JP2009072056A - Motor control device and method of controlling current phase - Google Patents

Motor control device and method of controlling current phase Download PDF

Info

Publication number
JP2009072056A
JP2009072056A JP2008156180A JP2008156180A JP2009072056A JP 2009072056 A JP2009072056 A JP 2009072056A JP 2008156180 A JP2008156180 A JP 2008156180A JP 2008156180 A JP2008156180 A JP 2008156180A JP 2009072056 A JP2009072056 A JP 2009072056A
Authority
JP
Japan
Prior art keywords
current
current command
value
command value
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008156180A
Other languages
Japanese (ja)
Inventor
Yusuke Imada
裕介 今田
Shinya Takashima
真也 高嶋
Masaru Nishizono
勝 西園
Toru Tazawa
徹 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008156180A priority Critical patent/JP2009072056A/en
Publication of JP2009072056A publication Critical patent/JP2009072056A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor control device which can reduce an operation processing time and generate a torque most efficiently with respect to the same current, for a brushless motor having inverse saliency. <P>SOLUTION: The device has current phase angle deriving means 11 for storing an advanced angle amount Φ of a current phase as a predetermined function corresponding to an absolute value (magnitude) of a current command. A current command value I* determined by dividing a torque command value T by a torque constant Kt, is input to an absolute value converter 12. An absolute value ¾I*¾ of obtained current command is input into the current phase angle deriving means 11. An advanced angle amount Φ (cosΦ and -sinΦ) corresponding to the absolute value ¾I*¾ of the current command, is derived. A q-axis current command value is obtained by multiplying the current command value I* by the advanced angle amount cosΦ. A d-axis current command value is obtained by multiplying the absolute value ¾I*¾ of the current command by the advanced angle amount -sinΦ. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、逆突極性を有するブラシレスモータの電流位相を制御して同一電流において出力トルクを最大化するモータ制御装置に関する。   The present invention relates to a motor control device that controls the current phase of a brushless motor having reverse saliency and maximizes output torque at the same current.

従来、回転子に磁石を用いた同期モータ(PMSM:Permanent Magnet Synchronous Motor)の制御法として、d軸電流を常に0に保つId=0制御が一般的に用いられている。   Conventionally, as a control method of a synchronous motor (PMSM: Permanent Magnet Synchronous Motor) using a magnet as a rotor, Id = 0 control in which a d-axis current is always kept at 0 is generally used.

PMSMのトルク方程式は、発生トルクをT、極対数をPn、電機子鎖交磁束をΦa、d軸電流をId、q軸電流をIq、d軸インダクタンスをLd、q軸インダクタンスをLqとすると、
T=Pn×Φa×Iq+Pn×(Ld−Lq)×Id×Iq(式1)
で表すことができる。
The torque equation of PMSM is that the generated torque is T, the number of pole pairs is Pn, the armature flux linkage is Φa, the d-axis current is Id, the q-axis current is Iq, the d-axis inductance is Ld, and the q-axis inductance is Lq.
T = Pn × Φa × Iq + Pn × (Ld−Lq) × Id × Iq (Formula 1)
Can be expressed as

式1において、d軸電流Idを0に保つと、
T=Pn×Φa×Iq(式2)
となる。式2における発生トルクTは、q軸電流Iqのみに比例するため、トルクの線形制御が容易に実現できる。
In Equation 1, if the d-axis current Id is kept at 0,
T = Pn × Φa × Iq (Formula 2)
It becomes. Since the generated torque T in Expression 2 is proportional only to the q-axis current Iq, linear control of the torque can be easily realized.

一方、回転子の表面に磁石を配置した同期モータ(SPMSM:Surface Permanent Magnet Synchronous Motor)では、d軸インダクタンスLdと、q軸インダクタンスLqが等しい非突極性であるため、式1の右辺第2項は0となり、発生トルクは式2で表される。   On the other hand, in a synchronous motor (SPMSM: Surface Permanent Synchronous Motor) in which a magnet is arranged on the surface of the rotor, the d-axis inductance Ld and the q-axis inductance Lq have the same non-saliency, so the second term on the right side of Equation 1 Becomes 0, and the generated torque is expressed by Equation 2.

よって、SPMSMの場合は、トルク発生に寄与しないd軸電流Idを流さないId=0制御が同一トルクに対する電流は最小となり効率的である。   Therefore, in the case of SPMSM, Id = 0 control that does not flow the d-axis current Id that does not contribute to torque generation is efficient because the current for the same torque is minimized.

しかし、回転子に磁石を内装配置した同期モータ(IPMSM:Interior Permanent Magnet Synchronous Motor)では、d軸インダクタンスLd<q軸インダクタンスLqの逆突極性を有するため、Id=0制御では、式1の右辺第2項のリラクタンストルクが利用できなくなる。このため、Id=0とする制御では、必ずしも適切な制御方法とはならない。   However, in a synchronous motor (IPMSM: Interior Permanent Synchronous Motor) in which a magnet is arranged in a rotor, the d-axis inductance Ld <reverse saliency of the q-axis inductance Lq has a reverse saliency. The reluctance torque of the second term cannot be used. For this reason, control with Id = 0 is not necessarily an appropriate control method.

そこで、d軸電流Idを負の値とし、リラクタンストルクを利用して発生トルクを増加させる方法が提案されており、図5を用いて説明する。   Therefore, a method has been proposed in which the d-axis current Id is set to a negative value and the generated torque is increased using the reluctance torque, which will be described with reference to FIG.

q軸電流指令Iq*は、q軸電流指令算出部51において後述する磁束相当分に極対数Pnを乗じたもので、トルク指令値T*を除算して算出される。次いでq軸電流指令Iq*またはq軸電流指令フィードバック値Iqが電流位相角制御部52に入力され、絶対値変換器53を介して電流指令の絶対値(大きさ)にした後に、電流位相角設定器54において一定の電流位相角βを用いて−tan(β)を乗じることで、d軸電流指令Id*を算出する。   The q-axis current command Iq * is calculated by dividing the torque command value T * by the q-axis current command calculation unit 51, which is obtained by multiplying a magnetic flux equivalent described later by a pole pair number Pn. Next, the q-axis current command Iq * or the q-axis current command feedback value Iq is input to the current phase angle control unit 52 and converted into the absolute value (magnitude) of the current command via the absolute value converter 53, and then the current phase angle. A d-axis current command Id * is calculated by multiplying -tan (β) by using the constant current phase angle β in the setting device 54.

このd軸電流指令Id*に、d軸電流フィードバック値Idを追従させることで、リラクタンストルクが発生するが、式1で示されるトルク方程式に基づき、発生するリラクタンストルクの大きさを考慮する。   By causing the d-axis current feedback value Id to follow the d-axis current command Id *, reluctance torque is generated. The magnitude of the generated reluctance torque is taken into account based on the torque equation expressed by Equation 1.

リラクタンストルク考慮部55において、電機子鎖交磁束Φa、q軸インダクタンスLq、d軸インダクタンスLdおよびd軸電流指令Id*から磁束相当分Φa+(Ld−Lq)×Id*を算出する。算出した磁束相当分は、q軸電流指令算出部51にて極対数Pnを乗じて、q軸電流指令Iq*を算出する際に用いる(例えば、特許文献1参照)。
特開2000−92884号公報
In the reluctance torque consideration unit 55, the magnetic flux equivalent Φa + (Ld−Lq) × Id * is calculated from the armature interlinkage magnetic flux Φa, the q-axis inductance Lq, the d-axis inductance Ld, and the d-axis current command Id *. The calculated magnetic flux equivalent is used when the q-axis current command Iq * is calculated by multiplying the number of pole pairs Pn by the q-axis current command calculation unit 51 (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2000-92984

しかしながら上記従来技術では、以下の問題点を有する。   However, the above prior art has the following problems.

まず、最適な電流位相角は、電流指令の絶対値|I*|、すなわち電流指令の大きさに依存する。|I*|は、(Id*+Iq*)の平方根で求められる。よって、d軸電流指令Id*を一定の電流位相角βを用いて計算したのでは、最適な電流位相とはならない。 First, the optimum current phase angle depends on the absolute value | I * | of the current command, that is, the magnitude of the current command. | I * | is obtained by the square root of (Id * 2 + Iq * 2 ). Therefore, if the d-axis current command Id * is calculated using the constant current phase angle β, the optimum current phase is not obtained.

また、q軸電流指令Iq*からq軸インダクタンスLqを導出し、q軸インダクタンスLqからq軸電流指令Iq*を計算するには収束演算が必要となり、処理時間の増大を招くため問題がある。   Further, in order to derive the q-axis inductance Lq from the q-axis current command Iq * and to calculate the q-axis current command Iq * from the q-axis inductance Lq, a convergence calculation is required, which increases the processing time.

本発明は上記従来の課題を解決するものであり、逆突極性を有したブラシレスモータに対して、演算処理時間が短く、同一電流に対して最も効率的にトルクを発生することのできるモータ制御装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and is a motor control capable of generating torque most efficiently for the same current for a brushless motor having a reverse saliency with a short calculation processing time. An object is to provide an apparatus.

上記課題を解決するために請求項1に記載のモータ制御装置は、同一電流において出力トルクを最大化する磁石内装型モータの電流位相制御において、電流位相の進角量を電流指令の絶対値(大きさ)に応じた所定の関数として記憶させた電流位相進角量導出手段を備え、トルク指令値をトルク定数で除算して求めた電流指令値を絶対値変換器に入力し、得られた電流指令の絶対値を前記電流位相進角量導出手段に入力して前記電流指令の絶対値に応じた進角量Φ(cosΦおよび−sinΦ)を導出し、前記電流指令値に進角量cosΦを乗じてq軸電流指令値とし、前記電流指令の大きさに進角量−sinΦを乗じてd軸電流指令値とする。   In order to solve the above-mentioned problem, the motor control device according to claim 1 is a current phase control of a motor with a built-in magnet that maximizes an output torque at the same current. Current phase advance amount deriving means stored as a predetermined function corresponding to the magnitude), and the current command value obtained by dividing the torque command value by the torque constant is input to the absolute value converter and obtained The absolute value of the current command is input to the current phase advance amount deriving means to derive the advance amount Φ (cos Φ and −sin Φ) corresponding to the absolute value of the current command, and the advance amount cos Φ is derived from the current command value. To obtain the q-axis current command value, and multiply the magnitude of the current command by the advance amount −sinΦ to obtain the d-axis current command value.

また、請求項2に記載の電流位相の制御方法は、電流位相の進角量を電流指令の絶対値(大きさ)に応じた所定の関数として記憶させた電流位相進角量導出手段を備え、トルク指令値を電流指令値に変換するステップ1と、電流指令値を電流指令の絶対値に変換するステップ2と、前記電流位相進角量導出手段に前記電流指令の絶対値を入力し、電流指令の絶対値に応じた進角量Φ(cosΦおよび−sinΦ)を導出するステップ3と、ステップ1の電流指令値にステップ3で得られたcosΦを乗じてq軸電流指令値を、ステップ3で得られた−sinΦに電流指令の絶対値を乗じてd軸電流指令値をそれぞれ求めるステップ4を備え、実際のモータ電流から算出した実際のq軸電流値とd軸電流値を、ステップ4で求めたq軸電流指令値とd軸電流指令値に追従するようにフィードバックして同一電流において逆突極性を有したブラシレスモータの出力トルクを最大化する。   According to a second aspect of the present invention, there is provided a current phase control method comprising current phase advance amount deriving means for storing the current phase advance amount as a predetermined function corresponding to the absolute value (size) of the current command. , Step 1 for converting the torque command value into a current command value, step 2 for converting the current command value into an absolute value of the current command, and inputting the absolute value of the current command into the current phase advance amount deriving means; Step 3 for deriving an advance amount Φ (cos Φ and −sin Φ) corresponding to the absolute value of the current command, and multiplying the current command value in Step 1 by cos Φ obtained in Step 3 to obtain a q-axis current command value 3 is obtained by multiplying -sinΦ obtained in step 3 by the absolute value of the current command to obtain d-axis current command values, respectively. The actual q-axis current value and d-axis current value calculated from the actual motor current are Q-axis current command value obtained in step 4 Feedback is performed so as to follow the d-axis current command value, and the output torque of the brushless motor having the reverse saliency at the same current is maximized.

請求項1に記載のモータ制御装置によれば、電流位相進角量導出手段を備えることで、入力された電流指令の絶対値に応じた最適の電流位相の進角制御が可能となり、所望する出力トルクを得るのに必要な電流を最小とするトルク制御が実現できる。   According to the motor control device of the first aspect, by providing the current phase advance amount deriving means, it becomes possible to control the advance angle of the optimum current phase according to the absolute value of the input current command, and this is desired. Torque control that minimizes the current required to obtain the output torque can be realized.

また、請求項2に記載の電流位相の制御方法によれば、4つのステップにより、所望する出力トルクを得るのに必要な電流を最小とする最大トルク制御が実現できる。   According to the current phase control method of the second aspect, the maximum torque control that minimizes the current required to obtain the desired output torque can be realized by four steps.

したがって、磁石内装型モータを効率的に駆動することができるモータ制御装置を提供することができる。   Therefore, it is possible to provide a motor control device that can efficiently drive a magnet-embedded motor.

電流位相の進角量を電流指令の絶対値(大きさ)に応じた所定の関数として記憶させた電流位相進角量導出手段を備え、トルク指令値を電流指令値に変換するステップ1と、電流指令値を電流指令の絶対値に変換するステップ2と、前記電流位相角導出手段に電流指令の大きさを入力し、電流指令の絶対値に応じた進角量Φ(cosΦおよび−sinΦ)を導出するステップ3と、ステップ1の電流指令値にステップ3で得られたcosΦを乗じてq軸電流指令値を、ステップ3で得られた−sinΦに電流指令の絶対値を乗じてd軸電流指令値をそれぞれ求めるステップ4を備え、実際のモータ電流から算出した実際のq軸電流値とd軸電流値を、ステップ4で求めたq軸電流指令値とd軸電流指令値に追従するようにフィードバックして同一電流において出力トルクを最大化する磁石内装型モータの電流位相の制御方法である。以下、実施の形態について説明する。
(実施の形態1)
実施の形態1について、図1〜図4を併用しながら詳細に説明する。図1は、本発明の要部である電流位相進角量導出手段の説明図、図2は、モータ制御装置における電流制御系のブロック図、図3は、逆突極性を有するブラシレスモータ(例えば、磁石内装型モータ)のトルク−電流位相角曲線の説明図、図4は、逆突極性を有するブラシレスモータのd軸およびq軸インダクタンス特性図である。
A step 1 for converting the torque command value into a current command value, comprising: a current phase advance amount deriving unit that stores the current phase advance amount as a predetermined function corresponding to the absolute value (magnitude) of the current command; Step 2 for converting the current command value to the absolute value of the current command, and the magnitude of the current command is input to the current phase angle deriving means, and the advance amount Φ (cosΦ and −sinΦ) corresponding to the absolute value of the current command In step 3, the current command value in step 1 is multiplied by cosΦ obtained in step 3, and the q-axis current command value is multiplied by -sinΦ obtained in step 3, and the absolute value of the current command is multiplied by d-axis. Steps 4 for obtaining current command values are provided, and the actual q-axis current value and d-axis current value calculated from the actual motor current follow the q-axis current command value and d-axis current command value obtained in Step 4. So that the feedback is the same This is a method for controlling the current phase of a magnet-embedded motor that maximizes output torque in current. Hereinafter, embodiments will be described.
(Embodiment 1)
The first embodiment will be described in detail with reference to FIGS. FIG. 1 is an explanatory diagram of a current phase advance amount derivation means that is a main part of the present invention, FIG. 2 is a block diagram of a current control system in a motor control device, and FIG. FIG. 4 is an explanatory diagram of the d-axis and q-axis inductance characteristics of a brushless motor having a reverse saliency.

図1は、電流位相の進角量を導出する電流位相進角量導出手段とその周辺を示したもので、電流位相進角手段11は、進角量Φを因数|I*|で表した関数として記憶している。この関数は、シミュレーションおよび実機での測定結果により、各電流指令の絶対値に応じた最適電流位相角を導出して近似したものである。   FIG. 1 shows a current phase advance amount deriving unit for deriving the advance amount of the current phase and its surroundings. The current phase advance unit 11 represents the advance amount Φ as a factor | I * |. It is memorized as a function. This function is obtained by deriving and approximating the optimum current phase angle corresponding to the absolute value of each current command from the simulation and the actual measurement results.

電流指令値I*は、トルク指令値Tをトルク定数Ktで除算して求められ(ステップ1)、この電流指令値I*を絶対値変換器12に入力し、電流指令の絶対値|I*|に変換(ステップ2)し、電流位相進角手段11に入力する。電流位相進角手段11では、入力された電流指令の絶対値|I*|に応じた位相の進角量として、−sinΦおよびcosΦを導出する(ステップ3)。   The current command value I * is obtained by dividing the torque command value T by the torque constant Kt (step 1). This current command value I * is input to the absolute value converter 12, and the absolute value of the current command | I * | (Step 2) and input to the current phase advance means 11. The current phase advance means 11 derives −sinΦ and cosΦ as phase advance amounts corresponding to the absolute value | I * | of the input current command (step 3).

q軸電流指令としてのトルク分電流指令値Iq*は、電流指令値I*にcosΦを乗じて求められ、d軸電流指令としての励磁分電流指令値Id*は、電流指令の絶対値|I*|に−sinΦを乗じて求められる(ステップ4)。この励磁電流指令値Id*とトルク分電流指令値Iq*を用いた電流制御について図2を用いて説明する。   The torque component current command value Iq * as the q-axis current command is obtained by multiplying the current command value I * by cosΦ, and the excitation component current command value Id * as the d-axis current command is the absolute value | I of the current command. * | Is multiplied by -sinΦ (step 4). Current control using the excitation current command value Id * and the torque current command value Iq * will be described with reference to FIG.

図2において、図示しない速度制御系から得られるトルク指令値T*から図1で説明したように電流位相進角手段11を用いて、励磁電流指令値Id*およびトルク分電流指令値Iq*が導出される。   In FIG. 2, an excitation current command value Id * and a torque component current command value Iq * are obtained from a torque command value T * obtained from a speed control system (not shown) using the current phase advance means 11 as described in FIG. Derived.

d軸電圧指令値Vd*およびq軸電圧指令値Vq*は、励磁電流指令値Id*およびトルク分電流指令値Iq*と3相/2相変換器27から得られた励磁電流フィードバック値Idおよびトルク分電流フィードバック値Iqとの偏差を、それぞれPI制御器22により演算される。   The d-axis voltage command value Vd * and the q-axis voltage command value Vq * are the excitation current command value Id *, the torque current command value Iq *, the excitation current feedback value Id obtained from the 3-phase / 2-phase converter 27, and Deviations from the torque current feedback value Iq are calculated by the PI controller 22, respectively.

d軸電圧指令値Vd*およびq軸電圧指令値Vq*は、2相/3相変換器23により電
流位相角θを用いて、3相の交流電圧指令値Vu*、交流電圧指令値Vv*および交流電圧指令値Vw*に変換され、電力変換器24により増幅された3相交流電圧が、逆突極性を有した磁石内装型モータ26に入力される。
The d-axis voltage command value Vd * and the q-axis voltage command value Vq * are converted into a three-phase AC voltage command value Vu * and an AC voltage command value Vv * using the current phase angle θ by the two-phase / three-phase converter 23. The three-phase AC voltage converted into the AC voltage command value Vw * and amplified by the power converter 24 is input to the magnet-embedded motor 26 having reverse saliency.

磁石内装型モータ26に供給された3相の交流電流値Iuおよび交流電流値Ivは、電流検出器25により検出され、3相/2相変換器27により電流位相角θを用いて、励磁電流フィードバック値Idおよびトルク分電流フィードバック値Iqに変換する。   The three-phase AC current value Iu and the AC current value Iv supplied to the magnet-embedded motor 26 are detected by a current detector 25, and a current phase angle θ is detected by a three-phase / two-phase converter 27, thereby exciting current. It converts into the feedback value Id and the torque current feedback value Iq.

次に、逆突極性を有する磁石内装型モータの電流位相角と出力トルクおよび電流の関係について図3を用いて説明する。図3では、永久磁石の磁束方向であるd軸に直交するq軸方向に電流を流すときの電流位相角を0として図示している。   Next, the relationship between the current phase angle, output torque, and current of a magnet-embedded motor having reverse saliency will be described with reference to FIG. In FIG. 3, the current phase angle when current flows in the q-axis direction orthogonal to the d-axis, which is the magnetic flux direction of the permanent magnet, is shown as 0.

逆突極性を有する磁石内装型モータの出力トルクは、式1で表されるとおり永久磁石により発生するマグネットトルクと、突極性に起因するリラクタンストルクとの和となる。したがって、ある一定の電流を入力したときに出力トルクが最大となる電流位相進角量Φが存在する。   The output torque of the magnet-embedded motor having the reverse saliency is the sum of the magnet torque generated by the permanent magnet and the reluctance torque resulting from the saliency as represented by Equation 1. Therefore, there is a current phase advance amount Φ that maximizes the output torque when a certain constant current is input.

しかしながら、d軸インダクタンスLdおよびq軸インダクタンスLqは、励磁電流フィードバック値Idおよびトルク分電流フィードバック値Iqの大きさに依存し、図4に示す関係がある。したがって、電流の絶対値が変わるとd軸インダクタンスLd、q軸インダクタンスLqも変化するため、電流の絶対値により進角量Φが変化する。   However, the d-axis inductance Ld and the q-axis inductance Lq depend on the magnitudes of the excitation current feedback value Id and the torque component current feedback value Iq, and have the relationship shown in FIG. Therefore, when the absolute value of the current changes, the d-axis inductance Ld and the q-axis inductance Lq also change, so the advance amount Φ changes depending on the absolute value of the current.

本発明は、この関係に着目して、電流位相の進角量を電流指令の絶対値に応じた所定の関数として電流位相進角手段に記憶させ、入力される電流指令の絶対値に応じた進角量Φから励磁電流指令値Id*およびトルク分電流指令値Iq*を導出できる。   In the present invention, focusing on this relationship, the current phase advance amount is stored in the current phase advance means as a predetermined function corresponding to the absolute value of the current command, and is determined according to the absolute value of the input current command. The excitation current command value Id * and the torque component current command value Iq * can be derived from the advance amount Φ.

これにより、所望する出力トルクを得るのに必要な電流を最小とするトルク制御が実現できる。   As a result, torque control that minimizes the current required to obtain the desired output torque can be realized.

本発明のモータ制御装置は、磁石内装型モータなどの逆突極性を有するブラシレスモータの高効率駆動に最適であり、高出力化に有用である。   The motor control device of the present invention is optimal for high-efficiency driving of a brushless motor having reverse saliency such as a magnet-embedded motor, and is useful for high output.

本発明の実施の形態1における電流位相進角量導出手段の説明図Explanatory drawing of the electric current phase advance amount derivation | leading-out means in Embodiment 1 of this invention 本発明の実施の形態1におけるモータ制御装置の電流制御系ブロック図Block diagram of current control system of motor control device in Embodiment 1 of the present invention 逆突極性を有するブラシレスモータのトルク−電流位相角曲線の説明図Illustration of torque-current phase angle curve of brushless motor with reverse saliency 逆突極性を有するブラシレスモータのd軸およびq軸インダクタンス特性図D-axis and q-axis inductance characteristics of brushless motor with reverse saliency 従来のモータ制御装置における電流制御系要部のブロック図Block diagram of main parts of current control system in conventional motor control device

符号の説明Explanation of symbols

11 電流位相進角手段
12 絶対値変換器
21 電流指令値演算回路
22 PI制御器
23 2相/3相変換器
24 電力変換器
25 電流検出器
26 磁石内装型モータ(逆突極性を有するブラシレスモータ)
27 3相/2相変換器
51 q軸電流指令算出部
52 電流位相角制御部
53 絶対値変換器
54 電流位相角設定器
55 リラクタンストルク考慮部
DESCRIPTION OF SYMBOLS 11 Current phase advance means 12 Absolute value converter 21 Current command value calculating circuit 22 PI controller 23 Two-phase / 3-phase converter 24 Power converter 25 Current detector 26 Magnet built-in type motor (brushless motor having reverse saliency) )
27 3-phase / 2-phase converter 51 q-axis current command calculation unit 52 current phase angle control unit 53 absolute value converter 54 current phase angle setting unit 55 reluctance torque consideration unit

Claims (2)

モータの電流位相制御において、電流位相の進角量を電流指令の絶対値(大きさ)に応じた所定の関数として記憶させた電流位相進角量導出手段を備え、トルク指令値をトルク定数で除算して求めた電流指令値を絶対値変換器に入力し、得られた電流指令の絶対値を前記電流位相進角量導出手段に入力して前記電流指令の絶対値に応じた進角量Φ(cosΦおよび−sinΦ)を導出し、前記電流指令値に進角量cosΦを乗じてq軸電流指令値とし、前記電流指令の大きさに進角量−sinΦを乗じてd軸電流指令値とすることを特徴としたモータ制御装置。 In the current phase control of the motor, there is provided a current phase advance amount deriving means for storing the advance amount of the current phase as a predetermined function corresponding to the absolute value (magnitude) of the current command, and the torque command value as a torque constant. The current command value obtained by division is input to the absolute value converter, and the absolute value of the obtained current command is input to the current phase advance amount deriving means, and the advance amount according to the absolute value of the current command Deriving Φ (cos Φ and −sin Φ), multiplying the current command value by the advance amount cos Φ to obtain a q-axis current command value, and multiplying the magnitude of the current command by the advance angle amount −sin Φ, the d-axis current command value A motor control device characterized by that. 電流位相の進角量を電流指令の絶対値(大きさ)に応じた所定の関数として記憶させた電流位相進角量導出手段を備え、トルク指令値を電流指令値に変換するステップ1と、電流指令値を電流指令の絶対値に変換するステップ2と、前記電流位相進角量導出手段に前記電流指令の絶対値を入力し、電流指令の絶対値に応じた進角量Φ(cosΦおよび−sinΦ)を導出するステップ3と、ステップ1の電流指令値にステップ3で得られたcosΦを乗じてq軸電流指令値を、ステップ3で得られた−sinΦに電流指令の絶対値を乗じてd軸電流指令値をそれぞれ求めるステップ4を備え、実際のモータ電流から算出した実際のq軸電流値とd軸電流値を、ステップ4で求めたq軸電流指令値とd軸電流指令値に追従するようにフィードバック制御する電流位相の制御方法。 A step 1 for converting the torque command value into a current command value, comprising: a current phase advance amount deriving unit that stores the current phase advance amount as a predetermined function corresponding to the absolute value (magnitude) of the current command; Step 2 for converting the current command value into an absolute value of the current command, and inputting the absolute value of the current command into the current phase advance amount deriving means, and an advance amount Φ (cos Φ and -SinΦ) is obtained by multiplying the current command value of step 3 by the current command value of step 1 by cos Φ obtained in step 3 and the q-axis current command value, and -sinΦ obtained in step 3 by the absolute value of the current command. The d-axis current command value and the d-axis current command value obtained in step 4 are obtained by calculating the actual q-axis current value and the d-axis current value calculated from the actual motor current. Feedback to follow Control method of current phase to be controlled.
JP2008156180A 2007-08-21 2008-06-16 Motor control device and method of controlling current phase Pending JP2009072056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156180A JP2009072056A (en) 2007-08-21 2008-06-16 Motor control device and method of controlling current phase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007214333 2007-08-21
JP2008156180A JP2009072056A (en) 2007-08-21 2008-06-16 Motor control device and method of controlling current phase

Publications (1)

Publication Number Publication Date
JP2009072056A true JP2009072056A (en) 2009-04-02

Family

ID=40447926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156180A Pending JP2009072056A (en) 2007-08-21 2008-06-16 Motor control device and method of controlling current phase

Country Status (2)

Country Link
JP (1) JP2009072056A (en)
CN (1) CN101373945B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259255A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Controller of dc brushless motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515481A (en) * 2016-01-29 2016-04-20 扬州恒春电子有限公司 CKDY electro-hydraulic execution advanced motor control algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217386A (en) * 1998-11-19 2000-08-04 Matsushita Electric Ind Co Ltd Position sensorless motor controller
JP2000341983A (en) * 1999-05-31 2000-12-08 Sanyo Denki Co Ltd Controller for embedded magnet type synchronous motor
JP2004180489A (en) * 2002-11-15 2004-06-24 Daikin Ind Ltd Brushless dc motor control method and its device
JP2006042444A (en) * 2004-07-23 2006-02-09 Toshiba Elevator Co Ltd Motor control unit
JP2006067718A (en) * 2004-08-27 2006-03-09 Honda Motor Co Ltd Motor controller for hybrid vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468123B2 (en) * 1998-09-18 2003-11-17 三菱電機株式会社 Servo motor controller
US7436139B2 (en) * 2003-01-29 2008-10-14 Matra Manufacturing & Services Sas Phase advance angle optimization for brushless motor control
CN100448158C (en) * 2003-04-30 2008-12-31 松下电器产业株式会社 Motor driving apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217386A (en) * 1998-11-19 2000-08-04 Matsushita Electric Ind Co Ltd Position sensorless motor controller
JP2000341983A (en) * 1999-05-31 2000-12-08 Sanyo Denki Co Ltd Controller for embedded magnet type synchronous motor
JP2004180489A (en) * 2002-11-15 2004-06-24 Daikin Ind Ltd Brushless dc motor control method and its device
JP2006042444A (en) * 2004-07-23 2006-02-09 Toshiba Elevator Co Ltd Motor control unit
JP2006067718A (en) * 2004-08-27 2006-03-09 Honda Motor Co Ltd Motor controller for hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259255A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Controller of dc brushless motor

Also Published As

Publication number Publication date
CN101373945B (en) 2012-07-25
CN101373945A (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP5933810B2 (en) Motor control device
JP5073063B2 (en) Control device for permanent magnet synchronous motor
Lee et al. Deadbeat direct torque and flux control of IPMSM drives using a minimum time ramp trajectory method at voltage and current limits
JP5870591B2 (en) Control device and control method for synchronous motor
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP5084973B1 (en) Motor control device
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
JP2006197789A (en) Control device of permanent magnet synchronous motor and its method
CN108450055B (en) Control device for permanent magnet type rotating electric machine
JP2009017706A (en) Motor controller and motor control method
JP2006254572A (en) Control method and controller of synchronous motor
JP5305933B2 (en) Motor drive system
JP2006238605A (en) Motor drive
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP6166601B2 (en) Motor control device and generator control device
JP2008219966A (en) Controller of permanent magnet motor
JP6199776B2 (en) Electric motor drive
JP2013187931A (en) Motor control device
JP2008148437A (en) Controller for permanent magnet type synchronous motor
JP2009072056A (en) Motor control device and method of controlling current phase
JP5312179B2 (en) DC brushless motor control device
JP2008199868A (en) Drive control device of permanent magnet synchronous motor
JP2007185099A (en) Sensorless controlling unit for synchronous generator, and controlling method
JP2010200544A (en) Ac motor controller and control method
JP5862691B2 (en) Control device for motor drive device and motor drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119