JP2009076379A - シート状弾性体及びそれを備えた燃料電池 - Google Patents

シート状弾性体及びそれを備えた燃料電池 Download PDF

Info

Publication number
JP2009076379A
JP2009076379A JP2007245767A JP2007245767A JP2009076379A JP 2009076379 A JP2009076379 A JP 2009076379A JP 2007245767 A JP2007245767 A JP 2007245767A JP 2007245767 A JP2007245767 A JP 2007245767A JP 2009076379 A JP2009076379 A JP 2009076379A
Authority
JP
Japan
Prior art keywords
elastic body
sheet
cell
contact surface
leaf spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007245767A
Other languages
English (en)
Other versions
JP5214201B2 (ja
Inventor
Yuichi Hirata
雄一 平田
Takeo Sato
雄生 佐藤
Yoshifumi Ota
佳史 大田
Seiji Sano
誠治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Toyota Motor Corp
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Toyota Motor Corp
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Toyota Motor Corp, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2007245767A priority Critical patent/JP5214201B2/ja
Publication of JP2009076379A publication Critical patent/JP2009076379A/ja
Application granted granted Critical
Publication of JP5214201B2 publication Critical patent/JP5214201B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 燃料電池のセル毎の寸法変化に対応することができ、かつ、セルの全面を均一に押圧することができる、低ばね定数化された弾性体を提供する。
【解決手段】 複数のセルが積層された燃料電池をセルの積層方向に押圧するシート状の弾性体24であって、第1当接面と、第1当接面の裏側に形成された第2当接面を有している。第1当接面には複数の第1凸部26が散点状に形成されており、第2当接面の第1凸部に対応する位置には第1凹部がそれぞれ形成されている。
【選択図】 図2

Description

本発明は、複数のセルを積層したスタック構造を有する燃料電池に関する。詳しくは、スタック構造を有する燃料電池をセルの積層方向に押圧するための弾性体に関する。
スタック構造を有する燃料電池では、積層された複数のセルを保持するために、燃料電池を積層方向に押圧する力が加えられている。積層方向に押圧力を加える構造としては、種々の構造が提案されている(例えば、特許文献1、特許文献2)。
特許文献1の押圧構造では、複数のセルを積層した燃料電池の一端に皿ばねが配され、この皿ばねによって燃料電池全体に押圧力が加えられている。特許文献2の押圧構造では、セル毎に弾性体が配され、この弾性体によってセル毎に押圧力が加えられている。なお、特許文献2には、セル毎に配される弾性体として、断面波形の板ばねや、格子状に形成された弾性体が開示されている。
特開2006−49221号公報 特開2002−298902号公報
この種の燃料電池では、燃料電池を積層方向に押圧する押圧力の大きさによって、セル同士の接触抵抗が変化する。このため、燃料電池の内部抵抗を低減するためには、セルを押圧する押圧力を適切な大きさとし、セル同士の接触抵抗を小さくしなければならない。また、燃料電池のセルは熱膨張や収縮によって寸法が変化するため、セルの寸法が変化しても、セルを押圧する押圧力が変化しないことが望まれる。したがって、燃料電池をセルの積層方向に押圧する弾性体には、セルが寸法変化する範囲内で適切な押圧力を発生すること(いわゆる、低ばね定数化)が望まれている。
特許文献1の押圧構造では、燃料電池の端部に板ばねを配するため、板ばねを配するスペースを確保し易く、所望のばね特性(低ばね定数化)を得易い。しかしながら、セル毎の寸法変化は小さいとしても、その寸法変化が合わさった燃料電池全体の寸法変化は大きくなる。そのため、板ばねに近いセルが燃料電池全体の寸法変化に伴って積層方向へ大きく移動することもあり、場合によっては、燃料電池全体の寸法変化に適切に対応することができなくなる。
一方、特許文献2の押圧構造では、セル毎に板ばねを配するため、セル毎の寸法変化に対応することはできる。しかしながら、弾性体を配するスペースが制限されるため、弾性体を低ばね定数化することが難しい。すなわち、断面波形の板ばねを低ばね定数化しようとすると、断面の波形状を大きくしなければならない(具体的には、断面の波形状を上下方向及び左右方向に大きくしなければならない)。断面の波形状を大きくすると、セルと弾性体との接触部位が偏り、セルの全面を均一に押圧することができなくなる。同様に、格子状に形成された弾性体を低ばね定数化しようとすると、格子の寸法を大きくしなければならない。格子の寸法を大きくしても、セルと弾性体との接触部位が偏るため、セルの全面を均一に押圧することができなくなる。
本発明は、上記した実情に鑑みてなされたものであり、燃料電池のセル毎の寸法変化に対応することができ、かつ、セル面内の押圧差を抑制することができる、低ばね定数化した弾性体を提供することを目的とする。
本発明の弾性体は、複数のセルが積層された燃料電池をセルの積層方向に押圧するシート状の弾性体である。このシート状弾性体は、第1当接面と、第1当接面の裏側に形成された第2当接面を有している。第1当接面には複数の第1凸部が散点状に形成されており、第2当接面の第1凸部に対応する位置には第1凹部がそれぞれ形成されている。
この弾性体はシート状とされているため、燃料電池のセル毎(例えば、隣接するセル間)に配置することができる。また、シート状にされた弾性体の第1当接面に複数の第1凸部が散点状に形成され、それに対応した第1凹部が第2当接面に散点状に形成されている。このため、このシート状弾性体を、例えば、燃料電池の隣接するセル間に配置すると、第1当接面では第1凸部が一方のセルに当接し、第2当接面では第1凹部以外の部位が他方のセルに当接する。セルを押圧する力は、第1凸部(第1凹部)が変形することによって発生する。第1凸部が変形する力は、第1凸部の寸法によって変化するため、第1凸部の寸法を適宜調整することによって低ばね定数化を実現することができる。また、第1凸部は当接面に散点状に形成されているため、その配置を適宜調整することで、セルの全面を均一に押圧することができる。
上記のシート状弾性体は、第1当接面と第2当接面との間の距離(すなわち、シート状にされた部位の板厚)が0.2mm以下とされていることが好ましい。板厚を0.2mm以下とすることで、セル毎に弾性体を配置しても、燃料電池がセルの積層方向に大きくなることを防止することができる。また、板厚を0.2mm以下とすることで、第1凸部が変形し易くなる。このため、第1凸部の大きさを小さくしても、弾性体を低ばね定数化することができる。また、第1凸部の大きさを小さくできると、第1凸部を第1当接面に多数配置することができ、セルの全面を均一に押圧することが可能となる。
また、第1凸部は、その頂部においては曲率半径R1の凸曲面に形成される一方で、その外縁部においては曲率半径R2の凹曲面に形成されており、曲率半径R1と曲率半径R2の比(R1/R2)が1.0〜3.0の範囲とされていることが好ましい。ここでいう曲率半径とは、シート状の弾性体の板厚中心における曲率半径を意味する。
上記した比(R1/R2)を1.0以上とすることで、弾性体に作用する圧縮応力を小さくすることができる。一方、比(R1/R2)を3.0以下とすることで、弾性体のばね定数を低ばね定数化することができる。また、比(R1/R2)を1.0〜3.0の範囲とすることで、弾性体に作用する引張応力も小さくすることができる。したがって、比(R1/R2)を1.0〜3.0とすることで、低ばね定数化と低応力を実現することができる。
また、第1凸部が第1当接面に規則的に配置されていることが好ましい。第1凸部を規則的に配置することで、第1凸部を容易に成形することができる。
上記のシート状弾性体は、隣接するセルとセルの間に配置することができる他、燃料電池のセルを構成する一部材(アノード、カソード、セパレータ等の一部分)として用いることもできる。例えば、弾性体を燃料電池セルのガス拡散層又はセパレータとして用いることができる。ガス拡散層として用いる場合は、第1当接面から第2当接面に向かって貫通する貫通孔が複数形成されていることが好ましい。シート状弾性体に貫通孔を設けることで、ガス拡散を効率的に行うことができる。なお、シート状弾性体をガス拡散層として用いる場合は、シート状弾性体に撥水性の導電フィルムを併用することが好ましい。これによって、効率的なガス拡散が担保される。また、シート状弾性体をセパレータとして用いる場合は、図1に示すように単に弾性体としてのみ使用することもできるし、平板と組み合わせてシート状弾性体の凸部と平板間に空間を形成し、その空間を冷却水を流すための流路として利用することもできる。これにより、セパレータに冷却水を流すための流路を別途形成する必要がなくなる。
上記の第1凸部及び第1凹部は、種々の加工方法によって形成することができるが、シート状の板材(例えば、金属製の板材)をプレス加工することで形成することができる。プレス加工を用いることで、第1凸部及び第1凹部を同時に形成することができ、生産性を高めることができる。
また、上記のシート状弾性体は、第2当接面に複数の第2凸部を散点状に形成し、第1当接面の第2凸部に対応する位置に第2凹部をそれぞれ形成することができる。このような構成によると、シート状弾性体の両当接面に凸部(及び凹部)が形成される。このため、第1及び第2凸部並びに第1及び第2凹部をプレス加工で同時に成形するようにすると、成形後のシート状弾性体の両面に凸部(及び凹部)が形成され、成形後のシート状弾性体の平坦度を確保することが容易となる。
なお、上記のシート状弾性体を備えた燃料電池は、次の形態を採ることができる。すなわち、この燃料電池は、複数のセルを積層した燃料電池本体と、セル毎、又は、複数のセル毎に配置された、上記シート状弾性体のいずれか一つを有する。
本発明のシート状弾性体によってセルを押圧するため、内部抵抗が小さく、小型の燃料電池を実現することができる。
本発明の好適な実施形態について列挙する。
(形態1)シート状弾性体は、金属(例えば、チタン、ステンレス)の薄板からできている。
(形態2)シート状弾性体の表面には、複数の凸部が格子状(格子の各頂点)又は千鳥状に形成されている。シート状弾性体の裏面には、表面に形成された凸部と対応する位置に凹部がそれぞれ形成されている。
(形態3)凸部と凹部は、金属の薄板をプレス加工することによって成形されている。
(形態4)凸部と凹部は、シート状弾性体の当接面に均一に配置されている。
(形態5)板厚をtとし、凸部の直径をDとすると、D=26.76t+0.73(交差±10%)の範囲とされている。
(形態6)シート状弾性体を燃料電池にセットしたときに、凸部が形成された面と燃料電池側の部材との接触面積が全体の面積の50±15%に調整されている。
図面を参照して本実施例に係る燃料電池について説明する。図1は本実施例に係る燃料電池10の構成を示す図である。図1に示すように燃料電池10は、積層された複数のセル12と、隣接するセル12,12間に配された板ばね24を備えている。
セル12は、電解質膜18と、電解質膜18を両側から挟みこむアノード16及びカソード20と、アノード16及びカソード20を両側から挟みこむセパレータ14,22を備えている。
電解質膜18は、固体高分子材料(例えば、フッ素系樹脂により形成された厚さ10〜200μmのプロトン導電性のイオン交換樹脂)からなり、湿潤状態で良好な電気導電性を有している。電解質膜18の表面には、触媒としての白金または白金と他の金属からなる合金が塗布されている。
アノード16及びカソード20は、共に炭素繊維からなる糸で織成したカーボンクロスやカーボンペーパにより形成されたガス拡散電極である。アノード16及びカソード20は、熱圧着等によって電解質膜18と一体化されている。
セパレータ14,22は、ガス不透過の導電性材料(例えば、カーボンを圧縮してガス不透過とした緻密質カーボン)や金属(チタン、ステンレス)により形成されている。セパレータ14,22にはガス流路14a,22aが形成されている。すなわち、アノード16側のセパレータ14には燃料ガス流路14aが形成され、カソード20側のセパレータ22には酸化ガス流路22aが形成されている。
燃料ガス流路14aには燃料ガス(例えば、水素)が供給され、酸化ガス流路22aには酸化ガス(例えば、空気)が供給される。燃料ガス流路14aに供給された燃料ガスと酸化ガス流路22aに供給された酸化ガスは、燃料ガスが電解質膜をイオン化して透過することによって反応し、その際に電子を放出する。これによって、セル12から所定の起電力を得ることができる。
なお、セル12を構成する各部材(電解質膜18、アノード16及びカソード20、セパレータ14,22)は、公知の燃料電池に用いられているものを用いることができ、特に本発明を特徴付けるものではない。このため、ここではその詳細な説明を省略する。
板ばね24は、隣接するセル12間に配置され、セル12を積層方向に押圧する。セル12の両側に板ばね24が配置されることから、セル12は板ばね24によって積層方向に圧縮される。本実施例では、板ばね24は導電性の高い金属(例えば、チタン等)の薄板によって形成されている。
なお、板ばね24の板厚tは0.2mm以下とされていることが好ましい。板ばね24の板厚tを0.2mm以下とすることで、燃料電池10が積層方向に大きくなることが抑制できる。本実施例では、板ばね24の板厚を0.05mmとしている。
図2,3に示すように、板ばね24の表面には複数の凸部26が散点状に形成されている。本実施例では、金属の薄板をプレス加工することによって凸部26を形成している。このため、板ばね24の裏面には、凸部26と対応する位置にそれぞれ凹部が形成されている。また、プレス加工によって凸部26を形成することから、凸部26と凹部は略同一形状となっている。
図2に示すように、各凸部26は平面視が円形状に形成されている。本実施例では、凸部26の直径Dと板ばね24の板厚tとは、次の(式1)が成立するように調整されている(図11参照)。
D=27.763×t+0.7327 (式1)
(式1)から明らかなように、板厚tを厚くすると、それに応じて凸部26の直径Dが大きくなる。すなわち、板ばね24の板厚tが厚くなると凸部26が変形し難くなる。そこで、板ばね24を低ばね定数化する(すなわち、凸部26の変形量の変化に応じた圧縮荷重の変化を小さくする)ために、凸部26の直径Dを大きくする。上記(式1)式を満足するように板厚tと凸部26の直径Dを決めることで、板ばね24の低ばね定数化が実現される。本実施例では、凸部26の直径Dを2.243mmとしている。
また、上記(式1)及び図11に示す関係から明らかなように、板ばね24の板厚tを小さくすると、凸部26の直径Dも小さくなる。既に説明したように、本実施例では板ばね24の板厚tを0.2mm以下とすることで、凸部26の直径Dを5mm以下とする。これによって、板ばね24の表面に多数の凸部26を形成することができ、セル12の全面を均一に押圧することも可能となる。
また、図3から明らかなように、各凸部26は、その頂部28においては曲率半径R1の凸曲面に形成されており、その外周部30においては曲率半径R2の凹曲面に形成されている。本実施例では、頂部28の曲率半径R1と外周部30の曲率半径R2の比(R1/R2)が1.0〜3.0の範囲に調整されている。ここでいう曲率半径R1、R2は、板ばね24の板厚中心における曲率半径を意味している。
図12に示すように、曲率半径の比(R1/R2)が大きくなると、面圧定数(板ばね24のばね定数)が大きくなる。すなわち、曲率半径の比(R1/R2)が大きくなると、頂部28の凸曲面の曲率半径R1に対して外周部30の凹曲面の曲率半径R2が小さくなり、凸部26が圧縮変形し難くなる。このため、板ばね24のばね定数も高くなる(面圧定数が高くなる)。したがって、板ばね24を低ばね定数化するためには、曲率半径の比(R1/R2)を小さくすることが望ましい(具体的には、曲率半径の比(R1/R2)を3.0以下とすることが望ましい)。
一方、図14に示すように、曲率半径の比(R1/R2)を小さくすると、それに応じて最大圧縮応力(板ばね24の凸部26に所定量の圧縮変形を与えたときに板ばね24に発生する圧縮応力の最大値)が大きくなる。このため、曲率半径の比(R1/R2)を1.0未満とすると、板ばね24の凸部26が座屈する可能性がある。即ち、板ばね24の凸部26が、変形した状態から復元できなくなる可能性がある。
また、図13に示すように、曲率半径の比(R1/R2)が1.0〜3.0の範囲では最大引張応力(板ばね24の凸部26に所定量の引張変形を与えたときに板ばね24に発生する引張応力の最大値)も小さくなる。
したがって、曲率半径の比(R1/R2)を1.0〜3.0の範囲に調整することで、板ばね24の低応力化と低ばね定数化の両者を実現することができる。なお、本実施例では、曲率半径の比(R1/R2)が2.0とされている。
また、図2から明らかなように、凸部26は板ばね24の表面に格子状に配置されている(すなわち、格子の各頂点に凸部26が配置されている)。また、凸部26は板ばね24の表面全体に均一に配置されている。これによって、板ばね24はセル12の全面を均一に押圧することができる。また、凸部26が均一に配置されることから、板ばね24の加工性(凸部26のプレス加工性)が向上し、生産性を上げることができる。
上述した燃料電池10では、隣接するセル12間に板ばね24が配置される。このため、板ばね24の表面では、凸部26の頂部28が一方のセル12に当接し、板ばね24の裏面では、凹部27以外の部位が他方のセル12に当接する。板ばね24の凸部26には初期状態で所定の圧縮量が加えられており、これによってセル12には所定の押圧力が作用する。ここで、凸部26は板ばね24の全面に均一に配置されているため、板ばね24によってセル12の全面が均一に押圧される。
燃料電池10のセル12が熱膨張や収縮等によってセル積層方向に寸法変化すると、セル12間に配置された板ばね24の凸部26の変形量が変化する。板ばね24は、隣接するセル12間にそれぞれ配置されている。このため、セル12毎に寸法変化が異なっても、それに応じて板ばね24の凸部26の変形量が変化する。これによって、セル12毎の寸法変化にも適切に対応することができる。
また、板ばね24の凸部26は、その変形量が変化しても発生する押圧力の変化が小さくなるように設計されている(低ばね定数化が図られている)。すなわち、板ばね24の板厚tを薄くすると共に凸部26の形状を適切なものとしているため、凸部26が初期状態から変形しても、セル12を押圧する力が大きくなりすぎたり、小さくなりすぎることはない。このため、セル12が適切な力で押圧され、燃料電池10の内部抵抗を低く抑えることができる。これによって、燃料電池10の発電効率を高めることができる。
上述したことから明らかなように、本実施例の燃料電池10では、隣接するセル12間に板ばね24をそれぞれ配置しているため、セル12毎の寸法変化に対応してセル12に押圧力を加えることができる。
また、板ばね24は、その表面に散点状に配置された複数の凸部26が変形することによって押圧力を発生するようにしている。このため、板ばね24を隣接するセル12,12間の限られたスペースに配置しても、板ばね24を低ばね定数化できると共に、板ばね24によりセル12の全面を均一に押圧することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、上述した実施例では、板ばね24の表面に格子状に凸部26を形成したが、本発明はこのような実施例に限られない。例えば、図4に示される板ばね32のように、その表面に千鳥状に凸部34を配置するようにしてもよい。凸部34を千鳥状に配置しても、板ばね32の表面に均等に凸部34を配置することができ、セル12の全面を均一に押圧することができる。また、凸部34を千鳥状に配置することで、単位面積当たりの凸部34の密度も向上することもできる。
また、上述した実施例では、板ばね24の表面にのみ凸部26を形成したが、本発明はこのような実施例に限られない。例えば、図5に示される板ばね36のように、板ばね36の表面と裏面のそれぞれに凸部38a,38bを形成するようにしてもよい。板ばね36の両面にプレス加工によって凸部38a,38bを形成することで、プレス加工後の板ばね36の平坦度を高めることができる。あるいは、面圧分布を増減調節したり、さらなる低ばね定数化を図ることもできる。
また、上述した実施例では、板ばね24とセル12との当接面に均一に凸部26を形成するようにしたが、図6、7、8に例示するように凸部の密度が部分的に変化するようにしてもよい。図6に示す例は、板ばね24の一方側の端部(図中の左側端部)から他方側の端部(図中の右側端部)にかけて、凸部26のピッチを徐々に拡大させたものである(p1<p2)。図7に示す例は、板ばね24の一方側の範囲(図中の左側範囲)では凸部26を千鳥状に配設し、他方側の範囲(図中の右側範囲)では凸部26を格子状に配設したものである。図8に示す例は、板ばね24の一方側の端部(図中の左側端部)から他方側の端部(図中の右側端部)にかけて、凸部26のサイズを徐々に拡大させたものである。
凸部26の密度を部分的に変化させる場合、燃料ガス及び/又は酸化ガスの供給方向(入口、出口等)を考慮することも有効である。例えば、燃料ガスや酸化ガスの入口側では、出口側と比較して各セル12の熱膨張変化が大きくなる。そのことから、燃料ガスや酸化ガスの入口側の範囲については、出口側の範囲よりも凸部26の密度を低くすることによって、低ばね定数化を図ることが有効となる。これによって、セルの面内の寸法変化の差にも適切に対応することができる。また、発電分布を均一化することができる。
また、上述した実施例では、セル12のセパレータ14,22の外側に板ばね24を配置するようにしたが、本発明はこのような形態に限られず、セル12を構成する一部材(アノード、カソード、セパレータの一部分)として板ばねを用いることもできる。
図9に、板ばね40をアノードのガス拡散層として用いた燃料電池110の一例を示す。図9に示すように、この燃料電池110の各セル112では、セパレータ14とアノード22との間に板ばね40が介挿されている。この場合、図10に示すように板ばね40には、その表面から裏面に向かって貫通する貫通孔44が複数形成される。板ばね40に貫通孔44を複数設けることで、ガス拡散を効率的に行うことができる。なお、板ばね40をアノード側のガス拡散層として用いる場合は、板ばね40に撥水性の導電フィルムを併用することが好ましい。これによって、板ばね40への水分の付着が防止され、効率的なガス拡散を担保することができる。なお、板ばね40をカソード20とセパレータ22との間に配置し、板ばね40をカソード20のガス拡散層として用いることもできる。
なお、貫通孔44の径は0.2mm以下であることが好ましい。貫通孔44の径を小さくすることで、ガスを均一に分配することができる。また、全ての貫通孔44の面積の和は、板ばね40の全面積の5〜20%であることが好ましい。貫通孔44の面積の和を5%以上とすることで効率的にガスの拡散を行うことができ、貫通孔の面積の和を20%以下とすることで板ばね40に充分な強度を持たせることができる。
なお、板ばねをガス拡散層として用いる場合、板ばねとセパレータとの隙間をガスが流れることとなる。このため、板ばねの凸部の間隔や、板ばねとセパレータとの接触面積は、ガスが均一に拡散し、かつ、その隙間をガスが充分に流れるように設定することが好ましい。
例えば、隣接する凸部の頂部の間の距離(いわゆる、凸部のピッチ)は、凸部を所定量だけ圧縮したとき(例えば、凸部の頂部と外周部の距離が0.02mmとなるまで圧縮したとき)に、隣接する凸部間に形成される空隙が所定長さ(例えば、2mm)以下となるように調整されることが好ましい。このように構成すると、凸部のピッチ(間隔)が大きくなり過ぎないため、ガスの流れが偏ることが防止される。これによって、均一なガスの拡散を図ることができる。また、凸部のピッチを小さくすることによって、電子配線を密にすることもできる。
また、板ばねを燃料電池にセットしたときに、板ばねの凸部が形成された面とセルとの接触面積が全体の面積の50±15%に調整されることが好ましい。このように構成することで、ガス流路を充分に確保すると共に導電効率を充分に確保することができる。
また、板ばねをガス拡散層として用いる場合、板ばねの凸部を整列配置(例えば、直線状に配置)するようにしてもよい。このように凸部を配置することで、板ばねとセパレータの隙間をガスが流れ易くなり、ガスが流れる際の圧力損失を抑制することができる。
さらに、板ばねの凸部の大きさを充分に小さくすることで、ガス拡散の均一性を図るようにしてもよい。また、板ばねの凸部の大きさを充分に小さくすることで、電気配線が密になるようにしてもよい。
なお、上記の各実施例では、セル毎に板ばねを配するようにしたが、本発明はこのような例に限られず、セル毎の寸法変化に対応できる範囲内で複数のセル毎に板ばねを配するようにしてもよい。
また、シート状弾性体をセパレータとして用いる場合は、図1に示すように単に弾性体としてのみ使用することもできるし、平板と組み合わせてシート状弾性体の凸部と平板の間に空間を形成し、その空間を冷却水を流すための流路として利用することもできる。これにより、セパレータに冷却水を流すための流路を別途形成する必要がなくなる。
この場合、シート状弾性体の凸部の高さを一定以上高く設定することで、使用領域の全域において十分な空隙を確保でき、冷却水の圧損を極力抑えることができる。加えて、必要に応じて凸部のピッチ及び配列を調整することにより、自在に圧損レベルを調整することができる。また、図5に示すように凸部をシート状弾性体の上下面に設けることによって、流路面積や圧損レベルの調整を行うこともできる。この場合、一方の面の凸部を剛性の高い形状に形成することによって、シート状弾性体の変位によって水路面積の影響を受け難い構造とすることもできる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
本実施例に係る燃料電池の構成を示す図である。 板ばねの平面図である。 図2のIII−III線断面図である。 変形例に係る板ばねの平面図である。 変形例に係る他の板ばねの断面図である。 凸部の分布密度を変化させた一例を示す図である(配置ピッチ変化)。 凸部の分布密度を変化させた一例を示す図である(配置パターン変化)。 凸部の分布密度を変化させた一例を示す図である(凸部サイズ変化)。 板ばねをガス拡散層として用いた燃料電池を示す図。 ガス拡散層として用いる板ばねの断面図である。 本実施例に係る板ばねの板厚と凸部の直径との関係を示すグラフである。 本実施例に係る板ばねの曲率半径の比(R1/R2)と面圧定数との関係を示すグラフである。 本実施例に係る板ばねの曲率半径の比(R1/R2)と最大引張応力との関係を示すグラフである。 本実施例に係る板ばねの曲率半径の比(R1/R2)と最大圧縮応力との関係を示すグラフである。
符号の説明
10・・燃料電池
12・・セル
14・・セパレータ
16・・アノード
18・・電解質膜
20・・カソード
22・・セパレータ
24・・板ばね
26・・凸部

Claims (7)

  1. 複数のセルが積層された燃料電池をセルの積層方向に押圧するシート状の弾性体であって、
    第1当接面と、第1当接面の裏側に形成された第2当接面を有しており、
    第1当接面には複数の第1凸部が散点状に形成されており、第2当接面の第1凸部に対応する位置には第1凹部がそれぞれ形成されていることを特徴とするシート状弾性体。
  2. 第1当接面と第2当接面との間の距離が0.2mm以下とされていることを特徴とする請求項1に記載のシート状弾性体。
  3. 第1凸部は、その頂部においては曲率半径R1の凸曲面に形成される一方で、その外縁部においては曲率半径R2の凹曲面に形成されており、曲率半径R1と曲率半径R2の比(R1/R2)が1.0〜3.0の範囲とされていることを特徴とする請求項1又は2に記載のシート状弾性体。
  4. 第1凸部が第1当接面に規則的に配置されていることを特徴とする請求項1〜3のいずれか一項に記載のシート状弾性体。
  5. 第1当接面から第2当接面に向かって貫通する貫通孔が複数形成されていることを特徴とする請求項1〜4のいずれか一項に記載のシート状弾性体。
  6. 第2当接面には複数の第2凸部が散点状に形成されており、第1当接面の第2凸部に対応する位置には第2凹部がそれぞれ形成されていることを特徴とする請求項1〜5のいずれか一項に記載のシート状弾性体。
  7. 複数のセルを積層した燃料電池本体と、
    セル毎、又は、複数のセル毎に配置された請求項1〜6のいずれか一項に記載のシート状弾性体と、を有する燃料電池。
JP2007245767A 2007-09-21 2007-09-21 シート状弾性体及びそれを備えた燃料電池 Expired - Fee Related JP5214201B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245767A JP5214201B2 (ja) 2007-09-21 2007-09-21 シート状弾性体及びそれを備えた燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245767A JP5214201B2 (ja) 2007-09-21 2007-09-21 シート状弾性体及びそれを備えた燃料電池

Publications (2)

Publication Number Publication Date
JP2009076379A true JP2009076379A (ja) 2009-04-09
JP5214201B2 JP5214201B2 (ja) 2013-06-19

Family

ID=40611151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245767A Expired - Fee Related JP5214201B2 (ja) 2007-09-21 2007-09-21 シート状弾性体及びそれを備えた燃料電池

Country Status (1)

Country Link
JP (1) JP5214201B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059380A (ja) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd 燃料電池スタック及び燃料電池スタックに用いる変形吸収部材
WO2013122215A1 (ja) * 2012-02-15 2013-08-22 中央発條株式会社 弾性部材
JP2014112565A (ja) * 2014-03-20 2014-06-19 Nissan Motor Co Ltd 燃料電池スタック及び燃料電池スタックに用いる変形吸収部材
JP2017076571A (ja) * 2015-10-16 2017-04-20 本田技研工業株式会社 燃料電池
CN112242532A (zh) * 2019-07-16 2021-01-19 本田技研工业株式会社 燃料电池用金属隔板、接合隔板以及发电单电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035514A (ja) * 1999-07-19 2001-02-09 Tokyo Gas Co Ltd 通電用金属薄板およびそれを用いた固体電解質燃料電池
JP2001068132A (ja) * 1999-08-25 2001-03-16 Tokyo Gas Co Ltd 集電板およびそれを用いた固体電解質燃料電池
JP2003163016A (ja) * 2001-09-13 2003-06-06 Ngk Insulators Ltd 電気化学装置および電気化学装置用導電性接続部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035514A (ja) * 1999-07-19 2001-02-09 Tokyo Gas Co Ltd 通電用金属薄板およびそれを用いた固体電解質燃料電池
JP2001068132A (ja) * 1999-08-25 2001-03-16 Tokyo Gas Co Ltd 集電板およびそれを用いた固体電解質燃料電池
JP2003163016A (ja) * 2001-09-13 2003-06-06 Ngk Insulators Ltd 電気化学装置および電気化学装置用導電性接続部材

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059380A (ja) * 2010-09-06 2012-03-22 Nissan Motor Co Ltd 燃料電池スタック及び燃料電池スタックに用いる変形吸収部材
WO2013122215A1 (ja) * 2012-02-15 2013-08-22 中央発條株式会社 弾性部材
JPWO2013122215A1 (ja) * 2012-02-15 2015-05-18 中央発條株式会社 弾性部材
JP2014112565A (ja) * 2014-03-20 2014-06-19 Nissan Motor Co Ltd 燃料電池スタック及び燃料電池スタックに用いる変形吸収部材
JP2017076571A (ja) * 2015-10-16 2017-04-20 本田技研工業株式会社 燃料電池
CN112242532A (zh) * 2019-07-16 2021-01-19 本田技研工业株式会社 燃料电池用金属隔板、接合隔板以及发电单电池

Also Published As

Publication number Publication date
JP5214201B2 (ja) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5445986B2 (ja) 燃料電池セル
US9005835B2 (en) Fuel cell with reduced mass transfer limitations
US10320009B2 (en) Deformation absorption member and fuel cell
JP5226431B2 (ja) 燃料電池スタック
JP5334469B2 (ja) 燃料電池スタック
JP5214201B2 (ja) シート状弾性体及びそれを備えた燃料電池
JP5542278B2 (ja) 燃料電池用ガス拡散層および固体高分子型燃料電池
JP2006527903A (ja) 弾性分配構造を有する電気化学構造体
JP4897928B2 (ja) 固体高分子形燃料電池および固体高分子形燃料電池用セパレータ
JP4910346B2 (ja) 燃料電池のセル及びスタック
US10826084B2 (en) Fuel cell
JP2008171598A (ja) 燃料電池
JP2009163907A (ja) 高分子電解質型燃料電池
JP4821111B2 (ja) 燃料電池
JP2006196328A (ja) 電池セルの製造方法及び製造設備
JP2018137074A (ja) 燃料電池スタック
JP5857817B2 (ja) 燃料電池
JP2008004300A (ja) 燃料電池用プレスセパレータ
JP6703298B2 (ja) 燃料電池
JP2019186052A (ja) 燃料電池用セパレータ
JP6140288B2 (ja) 変形吸収部材の取付構造および取付方法
JP5133536B2 (ja) 燃料電池
JP5958746B2 (ja) 燃料電池スタック
JP5915971B2 (ja) 燃料電池スタック
JP2007087862A (ja) 燃料電池のセル及びスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees