の材料は、感磁部3と電気的な接続が可能なものであれば特に制限されない。好適な材料としては、AuGe、Snが挙げられる。また、複数の材料の積層材料であってもよい。複数の材料の積層材料の具体例としては、AuGe/Ni/Au構造が挙げられる。
4 その他
本実施形態のホール素子1は、必要に応じて絶縁層や保護層を設けていてもよい。例えば、絶縁層は、各電極間の絶縁性を高めるためや、感磁部3が外部に露出しないようにするために設けることができる。このような目的を達成するためには、絶縁層及び保護層は、感磁部3を覆うように形成されることが好ましい。絶縁層としては、例えばSiO2やSiN等の無機絶縁膜の材料を用いることが考えられる。
また、保護層は、例えば、外部から感磁部3へのダメージを低減するために設けられる。このとき、保護層は、感磁部3や電極を覆うように形成される。ただし、各電極の少なくとも一部は、外部から電力を供給し、また外部に信号を取り出す観点から、保護層で覆われていないことが好ましい。保護層の材料としては、例えばポリイミド等の有機薄膜を使用することができる。
また、保護層は製造工程の簡略化のために設けなくてもよい。
また、本実施形態のホール素子1は、外部から電力を供給する、あるいは外部に信号を取り出すために各電極に接続される接続端子(例えば金属細線や半田ボール等)を備えてもよい。また、出力電極からの信号を処理する信号処理回路を備えてもよい。
[実施例]
次に、以上説明した本実施形態のホール素子1の実施例を説明する。
[ホール素子の製造工程]
以下、実施例で作成したホール素子の製造工程を説明する。
図3(a)、図3(b)、図3(c)、図3(d)は、ホール素子を製造する工程を示した図である。図3(a)に示したように、本発明の発明者らは、GaAs基板301の表面にイオン注入法によってSiをドーピングし、300nmの厚さの半導体層302を形成した。このとき、形成された半導体層302は、上面視において正方形の形状を有している。
次に、半導体層302を上面視において十字型の形状にするため、半導体層302上にフォトリソグラフィ法を用いてレジストパターンを形成した。続いて、H、HPO、HOの混合液を用い、ウエットエッチング法によりメサエッチングした後、レジストを除去した。レジスト除去後の半導体層302は、感磁部303となる。図3(b)は、感磁部303を示す。
次に、本実施例では、図3(c)、(d)に示すように、フォトリソグラフィ法により電極部のレジストパターン307を形成した後、真空蒸着法により、AuGe層304を250nm、Ni層305を50nm、続いて、Au層306を350nm蒸着し、リフトオフ法により、図1に示した第1入力電極、第2入力電極、第1出力電極、第2出力電極と同様の電極308を形成した。また、感磁部303と電極とが重なる部分が、第1入力接続領域、第2入力接続領域、第3接続領域、第4接続領域となる。
実施例では、第1入力接続領域と第2入力接続領域との間の長さLが232μm、幅Wが77.3μmであり、L/Wは、3であった。また、感磁部のシートキャリア密度は8×1012cm−2であった。
次に、電極308と感磁部303間のオーミックコンタクトを得るため、ホットプレートを用いて窒素雰囲気中で400℃、5分間の熱処理を行った。以上の処理により、本実施例のホール素子310が完成した。
次に、本実施例では、ホール素子310の全面にプラズマCVD法により、0.3μmのSiN膜を形成した。そして、SiN膜上に電極308及びダイシング部分が開口部となっているレジストパターンを形成し、反応性イオンエッチングを使って、SiNをエッチングし、電極308及びGaAs基板301を露出させた。
次に、フォトリソグラフィ法により電極308と同一の電極パターンを形成した後、真空蒸着法により、Ti層を100nm、続いてAu層を300nm蒸着し、リフトオフ法によりコンタクト用の電極を形成し、ダイシング部分に沿ってホール素子310を個片化した。個片化したホール素子のGaAs基板301の一辺は、0.27mmであった。
1 SN比の評価
本発明の発明者は、上記したホール素子310の定電流感度およびノイズ電圧を室温にて測定し、ホール素子の定電流感度をノイズ電圧で割った値をSN比(SN比)として評価した。
SN比は、ホール素子310の信号を制御する回路を設計するときに重要なパラメータとなる。後段の回路を設計する際、SN比が200mT−1以下であると回路自身の持つノイズに考慮した設計が必要になるが、200mT−1以上のSN比を有していれば、回路の持つノイズを無視して回路を設計でき、素子後段の回路設計が容易になる。
測定の結果、ホール素子310のSN比は227.6mT−1であった。
2 ESD耐圧の評価
本発明の発明者は、ホール素子310にマシンモデルを使ってESD破壊電圧を印加し、ESD破壊電圧の印加の前後でそれぞれオフセット電圧Vuを測定した。そして、ホール素子310のオフセット電圧Vuの初期値からの変化が5mVに達すると、直前に印加されたESD破壊電圧をESD耐圧と定義した。
ホール素子の製造工程では、ESD耐圧が80V未満であるとホール素子を基板実装する際や部品の組み付けラインでのESD対策が必須になる。しかし、ホール素子が80V以上のESD耐圧を有していれば、ESD対策が緩和され、基板実装や部品組み付けでのホール素子の取り扱いが容易になる。
測定の結果、ホール素子310のESD耐圧は87.8Vであった。
3 比較例
本発明の発明者は、ホール素子310の効果を確認するため、比較用のホール素子(以下、「比較例のホール素子」と記す)を作成した。
3.1 比較例A
比較例Aのホール素子は、図3に示したホール素子310と第1入力接続領域の幅Wのみが相違し、他はホール素子310と同様の条件で作成されている。比較例Aのホール素子は、Wが178.5μmであり、L/W=1.3である。
比較例Aのホール素子に対しても、ホール素子310と同様に、SN比とESD耐圧とを評価した。評価の結果、比較例Aのホール素子のSN比は178.3mT−1であり、ESD耐圧は38.0Vであった。比較例Aのホール素子は、SN比においてホール素子310より劣り、また、素子後段の回路の設計時にSN比を考慮に入れなければならない。さらに、比較例Aのホール素子は、ESD耐圧においてホール素子310より劣り、組立工程においてESD対策をとらなければならない。
3.2 比較例B
比較例Bのホール素子は、図3に示したホール素子310と感磁部のシートキャリア密度のみが相違し、他はホール素子310と同様の条件で作成されている。比較例Bのホール素子は、シートキャリア密度が3×1012cm−2である。
比較例Bのホール素子に対しても、ホール素子310と同様に、SN比とESD耐圧とを評価した。評価の結果、比較例Bのホール素子のSN比は139.4mT−1であり、ESD耐圧は234.2Vであった。比較例Bのホール素子は、SN比についてはホール素子310よりも劣り、ESD耐圧においてはホール素子310よりも優れた値を示した。
3.3 比較例C
比較例Cのホール素子は、図3に示したホール素子310と感磁部のシートキャリア密度のみが相違し、他はホール素子310と同様の条件で作成されている。比較例Cのホール素子は、シートキャリア密度が5×1013cm−2である。
比較例Cのホール素子に対しても、ホール素子310と同様に、SN比とESD耐圧とを評価した。評価の結果、比較例Cのホール素子のSN比は170.7mT−1であり、ESD耐圧は14.1Vであった。比較例Cのホール素子は、SN比、ESD耐圧のいずれにおいてもホール素子310よりも劣っている。
図4は、実施例のホール素子310、比較例A、比較例B、比較例CのSN比を比較して示したグラフである。図4の縦軸はSN比(S/N)mT−1を示し、横軸は評価の対象となったホール素子を示している。図4中に示した菱形のプロットはホール素子310のデータを示している。また、矩形のプロットは比較例Aのデータを示し、三角形のプロットは比較例Bのデータを示し、×印のプロットは比較例Cのデータを示している。
図4に示したように、実施例のホール素子310は、評価対象となった4つのホール素子のうち、最も高いSN比を有している。
また、図5は、実施例のホール素子310、比較例A、比較例B、比較例CのESD耐圧を比較して示したグラフである。図5の縦軸はオフセット電圧Vuの初期値からの変動ΔVuを示し、横軸はマシンモデルを使って印加されたESD破壊電圧の値である。図5中に示した菱形のプロットはホール素子310のデータを示している。また、矩形のプロットは比較例Aのデータを示し、三角形のプロットは比較例Bのデータを示し、×印のプロットは比較例Cのデータを示している。
図5に示したように、実施例のホール素子310は、評価対象となった4つのホール素子のうち、比較例Bに次いで高いESD耐圧を有している。また、ホール素子310は、比較例Bのホール素子よりも、オフセット電圧Vuの初期値からの変動が安定している。
以上のことから、本実施形態は、第1領域12aと接する第1入力電極31aの端部から第2領域12bと接する第2入力電極31bの端部までの長さLと、第1領域12aの幅Wとの比L/Wが1.4≦L/W≦20を満たし、かつ、感磁部3のシートキャリア密度Nsが5.0×1012cm−2以上3.0×1013cm−2以下であるため、良好なSN比およびESD耐圧を両立する小型のホール素子が実現できる。
本発明は、磁気センサ等の高い精度が求められるセンサの用いられるホール素子に好適である。
1:ホール素子、2:基板、3:感磁部、10:基板面、11:中央領域
12a:第1領域、12b:第2領域、12c:第3領域、12d:第4領域
13a:第1出力電極、13b:第2出力電極、21a:第1入力接続領域、21b:第2入力接続領域
22a:第1出力接続領域、22b:第2出力接続領域、31a:第1入力電極
31b:第2入力電極、32a:第1出力電極、32b:第2出力電極
40:絶縁層、50:保護層

Claims (1)

  1. 平面視において一辺の長さが0.3mm以下の矩形形状の基板面を有する基板と、
    前記基板面上に形成され、平面視において矩形形状の中央領域と、当該中央領域の対向する二辺にそれぞれ接続され、前記二辺と直交する第1直線を含む領域に形成される第1領域及び第2領域と、前記中央領域の前記二辺と異なる他の互いに対向する二辺にそれぞれ接続され、前記第1直線と直交する第2直線を含む領域に形成される第3領域及び第4領域と、を有する感磁部と、
    前記第1領域と電気的に接続される第1入力電極と、
    前記第2領域と電気的に接続される第2入力電極と、
    前記第3領域と電気的に接続される第1出力電極と、
    前記第4領域と電気的に接続される第2出力電極と、
    を備え、
    前記第1領域と接する前記第1入力電極の端部から前記第2領域と接する前記第2入力電極の端部までの長さLと、前記第1領域の前記第1直線と直交する方向の長さWとの比L/Wが、
    1.4≦L/W≦20
    の関係を満たし、かつ、前記感磁部のシートキャリア密度Nsが5.0×1012cm−2以上3.0×1013cm−2以下であるホール素子。
JP2014076302A 2014-04-02 2014-04-02 ホール素子 Pending JP2015198198A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076302A JP2015198198A (ja) 2014-04-02 2014-04-02 ホール素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076302A JP2015198198A (ja) 2014-04-02 2014-04-02 ホール素子

Publications (1)

Publication Number Publication Date
JP2015198198A true JP2015198198A (ja) 2015-11-09

Family

ID=54547720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076302A Pending JP2015198198A (ja) 2014-04-02 2014-04-02 ホール素子

Country Status (1)

Country Link
JP (1) JP2015198198A (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184327A (ja) * 1987-01-26 1988-07-29 Mitsubishi Monsanto Chem Co 半導体装置
JPH0794438A (ja) * 1993-09-24 1995-04-07 Sanyo Electric Co Ltd イオン注入パターンの解析方法
JPH08102563A (ja) * 1994-08-02 1996-04-16 Toshiba Corp 半導体ホール素子
JPH08204251A (ja) * 1995-01-24 1996-08-09 Asahi Chem Ind Co Ltd GaAsホール素子
JPH09214017A (ja) * 1996-02-06 1997-08-15 Asahi Kasei Denshi Kk ホール素子
JP2000252545A (ja) * 1999-02-25 2000-09-14 Hitachi Cable Ltd ホールセンサ
JP2009076861A (ja) * 2007-08-28 2009-04-09 Ngk Insulators Ltd 磁気センサ、ホール素子、ホールic、磁気抵抗効果素子、ホール素子の作製方法、および磁気抵抗効果素子の作製方法
JP2014011343A (ja) * 2012-06-29 2014-01-20 Asahi Kasei Electronics Co Ltd ホール素子およびホール素子を用いた半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184327A (ja) * 1987-01-26 1988-07-29 Mitsubishi Monsanto Chem Co 半導体装置
JPH0794438A (ja) * 1993-09-24 1995-04-07 Sanyo Electric Co Ltd イオン注入パターンの解析方法
JPH08102563A (ja) * 1994-08-02 1996-04-16 Toshiba Corp 半導体ホール素子
JPH08204251A (ja) * 1995-01-24 1996-08-09 Asahi Chem Ind Co Ltd GaAsホール素子
JPH09214017A (ja) * 1996-02-06 1997-08-15 Asahi Kasei Denshi Kk ホール素子
JP2000252545A (ja) * 1999-02-25 2000-09-14 Hitachi Cable Ltd ホールセンサ
JP2009076861A (ja) * 2007-08-28 2009-04-09 Ngk Insulators Ltd 磁気センサ、ホール素子、ホールic、磁気抵抗効果素子、ホール素子の作製方法、および磁気抵抗効果素子の作製方法
JP2014011343A (ja) * 2012-06-29 2014-01-20 Asahi Kasei Electronics Co Ltd ホール素子およびホール素子を用いた半導体装置

Similar Documents

Publication Publication Date Title
US10809318B2 (en) Semiconductor-based hall sensor
US20170123016A1 (en) Monolithic three-axis linear magnetic sensor and manufacturing method thereof
US10062836B2 (en) Magnetic sensor and method of manufacturing the same
US10593869B2 (en) Methods for patterning a magnetic sensing layer
US7772661B2 (en) Hall-effect magnetic sensors with improved magnetic responsivity and methods for manufacturing the same
US10263179B2 (en) Method of forming tunnel magnetoresistance (TMR) elements and TMR sensor element
US20120001280A1 (en) Hall sensor
US10429453B2 (en) Magnetic sensor and method of manufacturing the same
US7205622B2 (en) Vertical hall effect device
US20130307609A1 (en) Hall Effect Device
US8324672B2 (en) Spin transport device
US9523745B2 (en) Magnetic sensor and method of manufacturing the same
CN111580028A (zh) 一种基于磁致伸缩效应的半导体磁场探测器
CN113167841A (zh) 利用反常霍尔效应的磁传感器和霍尔传感器以及霍尔传感器的制造方法
US7002229B2 (en) Self aligned Hall with field plate
JP2015198198A (ja) ホール素子
US11762042B2 (en) Magnetic field sensor and methods of fabricating a magnetic field sensor
JP6301608B2 (ja) 磁気センサ及び磁気センサの製造方法
JP6576175B2 (ja) 薄膜磁界センサおよびアレイ型薄膜磁界センサ
JP2000138403A (ja) 薄膜磁気センサ―
JP2012204539A (ja) 磁気抵抗素子
JP5135612B2 (ja) 半導体素子
WO2011148577A1 (ja) ホール素子回路
JP2012119518A (ja) 回転角センサ
US8981508B2 (en) Magnetic field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821