JP2009061203A - 眼底観察装置、眼底画像処理装置及びプログラム - Google Patents

眼底観察装置、眼底画像処理装置及びプログラム Download PDF

Info

Publication number
JP2009061203A
JP2009061203A JP2007233703A JP2007233703A JP2009061203A JP 2009061203 A JP2009061203 A JP 2009061203A JP 2007233703 A JP2007233703 A JP 2007233703A JP 2007233703 A JP2007233703 A JP 2007233703A JP 2009061203 A JP2009061203 A JP 2009061203A
Authority
JP
Japan
Prior art keywords
image
region
fundus
blood vessel
tomographic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007233703A
Other languages
English (en)
Other versions
JP4940069B2 (ja
Inventor
Atsuo Tomidokoro
敦男 富所
Shinsuke Konno
伸介 今野
Makoto Araya
眞 新家
Hiroyuki Aoki
弘幸 青木
Takashi Fujimura
隆 藤村
Tsutomu Kikawa
勉 木川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
University of Tokyo NUC
Original Assignee
Topcon Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp, University of Tokyo NUC filed Critical Topcon Corp
Priority to JP2007233703A priority Critical patent/JP4940069B2/ja
Priority to PCT/JP2008/002481 priority patent/WO2009034705A1/ja
Priority to EP08830945.5A priority patent/EP2189110B1/en
Priority to US12/733,559 priority patent/US20100189334A1/en
Publication of JP2009061203A publication Critical patent/JP2009061203A/ja
Application granted granted Critical
Publication of JP4940069B2 publication Critical patent/JP4940069B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • A61B3/0058Operational features thereof characterised by display arrangements for multiple images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Abstract

【課題】眼底のOCT画像中における血管位置を特定する処理の確度の向上を図る。
【解決手段】眼底観察装置1は、眼底Efの断層画像を形成する機能と、眼底Efの表面の2次元画像(眼底画像Ef′)を撮影する機能とを具備する。眼底観察装置1の演算制御装置200は、断層画像中の血管領域を特定するとともに、眼底画像Ef′中の血管領域を特定する。更に、演算制御装置200は、断層画像中の血管領域と眼底画像Ef′中の血管領域との共通領域を求め、断層画像中における当該共通領域を特定する。また、演算制御装置200は、共通領域の画像を断層画像から消去するとともに、共通領域内の層位置を推定し、この層位置を表す画像を共通領域に付加する。また、演算制御装置200は、この層位置を表す画像に基づいて、共通領域における眼底Efの層厚を求める。
【選択図】図6

Description

この発明は、眼底を観察するための眼底観察装置、眼底の画像を処理する眼底画像処理装置、及びプログラムに関する。
近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成するOCT(Optical Coherence Tomography)技術が注目を集めている。OCT技術は、X線CT装置のような人体に対する侵襲性を持たないことから、特に医療分野における応用の展開が期待されている。
特許文献1には、測定腕が回転式転向鏡(ガルバノミラー)により物体を走査し、参照腕に参照ミラーが設置されており、さらにその出口では、計測腕及び参照腕からの光束の干渉によって現れる光の強度が分光器で分析もされるという干渉器が利用されていて、参照腕には参照光光束位相を不連続な値で段階的に変える装置が設けられた構成の装置(光画像計測装置)が開示されている。
この光画像計測装置は、いわゆる「フーリエドメイン(Fourier Domain)OCT」の手法を用いるものである。すなわち、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光のスペクトル強度分布を取得し、それにフーリエ変換等の処理を施すことにより、被測定物体の深度方向(z方向)の形態を画像化するものである。
更に、この光画像計測装置は、光ビーム(信号光)を走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成できるようになっている。なお、この光画像計測装置においては、z方向に直交する1方向(x方向)にのみ光ビームを走査するようになっているので、形成される画像は、光ビームの走査方向(x方向)に沿った深度方向(z方向)の2次元断層画像となる。
特許文献2には、信号光を水平方向及び垂直方向に走査することにより水平方向の2次元断層画像を複数形成し、これら複数の断層画像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、たとえば、複数の断層画像を垂直方向に並べて表示させる方法や(スタックデータなどと呼ばれる)、複数の断層画像からボリュームデータを生成し、このボリュームデータにレンダリング処理を施して3次元画像を形成する方法などがある。
特許文献3には、このような光画像計測装置を眼科分野に適用した構成が開示されている。
特許文献4、5には、他のタイプの光画像計測装置が開示されている。特許文献4には、被測定物体に照射される光の波長を走査するタイプの光画像計測装置が記載されている。この光画像計測装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。
また、特許文献5には、所定のビーム径を有する光を被測定物体に照射して、光の進行方向に直交する断面の画像を形成する光画像計測装置が記載されている。この光画像計測装置は、フルフィールド(full−field)タイプ、或いはエンフェイス(en−face)タイプなどと呼ばれる。
また、眼底表面の画像を撮影する装置としては、眼底カメラが広く用いられている(たとえば特許文献6を参照)。
特開平11−325849号公報 特開2002−139421号公報 特開2003−543号公報 特開2007−24677号公報 特開2006−153838号公報 特開2007−7454号公報
OCT技術を用いて取得された眼底の画像においては、血管壁や血液や血流の影響により、血管の直下の領域(血管直下領域)の画像が不明瞭になることが知られている。そのため、眼底の断層画像を観察するときや、断層画像を参照して網膜の層の厚さを解析するときなどには、観察や解析の信頼性を高めるために、画像中の血管位置を正確に特定することが望ましい。
しかしながら、従来の技術では、OCT画像中の血管位置を高い確度で特定することは困難であった。なお、眼底の断層画像中の不明瞭な領域を探索して血管直下領域として特定し、この血管直下領域を基に血管位置を特定することが従来から行われている。しかし、この手法では、白内障等による眼球内の混濁の影響により全体として不明瞭な断層画像しか得られない場合などには、血管の位置を高確度で特定することは困難であった。また、OCT画像を解析するだけでは、画像中の不明瞭な領域が血管に起因するものであるか、或いはそれ以外の原因によるものであるかを判別することが困難であった。
この発明は、このような問題を解決するためになされたもので、眼底のOCT画像中における血管位置を特定する処理の確度の向上を図ることが可能な眼底観察装置、眼底画像処理装置及びプログラムを提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明は、低コヒーレンス光を信号光と参照光とに分割し、眼底を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成し、前記干渉光を検出して前記眼底の断層画像を形成する眼底観察装置であって、前記眼底に照明光を照射し、前記照明光の眼底反射光を検出して前記眼底の表面の2次元画像を撮影する撮影手段と、前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、表示手段と、前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、を備えることを特徴とする。
また、請求項2に記載の発明は、低コヒーレンス光を信号光と参照光とに分割し、眼底を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成し、前記干渉光を検出して前記眼底の断層画像を形成する眼底観察装置であって、前記眼底の表面の2次元画像を受け付ける受付手段と、前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、表示手段と、前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、を備えることを特徴とする。
また、請求項3に記載の発明は、眼底に照明光を照射し、前記照明光の眼底反射光を検出して前記眼底の表面の2次元画像を撮影する眼底観察装置であって、前記眼底の断層画像を受け付ける受付手段と、前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、表示手段と、前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、を備えることを特徴とする。
また、請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の眼底観察装置であって、前記画像処理手段は、前記共通領域に相当する前記断層画像中の領域の画像を消去する、ことを特徴とする。
また、請求項5に記載の発明は、請求項4に記載の眼底観察装置であって、前記画像処理手段は、前記断層画像を解析して前記共通領域の近傍領域における前記眼底の層位置を特定し、前記近傍領域の層位置に基づいて、前記共通領域に相当する領域に層位置を表す画像を付加する、ことを特徴とする。
また、請求項6に記載の発明は、請求項1〜請求項3のいずれか一項に記載の眼底観察装置であって、前記画像処理手段は、前記断層画像を解析して前記共通領域の近傍領域における前記眼底の層位置を特定し、前記近傍領域の層位置に基づいて、前記共通領域に相当する前記断層画像中の領域に層位置を表す画像を付加する、ことを特徴とする。
また、請求項7に記載の発明は、請求項5又は請求項6に記載の眼底観察装置であって、前記画像処理手段は、前記近傍領域内の画素の画素値に基づいて層の境界領域を前記層位置として特定し、前記境界領域の形態に基づいて前記共通領域における層の境界位置を推定し、前記推定された境界位置を表す画像を前記層位置を表す画像として付加する、ことを特徴とする。
また、請求項8に記載の発明は、請求項7に記載の眼底観察装置であって、前記画像処理手段は、前記共通領域の両側のそれぞれの近傍領域について、当該近傍領域と前記共通領域との境界における層の境界領域の位置を求め、前記両側の位置を結ぶ直線上の位置を前記境界位置として推定し、前記境界位置を表す画像として前記直線を付加する、ことを特徴とする。
また、請求項9に記載の発明は、請求項7に記載の眼底観察装置であって、前記画像処理手段は、前記共通領域の両側のそれぞれの近傍領域について、当該近傍領域と前記共通領域との境界における層の境界領域の位置及び傾きを求め、当該位置及び傾きに基づいて前記両側の位置を結ぶスプライン曲線上の位置を前記境界位置として推定し、前記境界位置を表す画像として前記スプライン曲線を付加する、ことを特徴とする。
また、請求項10に記載の発明は、請求項5〜請求項9のいずれか一項に記載の眼底観察装置であって、前記層位置を表す画像に基づいて前記共通領域における前記眼底の層厚を演算する演算手段を備える、ことを特徴とする。
また、請求項11に記載の発明は、眼底の断層画像及び前記眼底の表面の2次元画像を受け付ける受付手段と、前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、表示手段と、前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、を備えることを特徴とする眼底画像処理装置である。
また、請求項12に記載の発明は、表示手段を有し、眼底の断層画像及び前記眼底の表面の2次元画像を記憶するコンピュータを、前記断層画像中の血管領域を特定する第1の特定手段、前記2次元画像中の血管領域を特定する第2の特定手段、前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段、及び、前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段として機能させる、ことを特徴とするプログラムである。
この発明によれば、眼底の断層画像中の血管領域を特定し、眼底表面の2次元画像中の血管領域を特定し、当該断層画像中の血管領域と当該2次元画像中の血管領域との共通領域を求め、この共通領域に相当する当該断層画像中の領域を特定し、共通領域に相当する領域を視認可能とするように断層画像を表示することができる。
したがって、この発明によれば、眼底の断層画像中の血管領域のうち、眼底表面の2次元画像と共通の血管領域を特定できるので、双方の画像を基に従来よりも高い確度で断層画像中の血管領域を特定することが可能である。また、共通領域に相当する領域を視認可能とするように断層画像を表示できるので、断層画像中における血管領域の位置を高確度で呈示できる。
この発明に係る眼底観察装置、眼底画像処理装置及びプログラムの実施形態の一例について、図面を参照しながら詳細に説明する。
この発明に係る眼底観察装置は、眼底の断層画像を取得する機能、及び/又は、眼底表面の2次元画像を撮影する機能を有する。前者の機能は、たとえばフーリエドメインタイプ、スウェプトソースタイプ、フルフィールドタイプなど、任意のOCT技術により実現可能である。後者の機能は、たとえば眼底カメラと同様の構成により実現可能である。
眼底の断層画像を取得する機能のみを有する場合、この発明に係る眼底観察装置は、外部装置により撮影された眼底表面の2次元画像を受け付ける機能を有する。一方、眼底表面の2次元画像を取得する機能のみを有する場合、この発明に係る眼底観察装置は、外部装置により取得された眼底の断層画像を受け付ける機能を有する。このような画像を受け付ける機能は、外部装置との間のデータ通信を司る構成や、画像が記録された記録媒体から当該画像を読み取る構成により実現可能である。
以下、眼底の断層画像及び表面の画像の双方を取得可能な構成の眼底観察装置についてした後に、それ以外の構成の眼底観察装置について説明する。更に、眼底観察装置の説明の後に、この発明に係る眼底画像処理装置及びプログラムについて説明する。
[装置構成]
図1に示す眼底観察装置1は、従来の眼底カメラと同様の構成により眼底表面の2次元画像を撮影し、かつ、フーリエドメインタイプのOCT技術により眼底のOCT画像を取得する。
[全体構成]
眼底観察装置1は、図1に示すように、眼底カメラユニット1A、OCTユニット150及び演算制御装置200を含んで構成される。眼底カメラユニット1Aは、従来の眼底カメラとほぼ同様の光学系を有する。OCTユニット150は、OCT画像を取得するための光学系を格納している。演算制御装置200は、OCTユニット150により得られたデータに基づいてOCT画像を形成する処理に加え、各種の演算処理や制御処理を実行する。
OCTユニット150には、接続線152の一端が取り付けられている。接続線152の他端は、コネクタ部151により眼底カメラユニット1Aに接続されている。接続線152の内部には光ファイバが導通されている。このように、OCTユニット150と眼底カメラユニット1Aは、接続線152を介して光学的に接続されている。
〔眼底カメラユニットの構成〕
眼底カメラユニット1Aは、眼底表面の2次元画像を形成するための光学系を有する。ここで、眼底表面の2次元画像とは、眼底表面を撮影したカラー画像やモノクロ画像、更には蛍光画像(フルオレセイン蛍光画像、インドシアニングリーン蛍光画像等)などを表す。眼底カメラユニット1Aは、従来の眼底カメラと同様に、眼底Efを照明する照明光学系100と、この照明光の眼底反射光を撮像装置10に導く撮影光学系120とを備えている。
照明光学系100は、観察光源101、コンデンサレンズ102、撮影光源103、コンデンサレンズ104、エキサイタフィルタ105及び106、リング透光板107、ミラー108、LCD(Liquid Crystal Display)109、照明絞り110、リレーレンズ111、孔開きミラー112、対物レンズ113を含んで構成される。
観察光源101は、たとえば約400nm〜700nmの範囲に含まれる可視領域の波長の照明光を出力する。撮影光源103は、たとえば約700nm〜800nmの範囲に含まれる近赤外領域の波長の照明光を出力する。この近赤外光は、OCTユニット150で用いられる光の波長よりも短く設定されている(後述)。
また、撮影光学系120は、対物レンズ113、孔開きミラー112(の孔部112a)、撮影絞り121、バリアフィルタ122及び123、変倍レンズ124、リレーレンズ125、撮影レンズ126、ダイクロイックミラー134、フィールドレンズ(視野レンズ)128、ハーフミラー135、リレーレンズ131、ダイクロイックミラー136、撮影レンズ133、撮像装置10(撮像素子10a)、反射ミラー137、撮影レンズ138、撮像装置12(撮像素子12a)、レンズ139及びLCD140を含んで構成される。
更に、撮影光学系120には、ダイクロイックミラー134、ハーフミラー135、ダイクロイックミラー136、反射ミラー137、撮影レンズ138、レンズ139及びLCD140が設けられている。
ダイクロイックミラー134は、照明光学系100からの照明光の眼底反射光を反射し、OCTユニット150からの信号光LSを透過させる。
また、ダイクロイックミラー136は、観察光源101からの照明光の眼底反射光を透過させ、撮影光源103からの照明光の眼底反射光を反射する。
LCD140は、被検眼Eを固視させるための固視標(内部固視標)を表示する。LCD140からの光は、レンズ139により集光され、ハーフミラー135により反射され、フィールドレンズ128を経由してダイクロイックミラー136に反射される。更に、この光は、撮影レンズ126、リレーレンズ125、変倍レンズ124、孔開きミラー112(の孔部112a)、対物レンズ113等を経由して、被検眼Eに入射する。それにより、被検眼Eの眼底Efに内部固視標が投影される。
撮像素子10aは、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子である。撮像素子10aは、特に、近赤外領域の波長の光を検出する。つまり、撮像装置10は、近赤外光を検出する赤外線テレビカメラとして機能する。撮像装置10は、近赤外光の検出結果として映像信号を出力する。なお、撮像装置10による撮影時には、たとえば撮影光源103からの照明光が用いられる。
タッチパネルモニタ11は、この映像信号に基づいて、眼底Efの表面の2次元画像(眼底画像Ef′)を表示する。また、この映像信号は演算制御装置200に送られる。
撮像素子12aは、CCDやCMOS等の撮像素子である。撮像素子12aは、特に、可視領域の波長の光を検出する。つまり、撮像装置12は、可視光を検出するテレビカメラである。撮像装置12は、可視光の検出結果として映像信号を出力する。なお、撮像装置12による眼底撮影時には、たとえば観察光源101からの照明光が用いられる。
タッチパネルモニタ11は、この映像信号に基づいて、眼底Efの表面の2次元画像(眼底画像Ef′)を表示する。また、この映像信号は演算制御装置200に送られる。
眼底カメラユニット1Aには、走査ユニット141とレンズ142とが設けられている。走査ユニット141は、OCTユニット150から出力される光(信号光LS;後述)の眼底Efに対する照射位置を走査する。
レンズ142は、OCTユニット150から接続線152を通じて導光された信号光LSを平行な光束にして走査ユニット141に入射させる。また、レンズ142は、走査ユニット141を経由してきた信号光LSの眼底反射光を集束させる。
図2に、走査ユニット141の構成の一例を示す。走査ユニット141は、ガルバノミラー141A、141Bと、反射ミラー141C、141Dとを含んで構成されている。
ガルバノミラー141A、141Bは、それぞれ回動軸141a、141bを中心に回動可能に配設された反射ミラーである。各ガルバノミラー141A、141Bは、後述の駆動機構(図5に示すミラー駆動機構241、242)によって回動軸141a、141bを中心にそれぞれ回動される。それにより、各ガルバノミラー141A、141Bの反射面(信号光LSを反射する面)の向きが変更される。
回動軸141a、141bは、互いに直交して配設されている。図2においては、ガルバノミラー141Aの回動軸141aは、紙面に対して平行方向に配設されている。また、ガルバノミラー141Bの回動軸141bは、紙面に対して直交する方向に配設されている。
すなわち、ガルバノミラー141Bは、図2中の両側矢印に示す方向に回動可能に構成され、ガルバノミラー141Aは、当該両側矢印に対して直交する方向に回動可能に構成されている。それにより、ガルバノミラー141A、141Bは、信号光LSの反射方向を互いに直交する方向に変更するようにそれぞれ作用する。図1、図2から分かるように、ガルバノミラー141Aを回動させると信号光LSはx方向に走査され、ガルバノミラー141Bを回動させると信号光LSはy方向に走査される。
ガルバノミラー141A、141Bにより反射された信号光LSは、反射ミラー141C、141Dにより反射され、ガルバノミラー141Aに入射したときと同じ向きに進行する。
なお、接続線152の内部の光ファイバ152aの端面152bは、レンズ142に対峙して配設される。端面152bから出射された信号光LSは、レンズ142に向かってビーム径を拡大しつつ進行し、レンズ142によって平行な光束とされる。逆に、眼底Efを経由した信号光LSは、レンズ142により端面152bに向けて集束されて光ファイバ152aに入射する。
〔OCTユニットの構成〕
次に、OCTユニット150の構成について図3を参照しつつ説明する。OCTユニット150は、眼底のOCT画像を形成するための光学系を有する。
OCTユニット150は、従来の光画像計測装置とほぼ同様の光学系を備えている。すなわち、OCTユニット150は、低コヒーレンス光を参照光と信号光に分割し、被検眼を経由した信号光と参照物体を経由した参照光とを重畳させて干渉光を生成してこれを検出する。この検出結果(検出信号)は演算制御装置200に入力される。演算制御装置200は、この検出信号を解析して眼底の断層画像や3次元画像を形成する。
低コヒーレンス光源160は、低コヒーレンス光L0を出力する広帯域光源により構成される。広帯域光源としては、たとえば、スーパールミネセントダイオード(SLD:Super Luminescent Diode)や、発光ダイオード(LED:Light Emitted Diode)などが用いられる。
低コヒーレンス光L0は、たとえば、近赤外領域の波長の光を含み、かつ、数十マイクロメートル程度の時間的コヒーレンス長を有する光とされる。低コヒーレンス光L0は、眼底カメラユニット1Aの照明光(波長約400nm〜800nm)よりも長い波長、たとえば約800nm〜900nmの範囲に含まれる波長を有する。
低コヒーレンス光源160から出力された低コヒーレンス光L0は、光ファイバ161を通じて光カプラ162に導かれる。光ファイバ161は、たとえばシングルモードファイバやPMファイバ(Polarization maintaining fiber;偏波面保持ファイバ)等により構成される。光カプラ162は、低コヒーレンス光L0を参照光LRと信号光LSとに分割する。
なお、光カプラ162は、光を分割する手段(スプリッタ;splitter)、及び、光を重畳する手段(カプラ;coupler)の双方として作用するものであるが、ここでは慣用的に「光カプラ」と称することにする。
光カプラ162により生成された参照光LRは、シングルモードファイバ等からなる光ファイバ163により導光されてファイバ端面から出射される。更に、参照光LRは、コリメータレンズ171により平行光束とされた後に、ガラスブロック172及び濃度フィルタ173を経由し、参照ミラー174により反射される。参照ミラー174は、この発明の「参照物体」の例である。
参照ミラー174により反射された参照光LRは、再び濃度フィルタ173及びガラスブロック172を経由し、コリメータレンズ171によって光ファイバ163のファイバ端面に集光され、光ファイバ163を通じて光カプラ162に導かれる。
ここで、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの光路長(光学距離)を合わせるための遅延手段として、また、参照光LRと信号光LSの分散特性を合わせるための分散補償手段として作用する。
また、濃度フィルタ173は、参照光LRの光量を減少させる減光フィルタとしても作用する。濃度フィルタ173は、たとえば、回転型のND(Neutral Density)フィルタにより構成される。濃度フィルタ173は、モータ等の駆動装置を含んで構成される駆動機構(図5に示す濃度フィルタ駆動機構244)によって回転駆動される。それにより、干渉光LCの生成に寄与する参照光LRの光量が変更される。
また、参照ミラー174は、参照光LRの進行方向(図3に示す両側矢印方向)に移動可能とされている。それにより、被検眼Eの眼軸長やワーキングディスタンス(対物レンズ113と被検眼Eとの距離)などに応じた参照光LRの光路長を確保できる。また、参照ミラー174を移動させることにより、眼底Efの任意の深度位置の画像を取得することができる。なお、参照ミラー174は、モータ等の駆動装置を含んで構成される駆動機構(図5に示す参照ミラー駆動機構243)によって移動される。
一方、光カプラ162により生成された信号光LSは、シングルモードファイバ等からなる光ファイバ164により接続線152の端部まで導光される。接続線152の内部には光ファイバ152aが導通されている。ここで、光ファイバ164と光ファイバ152aは、単一の光ファイバから形成されていてもよいし、各々の端面同士を接合するなどして一体的に形成されていてもよい。いずれにしても、光ファイバ164、152aは、眼底カメラユニット1AとOCTユニット150との間で、信号光LSを伝送可能に構成されていれば十分である。
信号光LSは、接続線152内部を導光されて眼底カメラユニット1Aに案内される。更に、信号光LSは、レンズ142、走査ユニット141、ダイクロイックミラー134、撮影レンズ126、リレーレンズ125、変倍レンズ124、撮影絞り121、孔開きミラー112の孔部112a、対物レンズ113を経由して被検眼Eに照射される。なお、信号光LSを被検眼Eに照射させるときには、バリアフィルタ122、123は、それぞれ事前に光路から退避される。
被検眼Eに入射した信号光LSは、眼底Ef上にて結像し反射される。このとき、信号光LSは、眼底Efの表面で反射されるだけでなく、眼底Efの深部領域にも到達して屈折率境界において散乱される。したがって、眼底Efを経由した信号光LSは、眼底Efの表面形態を反映する情報と、眼底Efの深層組織の屈折率境界における後方散乱の状態を反映する情報とを含んでいる。
信号光LSの眼底反射光は、眼底カメラユニット1A内の上記経路を逆向きに進行して光ファイバ152aの端面152bに集光され、光ファイバ152を通じてOCTユニット150に入射し、光ファイバ164を通じて光カプラ162に戻ってくる。
光カプラ162は、被検眼Eを経由して戻ってきた信号光LSと、参照ミラー174にて反射された参照光LRとを重畳して干渉光LCを生成する。この干渉光LCは、シングルモードファイバ等からなる光ファイバ165を通じてスペクトロメータ180に導かれる。
なお、この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。
スペクトロメータ(分光計)180は、コリメータレンズ181、回折格子182、結像レンズ183、CCD184を含んで構成される。回折格子182は、光を透過させる透過型の回折格子であってもよいし、光を反射する反射型の回折格子であってもよい。また、CCD184に代えて、CMOS等の他の光検出素子を用いることも可能である。
スペクトロメータ180に入射した干渉光LCは、コリメータレンズ181により平行光束とされ、回折格子182によって分光(スペクトル分解)される。分光された干渉光LCは、結像レンズ183によってCCD184の撮像面上に結像される。CCD184は、干渉光LCの各スペクトル成分を検出して電荷に変換する。CCD184は、この電荷を蓄積して検出信号を生成する。更に、CCD184は、この検出信号を演算制御装置200に送信する。電荷の蓄積時間や蓄積タイミング、更には検出信号の送信タイミングは、たとえば演算制御装置200により制御される。
〔演算制御装置の構成〕
次に、演算制御装置200の構成について説明する。演算制御装置200は、OCTユニット150のCCD184から入力される検出信号を解析して、眼底EfのOCT画像を形成する。このときの解析手法は、従来のフーリエドメインOCTの手法と同様である。
また、演算制御装置200は、眼底カメラユニット1Aの撮像装置10、12から出力される映像信号に基づいて眼底Efの表面の形態を示す2次元画像を形成する。
更に、演算制御装置200は、眼底カメラユニット1A及びOCTユニット150の各部を制御する。
眼底カメラユニット1Aの制御として、演算制御装置200は、観察光源101や撮影光源103による照明光の出力制御、エキサイタフィルタ105、106やバリアフィルタ122、123の光路上への挿入/退避動作の制御、LCD140等の表示装置の動作制御、照明絞り110の移動制御(絞り値の制御)、撮影絞り121の絞り値の制御、変倍レンズ124の移動制御(倍率の制御)などを行う。更に、演算制御装置200は、ガルバノミラー141A、141Bの動作制御を行う。
また、OCTユニット150の制御として、演算制御装置200は、低コヒーレンス光源160による低コヒーレンス光L0の出力制御、参照ミラー174の移動制御、濃度フィルタ173の回転動作(参照光LRの光量の減少量の変更動作)の制御、CCD184の蓄積タイミングや信号出力タイミングの制御などを行う。
演算制御装置200のハードウェア構成について図4を参照しつつ説明する。
演算制御装置200は、従来のコンピュータと同様のハードウェア構成を備えている。具体的には、演算制御装置200は、マイクロプロセッサ201、RAM202、ROM203、ハードディスクドライブ(HDD)204、キーボード205、マウス206、ディスプレイ207、画像形成ボード208及び通信インターフェイス(I/F)209を含んで構成される。これら各部は、バス200aにより接続されている。
マイクロプロセッサ201は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等を含んで構成される。マイクロプロセッサ201は、制御プログラム204aをハードディスクドライブ204から読み出してRAM202上に展開することにより、この実施形態に特徴的な動作を眼底観察装置1に実行させる。
また、マイクロプロセッサ201は、前述した装置各部の制御や、各種の演算処理などを実行する。また、マイクロプロセッサ201は、キーボード205やマウス206からの操作信号を受け、その操作内容に応じて装置各部を制御する。更に、マイクロプロセッサ201は、ディスプレイ207による表示処理の制御や、通信インターフェイス209によるデータや信号の送受信処理の制御などを行う。
キーボード205、マウス206及びディスプレイ207は、眼底観察装置1のユーザインターフェイスとして使用される。キーボード205は、たとえば文字や数字等をタイピング入力するためのデバイスとして用いられる。マウス206は、ディスプレイ207の表示画面に対する各種入力操作を行うためのデバイスとして用いられる。
また、ディスプレイ207は、たとえばLCDやCRT(Cathode Ray Tube)ディスプレイ等の表示デバイスであり、眼底観察装置1により形成された眼底Efの画像などの各種の画像を表示したり、操作画面や設定画面などの各種の画面を表示したりする。
なお、眼底観察装置1のユーザインターフェイスは、このような構成に限定されるものではなく、たとえばトラックボール、ジョイスティック、タッチパネル式のLCD、眼科検査用のコントロールパネルなどを含んでいてもよい。ユーザインターフェイスとしては、情報を表示出力する機能と、情報を入力したり装置の操作を行ったりする機能とを具備する任意の構成を採用できる。
画像形成ボード208は、眼底Efの画像(画像データ)を形成する処理を行う専用の電子回路である。画像形成ボード208には、眼底画像形成ボード208aとOCT画像形成ボード208bとが設けられている。
眼底画像形成ボード208aは、撮像装置10や撮像装置12からの映像信号に基づいて眼底画像の画像データを形成する専用の電子回路である。眼底画像形成ボード208aは、眼底画像Ef′を撮影するための光学系(照明光学系100、撮影光学系120)とともに、この発明の「撮影手段」の一例として機能する。
また、OCT画像形成ボード208bは、OCTユニット150のCCD184からの検出信号に基づいて眼底Efの断層画像の画像データを形成する専用の電子回路である。
このような画像形成ボード208を設けることにより、眼底画像や断層画像を形成する処理の処理速度を向上させることができる。
通信インターフェイス209は、マイクロプロセッサ201からの制御信号を、眼底カメラユニット1AやOCTユニット150に送信する。また、通信インターフェイス209は、撮像装置10、12からの映像信号や、OCTユニット150のCCD184からの検出信号を受信して、画像形成ボード208に入力する。このとき、通信インターフェイス209は、撮像装置10、12からの映像信号を眼底画像形成ボード208aに入力し、CCD184からの検出信号をOCT画像形成ボード208bに入力するようになっている。
また、演算制御装置200がLAN(Local Area Network)やインターネット等の通信回線に接続されている場合には、LANカード等のネットワークアダプタやモデム等の通信機器を通信インターフェイス209に具備させ、この通信回線を介してデータ通信を行えるように構成できる。この場合、制御プログラム204aを格納するサーバを通信回線上に設置するとともに、演算制御装置200を当該サーバのクライアント端末として構成することにより、眼底観察装置1を動作させることができる。
〔制御系の構成〕
次に、眼底観察装置1の制御系の構成について図5及び図6を参照しつつ説明する。
(制御部)
眼底観察装置1の制御系は、演算制御装置200の制御部210を中心に構成される。制御部210は、マイクロプロセッサ201、RAM202、ROM203、ハードディスクドライブ204(制御プログラム204a)、通信インターフェイス209等を含んで構成される。
制御部210には、主制御部211と記憶部212が設けられている。主制御部211は、前述した各種の制御を行う。特に、主制御部211は、この発明の「制御手段」の一例として機能し、眼底Efの断層画像を表示部240Aに表示させる。
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底画像Ef′の画像データ、被検者情報などがある。なお、被検者情報は、患者IDや氏名など、被検者に関する情報である。主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
(画像形成部)
画像形成部220は、撮像装置10、12からの映像信号に基づいて眼底画像Ef′の画像データを形成する。
また、画像形成部220は、CCD184からの検出信号に基づいて眼底Efの断層画像の画像データを形成する。この処理には、たとえば、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などが含まれている。画像形成部220は、たとえば、検出信号の強度、より詳しくは周波数成分の強度に基づいて画素値(輝度値)を決定することにより、断層画像の画像データを形成する。
画像形成部220は、画像形成ボード208や通信インターフェイス209等を含んで構成される。なお、この明細書では、「画像データ」と、それに基づいて表示される「画像」とを同一視することがある。
(画像処理部)
画像処理部230は、画像形成部220により形成された画像の画像データに対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理などを実行する。
また、画像処理部230は、画像形成部220により形成された断層画像の間の画素を補間する補間処理を実行することにより、眼底Efの3次元画像の画像データを形成する。
なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。ディスプレイ207等の表示デバイスには、この画像データに基づく擬似的な3次元画像が表示される。
また、3次元画像の画像データとして、複数の断層画像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層画像を、走査線の位置関係に基づいて3次元的に配列させることにより得られる画像データである。
(血管領域特定部)
画像処理部230には血管領域特定部231が設けられている。血管領域特定部231には、断層画像解析部232と眼底画像解析部233が設けられている。
断層画像解析部232は、眼底Efの断層画像を解析して、この断層画像中の血管領域を抽出する。断層画像解析部232は、この発明の「第1の特定手段」の例である。また、眼底画像解析部233は、眼底画像Ef′を解析して、眼底画像Ef′中の血管領域を抽出する。眼底画像解析部233は、この発明の「第2の特定手段」の例である。
ここで、血管領域とは、眼底Efの血管に相当する画像領域を意味する。また、断層画像においては、血管の断面に相当する画像領域に加え、この画像領域の下方(図1に示すz方向)に位置する画像領域を含んでいてもよい。つまり、血管領域は、被検眼Eの角膜側から眼底を見たときの血管の位置に相当する画像領域であればよい。換言すると、xyz座標系における血管の座標値が(x、y、z)である場合において、この座標値(x、y、z)をxy平面に投影して得られる座標値(x、y)で血管領域の位置を表現することができる。
(断層画像解析部)
断層画像解析部232が実行する処理の例を説明する。そのために、眼底Efの断層画像について説明する。眼底Efには、網膜や脈絡膜などの層が存在する。また、網膜には、眼底表面側から深度方向に向かって順に、内境界膜、神経繊維層、神経節細胞層、内網状層、内顆粒層、外網状層、外顆粒層、外境界膜、視細胞層、網膜色素上皮層が存在する。眼底Efの断層画像は、これらの層の積層形態を表す。
図7に示す断層画像Gには、眼底Efの層に相当する層領域L1、L2、L3と、層の境界に相当する境界領域g1、g2、g3、g4が描写されている。図7中の符号V1は、眼底血管の断面に相当する画像領域(血管断面領域)を表す。また、符号V2は、血管断面領域V1の直下に位置する画像領域(血管直下領域)を表している。血管領域Vは、血管断面領域V1と血管直下領域V2とを含む画像領域とする。符号LSは、断層画像Gを取得するときの信号光の照射方向を表している。
血管領域Vは、血管壁や血液や血流などに起因するノイズによって明瞭に表示されない。したがって、血管領域Vにおいては、層領域L2、L3や境界領域g2〜g4は明瞭に描写されない。
第1の処理例として、断層画像解析部232は、まず、断層画像を解析して所定の層位置を特定する。この所定の層位置は、たとえば内接/外接位置であるとする。次に、断層画像解析部232は、断層画像中の内接/外接位置上の画素に対して、眼底Efの深度方向(+z方向及び/又は−z方向)に位置する複数の画素を断層画像から抽出する。
この処理の具体例を図8に示す。境界領域g3を内接/外接位置とする。符号Pは、境界領域g3上の任意の画素である。断層画像解析部232は、画素Pよりも眼底表面側(−z方向)に位置する画素pα(α=1〜5)と、画素Pの直下(+z方向)に位置する画素pβ(β=1〜5)を断層画像Gから抽出する。
なお、抽出される画素の個数は任意である。また、抽出される画素の個数は、+z方向と−z方向とで同じであってもよいし異なってもよい。また、+z方向の画素のみを抽出してもよいし、−z方向の画素のみを抽出してもよい。また、境界領域g3上に画素が存在しない場合には、境界領域g3の最も近くに位置する画素を境界領域g3上の画素とみなすことができる。
次に、断層画像解析部232は、画素pα、pβ(及び画素P)の各画素値(輝度値)を取得し、これら画素値のばらつきを表す統計値を算出する。この統計値としては、標準偏差や分散など、複数の画素値を母集団としたときに当該複数の画素値のばらつきを定義する任意の値を用いることができる。
次に、断層画像解析部232は、この統計値が所定範囲に含まれるか判断する。たとえば統計値が標準偏差や分散である場合には、或る閾値以下の範囲を上記所定範囲として設定できる。より具体的に説明すると、当該閾値をΣとし、画素Pに対応する統計値を標準偏差σ(P)とした場合、断層画像解析部232は「σ(P)≦Σ」であるか判断する。
なお、閾値Σは、たとえば、断層画像Gの次のような特徴に基づいて設定される。断層画像Gは、眼底Efの微細構造(層領域や境界領域)を表す画像であるが、血管領域については微細構造を表現できない。断層画像Gが輝度画像である場合には、血管領域はほぼ一様に黒く表現される。つまり、血管領域中の画素はほぼ一様に低い輝度値を有している。閾値Σは、境界領域g3上の画素について、それが血管領域中の画素であるのか否かを判断するために用いられる。このような閾値Σは、たとえば、多数の断層画像について、血管領域中の画素の輝度値の標準偏差と、それ以外の画像領域の画素の輝度値の標準偏差とを比較し、比較結果を統計的に処理(たとえば平均を取るなど)して決定することが可能である。なお、閾値Σの決定方法はこれに限定されるものではない。また、標準偏差以外の統計値についても、同様に決定することが可能である。
断層画像解析部232は、境界領域g3上の各画素Pについてこのような判断を行う。そして、断層画像解析部232は、統計値が所定範囲に含まれるような画素を特定する。上記の具体例においては、断層画像解析部232は、標準偏差σ(P)が閾値Σ以下であるような境界領域g3上の画素Pを特定する。それにより、次のような画素の集合Sが得られる:S={境界領域g3上の画素P:σ(P)≦Σ}。
集合Sは、境界領域g3上の画素Pのうち、血管領域内に位置すると判断された画素の集合である。断層画像解析部232は、以上のようにして、断層画像中の血管領域を特定する。以上で、第1の処理例の説明を終了する。
断層画像解析部232の第2の処理例を説明する。第2の処理例を適用する場合には、断面位置の異なる複数の断層画像が事前に取得される。複数の断層画像は、たとえば、互いに平行な断面を有する(図14に示す断層画像G1〜Gmを参照)。
断層画像解析部232は、まず、複数の断層画像をそれぞれ眼底Efの深度方向(z方向)に積算して積算画像を形成する。この処理は、たとえば次のように実行される。断層画像は、信号光LSの照射位置(走査点)における深度方向の画像(1次元画像)を配列して形成された画像である。断層画像解析部232は、各1次元画像中の画素の画素値(輝度値)を積算することにより積算画像を形成する。
積算画像は、信号光LSの走査領域における眼底Efの表面形態を擬似的に表現した画像であり、眼底画像Ef′と同様の画像である。なお、図14の説明の後に、断層画像G1〜Gmから積算画像を形成する処理の例を説明する。
次に、断層画像解析部232は、積算画像を解析し、眼底Efにおける血管の走行位置を表す走行位置情報を求める。積算画像は、上記のように、眼底Efの表面形態を擬似的に表現した画像である。積算画像には、眼底Efの血管に相当する画像(血管領域)が含まれている。
断層画像解析部232は、たとえば次のようにして、積算画像中の血管領域を抽出する。まず、断層画像解析部232は、積算画像に対して所定のフィルタ処理を施す。このフィルタ処理では、たとえば、階調変換処理、画像強調処理、コントラスト変換処理、エッジ検出処理、画像平均化処理、画像平滑化処理など、積算画像中の血管領域と多の画像領域との識別を容易にするための処理を実行する。
次に、断層画像解析部232は、所定の閾値に基づいて積算画像を二値化する。この閾値は、たとえば多数の積算画像の解析結果に基づいて事前に設定される。なお、積算画像における画素値(輝度値)の分布のヒストグラム等に基づいて当該積算画像固有の閾値を求め、この閾値に基づいて二値化処理を行うこともできる。このような二値化処理により、積算画像中の血管領域が強調される。
断層画像解析部232は、二値化処理後の積算画像の画素値(輝度値)に基づいて血管領域を抽出する。そして、断層画像解析部232は、積算画像中における血管領域の位置を特定し、この血管領域の位置情報を走行位置情報とする。なお、断層画像はxyz座標系にて定義されており、積算画像は断層画像に基づいて形成されることを考慮すると、積算画像もxyz座標系(又はxy座標系)にて定義された画像となる。よって、走行位置情報は、xyz座標系(又はxy座標系)の座標値により定義された積算画像中の血管領域の位置情報である。
最後に、断層画像解析部232は、走行位置情報に基づいて断層画像中の血管領域を特定する。このとき、眼底Efの任意の断面位置における断層画像中の血管領域を特定することができる。
たとえば、積算画像の形成処理に供された断層画像については、積算画像を定義する座標系と当該断層画像を定義する座標系とは同じであるので、積算画像中の血管領域と同じ座標値を有する当該断層画像中の画像領域を特定し、この画像領域を血管領域に設定する。
また、積算画像の定義域内の任意の位置に断面が設定された断層画像については、たとえば次のようにして血管領域を特定できる。当該断層画像は、3次元画像の画像データに基づいて形成される。積算画像を定義する座標系と3次元画像の画像データを定義する座標系とは同じであるので、積算画像中の血管領域と同じ座標値を有する当該断層画像中の画像領域を特定し、この画像領域を血管領域に設定する。
なお、3次元画像の画像データに基づかずに、積算画像の定義域内を信号光LSで走査して取得された断層画像についても、後述の走査位置情報を参照することにより、同様に血管領域を特定することが可能である。以上で、第2の処理例の説明を終了する。
断層画像解析部232の第3の処理例を説明する。第3の処理例を適用する場合には、第2の処理例と同様の複数の断層画像と、眼底画像Ef′とが事前に取得される。なお、第3の処理例においては、眼底画像解析部233により、眼底画像Ef′中の血管領域が事前に特定されているものとする(後述)。
断層画像解析部232は、眼底画像Ef′の血管領域に基づき、眼底Efにおける血管の走行位置を表す走行位置情報を求める。
次に、断層画像解析部232は、第2の処理例と同様に積算画像を形成する。積算画像は、前述のように、眼底Efの表面形態を擬似的に表現した画像であり、眼底画像Ef′と同様の画像である。
次に、断層画像解析部232は、眼底画像Ef′と積算画像との位置合わせを行う。この処理は、たとえば、眼底画像Ef′中の特徴的な領域(特徴領域)と、積算画像中の特徴領域とを位置合わせすることにより実行できる。特徴領域としては、たとえば、血管領域、視神経乳頭に相当する画像領域、黄斑部に相当する画像領域、血管の分岐位置などがある。なお、画像の位置合わせ処理は、たとえば、パターンマッチングや画像相関など、公知の画像処理を用いて行うことができる。このような位置合わせ処理により、眼底画像Ef′が定義された座標系と、積算画像が定義された座標系との間の座標変換式が得られる。
次に、断層画像解析部232は、上記位置合わせの結果に基づいて、眼底画像Ef′中の血管領域に対応する積算画像中の画像領域を特定する。この処理は、たとえば、上記座標変換式を用いて、走行位置情報に示す眼底画像Ef′中の血管領域の座標値を、積算画像が定義された座標系の座標値に変換することにより行う。それにより、眼底画像Ef′中の血管領域に対応する積算画像中の画像領域(血管領域)が特定される。
次に、断層画像解析部232は、積算画像中の血管領域と断層画像の断面との交差領域を特定する。この処理は、第2の処理例と同様にして実行できる。なお、この交差領域は、眼底表面に相当する画像領域中に定義されている。
最後に、断層画像解析部232は、この交差領域を含むように断層画像の血管領域を特定する。交差領域は、上記のように眼底表面に相当する画像領域に定義されている。断層画像解析部232は、断層画像における当該交差領域の直下の画像領域を血管領域に設定する。たとえば、交差領域の座標値を(x、y)とした場合、断層画像解析部232は、座標値(x、y、z)で定義される画像領域を血管領域に設定する。
このように、第3の処理例では、眼底画像Ef′中の血管領域を特定し、この血管領域に対応する積算画像中の画像領域を特定し、この画像領域と断層画像の共通の領域を当該断層画像の血管領域に設定している。一般に、眼底画像Ef′は積算画像よりも明瞭な画像である。したがって、眼底画像Ef′から抽出される血管領域は、積算画像から抽出される血管領域(第2の処理例)よりも確度や精度が高い。よって、第3の処理例によれば、第2の処理例よりも高確度、高精度で血管領域を設定することができる。なお、第3の処理例の確度や精度は、眼底画像Ef′と積算画像との位置合わせ処理にも依存しているので、この位置合わせ処理を好適に行うことも必要である。
(眼底画像解析部)
眼底画像解析部233が実行する処理の例を説明する。そのために、眼底画像Ef′について説明する。眼底画像Ef′中には、図9に示すように、眼底Efの表面(付近)に位置する血管に相当する画像領域(血管領域)Wが存在する。血管領域Wは、たとえば蛍光撮影を実施することにより、非常に鮮明に描写される。
眼底画像解析部233は、たとえば、第2の処理例と同様のフィルタ処理を眼底画像Ef′に施し、x方向やy方向における画素値(輝度値)の変化を検出して眼底画像Ef′中の血管領域を特定する。
また、血管領域と他の画像領域とを判別するための閾値処理を眼底画像Ef′に施すことにより血管領域を特定することも可能である。なお、この閾値は、事前に設定されたものであってもよいし、眼底画像Ef′毎に設定されたものであってもよい。前者の場合の閾値は、たとえば、臨床的に取得された多数の眼底画像を解析して統計的に求めることができる。また、当該被検眼Eに対して過去に撮影された眼底画像を解析して、被検眼E毎に閾値を取得しておいてもよい。一方、後者の場合の閾値は、たとえば、眼底画像Ef′中の画素の画素値のヒストグラムを作成し、このヒストグラムを参照して設定することができる。
(断層画像処理部)
画像処理部230には断層画像処理部234が設けられている。断層画像処理部234は、血管領域特定部231により特定された血管領域に基づいて、断層画像に対して所定の画像処理を施す。断層画像処理部234は、この発明の「画像処理手段」の例である。断層画像処理部234には、共通領域特定部235、画像消去部236、層位置特定部237及び画像付加部238が設けられている。
(共通領域特定部)
共通領域特定部235は、断層画像中の血管領域のうち、眼底画像Ef′中の血管領域と共通するものを特定する。
共通領域特定部235が実行する処理の例を説明する。共通領域特定部235は、血管領域特定部231から、断層画像中の血管領域の位置情報と、眼底画像Ef′中の血管領域の位置情報とを受け付ける。前者の位置情報は、断層画像が定義された座標系(たとえばxyz座標系)における血管領域の座標値を含む。また、後者の位置情報は、眼底画像Ef′が定義された座標系(たとえばxy座標系)における血管領域の座標値を含む。
共通領域特定部235は、必要に応じて、断層画像と眼底画像Ef′との位置合わせを行う。この位置合わせ処理は、たとえば、断層画像解析部232と同様に積算画像を介して実行できる。
次に、共通領域特定部235は、断層画像中の血管領域の位置情報と、眼底画像Ef′中の血管領域の位置情報とを比較し、双方の画像に含まれる血管領域を特定する。この処理は、たとえば、断層画像中の血管領域の座標値の集合と、眼底画像Ef′中の血管領域の座標値の集合とを比較し、双方の集合に属する座標値を特定することにより実行される。それにより、断層画像と眼底画像Ef′に共通の血管領域(共通領域)が特定される。
共通領域特定部235は、この共通領域に相当する断層画像中の画像領域、すなわち、断層画像中の血管領域のうち眼底画像Ef′と共通の血管領域を特定する。
(画像消去部)
画像消去部236は、共通領域特定部235により特定された画像領域(共通領域)を断層画像中から消去する。この処理は、たとえば、共通領域内の各画素の画素値を所定の画素値に変更することにより実行できる。その具体例として、断層画像が輝度画像である場合に、共通領域内の各画素の輝度値がゼロに設定される。
なお、画像消去部236により消去される領域は、共通領域の少なくとも一部を含んでいれば十分であるが、共通領域全体又はこれを含む画像領域であることが望ましい。
(層位置特定部)
層位置特定部237は、断層画像中における層の位置を特定する。そのためにまず、層位置特定部237は、必要に応じて、断層画像の層位置を求め易くするための前処理を実行する。この前処理としては、たとえば、階調変換処理、画像強調処理、しきい値処理、コントラスト変換処理、二値化処理、エッジ検出処理、画像平均化処理、画像平滑化処理、フィルタ処理などの画像処理が実行される。なお、これらの画像処理を適宜に組み合わせて実行することも可能である。
次に、層位置特定部237は、断層画像を構成する画素の画素値(たとえば輝度値)を、眼底Efの深度方向に沿って一列ずつ解析する。なお、共通領域特定部235により特定された共通領域については、当該解析処理を行う必要はない。
断層画像は、所定の断面に沿って配列する複数の深度方向の画像(図14に示す画像Gijを参照)によって構成される。層位置特定部237は、深度方向の画像を構成する画素の画素値を深度方向に沿って順次に参照することにより、隣接する層の境界に位置する画素を特定する。この処理は、たとえば、深度方向にのみ広がりを有するフィルタ(たとえば微分フィルタ等のラインフィルタ)や、深度方向及びそれに直交する方向に広がるフィルタ(エリアフィルタ)を用いて実行できる。なお、これらのフィルタは、たとえばハードディスクドライブ204に予め記憶されている。
このように、層位置特定部237は、層の境界位置に相当する画像領域を求めるものであるが、同時に、層に相当する画像領域を求めるものでもある。すなわち、眼底Efは複数の層が積み重なるようにして構成されていることから、層を特定することと、層の境界を特定することとは同義だからである。
前述のように、眼底Efは複数の層を有している。層位置特定部237は、これらの層のうちの少なくともいずれかの層位置(又は層の境界位置)を特定する。
特に、層位置特定部237は、内接/外接位置(内顆粒層と外網状層との境界位置)を特定する。内接/外接位置は、たとえば内顆粒層及び外網状層をそれぞれ抽出し、それらの境界位置として特定できる。また、断層画像の輝度値の変化により内接/外接位置を特定することもできる。また、断層画像中の基準位置(眼底表面、網膜色素上皮層など)からの距離を参照して内接/外接位置を特定することもできる。
なお、「層」には、網膜を構成する上記の各層とともに、脈絡膜や強膜やその外部組織なども含まれるものとする。また、層の境界位置には、網膜を構成する上記の層の境界位置とともに、内境界膜と硝子体との境界位置、網膜色素上皮層と脈絡膜との境界位置、脈絡膜と強膜との境界位置、強膜とその外部組織との境界位置なども含まれるものとする。
以上の処理により断層画像中の血管領域を除く画像領域における層位置が特定されたら、層位置特定部237は、共通領域の近傍領域における層位置に基づいて、画像消去部236により消去された領域(共通領域)における層位置を推定する。この処理では、たとえば、共通領域の近傍領域内の画素の画素値に基づいて層の境界領域を特定し、この層の境界領域の形態に基づいて共通領域における層の境界位置を推定する。この推定処理の例を以下に説明する。
層位置特定部237は、まず、断層画像中の各共通領域について、その近傍領域を設定する。近傍領域は、推定精度を向上させるために、共通領域の両側に設定されることが望ましい。具体例として、図7の断層画像G(xz断面の画像)の血管領域Vが共通領域である場合、血管領域Vに対して+x側に隣接する画像領域N1と、−x側に隣接する画像領域N2とが近傍領域として設定される。
ここで、近傍領域の幅(上記例ではx方向の距離)については、事前に設定することができる(たとえば十〜数十画素程度)。また、たとえば、層の境界の形態を精度良く把握できるような幅の近傍領域を断層画像毎に設定することもできる。
次に、層位置特定部237は、共通領域の両側の各近傍領域と共通領域との境界における層の境界領域の位置を求める。続いて、層位置特定部237は、当該位置に基づいて、両側の境界領域を結ぶ直線を求める。そして、この直線上の位置を、共通領域における層の境界位置とする。
この処理の具体例として、図10の血管領域V(共通領域)における境界領域g2の対応部位を推定する処理を説明する。まず、層位置特定部237は、必要に応じ、各近傍領域N1、N2内の境界領域g2にスムージング処理を施して境界領域g2を曲線に変換する。次に、層位置特定部237は、各近傍領域N1、N2と血管領域Vとの境界(血管領域Vの両側の境界)における境界領域g2の位置Q1、Q2をそれぞれ取得する(図11を参照)。そして、層位置特定部237は、位置Q1、Q2を結ぶ直線Qを求める。直線Qは、位置Q1、Q2の座標値から容易に演算できる。直線Q上の位置が、血管領域Vにおける境界領域g2の推定位置となる。
なお、直線の代わりに曲線を用いて、血管領域Vにおける境界領域g2の位置を推定することができる。その具体例として、層位置特定部237は、上記と同様に位置Q1、Q2を求めるとともに、各位置Q1、Q2における境界領域g2の傾きを求める。傾きの値は、近傍領域N1、N2内の境界領域g2の各点の傾きから求めることができる。そして、層位置特定部237は、位置Q1、Q2と当該傾きに基づいて、位置Q1、Q2を結ぶスプライン曲線Q′を求める(図12を参照)。スプライン曲線Q′上の位置が、血管領域Vにおける境界領域g2の推定位置となる。
以上は、共通領域が断層画像の端部以外の場所に存在する場合の例である。共通領域が断層画像の端部に存在する場合には、両側の近傍領域を考慮することができないので、片側の近傍領域のみを考慮して上記と同様に処理を行うことができる。また、共通領域が端部以外に存在する場合であっても、処理時間の短縮などを図るために、片側の近傍領域のみを考慮することが可能である。
また、共通領域の幅(位置Q1、Q2の距離)に応じて、処理内容を切り替えるようにしてもよい。たとえば、幅が所定距離以下の場合には直線による推定処理により処理時間の短縮などを図り、幅が所定距離を超える場合には曲線による推定処理により精度や確度の向上を図ることが可能である。
(画像付加部)
画像付加部238は、画像消去部236により消去された画像領域に、層位置特定部237により特定された層位置を表す画像を付加する。それにより、たとえば図11や図12に示すように、層位置(層の境界位置)を表す直線Qの画像やスプライン曲線Q′の画像が、共通領域(血管領域V)内に付加される。
なお、この実施形態では、断層画像から共通領域を一旦消去し、それから、当該共通領域に層位置の画像を付加しているが、これに限定されるものではない。たとえば、実質的には同じであるが、断層画像中の共通領域内の元々の画像を、層位置の画像に置換するように処理を行ってもよい。
(層厚演算部)
層厚演算部239は、断層画像に基づいて眼底Efの所定部位の層厚を演算する。特に、層厚演算部239は、画像付加部238により付加された画像に基づいて、共通領域(血管領域)における眼底Efの所定部位の層厚を求める。層厚演算部239は、この発明の「演算手段」の例である。
ここで、眼底Efの所定部位とは、前述した眼底Efの複数の層のうちの1つ以上の層を意味する。たとえば、網膜色素上皮層単独でも「所定部位」に相当し、内境界膜から内顆粒層までの複数層でも「所定部位」に相当する。
また、厚さの演算対象となる「所定部位」としては、たとえば、内境界膜から神経繊維層までの厚さ(神経繊維層厚)、内境界膜から内顆粒層(視細胞の内接/外接位置)までの厚さ(網膜厚)、内境界膜から網膜色素上皮層までの厚さ(網膜厚)などがある。なお、これら3つの例のうちの第2、第3の例は、それぞれ定義は異なるが、網膜厚を表している。
層厚演算部239が実行する処理の例を説明する。前述のように、層位置特定部237は、断層画像における眼底Efの層の位置(境界位置)を特定する。このとき、少なくとも2つの境界位置(すなわち、少なくとも1つの層)が特定される。層厚演算部239は、特定された境界位置のうちの所定の2つの境界位置の間の距離を演算する。
より具体的には、層厚演算部239は、断層画像を構成する各深度方向の画像について、2つの境界位置に相当する画素の間の距離(深度方向の距離)を演算する。このとき、深度方向の画像の各画素には、前述のxyz座標系による座標値が割り当てられている(x座標値、y座標値は、それぞれ一定である。)。層厚演算部239は、この座標値から画素間の距離を演算することができる。また、層厚演算部239は、2つの境界位置にそれぞれ相当する画素の間の画素数と、隣接画素間の距離(既知)とに基づいて、目的の距離を演算することもできる。共通領域における層厚も同様にして求めることができる。
層厚演算部239は、眼底Efの複数の位置における層の厚さを求めて、層の厚さの分布を表す情報(層厚分布情報)を生成する。層厚分布情報としては、所定の断面位置における層の厚さの分布をグラフで表現した層厚グラフがある。また、層厚分布情報としては、層の厚さの1次元的又は2次元的な分布を、層の厚さに応じて色分けして表現する層厚分布画像を適用してもよい。
層厚分布情報を生成する処理について、より具体的に説明する。上記の層厚の演算処理により取得される情報は、層厚の解析位置と層厚の値とを関連付ける情報である。すなわち、上記のように、層厚は深度方向の画像ごとに求められ、また、各深度方向の画像にはxyz座標系(又はxy座標系)の座標値が割り当てられている。よって、層厚演算部239は、xyz座標系(又はxy座標系)で定義される解析位置と、当該解析位置の深度方向の画像から演算される層厚の値とを関連付けることができる。
層厚演算部239は、このような解析位置と層厚の値とを関連付ける情報を、たとえば解析位置に応じて配列させることにより層厚分布情報を生成することができる。
また、層厚演算部239は、複数の位置における層厚の情報から、所定の断面位置(xyz座標系やxy座標系で位置が定義されている)に含まれる情報を選択し、選択された情報の層厚の値を解析位置に応じて配列させることにより、層厚グラフを生成することができる。なお、このように生成された情報に基づいて、たとえば、横軸に解析位置を定義し、縦軸に層厚の値をプロットすれば、この層厚グラフを表示することができる。この表示処理は、主制御部211が実行する。
また、層厚演算部239は、複数の位置における層厚の情報から、所定領域(xyz座標系やxy座標系で位置が定義されている)に含まれる情報を選択し、選択された情報の層厚の値を解析位置に応じて配列させるとともに、層位置の値に応じた色を割り当てることにより、層厚分布画像(画像データ)を生成することができる。なお、この画像データに基づいて、所定領域内の各画素を割り当てられた色で表示することにより、層厚分布画像を表示することができる。この表示処理は、主制御部211が実行する。
以上のような画像処理部230は、マイクロプロセッサ201、RAM202、ROM203、ハードディスクドライブ204(制御プログラム204a)等を含んで構成される。
(ユーザインターフェイス)
ユーザインターフェイス(User Interface;UI)240には、表示部240Aと操作部240Bが設けられている。表示部240Aは、ディスプレイ207等の表示デバイスにより構成される。表示部240Aは、この発明の「表示手段」の例である。また、操作部240Bは、キーボード205やマウス206などの入力デバイスや操作デバイスにより構成される。
〔信号光の走査及び画像処理について〕
信号光LSの走査態様及び画像処理の態様について、その一例を説明する。信号光LSは、走査ユニット141により走査される。より詳しくは、信号光LSは、制御部210がミラー駆動機構241、242を制御してガルバノミラー141A、141Bの反射面の向きを変更することにより走査される。
ガルバノミラー141Aは、信号光LSを水平方向(図1のx方向)に走査する。ガルバノミラー141Bは、信号光LS垂直方向(図1のy方向)に走査する。また、ガルバノミラー141A、141Bの双方を同時に動作させることで、xy平面上の任意方向に信号光LSを走査できる。
図13は、眼底Efの画像を形成するための信号光LSの走査態様の一例を表している。図13(A)は、信号光LSが被検眼Eに入射する方向から眼底Efを見た(つまり図1の−z方向から+z方向を見た)ときの、信号光LSの走査態様の一例を表す。また、図13(B)は、眼底Ef上の各走査線における走査点(計測位置)の配列態様の一例を表す。
図13(A)に示すように、信号光LSは、矩形の走査領域R内を走査される。走査領域R内には、x方向に沿った複数(m本)の走査線R1〜Rmが設定されている。走査線Ri(i=1〜m)は、y方向に配列されている。各走査線Riの方向(x方向)を「主走査方向」と呼び、それに直交する方向(y方向)を「副走査方向」と呼ぶ。
各走査線Ri上には、図13(B)に示すように、複数(n個)の走査点Ri1〜Rinが設定されている。なお、走査領域Rや走査線Riや走査点Rijの位置は、計測を行う前に適宜に設定される。
図13に示す走査を実行するために、制御部210は、まず、ガルバノミラー141A、141Bを制御し、眼底Efに対する信号光LSの入射目標を第1の走査線R1上の走査開始位置RS(走査点R11)に設定する。続いて、制御部210は、低コヒーレンス光源160を制御し、低コヒーレンス光L0をフラッシュ発光させて、走査開始位置RSに信号光LSを入射させる。CCD184は、この信号光LSの走査開始位置RSにおける反射光に基づく干渉光LCを受光して電荷を蓄積し、検出信号を生成する。
次に、制御部210は、ガルバノミラー141Aを制御して、信号光LSを主走査方向に走査して、その入射目標を走査点R12に設定し、低コヒーレンス光L0をフラッシュ発光させて走査点R12に信号光LSを入射させる。CCD184は、この信号光LSの走査点R12における反射光に基づく干渉光LCを受光して電荷を蓄積し、検出信号を生成する。
制御部210は、同様にして、信号光LSの入射目標を走査点R13、R14、・・・、R1(n−1)、R1nと順次移動させつつ、各走査点において低コヒーレンス光L0をフラッシュ発光させることにより、各走査点に対応する検出信号を生成させる。
第1の走査線R1の最後の走査点R1nにおける計測が終了したら、制御部210は、ガルバノミラー141A、141Bを同時に制御して、信号光LSの入射目標を、線換え走査rに沿って第2の走査線R2の最初の走査点R21まで移動させる。そして、制御部210は、この第2の走査線R2の各走査点R2j(j=1〜n)について同様の計測を実行させ、各走査点R2jに対応する検出信号をそれぞれ生成させる。
同様に、制御部210は、第3の走査線R3、・・・・、第m−1の走査線R(m−1)、第mの走査線Rmのそれぞれについて計測を行わせ、各走査点に対応する検出信号を生成させる。なお、走査線Rm上の符号REは、走査点Rmnに対応する走査終了位置である。
このようにして、制御部210は、走査領域R内のm×n個の走査点Rij(i=1〜m、j=1〜n)に対応するm×n個の検出信号を生成させる。走査点Rijに対応する検出信号をDijと表すことがある。
以上の制御において、制御部210は、ガルバノミラー141A、141Bを動作させるときに、各走査点Rijの位置情報(xy座標系における座標)を取得する。この位置情報(走査位置情報)は、OCT画像を形成するときなどに参照される。
次に、図13に示す走査が実施された場合における画像処理の例を説明する。
画像形成部220は、各走査線Ri(主走査方向)に沿った眼底Efの断層画像を形成する。また、画像処理部230は、画像形成部220により形成された断層画像に基づいて眼底Efの3次元画像を形成する。
断層画像の形成処理は、従来と同様に、2段階の演算処理を含んで構成される。第1段階では、各検出信号Dijに基づいて、走査点Rijにおける眼底Efの深度方向(図1に示すz方向)の画像を形成する。
第2段階では、走査点Ri1〜Rinにおける深度方向の画像を走査位置情報に基づいて配列させて、走査線Riに沿った断層画像Giを形成する。以上のような処理により、m個の断層画像G1〜Gmが得られる。
画像処理部230は、走査位置情報に基づいて断層画像G1〜Gmを配列させ、隣接する断層画像Gi、G(i+1)の間の画像を補間する補間処理などを行って、眼底Efの3次元画像を生成する。この3次元画像は、たとえば走査位置情報に基づく3次元座標系(x、y、z)により定義されている。
また、画像処理部230は、この3次元画像に基づいて、任意の断面における断層画像を形成できる。断面が指定されると、画像処理部230は、指定断面上の各走査点(及び/又は補間された深度方向の画像)の位置を特定し、各特定位置における深度方向の画像(及び/又は補間された深度方向の画像)を3次元画像から抽出し、抽出された複数の深度方向の画像を走査位置情報等に基づき配列させることにより、指定断面における断層画像を形成する。
なお、図14に示す画像Gmjは、走査線Rm上の走査点Rmjにおける深度方向の画像を表す。同様に、前述した第1段階の処理において形成される、走査点Rijにおける深度方向の画像を「画像Gij」と表す。
ここで、断層画像G1〜Gmに基づく積算画像の形成処理の例を説明する。断層画像解析部232は、断層画像Giを構成する画像Gijを深度方向(z方向)に積算して点状の画像を形成する。
「深度方向に積算する」とは、画像Gijを構成する画素の輝度値を深度方向に足し合わせる(投影する)演算を意味する。したがって、画像Gijを積算して得られる点状の画像は、画像Gijの各z位置における輝度値を深度方向に足し合わせた輝度値を有している。また、点状の画像の位置は、xy座標系による画像Gijの座標値と同じである。
断層画像解析部232は、信号光LSの一連の走査によって得られるm個の断層画像G1〜Gmのそれぞれについて上記の積算処理を実行する。それにより、走査領域Rに2次元的に分布したm×n個の点状の画像からなる積算画像が形成される。この積算画像は、走査領域Rにおける眼底画像Ef′と同様に、眼底Efの表面の形態を表す画像となる。
眼底観察装置1による信号光LSの走査態様は、上記のものに限定されるものではない。たとえば、信号光LSを水平方向(x方向)にのみ走査させたり、垂直方向(y方向)にのみ走査させたり、縦横1本ずつ十字型に走査させたり、放射状に走査させたり、円形状に走査させたり、同心円状に走査させたり、螺旋状に走査させたりできる。すなわち、前述のように、走査ユニット141は、信号光LSをx方向及びy方向にそれぞれ独立に走査できるように構成されているので、xy面上の任意の軌跡に沿って信号光LSを走査することが可能である。
[使用形態]
眼底観察装置1の使用形態について説明する。図15に示すフローチャートは、眼底観察装置1の使用形態の一例である。
まず、被検眼Eに対する光学系のアライメントを行う(S1)。アライメントは、従来の眼底カメラと同様にして行われる。たとえば、被検眼Eにアライメント輝点(図示せず)を投影してその状態を観察しつつ眼底カメラユニット1Aの位置を調整することによりアライメントを行う。
次に、参照ミラー174の位置を調整し、信号光と参照光との干渉状態を調整する(S2)。このとき、眼底Efの所望の深度位置の画像が明瞭になるように調整を行う。なお、参照ミラー174の位置調整は、操作部240Bを用いて手作業で行ってもよいし、自動的に行うようにしてもよい。
続いて、主制御部211は、所定の操作が為されたことに対応し、LCD140を制御して被検眼Eに固視標を投影させるとともに、低コヒーレンス光源160、走査ユニット141、CCD184、画像形成部220等を制御して、眼底Efの断層画像を取得させる(S3)。取得された断層画像は、主制御部211により記憶部212に記憶される。
また、主制御部211は、観察光源101(又は撮影光源103)、撮像装置12(撮像装置12)、画像形成部220等を制御して、眼底Efの表面の2次元画像、つまり眼底画像Ef′を撮影させる(S4)。この処理は、ステップ3の終了に対応して自動的に開始してもよいし、所定の操作に対応して開始してもよい。また、断層画像の取得前に眼底画像Ef′の撮影を行うようにしてもよい。眼底画像Ef′は、主制御部211により記憶部212に記憶される。
次に、断層画像解析部232は、眼底Efの断層画像中の血管領域を特定する(S5)。また、眼底画像解析部233は、眼底画像Ef′中の血管領域を特定する(S6)。なお、ステップ5とステップ6を逆の順序で行ってもよいし、双方の処理を並行的に行ってもよい。
次に、共通領域特定部235は、断層画像中の血管領域において、眼底画像Ef′中の血管領域との間で共通の血管領域(共通領域)を特定する(S7)。
次に、画像消去部236は、共通領域として特定された領域の画像を断層画像中から消去する(S8)。
次に、層位置特定部237は、断層画像に基づいて、画像が消去された領域以外の領域における眼底Efの層位置を特定する(S9)。更に、層位置特定部237は、特定された層位置に基づいて、画像が消去された領域(共通領域)における層位置を推定する(S10)。
次に、画像付加部238は、ステップ8で画像が消去された領域(共通領域)に、ステップ10で推定された層位置を表す画像を付加する(S11)。
次に、層厚演算部239は、ステップ11で画像が付加された断層画像に基づいて、眼底Efの層厚を演算する(S12)。層厚演算部239は、前述の層厚グラフや層厚分布画像を適宜に生成する。
主制御部211は、以上において処理された各種の画像や情報を表示部240Aに表示させる(S13)。表示可能な情報としては、たとえば、ステップ3で取得された断層画像、ステップ4で撮影された眼底画像Ef′、ステップ5やステップ6で特定された血管領域が強調された画像、ステップ7で特定された共通領域が強調された断層画像、ステップ8で共通領域が消去された断層画像、ステップ9で特定された層位置を強調した断層画像、ステップ11で付加された画像を強調した断層画像、ステップ12で得られた層厚グラフや層厚分布画像などがある。
特に、眼底Efの断層画像を表示させる場合、主制御部211は、共通領域に相当する領域を視認可能とするように断層画像を表示させる。その例として、たとえば、共通領域に相当する領域を囲む枠状の画像を表示させたり、当該領域内の画像の表示態様(表示色やコントラスト等)を変更させたりできる。
また、共通領域に相当する領域の画像が消去された断層画像(ないし、それを加工した断層画像)を表示する場合には、当該画像における当該領域は視認可能であるので、当該断層画像をそのまま表示させてもよい。
[作用・効果]
以上のような眼底観察装置1の作用及び効果について説明する。
眼底観察装置1は、眼底Efの断層画像を形成する機能と、眼底画像Ef′を撮影する機能とを具備する。更に、眼底観察装置1は、断層画像中の血管領域と眼底画像Ef′中の血管領域をそれぞれ特定し、これらの血管領域の共通領域を求め、この共通領域に相当する断層画像中の領域を特定するように作用する。
このような眼底観察装置1によれば、断層画像中の血管領域のうち、眼底画像Ef′と共通の血管領域を特定できるので、双方の画像を基に従来よりも高い確度で断層画像中の血管領域を特定することが可能である。
また、複数の断層画像から3次元画像を形成する場合に、各断層画像に当該処理を施すことにより、3次元画像中の血管領域をより高い確度で特定することができる。
また、共通領域に相当する領域を視認可能とするように断層画像を表示できるので、断層画像中における血管領域の位置を高確度で呈示できる。
また、眼底観察装置1によれば、眼底画像Ef′と共通の血管領域における層位置を、その近傍の層位置に基づいて求めることができる。したがって、血管領域の層位置をより高い確度で求めることができる。更に、このようにして求められた層位置に基づいて、当該血管領域における層厚を求めるように作用するので、血管領域における層厚をより高い確度で求めることができる。
[変形例]
以上に説明した構成は、この発明に係る光画像計測装置を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。
〔変形例1〕
上記実施形態の眼底観察装置1は、眼底の断層画像を形成する機能と、眼底画像を撮影する機能の双方を有しているが、これらの機能の一方のみを有する構成を採用することも可能である。
たとえば、眼底の断層画像を形成する機能のみを有する構成においては、外部装置により撮影された眼底画像を受け付ける手段(受付手段)が別途設けられる。
受付手段の例としては、外部装置との間のデータ通信を司るネットワークアダプタがある。この受付手段は、たとえば画像データベースや眼底カメラと通信可能に構成される。画像データベースには、眼底カメラ等により撮影された眼底画像が保管されている。受付手段は、画像データベースにアクセスして眼底画像をネットワーク経由で取得する。また、眼底カメラ等から直接に眼底画像を受け付ける場合、受付手段は、眼底カメラ等から送信された眼底画像をネットワーク経由で受信する。
受付手段の他の例としては、記録媒体に記録された情報を読み取る読取装置(ドライブ装置など)を適用できる。記録媒体としては、後述の光ディスク、光磁気ディスク、磁気記憶媒体などがある。記録媒体には、眼底カメラ等により撮影された眼底画像が事前に記録される。受付手段は、この眼底画像を記録媒体から読み取って眼底観察装置に入力する。
この眼底観察装置は、上記実施形態と同様に、断層画像中の血管領域を特定する第1の特定手段と、眼底画像中の血管領域を特定する第2の特定手段とを有する。また、この眼底観察装置は、断層画像中の血管領域と眼底画像中の血管領域との共通領域を求め、共通領域に相当する前記断層画像中の領域を特定する画像処理手段を有する。更に、この眼底観察装置は、表示手段と、共通領域に相当する領域を視認可能とするように断層画像を表示手段に表示させる制御手段とを備える。
このような眼底観察装置によれば、上記の実施形態と同様に、断層画像中の血管領域のうち、眼底画像と共通の血管領域を特定できるので、双方の画像を基に従来よりも高い確度で断層画像中の血管領域を特定することが可能である。また、共通領域に相当する領域を視認可能とするように断層画像を表示できるので、断層画像中における血管領域の位置を高確度で呈示できる。
一方、眼底画像を形成する機能のみを有する構成においては、外部装置により撮影された断層画像を受け付ける手段(受付手段)が別途設けられる。受付手段は、上記の例と同様に、ネットワークアダプタや読取装置によって構成される。
この眼底観察装置も、上記実施形態と同様に、断層画像中の血管領域を特定する第1の特定手段と、眼底画像中の血管領域を特定する第2の特定手段と、断層画像中の血管領域と眼底画像中の血管領域との共通領域を求め、共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、表示手段と、共通領域に相当する領域を視認可能とするように断層画像を表示手段に表示させる制御手段とを備える。
このような眼底観察装置によれば、上記の実施形態と同様に、断層画像中の血管領域のうち、眼底画像と共通の血管領域を特定できるので、双方の画像を基に従来よりも高い確度で断層画像中の血管領域を特定することが可能である。また、共通領域に相当する領域を視認可能とするように断層画像を表示できるので、断層画像中における血管領域の位置を高確度で呈示できる。
〔変形例2〕
上記実施形態の眼底観察装置1は、眼底画像Ef′と共通の血管領域を断層画像中から消去し、その領域に新たな層位置の画像(推定された層位置の画像)を付加するようになっているが、当該血管領域を消去する必要はない。
たとえば、当該血管領域上に新たな層位置の画像を重畳することができる。この場合、新たな層位置の画像を見やすいように提示することが望ましい。
なお、新たな層位置の求め方は、上記実施形態と同様の手法を適用することが可能である。また、この変形例の構成を上記変形例1に適用することも可能である。また、上記実施形態と同様に、眼底の層厚を求める構成を設けることもできる。
〔その他の変形例〕
上記の実施形態においては、参照ミラー174の位置を変更して信号光LSの光路と参照光LRの光路との光路長差を変更しているが、光路長差を変更する手法はこれに限定されるものではない。たとえば、被検眼Eに対して眼底カメラユニット1A及びOCTユニット150を一体的に移動させて信号光LSの光路長を変更することにより光路長差を変更することができる。また、特に被測定物体が生体でない場合には、被測定物体を深度方向(z方向)に移動させることにより光路長差を変更することもできる。
[眼底画像処理装置]
この発明に係る眼底画像処理装置の実施形態を説明する。
眼底画像処理装置の例を図16に示す。眼底画像処理装置300は、LAN等の通信回線を介して、画像データベース800や眼科画像形成装置900と通信可能に接続されている。
画像データベース800は、少なくとも眼科分野における各種の画像を保管し管理している。画像データベース800は、たとえばDICOM(Digital Imaging and Communications in Medicine)規格に準拠している。画像データベース800の具体例としては、PACS(Picture Archiving and Communications System)等の医用画像ファイリングシステムや、電子カルテシステムなどがある。画像データベース800は、眼底画像処理装置300の要求を受けて画像を配信する。なお、上記変形例の画像データベースは、この画像データベース800と同様のものである。
眼科画像形成装置900は、眼科分野にて用いられる各種の画像形成装置の総称である。眼科画像形成装置900は、特に眼底の画像を形成する。眼科画像形成装置900の具体例としては、眼底の断層画像や3次元画像を形成する光画像計測装置(OCT装置)や、眼底表面の2次元画像を撮影する眼底カメラなどがある。眼科画像形成装置900は、形成された画像を眼底画像処理装置300に送信する。このとき、眼科画像形成装置900は、形成された画像を一旦保管しておき、眼底画像処理装置300からの要求に応じて送信するものであってもよいし、要求の有無に関係なく画像を送信するものであってもよい。また、眼科画像形成装置900は、通信回線を介して画像データベース800に接続されていてもよい。この場合、眼底画像処理装置300は、画像データベース800を経由して、眼科画像形成装置900が形成した画像の提供を受けることができる。
眼底画像処理装置300は、たとえば、汎用のコンピュータにより構成される。上記実施形態の演算制御装置200とほぼ同様の構成を有する。
眼底画像処理装置300には、演算制御装置200の制御部210と同様の制御部310が設けられている。制御部310には、主制御部311と記憶部312が設けられている。主制御部311及び記憶部312は、それぞれ主制御部211及び記憶部212と同様に構成され、同様の動作を行う。主制御部211は、この発明の「制御手段」の例である。
画像受付部320は、上記通信回線を介して、画像データベース800や眼科画像形成装置900との間でデータ通信を行う。画像受付部320は、LANカード等のネットワークアダプタを含んで構成される。
なお、画像受付部320は、記録媒体に記録された情報を読み取るドライブ装置等の読取装置であってもよい。この場合、眼底画像処理装置300は、画像データベース800や眼科画像形成装置900と通信回線を介して接続されている必要はない。記録媒体としては、後述の光ディスク、光磁気ディスク、磁気記憶媒体などがある。記録媒体には、画像データベース800に保管されている画像や、眼科画像形成装置900により形成された画像が記録される。画像受付部320は、記録媒体に記録された画像を読み取って制御部310に送る。
このような画像受付部320は、この発明の「受付手段」の例である。
画像処理部330は、演算制御装置200の画像処理部230と同様の機能を有する。画像処理部330には、血管領域特定部231と同様の血管領域特定部331が設けられている。血管領域特定部331には、断層画像処理部332と眼底画像処理部333が設けられている。断層画像処理部332は、この発明の「第1の特定手段」の例であり、演算制御装置200の断層画像解析部232と同様に、眼底の断層画像中の血管領域を特定する。眼底画像処理部333は、この発明の「第2の特定手段」の例であり、演算制御装置200の眼底画像解析部233と同様に、眼底表面の2次元画像(眼底画像)中の血管領域を特定する。
断層画像処理部334は、この発明の「画像処理手段」の例であり、演算制御装置200の断層画像処理部234と同様の機能を有する。断層画像処理部334には、共通領域特定部335、画像消去部336、層位置特定部337及び画像付加部338が設けられている。
共通領域特定部335は、演算制御装置200の共通領域特定部235と同様に、断層画像中の血管領域のうち、眼底画像中の血管領域と共通するもの(共通領域)を特定する。画像消去部336は、演算制御装置200の画像消去部236と同様に、上記共通領域の画像を断層画像中から消去する。層位置特定部337は、演算制御装置200の層位置特定部337と同様に、断層画像を解析して眼底の層位置(層の境界位置)を特定する。特に、層位置特定部337は、共通領域の近傍における層位置の状態に基づいて、共通領域内の層位置を推定する。画像付加部338は、演算制御装置200の画像付加部238と同様に、断層画像中の上記共通領域(画像が消去された領域)に、推定された層位置を表す画像を付加する。
層厚演算部339は、演算制御装置200の層厚演算部239と同様に、断層画像に基づいて眼底の層厚を演算する。特に、層厚演算部239は、層位置を表す画像が付加された上記共通領域については、この層位置の画像に基づいて層厚を演算する。
ユーザインターフェイス(UI)340は、眼底画像処理装置300のコンソールとして用いられ、演算制御装置200のユーザインターフェイス240と同様に、表示デバイスや操作デバイスや入力デバイスを含んで構成される。表示デバイス(上記実施形態の表示部240Aと同様)は、この発明の「表示手段」の例である。
主制御部311は、たとえば、画像受付部320が受け付けた断層画像や眼底画像、血管領域が強調された断層画像や眼底画像、共通領域が強調された断層画像、共通領域が消去された断層画像、層位置を強調した断層画像、層厚の演算結果(層厚グラフや層厚分布画像等)などの各種の情報を表示デバイスに表示させる。
このような眼底画像処理装置300によれば、断層画像中の血管領域のうち、眼底画像と共通の血管領域を特定できるので、双方の画像を基に従来よりも高い確度で断層画像中の血管領域を特定することが可能である。
また、複数の断層画像から3次元画像を形成する場合に、各断層画像に当該処理を施すことにより、3次元画像中の血管領域をより高い確度で特定することができる。
また、眼底画像処理装置300によれば、眼底画像と共通の血管領域における層位置を、その近傍の層位置に基づいて求めることができる。したがって、血管領域の層位置をより高い確度で求めることができる。更に、このようにして求められた層位置に基づいて、当該血管領域における層厚を求めるように作用するので、血管領域における層厚をより高い確度で求めることができる。
なお、この発明に係る眼底観察装置の例として上記実施形態や上記変形例で説明した各種の構成や動作を、眼底画像処理装置300に対して適宜に追加することが可能である。
[プログラム]
この発明に係るプログラムは、眼底の断層画像及び眼底表面の2次元画像(眼底画像)を記憶するコンピュータを制御するためのプログラムである。このコンピュータは、表示手段を備えるものとする。上記実施形態の制御プログラム204aは、この発明に係るプログラムの例である。
この発明に係るプログラムは、コンピュータを次の各手段として機能させる:(1)眼底の断層画像中の血管領域を特定する第1の特定手段;(2)眼底画像中の血管領域を特定する第2の特定手段;(3)断層画像中の血管領域と2次元画像中の血管領域との共通領域を求め、共通領域に相当する断層画像中の領域を特定する画像処理手段;(4)共通領域に相当する領域を視認可能とするように断層画像を表示手段に表示させる制御手段。
このようなプログラムにより制御されるコンピュータによれば、断層画像中の血管領域のうち、眼底画像と共通の血管領域を特定できるので、双方の画像を基に従来よりも高い確度で断層画像中の血管領域を特定することが可能である。
この発明に係るプログラムを、コンピュータのドライブ装置によって読み取り可能な任意の記録媒体に記憶させることができる。そのような記録媒体としては、たとえば、光ディスク、光磁気ディスク(CD−ROM/DVD−RAM/DVD−ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)、USB(Universal Serial Bus)メモリなどがある。また、ハードディスクドライブやメモリなど、コンピュータに搭載された記憶装置に記憶させることも可能である。更に、インターネットやLAN等のネットワークを通じてこのプログラムを送信することも可能である。
この発明に係る眼底観察装置の実施形態の全体構成の一例を表す概略構成図である。 この発明に係る眼底観察装置の実施形態における眼底カメラユニットに内蔵される走査ユニットの構成の一例を表す概略構成図である。 この発明に係る眼底観察装置の実施形態におけるOCTユニットの構成の一例を表す概略構成図である。 この発明に係る眼底観察装置の実施形態における演算制御装置のハードウェア構成の一例を表す概略ブロック図である。 この発明に係る眼底観察装置の実施形態の制御系の構成の一例を表す概略ブロック図である。 この発明に係る眼底観察装置の実施形態の制御系の構成の一例を表す概略ブロック図である。 この発明に係る眼底観察装置の実施形態により形成される断層画像の態様の一例を表す概略図である。 この発明に係る眼底観察装置の実施形態による断層画像中の血管領域を特定する処理の一例を説明するための概略説明図である。 この発明に係る眼底観察装置の実施形態により撮影される眼底画像の態様の一例を表す概略図である。 この発明に係る眼底観察装置の実施形態による断層画像中の層位置を推定する処理の一例を説明するための概略説明図である。 この発明に係る眼底観察装置の実施形態による断層画像中の層位置を推定する処理の一例を説明するための概略説明図である。 この発明に係る眼底観察装置の実施形態による断層画像中の層位置を推定する処理の一例を説明するための概略説明図である。 この発明に係る眼底観察装置の実施形態による信号光の走査態様の一例を表す概略図である。図13(A)は、被検眼に対する信号光の入射側から眼底を見たときの信号光の走査態様の一例を表している。また、図13(B)は、各走査線上の走査点の配列態様の一例を表している。 この発明に係る眼底観察装置の実施形態による信号光の走査態様、及び、各走査線に沿って形成される断層画像の態様の一例を表す概略図である。 この発明に係る眼底観察装置の実施形態の使用形態の一例を表すフローチャートである。 この発明に係る眼底画像処理装置の実施形態の構成の一例を表す概略ブロック図である。
符号の説明
1 眼底観察装置(光画像計測装置)
1A 眼底カメラユニット
141 走査ユニット
150 OCTユニット
160 低コヒーレンス光源
174 参照ミラー
180 スペクトロメータ
184 CCD
200 演算制御装置
210 制御部
211 主制御部
220 画像形成部
230 画像処理部
231 血管領域特定部
232 断層画像解析部
233 眼底画像解析部
234 断層画像処理部
235 共通領域特定部
236 画像消去部
237 層位置特定部
238 画像付加部
239 層厚演算部
240 ユーザインターフェイス
240A 表示部
240B 操作部

Claims (12)

  1. 低コヒーレンス光を信号光と参照光とに分割し、眼底を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成し、前記干渉光を検出して前記眼底の断層画像を形成する眼底観察装置であって、
    前記眼底に照明光を照射し、前記照明光の眼底反射光を検出して前記眼底の表面の2次元画像を撮影する撮影手段と、
    前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、
    前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、
    前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、
    表示手段と、
    前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、
    を備えることを特徴とする眼底観察装置。
  2. 低コヒーレンス光を信号光と参照光とに分割し、眼底を経由した前記信号光と参照物体を経由した参照光とを重畳させて干渉光を生成し、前記干渉光を検出して前記眼底の断層画像を形成する眼底観察装置であって、
    前記眼底の表面の2次元画像を受け付ける受付手段と、
    前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、
    前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、
    前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、
    表示手段と、
    前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、
    を備えることを特徴とする眼底観察装置。
  3. 眼底に照明光を照射し、前記照明光の眼底反射光を検出して前記眼底の表面の2次元画像を撮影する眼底観察装置であって、
    前記眼底の断層画像を受け付ける受付手段と、
    前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、
    前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、
    前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、
    表示手段と、
    前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、
    を備えることを特徴とする眼底観察装置。
  4. 前記画像処理手段は、前記共通領域に相当する前記断層画像中の領域の画像を消去する、
    ことを特徴とする請求項1〜請求項3のいずれか一項に記載の眼底観察装置。
  5. 前記画像処理手段は、前記断層画像を解析して前記共通領域の近傍領域における前記眼底の層位置を特定し、前記近傍領域の層位置に基づいて、前記共通領域に相当する領域に層位置を表す画像を付加する、
    ことを特徴とする請求項4に記載の眼底観察装置。
  6. 前記画像処理手段は、前記断層画像を解析して前記共通領域の近傍領域における前記眼底の層位置を特定し、前記近傍領域の層位置に基づいて、前記共通領域に相当する前記断層画像中の領域に層位置を表す画像を付加する、
    ことを特徴とする請求項1〜請求項3のいずれか一項に記載の眼底観察装置。
  7. 前記画像処理手段は、前記近傍領域内の画素の画素値に基づいて層の境界領域を前記層位置として特定し、前記境界領域の形態に基づいて前記共通領域における層の境界位置を推定し、前記推定された境界位置を表す画像を前記層位置を表す画像として付加する、
    ことを特徴とする請求項5又は請求項6に記載の眼底観察装置。
  8. 前記画像処理手段は、前記共通領域の両側のそれぞれの近傍領域について、当該近傍領域と前記共通領域との境界における層の境界領域の位置を求め、前記両側の位置を結ぶ直線上の位置を前記境界位置として推定し、前記境界位置を表す画像として前記直線を付加する、
    ことを特徴とする請求項7に記載の眼底観察装置。
  9. 前記画像処理手段は、前記共通領域の両側のそれぞれの近傍領域について、当該近傍領域と前記共通領域との境界における層の境界領域の位置及び傾きを求め、当該位置及び傾きに基づいて前記両側の位置を結ぶスプライン曲線上の位置を前記境界位置として推定し、前記境界位置を表す画像として前記スプライン曲線を付加する、
    ことを特徴とする請求項7に記載の眼底観察装置。
  10. 前記層位置を表す画像に基づいて前記共通領域における前記眼底の層厚を演算する演算手段を備える、
    ことを特徴とする請求項5〜請求項9のいずれか一項に記載の眼底観察装置。
  11. 眼底の断層画像及び前記眼底の表面の2次元画像を受け付ける受付手段と、
    前記断層画像を解析して前記断層画像中の血管領域を特定する第1の特定手段と、
    前記2次元画像を解析して前記2次元画像中の血管領域を特定する第2の特定手段と、
    前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段と、
    表示手段と、
    前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段と、
    を備えることを特徴とする眼底画像処理装置。
  12. 表示手段を有し、眼底の断層画像及び前記眼底の表面の2次元画像を記憶するコンピュータを、
    前記断層画像中の血管領域を特定する第1の特定手段、
    前記2次元画像中の血管領域を特定する第2の特定手段、
    前記断層画像中の血管領域と前記2次元画像中の血管領域との共通領域を求め、前記共通領域に相当する前記断層画像中の領域を特定する画像処理手段、及び、
    前記共通領域に相当する領域を視認可能とするように前記断層画像を表示手段に表示させる制御手段として機能させる、
    ことを特徴とするプログラム。
JP2007233703A 2007-09-10 2007-09-10 眼底観察装置、眼底画像処理装置及びプログラム Active JP4940069B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007233703A JP4940069B2 (ja) 2007-09-10 2007-09-10 眼底観察装置、眼底画像処理装置及びプログラム
PCT/JP2008/002481 WO2009034705A1 (ja) 2007-09-10 2008-09-09 眼底観察装置、眼底画像処理装置及びプログラム
EP08830945.5A EP2189110B1 (en) 2007-09-10 2008-09-09 Eyeground observing device, eyeground image processing device, and program
US12/733,559 US20100189334A1 (en) 2007-09-10 2008-09-09 Fundus oculi observation device, fundus oculi image processing device, and fundus oculi observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233703A JP4940069B2 (ja) 2007-09-10 2007-09-10 眼底観察装置、眼底画像処理装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2009061203A true JP2009061203A (ja) 2009-03-26
JP4940069B2 JP4940069B2 (ja) 2012-05-30

Family

ID=40451725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233703A Active JP4940069B2 (ja) 2007-09-10 2007-09-10 眼底観察装置、眼底画像処理装置及びプログラム

Country Status (4)

Country Link
US (1) US20100189334A1 (ja)
EP (1) EP2189110B1 (ja)
JP (1) JP4940069B2 (ja)
WO (1) WO2009034705A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200920A (ja) * 2009-03-02 2010-09-16 Canon Inc 画像処理装置及びその制御方法
JP2010200918A (ja) * 2009-03-02 2010-09-16 Canon Inc 画像処理装置及びその制御方法
WO2010140476A1 (en) 2009-06-02 2010-12-09 Canon Kabushiki Kaisha Image processing apparatus, control method thereof, and computer program
WO2011013314A1 (ja) 2009-07-29 2011-02-03 株式会社トプコン 眼科観察装置
JP2011120657A (ja) * 2009-12-08 2011-06-23 Canon Inc 画像処理装置、画像処理方法、及びプログラム
JP2011120656A (ja) * 2009-12-08 2011-06-23 Canon Inc 画像処理装置及び画像処理方法
JP2012120885A (ja) * 2012-03-21 2012-06-28 Canon Inc 画像処理装置、画像処理方法
JP2012148141A (ja) * 2012-04-27 2012-08-09 Canon Inc 画像処理装置及び画像処理方法
US8442286B2 (en) 2008-10-17 2013-05-14 Canon Kabushiki Kaisha Image processing apparatus and image processing method for a tomogram of an eye region
JP2013116426A (ja) * 2013-03-22 2013-06-13 Canon Inc 画像処理装置、画像処理方法
JP2013153880A (ja) * 2012-01-27 2013-08-15 Canon Inc 画像処理システム、処理方法及びプログラム
WO2014020966A1 (ja) * 2012-07-30 2014-02-06 株式会社トプコン 眼底解析装置、眼底解析プログラム及び眼底解析方法
WO2014084231A1 (ja) 2012-11-30 2014-06-05 株式会社トプコン 眼底撮影装置
EP2835097A1 (en) 2013-08-08 2015-02-11 Kabushiki Kaisha TOPCON Ophthalmologic imaging apparatus
WO2015019865A1 (ja) 2013-08-08 2015-02-12 株式会社トプコン 患者管理システムおよび患者管理サーバ
WO2015019867A1 (ja) 2013-08-08 2015-02-12 株式会社トプコン 眼科撮影装置
US9113779B2 (en) 2010-08-30 2015-08-25 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program recording medium
WO2017030058A1 (ja) * 2015-08-19 2017-02-23 興和株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP2018020179A (ja) * 2017-10-04 2018-02-08 キヤノン株式会社 眼科装置、層厚比較方法およびプログラム
US10238278B2 (en) 2014-04-07 2019-03-26 Kabushiki Kaisha Topcon Ophthalmic information system and ophthalmic information processing server
US10383511B2 (en) 2009-07-14 2019-08-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program
JP2020028786A (ja) * 2019-11-29 2020-02-27 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850892B2 (ja) * 2008-12-19 2012-01-11 キヤノン株式会社 眼底画像表示装置及びその制御方法、コンピュータプログラム
JP4850927B2 (ja) * 2009-06-02 2012-01-11 キヤノン株式会社 画像処理装置、画像処理方法及びコンピュータプログラム
JP2011078447A (ja) * 2009-10-02 2011-04-21 Fujifilm Corp 光構造観察装置、その構造情報処理方法及び光構造観察装置を備えた内視鏡装置
JP5733962B2 (ja) * 2010-02-17 2015-06-10 キヤノン株式会社 眼科装置、眼科装置の制御方法、及びプログラム
US9361667B2 (en) * 2010-08-27 2016-06-07 Sony Corporation Image processing apparatus and method
JP5127897B2 (ja) 2010-08-27 2013-01-23 キヤノン株式会社 眼科用画像処理装置及びその方法
JP5693101B2 (ja) 2010-08-30 2015-04-01 キヤノン株式会社 画像処理装置及び画像処理方法
JP5588291B2 (ja) * 2010-09-29 2014-09-10 キヤノン株式会社 情報処理装置、情報処理方法、情報処理システム、及びプログラム
JP5701024B2 (ja) 2010-11-26 2015-04-15 キヤノン株式会社 画像処理装置及び方法
JP5794664B2 (ja) * 2011-01-20 2015-10-14 キヤノン株式会社 断層画像生成装置及び断層画像生成方法
CA2825213A1 (en) * 2011-01-28 2012-08-02 Optovue, Inc. Computer-aided diagnosis of retinal pathologies using frontal en-face views of optical coherence tomography
US9986909B2 (en) * 2011-02-25 2018-06-05 Canon Kabushiki Kaisha Image processing apparatus and image processing system for displaying information about ocular blood flow
US8433393B2 (en) 2011-07-07 2013-04-30 Carl Zeiss Meditec, Inc. Inter-frame complex OCT data analysis techniques
JP5912358B2 (ja) * 2011-09-14 2016-04-27 株式会社トプコン 眼底観察装置
US9357916B2 (en) * 2012-05-10 2016-06-07 Carl Zeiss Meditec, Inc. Analysis and visualization of OCT angiography data
US9778021B2 (en) 2013-08-29 2017-10-03 Carl Zeiss Meditec, Inc. Evaluation of optical coherence tomographic data prior to segmentation
JP2015085044A (ja) * 2013-10-31 2015-05-07 株式会社ニデック 眼科撮影装置、眼科撮影システム、及び眼科撮影プログラム
US10398302B2 (en) 2014-05-02 2019-09-03 Carl Zeiss Meditec, Inc. Enhanced vessel characterization in optical coherence tomograogphy angiography
DE102014113901A1 (de) * 2014-09-25 2016-03-31 Carl Zeiss Meditec Ag Verfahren zur Korrektur eines OCT-Bildes und Kombinationsmikroskop
US10002446B2 (en) 2015-04-15 2018-06-19 Canon Kabushiki Kaisha Image processing apparatus and method of operation of the same
JP6627342B2 (ja) * 2015-09-04 2020-01-08 株式会社ニデック Octモーションコントラストデータ解析装置、octモーションコントラストデータ解析プログラム。
WO2017050863A1 (en) 2015-09-24 2017-03-30 Carl Zeiss Meditec, Inc. Methods for high sensitivity flow visualization
US10896490B2 (en) * 2016-12-23 2021-01-19 Oregon Health & Science University Systems and methods for reflectance-based projection-resolved optical coherence tomography angiography
US11141060B2 (en) 2019-01-16 2021-10-12 Topcon Corporation Ophthalmologic apparatus and method of controlling the same
US11439301B2 (en) 2019-01-16 2022-09-13 Topcon Corporation Ophthalmologic information processing apparatus, ophthalmologic apparatus and ophthalmologic information processing method
US11134836B2 (en) * 2019-01-16 2021-10-05 Topcon Corporation Ophthalmologic information processing apparatus, ophthalmologic apparatus and ophthalmologic information processing method
JP7076622B1 (ja) 2021-10-26 2022-05-27 テクノエイト株式会社 プレス部品の組付方法、及びプレス部品一体成形品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022045A1 (ja) * 2004-08-26 2006-03-02 National University Corporation Nagoya University 光干渉断層装置
JP2007130403A (ja) * 2005-10-12 2007-05-31 Topcon Corp 光画像計測装置、光画像計測プログラム、眼底観察装置及び眼底観察プログラム
JP2007185244A (ja) * 2006-01-11 2007-07-26 Topcon Corp 光画像計測装置
JP2007185243A (ja) * 2006-01-11 2007-07-26 Topcon Corp 眼底観察装置
JP2007325831A (ja) * 2006-06-09 2007-12-20 Topcon Corp 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
JP2008073099A (ja) * 2006-09-19 2008-04-03 Topcon Corp 眼底観察装置、眼底画像表示装置及び眼底観察プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301644B2 (en) * 2004-12-02 2007-11-27 University Of Miami Enhanced optical coherence tomography for anatomical mapping
ES2374069T3 (es) * 2006-01-19 2012-02-13 Optovue, Inc. Método de examen del ojo por tomografía de coherencia óptica.
EP1881453A3 (en) * 2006-07-18 2009-07-22 Kabushiki Kaisha Toshiba A medical image-processing apparatus and a method for processing medical images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022045A1 (ja) * 2004-08-26 2006-03-02 National University Corporation Nagoya University 光干渉断層装置
JP2007130403A (ja) * 2005-10-12 2007-05-31 Topcon Corp 光画像計測装置、光画像計測プログラム、眼底観察装置及び眼底観察プログラム
JP2007185244A (ja) * 2006-01-11 2007-07-26 Topcon Corp 光画像計測装置
JP2007185243A (ja) * 2006-01-11 2007-07-26 Topcon Corp 眼底観察装置
JP2007325831A (ja) * 2006-06-09 2007-12-20 Topcon Corp 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
JP2008073099A (ja) * 2006-09-19 2008-04-03 Topcon Corp 眼底観察装置、眼底画像表示装置及び眼底観察プログラム

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053536B2 (en) 2008-10-17 2015-06-09 Canon Kabushiki Kaisha Image processing apparatus and image processing method for a tomogram of an eye region
US8442286B2 (en) 2008-10-17 2013-05-14 Canon Kabushiki Kaisha Image processing apparatus and image processing method for a tomogram of an eye region
JP2010200918A (ja) * 2009-03-02 2010-09-16 Canon Inc 画像処理装置及びその制御方法
JP2010200920A (ja) * 2009-03-02 2010-09-16 Canon Inc 画像処理装置及びその制御方法
WO2010140476A1 (en) 2009-06-02 2010-12-09 Canon Kabushiki Kaisha Image processing apparatus, control method thereof, and computer program
JP2010279439A (ja) * 2009-06-02 2010-12-16 Canon Inc 画像処理装置及びその制御方法、コンピュータプログラム
US9430825B2 (en) 2009-06-02 2016-08-30 Canon Kabushiki Kaisha Image processing apparatus, control method, and computer readable storage medium for analyzing retina layers of an eye
CN102458225A (zh) * 2009-06-02 2012-05-16 佳能株式会社 图像处理设备及其控制方法和计算机程序
US10383511B2 (en) 2009-07-14 2019-08-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program
US8724870B2 (en) 2009-07-29 2014-05-13 Kabushiki Kaisha-Topcon Ophthalmic observation apparatus
WO2011013314A1 (ja) 2009-07-29 2011-02-03 株式会社トプコン 眼科観察装置
US9089280B2 (en) 2009-12-08 2015-07-28 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program storage medium
JP2011120657A (ja) * 2009-12-08 2011-06-23 Canon Inc 画像処理装置、画像処理方法、及びプログラム
JP2011120656A (ja) * 2009-12-08 2011-06-23 Canon Inc 画像処理装置及び画像処理方法
US9113779B2 (en) 2010-08-30 2015-08-25 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program recording medium
JP2013153880A (ja) * 2012-01-27 2013-08-15 Canon Inc 画像処理システム、処理方法及びプログラム
JP2012120885A (ja) * 2012-03-21 2012-06-28 Canon Inc 画像処理装置、画像処理方法
JP2012148141A (ja) * 2012-04-27 2012-08-09 Canon Inc 画像処理装置及び画像処理方法
WO2014020966A1 (ja) * 2012-07-30 2014-02-06 株式会社トプコン 眼底解析装置、眼底解析プログラム及び眼底解析方法
JP2014023867A (ja) * 2012-07-30 2014-02-06 Topcon Corp 眼底解析装置、眼底解析プログラム及び眼底解析方法
WO2014084231A1 (ja) 2012-11-30 2014-06-05 株式会社トプコン 眼底撮影装置
JP2013116426A (ja) * 2013-03-22 2013-06-13 Canon Inc 画像処理装置、画像処理方法
WO2015019867A1 (ja) 2013-08-08 2015-02-12 株式会社トプコン 眼科撮影装置
WO2015019865A1 (ja) 2013-08-08 2015-02-12 株式会社トプコン 患者管理システムおよび患者管理サーバ
EP2835097A1 (en) 2013-08-08 2015-02-11 Kabushiki Kaisha TOPCON Ophthalmologic imaging apparatus
EP4039171A1 (en) 2013-08-08 2022-08-10 Kabushiki Kaisha Topcon Ophthalmologic imaging apparatus
US10238278B2 (en) 2014-04-07 2019-03-26 Kabushiki Kaisha Topcon Ophthalmic information system and ophthalmic information processing server
WO2017030058A1 (ja) * 2015-08-19 2017-02-23 興和株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP2018020179A (ja) * 2017-10-04 2018-02-08 キヤノン株式会社 眼科装置、層厚比較方法およびプログラム
JP2020028786A (ja) * 2019-11-29 2020-02-27 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム

Also Published As

Publication number Publication date
US20100189334A1 (en) 2010-07-29
EP2189110B1 (en) 2022-02-23
EP2189110A1 (en) 2010-05-26
EP2189110A4 (en) 2016-07-27
WO2009034705A1 (ja) 2009-03-19
JP4940069B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4940069B2 (ja) 眼底観察装置、眼底画像処理装置及びプログラム
JP4940070B2 (ja) 眼底観察装置、眼科画像処理装置及びプログラム
JP4896794B2 (ja) 光画像計測装置、それを制御するプログラム及び光画像計測方法
JP4971863B2 (ja) 光画像計測装置
JP5101975B2 (ja) 眼底観察装置及び眼底画像処理装置
JP5231085B2 (ja) 眼科情報処理装置及び眼科検査装置
JP4971864B2 (ja) 光画像計測装置及びそれを制御するプログラム
JP5117787B2 (ja) 光画像計測装置
JP5192250B2 (ja) 眼底観察装置
JP5138977B2 (ja) 光画像計測装置
JP4971872B2 (ja) 眼底観察装置及びそれを制御するプログラム
JP4921201B2 (ja) 光画像計測装置及び光画像計測装置を制御するプログラム
JP4855150B2 (ja) 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
JP5058627B2 (ja) 眼底観察装置
JP4996918B2 (ja) 光画像計測装置及び光画像計測装置を制御するプログラム
JP4869756B2 (ja) 眼底観察装置
JP2016140518A (ja) 断層撮像装置、断層撮像方法、およびプログラム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4940069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250