JP2009059443A - 光ピックアップ、光ディスク装置及び光学素子 - Google Patents

光ピックアップ、光ディスク装置及び光学素子 Download PDF

Info

Publication number
JP2009059443A
JP2009059443A JP2007227250A JP2007227250A JP2009059443A JP 2009059443 A JP2009059443 A JP 2009059443A JP 2007227250 A JP2007227250 A JP 2007227250A JP 2007227250 A JP2007227250 A JP 2007227250A JP 2009059443 A JP2009059443 A JP 2009059443A
Authority
JP
Japan
Prior art keywords
light beam
incident
optical
light
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227250A
Other languages
English (en)
Other versions
JP4861934B2 (ja
Inventor
Kunikazu Onishi
邦一 大西
Kenichi Shimada
堅一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP2007227250A priority Critical patent/JP4861934B2/ja
Publication of JP2009059443A publication Critical patent/JP2009059443A/ja
Application granted granted Critical
Publication of JP4861934B2 publication Critical patent/JP4861934B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

【課題】2層ディスクへの記録または再生において、記録再生対象層以外の他層からの反射光が、不要光として光検出器の受光面上で信号光と干渉し、結果的に検出信号に大きな変動成分やノイズ成分を重畳してしまい、光ピックアップの性能が十分に確保できない。
【解決手段】
復路光路中に、高感度の光線進行角度選択性を備えた第1の不要光除去光学素子と、光軸近傍の微小領域にのみ遮光帯を設けた第2の不要光除去光学素子を配置する。これにより、不要光ビームだけを選択的に受光面上からほぼ完全に除去することができる。信号再生光の品質および光利用効率をほとんど低下させず、高い信頼性を備えた光ピックアップ及び光ディスク装置を提供できる。
【選択図】図1

Description

本発明は、光ディスクに記録された情報を再生する光ピックアップ及びそれを搭載した光ディスク装置に関する。
本技術分野の背景技術としては、例えば、下記特許文献1がある。特許文献1には、「片面に複数の記録層を持つ複数層光ディスクの記録及び/または再生時、隣接層による干渉光を抑制できて、DPPにより検出されたトラッキングエラー信号の揺れを改善できる光ピックアップを提供する。」と記載されている。
特開2005−203090号公報
光ディスクシステムにおいては、記録容量の増加を図るために、信号記録面を2層化した2層ディスクが存在する。例えばDVDにおいては、DVD−RやDVD−RWにて2層ディスクが存在し、単層の光ディスクの容量に対して約2倍の容量を実現している。また、Blu−ray Disc(以下BDと記す。)や、HD−DVD Disc(以下HDと記す。)と呼ばれる高密度記録の光ディスクシステムにおいても同様に2層ディスクが存在する。
光ディスク装置に搭載される光ピックアップにおいては、光ディスクからの反射光を用いることにより、対物レンズのフォーカス方向やトラッキング方向のサーボ制御用の信号としている。そのため、信号に用いるべき反射光に不要な光が加わってしまうと、信号検出に不具合が生じてしまう。
特に、レーザ光源から出射される光ビームを0次光及び±1次光の少なくとも3つの光ビームに分岐して光ディスク上に照射し、光ディスクからの反射光を光検出器にて受光する光ピックアップにおいては、2層ディスクの再生動作を行った場合に、他層からの反射光が不要光成分となり、トラッキング信号の外乱成分となってしまうという課題がある。
このような課題に対して上記特許文献1では、当該信号再生層以外の隣接層からの不要光が光検出器に受光されることを抑制する目的で、所定の光学部材を対物レンズ直下に配置する手段が開示されている。しかしながらこの開示手段では、干渉光が光検出器に受光されることを防ぐため、隣接層からの不要光のみならず、肝心の信号再生光の一部までもが光検出器で受光できなくなってしまう。その結果、再生信号の品質劣化や信号再生時の光利用効率の低下などの弊害が免れないという課題がある。
本発明は、以上の状況を踏まえ、信号再生層以外の隣接層からの不要光を良好に抑制する一方で、信号再生光の品質および光利用効率をほとんど低下させず、高い信頼性を備えた光ピックアップ及び光ディスク装置を提供することを目的とする。
上記目的は、例えば、特許請求の範囲に記載の発明により達成できる。
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次のとおりである。
本発明の光ピックアップでは、再生のために対物レンズにて焦点合わせさせている記録層以外の記録層で反射する光ビームが、光検出器の受光面に入射されないように、対物レンズと光検出器との間に光学素子を配置する。
光学素子としては、入射面に対して所定の入射角度αで入射した所定の波長を有する光ビームを、所定の回折効率ηで所定の回折角度方向へ回折させる機能と、前記入射角度αに対して所定の微小角度誤差±δ以上ずれた入射角で前記入射面に入射した光ビームを、所定の透過率Tでそのまま透過させる機能とを有する光学素子が好ましい。
また、光学素子として、入射される光ビームの中心光軸を含む所定の領域内に入射した光ビームを反射又は吸収させ、前記所定の領域外に入射した光ビームを、そのまま透過させる機能を備える部分遮光フィルタ素子を用いてもよい。
本発明によれば、高い信頼性を備えた光ピックアップ及び光ディスク装置を提供することが可能になる。
本発明を実施するための具体的構成につき、以下に説明する。
以下、本発明の実施例1として、光ピックアップの構成について図面を参照しながら説明する。図1は本発明の一実施例である光ピックアップ20の光学系構成を示す概略図である。図1において、1は例えば波長405nm帯のレーザ光ビームを出射する半導体レーザ光源である。
半導体レーザ光源1より出射した光ビームは、直後に回折格子2に至る。ここで回折格子2は、入射光ビームを0次光および±1次回折光の3本の光ビームに分離する。なおこの回折格子2以降の光路では、事実上3本の光ビームが進行しているが、本明細書では簡単のために、原則としてメインの0次光ビームのみに限定して説明を進める。
また実際の光ピックアップでは、後述するようにフロントモニタ5によって半導体レーザ1の発光強度をモニタする必要がある。そのため、半導体レーザ光源1を出射し回折格子2で3本の光ビームに分離される往路光ビームは、後述するように全光量を対物レンズ7に向かわすわけではなく、一部の光量をフロントモニタ5に入射させる必要がある。そこで、往路光ビームには、紙面に対して完全に垂直のS偏光成分だけではなく、紙面に対してほぼ平行なP偏光成分もわずかに残している。
このように、半導体レーザ光源を出射した光ビームの偏光成分を調整するには、例えば半導体レーザ光源1自体を光軸回りにわずかに回転させて取り付けるか、レーザ光源1の直後に2分の1波長板のように光ビームの偏光方向を変換できる機能を備えた光学素子を配置すればよい。しかしながら、本発明は係る構成に限定されるものではなく、このような偏光方向変換素子が搭載されていない光ピックアップに対しても、本発明は充分適応可能である。したがって図1においては、2分の1波長板のような偏光方向変換素子は特に図示せず、またこれ以上の詳細な説明も省略する。
次に、2分の1波長板2を出射した光ビームは、PBSプリズム3に至る。PBSプリズム3は、入射した光ビームのS偏光成分をほぼ100%反射し、P偏光成分をほぼ100%透過する機能を備えた光学素子である。そのため、PBSプリズム3に到達した光ビームは、その光量のほとんどが入射方向に対して90°方向に反射することとなり、残ったわずかな光量(P偏光成分)だけが、PBSプリズム3を透過し、光ビームの光量をモニタするためのフロントモニタ5に至る。
一方、PBSプリズム3を反射した光ビームは、コリメートレンズ4によって略平行な光ビームに変換され、4分の1波長板6を透過することにより円偏光に変換された後、対物レンズ7に入射する。対物レンズ7は、405nm帯の光ビームが平行光で入射した場合に、例えばBDのように基板厚さが0.1mmである第1の光ディスク11の情報記録面に対して合焦可能なレンズである。
なお、この対物レンズ7は、駆動コイル9や該駆動コイル9に対向する位置に配置されたマグネット10等から構成されるアクチュエータ8に保持されており、このアクチュエータ8に所定の対物レンズ位置制御信号を供給することにより、対物レンズ7を光ディスク11の半径方向およびディスク面に略垂直な光軸方向に位置調整できる構成になっている。また対物レンズ7を透過した光ビームは、記録時または再生時において、フロントモニタ5により検出した光量を基に、そのディスク照射光強度が制御されている。
次に、光ディスク11を反射した光ビームは、往路光と同様の光路を往路とは逆方向に戻り、対物レンズ7を経て4分の1波長板6に至り、この4分の1波長板6を透過することで往路光の偏光方向(S偏光)に対して直交したP偏光に変換される。その後、このディスク反射光ビームはコリメートレンズ4に通過し、平行光ビームから収束光ビームに変換されて再びPBSプリズム3に到達する。そして往路とは異なり、このPBSプリズム3を約100%の透過率で透過し、検出レンズ12、第1の不要光除去用フィルタ13、第2の不要光除去用フィルタ14を経て、光検出器15内の所定の受光面上に集光され、それぞれ所定の光電変換信号が検出される。
以上概略を述べた光ピックアップの光学系構成のうち、第1の不要光除去用フィルタ13および第2の不要光除去用フィルタ14が、本発明の核心部分であり、その構成、機能および効果については後ほど詳しく説明する。
ところで、前記光検出器15の各受光面(図示せず。)で検出された光電変換信号からは、フォーカス制御信号やトラッキング制御信号など対物レンズ7の位置制御に用いられる信号が生成され、その各制御信号がアクチュエータ8に供給されて対物レンズ7の位置制御が行なわれる。また上記各受光面うち所定の受光面から検出された光電変換信号からは、ディスクに記録されている情報信号なども再生される。
なお、上記のフォーカス制御信号やトラッキング制御信号の検出手段としては、その代表的な方式として、フォーカス制御信号は非点収差方式、トラッキング制御信号は、プッシュプル方式あるいはディファレンシャル・プッシュプル方式などがあり、本実施例の光ピックアップにおいても当然採用可能である。しかしながら、これらのフォーカスまたはトラッキング制御信号検出方式は、いずれも公知の技術であり、かつ本発明の内容とは直接関係しないので、詳しい説明は省略する。
また当然のことながら、本発明は上記のようなフォーカスおよびトラッキング制御信号検出方式に限定されるものではなく、いかなるフォーカスおよびトラッキング制御信号検出方式を採用した光ピックアップでも本発明を適用することができる。
ところで、2層ディスクに情報信号を記録する場合、あるいは逆に情報信号を2層ディスクから再生する場合は、図2(a)および(b)に示すような、2つのケースがある。
すなわち、図2(a)のように、光ディスク11内にあって対物レンズ7に対して遠い側(奥側)にある記録層100(以下この記録層をL0層と記す。)を記録・再生対象層とし、L0層上の点Pに光ビーム50を集光させるケース(以下このケースをケースAと記す。)と、図2(b)のように、対物レンズ7に対して近い側(手前側)にある記録層101(以下この記録層をL1層と記す。)を記録・再生対象層とし、L1層上の点Qに光ビーム50を集光させるケース(以下このケースをケースBと記す。)に分かれる。
いずれのケースにおいても、記録・再生対象層上の所定位置(図2におけるP点またはQ点)に集光した光ビーム50は、各記録・再生対象層を反射し、信号光ビーム51として往路と同じ光路を逆に進行して再び対物レンズ7に達する。そして対物レンズ7を透過後、前記したような復路光路をたどり、最終的に例えば図3に示すように光検出器15内にある所定の受光面70、71、72上に集光し、各々所定の大きさの信号光スポット52,53,54を形成する。
一方、集光ビーム50の一部は、もう一方の記録層(ケースAではL1層101、ケースBではL0層100)を反射し、不要光ビーム61として信号光ビーム51と同じく対物レンズ7に達する。そして従来の光ピックアップでは、この不要光ビーム61も対物レンズ7を透過後、信号光ビーム51と同様の復路光路をたどって、最終的に例えば図4に示すように、光検出器15内にある所定の受光面70、71、72およびその近傍に大きくぼやけた不要光スポット62として照射される。
その結果、図4に示すように、信号光スポット52,53,54と不要光スポット62は、光検出器15内の受光面70、71、72それぞれの上で重なってしまい、そのために両光スポット間で干渉現象が生じて、結果的に各々の受光面で検出される光電変換信号に不要な変動成分やノイズ成分が重畳されてしまう。そしてこの不要な変動成分やノイズ成分により、各光電変換信号から生成または再生されるフォーカス制御信号やトラッキング制御信号あるいは情報再生信号の信号品質が著しく劣化してしまうという不都合が起きる。
そこで以下、本発明で開示する第1の不要光除去用フィルタ13および第2の不要光除去用フィルタ14は、それぞれ前記ケースAおよびケースB各々のケースで発生する不要光ビームが光検出器15内の各受光面上から除去し、信号品質劣化の原因となる信号光スポットとの干渉現象を起こさせないようにする機能を備えている。
以下各フィルタ素子の具体的構成、機能、効果を実施例2および実施例3として説明する。
まず、第1の不要光除去用フィルタ13について説明する。今、光ディスク11内の2つの記録層すなわち、L0層100とL1層101の層間隔をΔとすると、ケースAすなわち図2(a)のケースでは、不要光ビーム61は、記録・再生対象層であるL0層100上の集光点Pから約2Δ相当の距離だけ対物レンズ7側に近づいた点P’を仮想発光点とする発散光となって対物レンズ7に入射する。
このため対物レンズ7透過後の信号光ビーム51と不要光ビーム61を比べると、信号光ビーム51はほぼ光軸に対して平行な光ビームに変換されるのに対して、不要光ビーム61は明らかに所定の発散光ビームに変換される。その結果、光検出器15に入射する各光ビームを比べると、図5(a)で示すように、信号光ビーム51は実線のように所定の収束光ビームの状態で入射するのに対して、不要光ビーム61は明らかにその収束度が緩和される。したがって検出光学系の光学設計によっては、例えば図5(a)の破線のように、光軸(図中の一点鎖線で表示)に対してほぼ平行光ビームの状態にすることも可能である。
図6は、上記のような状態の場合、光ビーム断面(X−Y平面)上で各光ビームを複数の光線の束と見なし、その各光線の光軸に対する進行角度の分布を光線追跡シミュレーションの手法で計算してプロットした図である。この図から明らかなように、信号光ビーム51を構成する各光線(図中の×印)は、X軸方向、Y軸方向共に約±2°の範囲でほぼ均等に分布しているのに対して、不要光ビーム61を構成する光線(図中の○印)は、X軸方向、Y軸方向共に0°およびその極近傍に集中しており、光線進行角度の分布に関して明らかに著しい相違が見られる。
そこで、この光線進行角度の分布の顕著な相違点を利用し、何らかの光学素子によって、光軸に対する光線進行角度が0°およびその極近傍の角度を持つ光ビーム、すなわち光軸に対してほぼ平行な光ビームに対してのみ、例えば反射あるいは回折などの光学作用によって光路を大きく偏向させるか、光ビームそのものを消滅させることができれば、信号光ビーム51にはほとんど影響を及ぼさず、不要光ビーム51だけを光検出器の受光面から除去することが可能である。前記した第1の不要光除去用フィルタ13は、このような機能を備えた光学素子である。
ところで、このような光線進行角度に対する高感度な選択性を備えた光学素子の具体例としては、ボリューム型(あるいは体積型)ホログラムと呼ばれる光学素子がある。このボリューム型ホログラムと呼ばれる光学素子は、名称からも明らかなように、ホログラム素子の一種であるが、一般のホログラム素子が平面的な構成、すなわち所定の面上にホログラフィックな回折格子を形成するのに対して、図7に示すように所定の厚みDを有し、表面だけではなくその厚み方向についても、ホログラフィックな格子状構成を形成するものである。
その作製方法の具体例を簡単に説明すると、図7(a)に示すように、ほぼ透明な素材からなる素子13と、所定の波長λを有し互いに可干渉性がある2本の平行光ビーム80および81を用意し、例えば光ビーム80(以下これを参照光ビームと記す。)を素子13に対して垂直に照射させる一方で、光ビーム81を参照光ビーム80に対して所定の角度θだけ傾けて照射させる。そしてこの両光ビームによって素子13の表面および内部に形成される干渉縞の位置に、素材の屈折率変化などによってホログラフィックな格子状構成を3次元的に形成する。
このようにホログラフィックな格子状構成を3次元的に形成することにより、いわゆるブラッグ回折条件を非常に高感度化することができる。すなわち、上記の作製手段で作製されたボリューム型ホログラム素子13は、図7(b)中の実線で示すように、前記参照光ビーム80と同様に素子13に対して垂直に入射した波長λの光ビーム82は、ほぼ100%の効率で角度θ方向に回折された光ビーム83となる。しかし、この入射光ビーム82の入射角度が垂直方向からわずかに傾くと急速にその回折効率が低下する。例えば図7(b)中の破線で示すように、入射角度の傾きがδ0となった入射光ビーム84については、その回折効率はほとんどゼロとなり、ほぼ100%の光量が単純な透過光ビーム85になってしまう。
学術文献(例えば、”Optical Data Storage Topical Meeting Short Course Notes”, IEEE, SPIEA & OSA 〔23, April, 2006〕)等によると、このボリューム型ホログラム素子における入射光ビームの角度誤差(傾き)δとその回折効率ηとの関係は、一般に以下の数式1で表され、さらにその関係をプロットすると図8に示すようなグラフになる。
Figure 2009059443

ただし、n:ホログラム素子の屈折率
D:ホログラム素子の板厚さ
θ:回折光の回折角度
λ:入射光ビームの波長

そして上記数式1から導出すると、回折効率100%から最初に0%にまで低下する傾き幅δ0(以下、これを傾き角の感度幅と記す。)は、以下の数式2で表される。
Figure 2009059443

ここで数式2を用いて具体的な数値例を当てはめると、例えば、
波長λ=405nm
屈折率n=1.5
素子板厚さ=1.5mm
回折角度=30°
以上の値を上記数式2に代入すると、傾き角の感度幅δ0は約0.02°と極めて急峻な感度幅が得られることがわかる。
なお上記のように、傾き角の感度幅が0.02°などという極めて急峻な値をとると、逆に実用には適しにくいものと推量される。しかしながら、ボリューム型ホログラムでは、その感度幅を任意に広げるために多重化という手法が可能である。これはホログラム参照光ビーム80を垂直入射だけでなく、少しずつ角度を変えて繰り返し入射させ、その都度形成される光ビーム81との干渉縞の位置にホログラフィックな格子構成を多重に形成していく手法である。このようにして作製されたボリューム型ホログラムでは、その入射光ビームの角度誤差(傾き)δとその回折効率ηとの関係は、図9に示すようにピーク位置が少しずつ移動したSinc関数の2乗のグラフが重畳されることにより、結果的に例えば図中の破線で示すごとく、任意の傾き角の感度幅δ1を持った回折効率特性にすることが可能である。
なお、ボリューム型ホログラム自体は既に公知の技術であるので、これ以上の詳細な説明は省略するが、以上のような手法で作製されたボリューム型ホログラムは、上記したように光線進行角度に対して任意の感度幅で良好な選択性を持たせることができるので、第1の不要光除去用フィルタ13として非常に有効な光学素子である。
すなわち図10に示すように、上記のボリューム型ホログラムを第1の不要光除去用フィルタ素子13として光ピックアップ20の復路光路中に配置すると、信号光ビーム51には、ほとんど影響を与えずに、不要光ビーム61だけを選択的に所定の回折角度θで回折させ、フィルタ素子13以降の光路を任意方向に大きく偏向させ、その結果光検出器15内の受光面およびその近傍に全く入射させないようにすることができる。
図11は、ケースAにおいて上記のボリューム型ホログラムを第1の不要光除去用フィルタ素子13として光ピックアップ20の復路光中に配置した場合に、光検出器15内の受光面70,71,72およびその周辺に照射される不要光ビームを光線追跡シミュレーションの計算手法を用いて算出、プロットしたスポットダイアグラムである。図中の微小な黒丸の一つ一つが不要光ビームを複数の光線の束と見なした場合の各光線の到達点である。図に示すように、フィルタ素子13の不要光除去作用により、受光面およびその近傍に入射するはずであった不要光ビームがほぼ完全に取り除かれていることが確認できる。
なお本実施例では、ボリューム型ホログラムを用いた不要光除去用フィルタ素子の代表例として、該ボリューム型ホログラムに対してほぼ垂直入射した光ビームを回折させる例を取り上げて説明したが、当然のことながら、本発明はそれに限定されるものでは無い。
例えば、垂直入射ではなく、任意に設計された角度αおよびその近傍の角度で入射する光線を選択的に回折させるようなボリューム型ホログラムも可能であり、そのようなボリューム型ホログラムを不要光除去用フィルタ素子として用いても一向に構わない。
なおその場合は、ボリューム型ホログラムを作製する際に、参照光ビーム80を素子に対して垂直入射させるのではなく、所定の設計角度αで入射させて作製することは言うまでもない。また当然の事ながら、このようなボリューム型ホログラムを不要光除去用フィルタ素子として用いるのは、フィルタ素子に対して上記の角度αおよびその近傍の角度で入射する光ビームを不要光ビームとする場合である。
さらに言うと本実施例は、第1の不要光除去用フィルタ素子13の具体例として、ボリューム型ホログラムを取り上げて説明したが、当然の事ながらそれに限定されるものではない。光線角度の選択性としてそれほどの高感度を必要としない場合は、一般のホログラム素子を用いても構わないし、ホログラム素子以外でも、例えば誘電体多層膜やフォトニック結晶など光線あるいは光ビームの進行角度依存性あるいは選択性を利用することが可能な素材であれば、どのような素材の物でも第1の不要光除去用フィルタ素子13として使用できる可能性がある。
次に第2の不要光除去用フィルタ14について説明する。ケースBすなわち図2(b)のケースでは、不要光ビーム61は、記録・再生対象層であるL1層101上の集光点Qから約2Δ相当の距離だけ対物レンズ7側から離れた点Q’を仮想発光点とする発散光となって対物レンズ7に入射する。
このため対物レンズ7透過後の信号光ビーム51と不要光ビーム61を比べると、信号光ビーム51はほぼ光軸に対して平行な光ビームに変換されるのに対して、不要光ビーム61は明らかに所定の収束光ビームに変換される。その結果、光検出器15に入射する各光ビームを比べると、図5(b)で示すように、信号光ビーム51は実線のように所定の収束光ビームの状態で入射するのに対して、不要光ビーム61は、例えば図中の破線で示すように、明らかにその収束度が強くなり、復路光路内例えば検出レンズ12と光検出器15間の光軸上所定位置に、光ビーム収束点Rを形成する。
そこで、収束点Rを含み光軸に垂直な平面21で、信号光ビーム51と不要光ビーム61をそれぞれ切断した場合の両光ビーム断面を見ると、図12に示すように、信号光ビーム51は所定の大きさをもったほぼ円形の光ビーム断面になっているのに対して、不要光ビーム61は、ほぼ光軸中心点Rおよびそのごく近傍の非常に小さな領域にのみ集中しており、光ビーム断面の大きさに関して、明らかに著しい相違が見られる。
そこでこの相違点を利用し、図13に示すように、透過率がほぼ100%の透明基板上のごく限られた微小領域にのみ光量を完全に遮断するための微小な遮光マスク22を設けた光学素子14を用意し、この光学素子14を第2の不要光除去用フィルタとして光ピックアップ20の復路光路内に配置し、その前記遮光マスク22が前記平面21内の光軸中心点Rおよびその近傍をカバーするように位置調整することで、信号光ビーム51にはほとんど影響を与えずに、不要光ビーム61のみをほぼ完全に遮断して光検出器15内の各受光面上に照射されないようにすることができる。
光学素子14の遮光マスク22の大きさは、通過する光ビームのうち、不要光ビームのみを遮断することができれば任意の大きさや形状にすることができ、例えば、数十μm程度の大きさで形成することができる。現状の光ピックアップの構成では、遮光マスクの大きさとしては、約50μmであればよい。光学素子14の遮光マスク22の位置は、復路光路内で不要光ビームの焦点位置と略一致する位置に配置することが好ましい。
図14は、ケースBにおいて上記の微小遮光マスクを備えた光学素子を第2の不要光除去用フィルタ素子14として光ピックアップ20の復路光中に配置した場合に、光検出器15内の受光面70,71,72およびその周辺に照射される不要光ビームを光線追跡シミュレーションの計算手法を用いて算出、プロットしたスポットダイアグラムである。図中の微小な黒丸の一つ一つが不要光ビームを複数の光線の束と見なした場合の各光線の到達点である。図に示すように、フィルタ素子14の不要光遮断作用により、受光面およびその近傍に入射するはずであった不要光ビームがほぼ完全に取り除かれていることが確認できる。
以上述べてきたように、同一の光ピックアップ内に前記した第1の不要光除去用フィルタ13および第2の不要光除去用フィルタ14を共に配置することにより、2層ディスク内のどちらの記録層を記録・再生対象層とした場合でも、信号光ビームにほとんど影響を与えず、他の記録層から発生する不要光ビームのみを選択的に光検出器の受光面から排除し、信号光ビームと不要光ビームとの干渉に起因する各検出信号あるいは再生信号の信号品質劣化の問題を良好に解消することができる。
なお、図1や図5、図10等に示した光ピックアップ20の復路光学系(検出光学系)構成では、光検出器15に対して遠い側に第1の不要光除去用フィルタ13を、近い側に第2の不要光除去用フィルタ14を配置しているが、当然のことながら、この配置順は全く逆でも構わない。また第1の不要光除去用フィルタ13と第2の不要光除去用フィルタ14を接合して一つの光学素子としても一向に構わない。さらに言うと、これら第1および第2の不要光除去用フィルタを一緒に、あるいは個別に他の光学素子、例えば検出レンズ12あるいは偏光ビームスプリッタ3などに接合しても構わない。このようにフィルタ素子同士あるいは他の光学素子と接合し、光学素子として一体化することで、光ピックアップ全体の部品点数を減らし、光学系構成を単純化することができる。
ところで、これまでの実施例は、全てBDやHDなど高密度メディアの2層ディスクを対象としていたが、本発明はこれに限定されるものではない。DVDやCDなど既存メディアにおける2層ディスクを対象としてもよいし、3層以上の高多層ディスクに対しても本発明は適用可能であり有効である。
次に、実施例4として、上記実施例1に示した本発明の光ピックアップ20を搭載した光学的情報再生装置について説明する。図15に本実施例における光ピックアップ20を搭載した光学的情報再生装置の概略ブロック図を示す。光ピックアップ20より検出された信号の一部は光ディスク判別回路121に送られる。光ディスク判別回路121における光ディスクの判別動作は、光ディスクの基板厚さが点灯している半導体レーザの発振波長に対応したものである場合と、異なる発振波長に対応したものである場合とを比較した場合に、光ピックアップ20より検出された例えばフォーカス制御信号振幅レベルが前者の場合に大きくなることを利用している。その判別結果はコントロール回路124に送られる。さらに、光ピックアップ20により検出された検出信号の一部は、サーボ信号生成回路122あるいは情報信号検出回路123に送られる。サーボ信号生成回路122では、光ピックアップ20で検出された各種信号から、フォーカス制御信号やトラッキング制御信号を生成してコントロール回路124に送る。一方、情報信号検出回路123では、光ピックアップ20の検出信号から光ディスク11に記録された情報信号を検出し再生信号出力端子へ出力する。コントロール回路124は、光ディスク判別回路121からの信号によって光ディスク11が通常の単層ディスクか2層ディスク化を選別し、その結果に応じ、サーボ信号生成回路122にて生成されたフォーカス制御信号やトラッキング制御信号から所定の対物レンズ駆動信号を生成し、アクチュエータ駆動回路125に送る。この対物レンズ駆動信号によりアクチュエータ駆動回路125は、光ピックアップ20内の対物レンズアクチュエータを駆動し対物レンズ7の位置制御を行う。また、コントロール回路124は、アクセス制御回路126により光ピックアップ20のアクセス方向位置制御を行い、スピンドルモータ制御回路127によりスピンドルモータ130を回転制御しディスク11あるいは2層ディスク22を回転させる。さらに、コントロール回路124は、レーザ点灯回路128を駆動することにより、光ピックアップ20に搭載されている半導体レーザ1を光適宜点灯させ、光ディスク装置での記録再生動作を実現している。
ここで、光ピックアップ20から出力された信号から情報信号を再生する情報信号再生部と、情報信号再生部から出力された信号を出力する出力部とを備えることで光ディスクの再生装置を構成することが可能である。また、情報信号を入力する情報入力部と、情報入力部から入力された情報から光ディスクに記録する信号を生成し、光ピックアップ20に出力する記録信号生成部とを備えることで光ディスクの記録装置を構成することも可能である。
以上、本発明に従う光ピックアップ及び光ディスク装置の実施形態について説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲において種々の改良や変形を行うことができる。
本発明の光ピックアップ光学系構成例を示した概略図 図1の光ピックアップ光学系構成例における対物レンズ近傍を拡大表示した図 図1の光ピックアップ光学系構成例における光検出面近傍を拡大表示した図 図1の光ピックアップ光学系構成例における光検出面近傍を拡大表示した図 図1の光ピックアップ光学系構成例における復路検出系部分を拡大表示した図 本発明の第1の実施例における信号光と不要光の光線進行角度分布を示した図 本発明の第1の実施例で用いられるボリューム型ホログラムの基本的な作製方法と、その光学特性を示した概略側面図 本発明の第1の実施例で用いられるボリューム型ホログラムの光線入射角度と回折効率の関係の一例を示した線図 本発明の第1の実施例で用いられるボリューム型ホログラムの多重記録による回折感度幅拡大手法を説明するための線図 本発明の第1の実施例で用いられるボリューム型ホログラムを搭載した光ピックアップの機能を説明するための検出光学系部分の拡大図 本発明の第1の実施例における不要光除去効果を検証するために実施した光線追跡シミュレーションの結果を示すスポットダイアグラム 本発明の第2の実施例を説明するためのフィルタ素子14の拡大図 本発明の第2の実施例を説明するためのフィルタ素子14の拡大図 本発明の第2の実施例における不要光除去効果を検証するために実施した光線追跡シミュレーションの結果を示すスポットダイアグラム 本発明の光ピックアップを搭載した光ディスク装置の機能を説明するためのブロック図
符号の説明
1…半導体レーザ、2…回折格子、3…PBSプリズム、4…コリメータレンズ、5…フロントモニタ、6…4分の1波長板、7…対物レンズ、8…アクチュエータ、11…光ディスク、12…検出レンズ、13…第1の不要光除去用フィルタ、14…第2の不要光除去用フィルタ、15…光検出器、20…光ピックアップ、70、71、72…光検出器内の各受光面

Claims (13)

  1. 少なくとも2つの記録層を有する光ディスクに光ビームを照射し、前記光ディスクからの反射光ビームを検出する光ピックアップであって、
    所定の波長を有する光ビームを出射するレーザ光源と、
    前記光ディスクのいずれかの記録層上に前記光ビームを集光させるための対物レンズと、
    前記光ディスクの記録層からの反射光ビームの一部または全部を受光するように配置された光検出器と、
    前記対物レンズから前記光検出器に至る光路中配置される光学素子とを備え、
    前記光学素子は、入射面に対して所定の入射角度αで入射した前記光ビームを、所定の回折効率ηで所定の回折角度方向へ回折させ、前記入射角度αに対して所定の微小角度誤差±δ以上ずれた入射角で前記入射面に入射した光ビームを、所定の透過率Tでそのまま透過させるものであり、
    前記光ディスクのいずれかの記録層で反射した後、前記光学素子に入射し、前記光学素子によって前記所定の回折角度方向へ回折された光ビームが、前記光検出器内の受光面に照射されないように構成されていることを特徴とする光ピックアップ。
  2. 請求項1に記載の光ピックアップであって、
    更に、前記対物レンズから前記光検出器に至る光路中に配置される部分遮光フィルタ素子を有し、
    前記部分遮光フィルタは、入射される光ビームの中心光軸を含む所定の領域内に入射した光ビームを反射又は吸収させ、前記所定の領域外に入射した光ビームを、そのまま透過させるものであり、
    前記光ディスクのいずれかの記録層で反射し、前記遮光フィルタ素子に入射後、前記遮光フィルタ素子によって反射又は吸収された光ビームが、前記光検出器内の受光面に照射されないように構成されていることを特徴とする光ピックアップ。
  3. 請求項1又は2記載の光ピックアップであって、
    前記光学素子によって所定の回折角度方向に回折される光ビームは、再生のために前記対物レンズによって焦点合わせされている記録層よりも、前記対物レンズに近い側に位置する記録層で反射された光ビームであることを特徴とする光ピックアップ。
  4. 請求項2に記載の光ピックアップであって、
    前記部分遮光フィルタ素子の前記所定の領域で反射又は吸収される光ビームは、再生のために前記対物レンズによって焦点合わせされている記録層よりも、前記対物レンズに遠い側に位置する記録層で反射された光ビームであることを特徴とする光ピックアップ。
  5. 少なくとも2つの記録層を有する光ディスクに光ビームを照射し、前記光ディスクからの反射光ビームを検出する光ピックアップであって、
    所定の波長を有する光ビームを出射するレーザ光源と、
    前記光ディスクのいずれかの記録層上に前記光ビームを集光させるための対物レンズと、
    前記光ディスクの記録層からの反射光ビームの一部または全部を受光するように配置された光検出器と、
    前記対物レンズから前記光検出器に至る光路中に配置される部分遮光フィルタ素子とを備え、
    前記光ディスクのいずれかの記録層で反射し、前記遮光フィルタ素子に入射後、前記遮光フィルタ素子によって反射又は吸収された光ビームが、前記光検出器内の受光面に照射されないように構成されていることを特徴とする光ピックアップ。
  6. 少なくとも2つの記録層を有する光ディスクに光ビームを照射し、前記光ディスクからの反射光ビームを検出する光ピックアップであって、
    所定の波長を有する光ビームを出射するレーザ光源と、
    前記光ディスクのいずれかの記録層上に前記光ビームを集光させるための対物レンズと、
    前記光ディスクの記録層からの反射光ビームの一部または全部を受光するように配置された光検出器と、
    前記対物レンズから前記光検出器に至る光路中に配置される複合型光学素子とを備え、
    前記複合型光学素子は、
    入射面に対して所定の入射角度αで入射した所定の波長を有する光ビームを、所定の回折効率ηで所定の回折角度方向へ回折させる機能と、
    前記入射角度αに対して所定の微小角度誤差±δ以上ずれた入射角で前記入射面に入射した光ビームを、所定の透過率Tでそのまま透過させる機能と、
    入射される光ビームの中心光軸を含む所定の領域内に入射した光ビームを反射又は吸収させ、前記所定の領域外に入射した光ビームを、そのまま透過させる機能とを有し、
    前記複合型光学素子に入射後、前記複合型光学素子によって回折又は反射もしくは吸収された光ビームは、前記光検出器内の受光面には照射しないように構成されていることを特徴とする光ピックアップ。
  7. 請求項1乃至請求項6の何れか記載の光ピックアップと、
    前記光ピックアップから出力される信号を用いて、フォーカスエラー信号とトラッキングエラー信号を生成するサーボ信号生成回路と、を備え、
    前記サーボ信号生成回路は、差動プッシュプル方式と同様の演算方式によるトラッキング信号を生成可能なことを特徴とする光ディスク装置。
  8. 入射面に対して所定の入射角度αで入射した所定の波長を有する光ビームを、所定の回折効率ηで所定の回折角度方向へ回折させる機能と、
    前記入射角度αに対して所定の微小角度誤差±δ以上ずれた入射角で前記入射面に入射した光ビームを、所定の透過率Tでそのまま透過させる機能とを有することを特徴とする光学素子。
  9. 前記回折効率ηおよび前記透過率Tは、共に略80%以上であることを特徴とする請求項8記載の光学素子。
  10. 前記微小角度誤差±δは、±0.3°乃至±1.0°の範囲内にあることを特徴とする請求項8記載の光学素子。
  11. 前記光学素子は、ボリューム型ホログラム素子によって構成されることを特徴とする請求項8記載の光学素子。
  12. 入射される光ビームの中心光軸を含む所定の領域内に入射した光ビームを反射又は吸収させ、前記所定の領域外に入射した光ビームを、そのまま透過させる機能を備えたことを特徴とする部分遮光フィルタ素子。
  13. 透明基板と、
    入射面に対して所定の入射角度αで入射した所定の波長を有する光ビームを、所定の回折効率ηで所定の回折角度方向へ回折させる機能と、前記入射角度αに対して所定の微小角度誤差±δ以上ずれた入射角で前記入射面に入射した光ビームを、所定の透過率Tでそのまま透過させる機能とを有する第1の光学素子と、
    入射される光ビームの中心光軸を含む所定の領域内に入射した光ビームを反射又は吸収させ、前記所定の領域外に入射した光ビームを、そのまま透過させる機能を備える第2の光学素子と具備し、
    前記第1の光学素子と前記第2の光学素子は、前記透明基板上もしくは基板内に設けられていることを特徴とする複合型光学素子。
JP2007227250A 2007-09-03 2007-09-03 光ピックアップ、光ディスク装置及び光学素子 Expired - Fee Related JP4861934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227250A JP4861934B2 (ja) 2007-09-03 2007-09-03 光ピックアップ、光ディスク装置及び光学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227250A JP4861934B2 (ja) 2007-09-03 2007-09-03 光ピックアップ、光ディスク装置及び光学素子

Publications (2)

Publication Number Publication Date
JP2009059443A true JP2009059443A (ja) 2009-03-19
JP4861934B2 JP4861934B2 (ja) 2012-01-25

Family

ID=40555031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227250A Expired - Fee Related JP4861934B2 (ja) 2007-09-03 2007-09-03 光ピックアップ、光ディスク装置及び光学素子

Country Status (1)

Country Link
JP (1) JP4861934B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215334A (ja) * 2000-02-04 2001-08-10 Toppan Printing Co Ltd ホログラム反射板とそれを用いた液晶表示装置
JP2007511023A (ja) * 2003-11-04 2007-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数のデータ層を有するディスクへの光学的記憶
JP2007141357A (ja) * 2005-11-18 2007-06-07 Sony Corp 光ピックアップおよびディスクドライブ装置
JP2007193852A (ja) * 2004-03-30 2007-08-02 Pioneer Electronic Corp ホログラム記録担体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215334A (ja) * 2000-02-04 2001-08-10 Toppan Printing Co Ltd ホログラム反射板とそれを用いた液晶表示装置
JP2007511023A (ja) * 2003-11-04 2007-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数のデータ層を有するディスクへの光学的記憶
JP2007193852A (ja) * 2004-03-30 2007-08-02 Pioneer Electronic Corp ホログラム記録担体
JP2007141357A (ja) * 2005-11-18 2007-06-07 Sony Corp 光ピックアップおよびディスクドライブ装置

Also Published As

Publication number Publication date
JP4861934B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4951538B2 (ja) 光ピックアップ装置および光ディスク装置
JP2005203090A (ja) 光ピックアップ
JP2007257750A (ja) 光ピックアップおよび光ディスク装置
JP5347038B2 (ja) 光ヘッド装置、光情報装置及び情報処理装置
JP2008130167A (ja) 光ピックアップ装置
JP2008027507A (ja) 光ピックアップ装置
KR100877458B1 (ko) 광 픽업 헤드 장치와, 광 기억 매체 재생 장치 및 방법
JP2008130219A (ja) 光ピックアップ装置
JP4876844B2 (ja) 光ピックアップ及びこれを用いた光ディスク装置
JP5227926B2 (ja) 光ピックアップ装置および光ディスク装置
JP2007272980A (ja) 光ピックアップ装置
JP5142879B2 (ja) 光ピックアップおよび光ディスク装置
JP2009129483A (ja) 光ピックアップ装置
JP4861934B2 (ja) 光ピックアップ、光ディスク装置及び光学素子
JP4806661B2 (ja) 光ピックアップ及び光学的情報再生装置
JP2010165423A (ja) 記録再生方法、ホログラム記録媒体
JP2008004239A (ja) 光ピックアップおよびこれを備える光ディスクドライブ装置
KR20090043883A (ko) 광픽업 및 이를 채용한 광정보저장매체 시스템
JP5392031B2 (ja) 光ピックアップ装置
JP5119194B2 (ja) 光ピックアップ装置
JP2011187116A (ja) 光ピックアップ装置および光ディスク装置
JP5487769B2 (ja) 光ピックアップ装置
JP2009134832A (ja) 光学ヘッド
JP2009271994A (ja) 光ピックアップ装置及び光ピックアップ装置の設計方法
JP2010152976A (ja) 光ピックアップ装置用の光学素子及び光ピックアップ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees