JP2006254572A - Control method and controller of synchronous motor - Google Patents

Control method and controller of synchronous motor Download PDF

Info

Publication number
JP2006254572A
JP2006254572A JP2005065830A JP2005065830A JP2006254572A JP 2006254572 A JP2006254572 A JP 2006254572A JP 2005065830 A JP2005065830 A JP 2005065830A JP 2005065830 A JP2005065830 A JP 2005065830A JP 2006254572 A JP2006254572 A JP 2006254572A
Authority
JP
Japan
Prior art keywords
axis current
axis
command
voltage
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065830A
Other languages
Japanese (ja)
Inventor
Masaki Hisatsune
正希 久恒
Mitsujiro Sawamura
光次郎 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005065830A priority Critical patent/JP2006254572A/en
Publication of JP2006254572A publication Critical patent/JP2006254572A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make an optimal d-axis current command by a simple method. <P>SOLUTION: The synchronous motor controller comprises a three-phase-two-phase converter 4 for converting a three-phase current value being provided to a synchronous motor into a d-axis current and a q-axis current, a q-axis current control operating section 6 for controlling the difference between a q-axis current command and the q-axis current to zero, a d-axis current control operating section 7 for controlling the difference between a d-axis current command and the d-axis current to zero, a two-phase-three-phase converter 5 for converting a q-axis voltage command and a d-axis voltage command into a three-phase voltage command, and a power converting section 3 for supplying power to the synchronous motor in response to the three-phase voltage command. A d-axis current command operating section 9 determines the difference (Vmax<SP>2</SP>-Vd<SP>*2</SP>)<SP>1/2</SP>-Vq<SP>*</SP>between the root of the square of voltage maximum value Vmax of the power converter minus the square of the d-axis voltage command Vd<SP>*</SP>and the q-axis voltage command Vq<SP>*</SP>, and then controls the d-axis current command by that difference. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、同期電動機を制御する制御装置のd軸電流制御方法および制御装置に関する。   The present invention relates to a d-axis current control method and a control device for a control device that controls a synchronous motor.

図を用いて、従来のd軸電流制御を説明する。
図2において、1は同期電動機である。2は電流検出器であり、U相,V相,W相の電流値を検出し、4の3相−2相変換器により、d軸電流とq軸電流に変換される。U相,V相,W相の電流値の和は0になるので、U相,V相の電流値を検出し、W相は、式(1)として求めることもできる。
Iw=−Iu−Iv ・・・ (1)
3は電力変換部で、電圧指令Vu*、Vv*,Vw*を受けて実際の電圧を発生する。5は2相−3相変換器で、同期機の界磁方向であるd軸に与える電圧指令Vd*とそれと直交する方向でトルクを発生するq軸に与える電圧指令Vq*で表された2相の電圧指令を、モータの各相に与える電圧指令であるVu*,Vv*,Vw*で表される3相の電圧指令に変換する。
6はq軸電流制御演算部で、q軸電流指令Iq*とフィードバック電流Iqの差が0になるように例えばPI制御を行っている。7はd軸電流制御演算部で、q軸電流制御演算部と同様な例えばPI制御をd軸電流について行っている。10はq軸電流制限処理部で、d軸電流の増加により、q軸電流の最大値が減少していくので、q軸電流指令Iq*をq軸電流の最大値に制限するものである。11はd軸電流指令処理部で、q軸電流指令や電圧飽和積分器からの入力を基にd軸電流指令を計算する。12は最大d軸電流演算部で、モータ回転速度ωや電力変換装置の最大電圧Vmaxなどからd軸電流の最大値を計算する。13は電圧飽和検出器で、電力変換装置の最大電圧Vmaxと電力変換装置で検出した実電圧との比較を行い、電圧飽和を起こしているかどうかの判断を行う。14は飽和積分器で、13の電圧飽和検出器で電圧飽和が検出されたときに負の固定値の積分を行い、負のd軸電流指令を作成する。
Conventional d-axis current control will be described with reference to the drawings.
In FIG. 2, 1 is a synchronous motor. Reference numeral 2 denotes a current detector, which detects U-phase, V-phase, and W-phase current values, and converts them into d-axis current and q-axis current by a 4-phase to 3-phase converter. Since the sum of the current values of the U-phase, V-phase, and W-phase is 0, the current values of the U-phase and V-phase can be detected, and the W-phase can also be obtained as equation (1).
Iw = −Iu−Iv (1)
A power conversion unit 3 receives the voltage commands Vu * , Vv * and Vw * and generates an actual voltage. Reference numeral 5 denotes a two-phase to three-phase converter, which is represented by a voltage command Vd * given to the d-axis that is the magnetic field direction of the synchronous machine and a voltage command Vq * given to the q-axis that generates torque in a direction orthogonal thereto. The phase voltage command is converted into a three-phase voltage command represented by Vu * , Vv * , and Vw * , which are voltage commands given to each phase of the motor.
Reference numeral 6 denotes a q-axis current control calculation unit that performs, for example, PI control so that the difference between the q-axis current command Iq * and the feedback current Iq becomes zero. Reference numeral 7 denotes a d-axis current control calculation unit that performs, for example, PI control similar to the q-axis current control calculation unit on the d-axis current. Reference numeral 10 denotes a q-axis current limit processing unit, which limits the q-axis current command Iq * to the maximum value of the q-axis current because the maximum value of the q-axis current decreases as the d-axis current increases. A d-axis current command processing unit 11 calculates a d-axis current command based on a q-axis current command or an input from a voltage saturation integrator. A maximum d-axis current calculation unit 12 calculates the maximum value of the d-axis current from the motor rotation speed ω, the maximum voltage Vmax of the power converter, and the like. A voltage saturation detector 13 compares the maximum voltage Vmax of the power converter with the actual voltage detected by the power converter, and determines whether or not voltage saturation has occurred. Reference numeral 14 denotes a saturation integrator, which performs integration of a negative fixed value when voltage saturation is detected by the voltage saturation detector 13 and creates a negative d-axis current command.

次に、永久磁石を使用した同期電動機の電圧飽和について説明する。
永久磁石を使用した同期電動機は、回転速度に比例した誘起電圧が、同期電動機のトルクを発生するq軸に発生するので、高速になればなるほど同期電動機のトルクを発生するq軸電流を流す電圧Vqの最大値が減少する。つまり、高回転速度では、同期電動機のトルクの最大値が減少することになる。この領域を電圧飽和領域と言う。
本発明でも利用しているが、この電圧飽和領域でトルクの減少を抑える方法として、適当な負のd軸電流を流して電圧飽和を押さえると言う公知技術がある。以下に原理を説明する。永久磁石を使用した同期電動機の電圧電流方程式とトルクは、次の2式で与えられる。
Next, voltage saturation of a synchronous motor using a permanent magnet will be described.
In a synchronous motor using a permanent magnet, an induced voltage proportional to the rotational speed is generated on the q-axis that generates the torque of the synchronous motor. Therefore, the higher the speed, the higher the voltage that causes the q-axis current that generates the torque of the synchronous motor to flow. The maximum value of Vq decreases. That is, at the high rotational speed, the maximum value of the torque of the synchronous motor decreases. This region is called a voltage saturation region.
As used in the present invention, there is a known technique for suppressing voltage decrease in this voltage saturation region by passing an appropriate negative d-axis current to suppress voltage saturation. The principle will be described below. The voltage / current equation and torque of a synchronous motor using a permanent magnet are given by the following two equations.

Figure 2006254572
T=KtIq+P(Ld−Lq)IdIq
ただし、Id,Iq:同期電動機のd,q軸電流、
Vd,Vq:同期電動機のd,q軸電圧、
ω:電気角速度、
R:電気子抵抗、
Ld,Lq:d,q軸インダクタンス、
p=d/dt,
K:誘起電圧定数、
Kt:トルク定数、
P:極対数。
ここで、同期電動機は非突極構造であるとし、定常状態で考えるとすると、同期電動機のq軸電圧Vqは、
Vq=RIq+Kω+ωLId
となる。
この式より、同期電動機のq軸電圧Vqは回転速度に応じて誘起電圧が高くなるが、負のd軸電流−Idを流すと、誘起電圧の増加量を抑える方向に働くことが分かる。
Figure 2006254572
T = KtIq + P (Ld−Lq) IdIq
Where Id and Iq are d and q axis currents of the synchronous motor,
Vd, Vq: d and q axis voltages of the synchronous motor,
ω: electrical angular velocity,
R: Electron resistance,
Ld, Lq: d, q-axis inductance,
p = d / dt,
K: induced voltage constant,
Kt: torque constant,
P: Number of pole pairs.
Here, assuming that the synchronous motor has a non-salient pole structure and is considered in a steady state, the q-axis voltage Vq of the synchronous motor is
Vq = RIq + Kω + ωLId
It becomes.
From this equation, it can be seen that the q-axis voltage Vq of the synchronous motor has an induced voltage that increases according to the rotational speed, but if a negative d-axis current −Id is applied, it acts to suppress the increase in the induced voltage.

つぎに、図2に基づいて従来技術の動作を説明する。
電圧飽和領域に入ると電圧飽和検出器13が電圧飽和を検出し、飽和積分器14で負の一定値を積分し、この飽和積分器14の値をd軸電流指令Id*とすることで、d軸電流が増加し誘起電圧の増加量を抑える方向に働く。誘起電圧の増加量が押さえられ電圧飽和領域でなくなると、今度は正の一定値を飽和積分器14に積分していくことでd軸電流を減少させていく。
そして、また電圧飽和領域に入ると、負の一定値を飽和積分器14に積分していく。この繰り返しで、d軸電流指令を調整することができる。
上記方法でのみで行うと、電圧飽和領域でない場合、正の一定値を積分していくのでd軸電流指令に余分な正の値がたまることになる。このため、電圧飽和領域でない場合、d軸指令処理11において最適なd軸電流を計算する方法がとられている。計算式としてはいろいろなものがあるが、厳密に解く場合には複雑な式を解かなければならないため、CPUに負担がかかり、処理時間も長くなる問題がある。近似式で解く場合には、今度は誤差が大きくなると言う問題が浮上してくる。
従来技術では、負のd軸電流を流すためのd軸電流指令をモータ回転速度や電力変換装置の最大電圧、q軸電流指令を基に複雑な計算をして導出してきた。
例えば、特許文献1においては、
Next, the operation of the prior art will be described with reference to FIG.
When the voltage saturation region is entered, the voltage saturation detector 13 detects voltage saturation, the saturation integrator 14 integrates a negative constant value, and the value of the saturation integrator 14 is set as the d-axis current command Id * . The d-axis current increases and works to suppress the amount of increase of the induced voltage. When the increase amount of the induced voltage is suppressed and the voltage saturation region is not reached, this time, the positive constant value is integrated into the saturation integrator 14 to decrease the d-axis current.
When entering the voltage saturation region, the negative constant value is integrated into the saturation integrator 14. By repeating this, the d-axis current command can be adjusted.
If only the above method is used, a positive constant value is integrated when not in the voltage saturation region, so that an extra positive value is accumulated in the d-axis current command. For this reason, when not in the voltage saturation region, a method of calculating an optimum d-axis current in the d-axis command processing 11 is employed. There are various types of calculation formulas, but when solving strictly, complicated formulas must be solved, so there is a problem that the CPU is burdened and the processing time becomes long. In the case of solving with an approximate expression, the problem that the error becomes larger will emerge.
In the prior art, a d-axis current command for flowing a negative d-axis current has been derived by performing complex calculations based on the motor rotation speed, the maximum voltage of the power converter, and the q-axis current command.
For example, in Patent Document 1,

Figure 2006254572
を用いて最適なd軸電流指令の最大値を計算したりしている。
また、非特許文献1においては、
Figure 2006254572
Is used to calculate the optimum maximum value of the d-axis current command.
In Non-Patent Document 1,

Figure 2006254572
を用いている。ただし、非特許文献1においては、複雑な計算過程を省くため、d軸電流指令の値をトルクと回転速度の関数となるようにあらかじめ計算しておき、その数値をテーブルとしてRAMに記憶しておくことで、最適なd軸電流指令を作っている。
このように、従来の同期電動機のd軸電流制御方法では、モータ回転速度や電力変換装置の最大電圧値やq軸電流指令などからd軸電流指令を複雑な計算で導出したり、複雑な計算過程を省くためにあらかじめ計算した値をRAMの中にテーブルとして記憶しておき、モータの回転速度とq軸電流指令に応じた値をテーブルから導出していた。
特開2003−209996号公報 「電力変換装置による同期電動機の弱め界磁の一手法」IEA−03−62
Figure 2006254572
Is used. However, in Non-Patent Document 1, in order to save a complicated calculation process, the value of the d-axis current command is calculated in advance so as to be a function of torque and rotational speed, and the numerical value is stored in a RAM as a table. This makes the optimal d-axis current command.
As described above, in the conventional d-axis current control method for a synchronous motor, the d-axis current command is derived by complicated calculation from the motor rotation speed, the maximum voltage value of the power converter, the q-axis current command, or the like. In order to save the process, values calculated in advance are stored as a table in the RAM, and values corresponding to the motor rotation speed and the q-axis current command are derived from the table.
JP 2003-209996 A "A technique for field weakening of a synchronous motor by a power converter" IEA-03-62

従来のd軸電流制御方法では、モータ回転速度や電力変換装置の最大電圧、q軸電流指令などからd軸電流指令を計算するという手順をとっているので、複雑な計算が必要になり、CPUに負担がかかり、処理時間も長くなるという問題があった。
また、複雑な計算を省くために、事前に計算してRAMに記憶しておく場合は、その分、RAM容量がたくさん必要になるという問題もあった。また、電圧飽和を検出するための電圧飽和検出器が必要であり、機器の構成が増えるという問題もあった。
本発明は、このような問題点に鑑みてなされたものであり、同期電動機の弱め界磁制御においてq軸電圧指令と電力変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたもの平方根との比較を行い、その差分によりd軸電流指令を制御することで、簡単な方法かつ簡単な機器構成で誘起電圧の増加を抑制する最適なd軸電流指令を作ることができる同期電動機制御方法および制御装置を提供することを目的とする。
また、電圧飽和検出器を不要にすると共に、電圧飽和時に最適なd軸指令を短い処理時間内に求めることを目的とする。
In the conventional d-axis current control method, since the procedure of calculating the d-axis current command from the motor rotation speed, the maximum voltage of the power converter, the q-axis current command, etc. is taken, a complicated calculation is required. There is a problem that the processing time is increased and the processing time is increased.
In addition, in order to save complicated calculations, there is a problem that a large amount of RAM capacity is required when calculating in advance and storing it in the RAM. In addition, a voltage saturation detector for detecting voltage saturation is necessary, and there is a problem that the configuration of the device increases.
The present invention has been made in view of such problems, and is obtained by subtracting the square of the d-axis voltage command from the square of the q-axis voltage command and the maximum voltage of the power converter in the field weakening control of the synchronous motor. Motor control method capable of creating an optimum d-axis current command that suppresses an increase in induced voltage with a simple method and simple equipment configuration And it aims at providing a control device.
It is another object of the present invention to eliminate the need for a voltage saturation detector and to obtain an optimum d-axis command within a short processing time when the voltage is saturated.

上記問題を解決するため、請求項1記載の発明は、永久磁石を使用した同期電動機に電力を供給する電力変換器で、同期電動機の界磁方向であるd軸とそれと直交する方向でトルクを発生するq軸に分離し各々を制御するように構成された制御部を備え、同期電動機の電圧飽和時におけるd軸電流制御方法が、q軸電圧指令と電力変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたものの平方根との比較を行い、その差分によりd軸電流指令をPI制御等とすることを特徴とする。
また、請求項2記載の発明は、前記同期電動機の前記電圧飽和時における前記d軸電流制御方法において、q軸電流指令が、同期電動機の最大電流の二乗からd軸電流指令の二乗を引いたものの平方根以下になるように、q軸電流指令にリミットを掛けることを特徴とする。
また、請求項3記載の発明は、前記同期電動機の前記電圧飽和時における前記d軸電流制御方法において、q軸電圧指令を監視し、電圧変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたものの平方根と前記q軸電圧指令との差分が0になるようにd軸電流指令を制御するようにしたことを特徴とする。
また、請求項4記載の発明は、永久磁石を使用した同期電動機に与える3相の電流値を電流検出器により検出して3相−2相変換器によりd軸電流とq軸電流に変換しq軸電流制御演算部およびd軸電流制御演算部において夫々q軸電流指令とd軸電流指令との差が0になるように制御を行い出力されるq軸電圧指令とd軸電圧指令を2相−3相変換器により3相の電圧指令に変換して電力変換部により実際の電圧を発生して同期電動機を駆動制御する同期電動機制御装置において、同期電動機の電圧飽和時におけるd軸電流制御で、q軸電圧指令と電力変換装置の電力最大値の二乗からd軸電圧指令の二乗からd軸電圧指令の二乗を引いたものの平方根との比較を行い、その差分によりd軸電流指令をPI制御等により出力するd軸電流指令演算部を備えたことを特徴とする。
また、請求項5記載の発明は、前記同期電動機の前記電圧飽和時における前記d軸電流制御で、前記q軸電流指令が同期電動機の最大電流の二乗からd軸電流指令の二乗を引いたものの平方根以下になるように、前記d軸電流指令にリミットを掛けるリミット処理部を備えたことを特徴とする。
また、請求項6記載の発明は、前記同期電動機の前記電圧飽和時における前記d軸電流制御において、前記q軸電圧指令を監視し、電圧変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたものの平方根と前記q軸電圧指令との差分が0になるようにd軸電流指令を制御するようにしたことを特徴とする。
In order to solve the above problem, the invention according to claim 1 is a power converter that supplies electric power to a synchronous motor using a permanent magnet, and torque is applied in a direction perpendicular to the d-axis that is the field direction of the synchronous motor. A control unit configured to control each of the generated q-axis separately, and a d-axis current control method at the time of voltage saturation of the synchronous motor is based on the square of the q-axis voltage command and the voltage maximum value of the power converter. The square root of the d-axis voltage command minus the square is compared, and the d-axis current command is set to PI control or the like based on the difference.
In the d-axis current control method when the voltage of the synchronous motor is saturated, the q-axis current command is obtained by subtracting the square of the d-axis current command from the square of the maximum current of the synchronous motor. The q-axis current command is limited so as to be equal to or less than the square root of the object.
According to a third aspect of the present invention, in the d-axis current control method when the voltage of the synchronous motor is saturated, the q-axis voltage command is monitored, and the d-axis voltage command is calculated from the square of the voltage maximum value of the voltage converter. The d-axis current command is controlled so that the difference between the square root of the square minus and the q-axis voltage command becomes zero.
According to a fourth aspect of the present invention, a three-phase current value applied to a synchronous motor using a permanent magnet is detected by a current detector and converted into a d-axis current and a q-axis current by a three-phase to two-phase converter. The q-axis voltage command and the d-axis voltage command are output by performing control so that the difference between the q-axis current command and the d-axis current command becomes 0 in the q-axis current control calculation unit and the d-axis current control calculation unit, respectively. In a synchronous motor control device that converts a three-phase voltage command by a phase-3 phase converter and generates an actual voltage by a power conversion unit to control driving of the synchronous motor, d-axis current control at the time of voltage saturation of the synchronous motor And the square root of the square of the d-axis voltage command minus the square of the d-axis voltage command from the square of the power maximum value of the power converter and the square root of the d-axis voltage command. D-axis current finger output by control, etc. Characterized by comprising an arithmetic unit.
According to a fifth aspect of the present invention, in the d-axis current control when the voltage of the synchronous motor is saturated, the q-axis current command is obtained by subtracting the square of the d-axis current command from the square of the maximum current of the synchronous motor. A limit processing unit is provided for applying a limit to the d-axis current command so as to be equal to or less than the square root.
According to a sixth aspect of the present invention, in the d-axis current control at the time of the voltage saturation of the synchronous motor, the q-axis voltage command is monitored, and the d-axis voltage command is calculated from the square of the voltage maximum value of the voltage converter. The d-axis current command is controlled so that the difference between the square root of the square minus and the q-axis voltage command becomes zero.

請求項1および2記載の発明によれば、最適なd軸電流を求めるための複雑な計算でCPUに負担が掛かったり、処理時間が延びたりすることなく、また、処理時間の短縮のため、あらかじめ計算した数値をテーブルとしてRAMに記憶させておくためのRAM容量を増やすことなく、簡単な方法で電圧飽和時に誘起電圧の増加を抑える最適なd軸電流指令を作ることができる。
また、請求項3記載の発明によると、電圧飽和検出器が不要となり、簡単な機器の構成で最適なd軸電流指令を作ることができる。
請求項4および5記載の発明によれば、q軸電流指令を監視して電圧飽和時に誘起電圧の増加を抑えるための最適なd軸電流を求めるd軸電流指令演算部とリミット処理部を備えたので、電圧飽和時の最適なd軸電流を求める複雑な計算でCPUに負担が掛かったり、処理時間が延びたりすることなく、又処理時間の短縮のために予め計算した数値をテーブルとして記憶させて置くためのRAM容量を増やすこともなく、簡単に電圧飽和時に誘起電圧の増加を抑えられる最適なd軸電流指令を作ることが可能な同期電動機制御装置を得ることができる。
また、請求項6記載の発明によれば、電圧飽和を検出する電圧飽和検出器が不要になり削減できるので、機器構成を削減した簡単な構成により最適なd軸電流指令をつくることができる同期電動機制御装置が得られる。
According to the first and second aspects of the present invention, a complicated calculation for obtaining the optimum d-axis current does not impose a burden on the CPU, increase the processing time, and reduce the processing time. An optimal d-axis current command that suppresses the increase of the induced voltage at the time of voltage saturation can be made by a simple method without increasing the RAM capacity for storing the numerical values calculated in advance as a table in the RAM.
According to the third aspect of the present invention, the voltage saturation detector is not required, and an optimal d-axis current command can be made with a simple device configuration.
According to the fourth and fifth aspects of the present invention, the d-axis current command calculation unit and the limit processing unit that monitor the q-axis current command and obtain the optimum d-axis current for suppressing the increase of the induced voltage when the voltage is saturated are provided. Therefore, a complicated calculation for obtaining the optimum d-axis current at the time of voltage saturation does not impose a burden on the CPU or increase the processing time, and the numerical values calculated in advance for storing the processing time are stored as a table. Thus, it is possible to obtain a synchronous motor control device capable of making an optimum d-axis current command that can easily suppress an increase in induced voltage at the time of voltage saturation without increasing the RAM capacity.
According to the sixth aspect of the present invention, the voltage saturation detector for detecting voltage saturation is not necessary and can be reduced, so that the optimum d-axis current command can be generated with a simple configuration with a reduced device configuration. An electric motor control device is obtained.

以下、本発明の実施の形態について図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の方法を実施する電力変換装置の構成を示すブロック図である。
図において、1は同期電動機である。2は電流検出器であり、U相,V相,W相の電流値を検出し、4の3相−2相変換器により、d軸電流とq軸電流に変換される。3は電力変換部で、電圧指令Vu*、Vv*,Vw*を受けて実際の電圧を発生する。5は2相−3相変換器で、同期機の界磁方向であるd軸に与える電圧指令Vd*とそれと直交する方向でトルクを発生するq軸に与える電圧指令Vq*で表された2相の電圧指令を、モータの各相に与える電圧指令であるVu*,Vv*,Vw*で表される3相の電圧指令に変換する。6はq軸電流制御演算部で、q軸電流指令Iq*とフィードバック電流Iqの差が0になるように例えばPI制御を行っている。7はd軸電流制御演算部で、q軸電流制御演算部と同様な例えばPI制御をd軸電流について行っている。8はリミット処理部で、q軸電流指令Iq*をd軸電流のフィードバックにより制限する。
9はd軸電流指令演算部で、電力変換装置の電圧最大値Vmaxの二乗Vmax2からd軸電圧指令Vd*の二乗Vd*2を引いたもの(Vmax2−Vd*2)の平方根(Vmax2−Vd*21/2 とq軸電流指令Vq*との差分、すなわち、
(Vmax2−Vd*21/2 −Vq*
によりd軸電流指令の例えばPI制御を行っている。
つぎに、図1に基づいて本発明の動作を説明する。
非突極構造の同期電動機のトルクはq軸電流Iqに比例する。そのため、q軸電流指令Iq*を大きくしていくと、トルクもq軸電流指令に比例して大きくなる。ところが、高回転速度領域では同期電動機の特徴である誘起電圧が大きくなってしまい、q軸電流を流すためのq軸電圧の最大値が制限されてしまう(電圧飽和領域)。d軸電流を流すと、誘起電圧の増加分を押さえることができる事は前述したが、本発明では、簡単な方法で最適なd軸電流指令を作るためにq軸電圧指令Vq*に着目した。
図1に示すように、電力変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたものの平方根とq軸電圧指令との比較を行い、その差分によりd軸電流指令を例えばPI制御することにより、電圧飽和領域でq軸電圧指令Vq*が大きくなり、電力変換装置の最大電圧Vmaxを越えてしまった時に、d軸電流指令演算部9の入力に負の値が入力され、負のd軸電流指令が作られ、負のd軸電流指令により負のd軸電流を同期電動機に流すことで誘起電圧の増加分を押さえる事ができ、q軸電圧指令Vq*が電力変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたもの平方根(Vmax2−Vd*21/2 と等しくなるように、d軸電流を調整する事ができる。
ここで、d軸電流指令演算部9の入力の最大値は0で制限しておく必要がある。電圧飽和でないときには、常に正の値がd軸電流指令演算部9に入力されている。この正の値は、電圧飽和になっていないかの判断には利用できるが、実際のd軸電流指令値には必要ない値である。そのため、d軸電流指令演算部9の入力の最大値は0で制限しておく。
図1のq軸電流指令のリミット処理部8について説明する。同期電動機のq軸最大電流は、
FIG. 1 is a block diagram showing the configuration of a power conversion apparatus that implements the method of the present invention.
In the figure, 1 is a synchronous motor. Reference numeral 2 denotes a current detector, which detects U-phase, V-phase, and W-phase current values, and converts them into d-axis current and q-axis current by a 4-phase to 3-phase converter. A power conversion unit 3 receives the voltage commands Vu * , Vv * and Vw * and generates an actual voltage. Reference numeral 5 denotes a two-phase to three-phase converter, which is represented by a voltage command Vd * given to the d-axis that is the magnetic field direction of the synchronous machine and a voltage command Vq * given to the q-axis that generates torque in a direction orthogonal thereto. The phase voltage command is converted into a three-phase voltage command represented by Vu * , Vv * , and Vw * , which are voltage commands given to each phase of the motor. Reference numeral 6 denotes a q-axis current control calculation unit that performs, for example, PI control so that the difference between the q-axis current command Iq * and the feedback current Iq becomes zero. Reference numeral 7 denotes a d-axis current control calculation unit that performs, for example, PI control similar to the q-axis current control calculation unit on the d-axis current. A limit processing unit 8 limits the q-axis current command Iq * by d-axis current feedback.
Reference numeral 9 denotes a d-axis current command calculation unit, which is the square root (Vmax 2 ) of (Vmax 2 −Vd * 2 ) obtained by subtracting the square Vd * 2 of the d-axis voltage command Vd * from the square Vmax 2 of the voltage maximum value Vmax of the power converter. 2 −Vd * 2 ) The difference between 1/2 and the q-axis current command Vq * , that is,
(Vmax 2 −Vd * 2 ) 1/2 −Vq *
For example, PI control of the d-axis current command is performed.
Next, the operation of the present invention will be described with reference to FIG.
The torque of the synchronous motor having a non-salient pole structure is proportional to the q-axis current Iq. Therefore, when the q-axis current command Iq * is increased, the torque is increased in proportion to the q-axis current command. However, in the high rotation speed region, the induced voltage that is a feature of the synchronous motor is increased, and the maximum value of the q-axis voltage for flowing the q-axis current is limited (voltage saturation region). As described above, when the d-axis current is supplied, the increase in the induced voltage can be suppressed. However, in the present invention, the q-axis voltage command Vq * is focused on in order to create an optimum d-axis current command by a simple method. .
As shown in FIG. 1, the square root of the square of the maximum voltage value of the power conversion device minus the square of the d-axis voltage command is compared with the q-axis voltage command, and the d-axis current command is, for example, PI controlled by the difference. Thus, when the q-axis voltage command Vq * increases in the voltage saturation region and exceeds the maximum voltage Vmax of the power conversion device, a negative value is input to the input of the d-axis current command calculation unit 9, The d-axis current command is generated, and the negative d-axis current command causes the negative d-axis current to flow through the synchronous motor, thereby suppressing the increase in induced voltage. The q-axis voltage command Vq * is The d-axis current can be adjusted to be equal to the square root of the maximum voltage squared minus the square of the d-axis voltage command (Vmax 2 −Vd * 2 ) 1/2 .
Here, the maximum input value of the d-axis current command calculation unit 9 needs to be limited to 0. When the voltage is not saturated, a positive value is always input to the d-axis current command calculation unit 9. This positive value can be used to determine whether the voltage is saturated, but is not necessary for the actual d-axis current command value. Therefore, the maximum input value of the d-axis current command calculation unit 9 is limited to zero.
The q-axis current command limit processing unit 8 in FIG. 1 will be described. The maximum q-axis current of a synchronous motor is

Figure 2006254572
によって制限される。ただし、Imax:同期電動機の最大電流。
電圧飽和の状態の中でも、より高回転速度、高トルクの境域では大きなd軸電流が必要となるため、最適なd軸電流指令を作るためにはq軸電流を減少させてd軸電流を増やす必要がある。このため、d軸電流指令とq軸電流指令をリミット処理部に入力し、上記式によりq軸電流指令にリミットを掛けることによって、最適なd軸電流指令Iq'*を作ることができる。
以上のように、本発明では、同期電動機の電圧飽和時におけるd軸電流制御方法が、q軸電圧指令と電力変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたもの平方根との比較を行い、その差分によりd軸電流指令を例えばPI制御するとしたので、簡単な方法かつ簡単な機器構成で最適なd軸電流指令を作ることができる。
Figure 2006254572
Limited by. Where Imax is the maximum current of the synchronous motor.
Even in the state of voltage saturation, a large d-axis current is required in the region of higher rotation speed and higher torque. Therefore, in order to create an optimum d-axis current command, the q-axis current is decreased and the d-axis current is increased. There is a need. Therefore, an optimum d-axis current command Iq ′ * can be created by inputting the d-axis current command and the q-axis current command to the limit processing unit and applying a limit to the q-axis current command by the above formula.
As described above, in the present invention, the d-axis current control method at the time of voltage saturation of the synchronous motor is a square root obtained by subtracting the square of the d-axis voltage command from the square of the q-axis voltage command and the voltage maximum value of the power converter. Since the d-axis current command is subjected to PI control based on the difference, an optimal d-axis current command can be created with a simple method and a simple device configuration.

高回転速度における電圧飽和領域で簡単な構成によって、与える最適なd軸電流値を求めることができるという実際的な方法なので、多くの同期電動機、特に、非突極性の同期電動機を用いた各種機器システムに好適に適用される。   Since this is a practical method in which an optimum d-axis current value can be obtained with a simple configuration in a voltage saturation region at a high rotational speed, many synchronous motors, in particular, various devices using non-saliency synchronous motors. It is suitably applied to the system.

本発明の方法を適用する同期電動機の電流制御装置のブロック図である。It is a block diagram of the current control apparatus of the synchronous motor to which the method of the present invention is applied. 従来の方法を適用する同期電動機の電流制御装置のブロック図である。It is a block diagram of the current control apparatus of the synchronous motor to which the conventional method is applied.

符号の説明Explanation of symbols

1 同期電動機
2 同期電動機のU,V,W相電流検出部
3 電力変換部
4 3相−2相変換部
5 2相−3相変換部
6 q軸電流演算部
7 d軸制御演算部
8 リミット処理部
9 d軸電流指令演算部
DESCRIPTION OF SYMBOLS 1 Synchronous motor 2 U, V, W phase current detection part 3 of synchronous motor 3 Power conversion part 4 3-phase-2 phase conversion part 5 2-phase-3 phase conversion part 6 q-axis current calculation part 7 d-axis control calculation part 8 Limit Processing unit 9 d-axis current command calculation unit

Claims (6)

永久磁石を使用した同期電動機に与える3相電流値を3相−2相変換して前記同期電動機の界磁方向であるd軸とそれと直交する方向でトルクを発生するq軸に分離したd軸電流とq軸電流に変換し、各々q軸電流指令とd軸電流指令との差が0になるようにそれぞれ制御出力されるq軸電圧指令とd軸電圧指令を2相−3相変換して3相電圧指令にし、該3相電圧指令で電力変換により前記同期電動機に電力を供給する同期電動機制御方法において、前記同期電動機の電圧飽和時におけるd軸電流制御方法が、電力変換装置の電圧最大値の二乗から前記d軸電圧指令の二乗を引いたものの平方根と前記q軸電圧指令との差分により前記d軸電流指令を演算制御するようにしたことを特徴とする同期電動機制御方法。   A three-phase current value applied to a synchronous motor using a permanent magnet is three-phase to two-phase converted to a d-axis that is separated into a d-axis that is the field direction of the synchronous motor and a q-axis that generates torque in a direction orthogonal thereto. Q-axis current command and q-axis current command are converted to q-axis voltage command and d-axis voltage command, respectively, so that the difference between q-axis current command and d-axis current command becomes 0 respectively. In the synchronous motor control method in which the three-phase voltage command is used and power is supplied to the synchronous motor by power conversion using the three-phase voltage command, the d-axis current control method when the voltage of the synchronous motor is saturated is a voltage of the power converter. A method for controlling a synchronous motor, wherein the d-axis current command is calculated and controlled by a difference between a square root of a square of a maximum value minus a square of the d-axis voltage command and the q-axis voltage command. 前記同期電動機の前記電圧飽和時における前記d軸電流制御方法において、q軸電流指令が、同期電動機の最大電流の二乗からd軸電流指令の二乗を引いたものの平方根以下になるように、q軸電流指令にリミットを掛けることを特徴とする請求項1記載の同期電動機制御方法。   In the d-axis current control method when the voltage of the synchronous motor is saturated, the q-axis current command is less than the square root of the maximum current square of the synchronous motor minus the square of the d-axis current command. The synchronous motor control method according to claim 1, wherein a limit is applied to the current command. 前記同期電動機の前記電圧飽和時における前記d軸電流制御方法において、q軸電圧指令を監視し、電圧変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたものの平方根と前記q軸電圧指令との差分が0になるようにd軸電流指令を制御するようにしたことを特徴とする請求項1または2記載の同期電動機制御方法。   In the d-axis current control method at the time of voltage saturation of the synchronous motor, the q-axis voltage command is monitored, and the square root of the square of the maximum voltage value of the voltage converter minus the square of the d-axis voltage command and the q-axis The synchronous motor control method according to claim 1 or 2, wherein the d-axis current command is controlled so that a difference from the voltage command becomes zero. 永久磁石を使用した同期電動機に与える3相電流値を前記同期電動機の界磁方向であるd軸とそれと直交する方向でトルクを発生するq軸に分離した各d軸電流とq軸電流に変換する3相−2相変換器と、q軸電流指令と前記q軸電流の差が0になるように制御を行なうq軸電流制御演算部と、d軸電流指令と前記d軸電流の差が0になるように制御を行なうd軸電流制御演算部と、前記q軸電流制御演算部およびq軸電流制御演算部から出力されるq軸電圧指令とd軸電圧指令を3相の電圧指令に変換する2相−3相変換器と、前記3相の電圧指令により同期電動機に電力を供給する電力変換部と、を備えた同期電動機制御装置において、
同期電動機の電圧飽和時におけるd軸電流制御で、電力変換装置の電力最大値の二乗からd軸電圧指令の二乗を引いたものの平方根とq軸電圧指令との差を求める差分器と、前記差分器の出力により前記d軸電流指令を演算し前記d軸電流制御演算部に出力するd軸電流指令演算部とを備えたことを特徴とする同期電動機制御装置。
A three-phase current value applied to a synchronous motor using a permanent magnet is converted into a d-axis current and a q-axis current separated into a d-axis that is a field direction of the synchronous motor and a q-axis that generates torque in a direction orthogonal thereto. A three-phase to two-phase converter, a q-axis current control calculation unit that performs control so that a difference between the q-axis current command and the q-axis current becomes zero, and a difference between the d-axis current command and the d-axis current A d-axis current control calculation unit that performs control to zero, and a q-axis voltage command and a d-axis voltage command output from the q-axis current control calculation unit and the q-axis current control calculation unit into a three-phase voltage command In a synchronous motor control device comprising: a two-phase to three-phase converter for conversion; and a power converter that supplies power to the synchronous motor by the three-phase voltage command.
A subtractor for obtaining a difference between a square root of a square of a d-axis voltage command minus a square of a d-axis voltage command in d-axis current control at the time of voltage saturation of the synchronous motor, and the difference A synchronous motor control device comprising: a d-axis current command calculation unit that calculates the d-axis current command based on the output of the generator and outputs the d-axis current command to the d-axis current control calculation unit.
前記同期電動機の前記電圧飽和時における前記d軸電流制御で、前記q軸電流指令が同期電動機の最大電流の二乗からd軸電流指令の二乗を引いたものの平方根以下になるように、前記d軸電流指令にリミットを掛けるリミット処理部を備えたことを特徴とする請求項4記載の同期電動機制御装置。   In the d-axis current control when the voltage of the synchronous motor is saturated, the d-axis current command is less than the square root of the square of the maximum current of the synchronous motor minus the square of the d-axis current command. The synchronous motor control device according to claim 4, further comprising a limit processing unit that applies a limit to the current command. 前記同期電動機の前記電圧飽和時における前記d軸電流制御において、前記q軸電圧指令を監視し、電圧変換装置の電圧最大値の二乗からd軸電圧指令の二乗を引いたものの平方根と前記q軸電圧指令との差分が0になるようにd軸電流指令を制御するようにしたことを特徴とする請求項4又は5記載の同期電動機制御装置。   In the d-axis current control during the voltage saturation of the synchronous motor, the q-axis voltage command is monitored, and the square root of the square of the d-axis voltage command subtracted from the square of the voltage maximum value of the voltage converter and the q-axis 6. The synchronous motor control device according to claim 4, wherein the d-axis current command is controlled so that a difference from the voltage command becomes zero.
JP2005065830A 2005-03-09 2005-03-09 Control method and controller of synchronous motor Pending JP2006254572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065830A JP2006254572A (en) 2005-03-09 2005-03-09 Control method and controller of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065830A JP2006254572A (en) 2005-03-09 2005-03-09 Control method and controller of synchronous motor

Publications (1)

Publication Number Publication Date
JP2006254572A true JP2006254572A (en) 2006-09-21

Family

ID=37094463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065830A Pending JP2006254572A (en) 2005-03-09 2005-03-09 Control method and controller of synchronous motor

Country Status (1)

Country Link
JP (1) JP2006254572A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109798A (en) * 2006-10-26 2008-05-08 Denso Corp Control device for multiphase rotary machine
WO2008152929A1 (en) * 2007-06-12 2008-12-18 Kabushiki Kaisha Yaskawa Denki Motor control device and its control method
WO2009063786A1 (en) 2007-11-15 2009-05-22 Kabushiki Kaisha Yaskawa Denki Motor control device and control method thereof
DE102008062515A1 (en) 2007-12-21 2009-06-25 Denso Corporation, Kariya Device for controlling a torque of a rotary electric machine
US7816876B2 (en) 2006-12-27 2010-10-19 Sanyo Electric Co., Ltd. Motor control device and motor drive system
EP2264556A1 (en) 2009-06-18 2010-12-22 Sanyo Electric Co., Ltd. Motor control device and motor drive system
WO2013073033A1 (en) * 2011-11-17 2013-05-23 三菱電機株式会社 Control device for alternating current rotating machine, and electric power steering device equipped with control device for alternating current rotating machine
CN103718451A (en) * 2011-08-10 2014-04-09 松下电器产业株式会社 Motor control device
DE102019210257A1 (en) 2018-07-13 2020-01-16 Denso Corporation CONTROL DEVICE OF AN ELECTRICAL ROTATION MACHINE
US11387759B2 (en) 2018-07-13 2022-07-12 Denso Corporation Rotation electric machine controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974800A (en) * 1995-09-05 1997-03-18 Toshiba Corp Control apparatus for ac motor
JP2002233198A (en) * 2001-02-02 2002-08-16 Toyota Central Res & Dev Lab Inc Motor drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974800A (en) * 1995-09-05 1997-03-18 Toshiba Corp Control apparatus for ac motor
JP2002233198A (en) * 2001-02-02 2002-08-16 Toyota Central Res & Dev Lab Inc Motor drive circuit

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109798A (en) * 2006-10-26 2008-05-08 Denso Corp Control device for multiphase rotary machine
US7816876B2 (en) 2006-12-27 2010-10-19 Sanyo Electric Co., Ltd. Motor control device and motor drive system
WO2008152929A1 (en) * 2007-06-12 2008-12-18 Kabushiki Kaisha Yaskawa Denki Motor control device and its control method
WO2009063786A1 (en) 2007-11-15 2009-05-22 Kabushiki Kaisha Yaskawa Denki Motor control device and control method thereof
US8269441B2 (en) 2007-11-15 2012-09-18 Kabushiki Kaisha Yaskawa Denki Motor control apparatus
DE102008062515A1 (en) 2007-12-21 2009-06-25 Denso Corporation, Kariya Device for controlling a torque of a rotary electric machine
US7986116B2 (en) 2007-12-21 2011-07-26 Denso Corporation Apparatus for controlling torque of electric rotating machine
EP2264556A1 (en) 2009-06-18 2010-12-22 Sanyo Electric Co., Ltd. Motor control device and motor drive system
US8384322B2 (en) 2009-06-18 2013-02-26 Sanyo Electric Co., Ltd. Motor control device and motor drive system
CN103718451A (en) * 2011-08-10 2014-04-09 松下电器产业株式会社 Motor control device
US9054623B2 (en) 2011-08-10 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Motor control device
WO2013073033A1 (en) * 2011-11-17 2013-05-23 三菱電機株式会社 Control device for alternating current rotating machine, and electric power steering device equipped with control device for alternating current rotating machine
CN103858334A (en) * 2011-11-17 2014-06-11 三菱电机株式会社 Control device for alternating current rotating machine, and electric power steering device equipped with control device for alternating current rotating machine
JPWO2013073033A1 (en) * 2011-11-17 2015-04-02 三菱電機株式会社 AC rotating machine control device and electric power steering device provided with AC rotating machine control device
US9130497B2 (en) 2011-11-17 2015-09-08 Mitsubishi Electric Corporation Control device for alternating current rotating machine and electric power steering device equipped with control device for alternating current rotating machine
CN103858334B (en) * 2011-11-17 2016-09-07 三菱电机株式会社 AC rotary motor controls device and possesses the electric power-assisted steering apparatus of AC rotary motor control device
DE102019210257A1 (en) 2018-07-13 2020-01-16 Denso Corporation CONTROL DEVICE OF AN ELECTRICAL ROTATION MACHINE
US11025184B2 (en) 2018-07-13 2021-06-01 Denso Corporation Rotation electric machine controller
US11387759B2 (en) 2018-07-13 2022-07-12 Denso Corporation Rotation electric machine controller
DE102019210257B4 (en) 2018-07-13 2022-10-27 Denso Corporation CONTROL DEVICE OF AN ELECTRIC ROTARY MACHINE

Similar Documents

Publication Publication Date Title
JP2006254572A (en) Control method and controller of synchronous motor
EP1276225B1 (en) Motor control apparatus for reducing higher harmonic current
KR100659250B1 (en) Control apparatus and module of permanent magnet synchronous motor
JP5073063B2 (en) Control device for permanent magnet synchronous motor
WO2016121237A1 (en) Inverter control device and motor drive system
JP2008167566A (en) High-response control device of permanent magnet motor
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP2001339998A (en) Method and device for controlling induction motor
US6812660B2 (en) Apparatus for controlling brushless motor
JP6984399B2 (en) Power converter controller
JP5332904B2 (en) AC motor sensorless control device
JP2007135345A (en) Magnet motor controller
JP2006254618A (en) Motor control apparatus
JP2008154308A (en) Controller of motor-driven power steering system
JP2009284684A (en) Vector controller
JP6177623B2 (en) Synchronous motor controller
KR101576011B1 (en) Control device for permanent magnet motor
JP5550423B2 (en) Control device for permanent magnet synchronous motor
JP5312179B2 (en) DC brushless motor control device
JP2008086138A (en) Synchronous motor control unit and control method thereof
JP4219362B2 (en) Rotating machine control device
JP4543720B2 (en) Speed sensorless vector controller
JP5408918B2 (en) Motor control method and control apparatus
JP5312195B2 (en) DC brushless motor control device
JP2010041748A (en) Motor control device and method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208