JP2009048876A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2009048876A
JP2009048876A JP2007214269A JP2007214269A JP2009048876A JP 2009048876 A JP2009048876 A JP 2009048876A JP 2007214269 A JP2007214269 A JP 2007214269A JP 2007214269 A JP2007214269 A JP 2007214269A JP 2009048876 A JP2009048876 A JP 2009048876A
Authority
JP
Japan
Prior art keywords
positive electrode
mixture layer
electrode mixture
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007214269A
Other languages
Japanese (ja)
Other versions
JP5258228B2 (en
Inventor
Hiroyasu Inoue
裕靖 井上
Toshiharu Shimooka
俊晴 下岡
Fusaji Kita
房次 喜多
Hideki Tsubata
英樹 津幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007214269A priority Critical patent/JP5258228B2/en
Priority to KR1020080081520A priority patent/KR101452875B1/en
Priority to CN2008102130288A priority patent/CN101373850B/en
Publication of JP2009048876A publication Critical patent/JP2009048876A/en
Priority to HK09106252.1A priority patent/HK1128828A1/en
Application granted granted Critical
Publication of JP5258228B2 publication Critical patent/JP5258228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery with thin size and having a large capacity. <P>SOLUTION: The nonaqueous secondary battery has a wound around electrode body in which a positive electrode having a positive electrode mixture layer on one side or both sides of a positive electrode current collector, a negative electrode, and a separator are laminated and these are wound around in spiral shape, sealed together with a non-aqueous electrolyte in an outer package having a ratio of width against thickness of 1.7-10.0. The positive electrode mixture layer has a density of 3.5 g/cm<SP>3</SP>or more and a porosity of 25% or less, and the positive electrode current collector is an Al alloy foil with a thickness of 15 μm or less and a tensile strength of 200 N/mm<SP>2</SP>or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、容量の大きな非水二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery having a large capacity.

近年、例えば、携帯型コンピュータや携帯情報端末(Personal Digital Assistant)といった移動体通信用途において、更なる小型化、軽量化が要求されている。このような機器には、非水系の電解質を有する非水二次電池が使用されているが、前記のような要求に伴って、非水二次電池には更なる高容量化の要請がある。   In recent years, there has been a demand for further miniaturization and weight reduction in mobile communication applications such as portable computers and personal information assistants (Personal Digital Assistants). In such devices, a non-aqueous secondary battery having a non-aqueous electrolyte is used. However, due to the above-described demand, the non-aqueous secondary battery has a demand for higher capacity. .

非水二次電池としては、例えば、LiCoOなどのリチウム遷移金属複合酸化物を含有する正極合剤層を集電体上に形成した正極と、炭素材料などの負極活物質を含有する負極合剤層を集電体上に形成した負極とを、セパレータを介して重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体を、非水系の溶媒中に電解質塩を溶解させて形成した電解質と共に外装体内に封入する構成のものが一般的である。 Non-aqueous secondary batteries include, for example, a positive electrode in which a positive electrode mixture layer containing a lithium transition metal composite oxide such as LiCoO 2 is formed on a current collector, and a negative electrode composite containing a negative electrode active material such as a carbon material. Dissolve the electrolyte salt in a non-aqueous solvent using a laminated electrode body in which the negative electrode layer formed on the current collector is stacked via a separator, and a spirally wound electrode body that is wound in a spiral shape. In general, the electrolyte is formed and sealed together with the electrolyte.

そして、このような非水二次電池を高容量化する手法としては、例えば、正極合剤層の密度を高めることで、正極に充填する活物質量を多くすることが考えられる。   As a technique for increasing the capacity of such a non-aqueous secondary battery, for example, it is conceivable to increase the amount of the active material filled in the positive electrode by increasing the density of the positive electrode mixture layer.

他方、特許文献1では、非水二次電池において、積層電極体の単位体積当たりの放電容量を130mAh/cm以上と高容量にすると、充放電サイクル特性が低下することを指摘している。そして、特許文献1では、このように高容量にした非水二次電池において、正極集電材に、厚みが15μm以下のアルミニウムを主成分とする金属箔を用いること提案しており、これにより、高容量化と共に充放電サイクル特性の向上を達成している。更に、特許文献1では、正極集電材の引張強度や伸びを特定値以上しておくことで、正極合剤層の充電時の膨張による正極集電材の亀裂や切断などが防止できることも指摘している。 On the other hand, Patent Document 1 points out that in a non-aqueous secondary battery, when the discharge capacity per unit volume of the laminated electrode body is set to a high capacity of 130 mAh / cm 3 or more, the charge / discharge cycle characteristics are deteriorated. And in patent document 1, in the non-aqueous secondary battery made high in this way, it is proposed to use a metal foil whose main component is aluminum having a thickness of 15 μm or less as the positive electrode current collector. Along with the increase in capacity, the charge / discharge cycle characteristics have been improved. Furthermore, Patent Document 1 also points out that cracking or cutting of the positive electrode current collector due to expansion during charging of the positive electrode mixture layer can be prevented by setting the tensile strength or elongation of the positive electrode current collector to a specific value or more. Yes.

特開平11−329447号公報JP 11-329447 A

ところで、最近では、電池の形態として、従来の円筒形電池のみならず、横断面が扁平な角筒形電池や、ラミネートフィルム外装体を有し、かつ横断面が扁平なラミネート電池などの様々な形態がある。そして、このように、横断面が扁平な薄形の電池に、前記のような巻回電極体を適用する場合には、渦巻状に巻回した巻回電極体を更に押しつぶすなどして、扁平状にしてから使用される。   By the way, recently, various types of batteries, such as not only a conventional cylindrical battery but also a rectangular tube battery having a flat cross section and a laminate battery having a laminate film outer package and a flat cross section, etc. There is a form. Then, in the case where the above-described wound electrode body is applied to a thin battery having a flat cross section as described above, the spirally wound wound electrode body is further crushed, etc. Used after forming.

ところが、前記のように正極合剤層の密度を高めた正極を用いて扁平状の巻回電極体を形成し、これを薄形の電池に適用すると、想定しただけの容量が確保できない場合のあることが、本発明者らの検討により明らかとなった。   However, when a flat wound electrode body is formed using the positive electrode having a higher density of the positive electrode mixture layer as described above, and this is applied to a thin battery, the capacity as expected cannot be secured. This has been clarified by the study of the present inventors.

本発明は前記事情に鑑みてなされたものであり、その目的は、薄形で、かつ容量の大きな非水二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous secondary battery that is thin and has a large capacity.

前記目的を達成し得た本発明の非水二次電池は、正極集電体の片面または両面に正極合剤層を有する正極、負極およびセパレータを積層し、これを渦巻状に巻回してなる巻回電極体を、厚みに対する幅の比(外装体の幅/外装体の厚み)が1.7〜10.0の外装体内に、非水系の電解質と共に封入してなる非水二次電池であって、前記正極合剤層は、密度が3.5g/cm以上であり、かつ空隙率が25%以下であり、前記正極集電体は、厚みが15μm以下で、引張強度が200N/mm以上のAl合金箔であることを特徴とする非水二次電池である。 The non-aqueous secondary battery of the present invention that has achieved the above object is formed by laminating a positive electrode having a positive electrode mixture layer on one or both sides of a positive electrode current collector, a negative electrode, and a separator, and winding them in a spiral shape. A non-aqueous secondary battery in which a wound electrode body is sealed together with a non-aqueous electrolyte in an exterior body having a width-to-thickness ratio (width of exterior body / thickness of exterior body) of 1.7 to 10.0. The positive electrode mixture layer has a density of 3.5 g / cm 3 or more and a porosity of 25% or less, and the positive electrode current collector has a thickness of 15 μm or less and a tensile strength of 200 N / It is a non-aqueous secondary battery characterized by being an Al alloy foil of mm 2 or more.

本発明者らは鋭意検討の結果、正極合剤層の密度を3.5g/cm以上と高密度にした正極を用いて巻回電極体を構成し、これを押しつぶすなどして扁平状の巻回電極体とし、この扁平状巻回電極体を用いて薄形の電池を構成した場合に生じ得る前記の容量低下現象が、特に巻回電極体の内周側のより屈曲した箇所において、正極集電体が破断などすることで正極の導電性が損なわれ、放電反応に関与しない正極合剤層部分が発生するために生じることを突き止めた。 As a result of intensive studies, the inventors of the present invention constituted a wound electrode body using a positive electrode in which the density of the positive electrode mixture layer was as high as 3.5 g / cm 3 or more, and crushed this to obtain a flat shape. As the wound electrode body, the above-mentioned capacity reduction phenomenon that can occur when a thin battery is configured using this flat wound electrode body, particularly in the bent portion on the inner peripheral side of the wound electrode body, It has been found that the positive electrode current collector is broken and the electroconductivity of the positive electrode is impaired, and a positive electrode mixture layer portion that does not participate in the discharge reaction is generated.

そして、前記の容量低下現象の原因となる正極集電体の破断などは、特に巻回電極体の内周側のより屈曲した箇所において、正極集電体の内側に位置する正極合剤層が高密度で硬いことから、正極集電体に過度の応力がかかるために発生すると考えられる。   The positive electrode current collector layer located inside the positive electrode current collector is, for example, at the bent portion on the inner peripheral side of the wound electrode body, particularly when the positive electrode current collector is ruptured, causing the capacity reduction phenomenon. Since it is high density and hard, it is thought that it occurs because excessive stress is applied to the positive electrode current collector.

なお、例えば、正極合剤層の密度が3.5g/cm以上であっても、正極合剤層中に空隙が多い場合には、かかる空隙の存在によって正極合剤層の一部が崩れるなどして変形し得るため、正極集電体の破断などが抑制され得ることから、前記の容量低下現象は生じ難いが、特に正極合剤層の空隙率が25%以下の場合には、かかる容量低下現象が顕著に生じ得ることも判明した For example, even if the density of the positive electrode mixture layer is 3.5 g / cm 3 or more, if there are many voids in the positive electrode mixture layer, a part of the positive electrode mixture layer collapses due to the presence of such voids. Therefore, the capacity reduction phenomenon is unlikely to occur, and particularly when the porosity of the positive electrode mixture layer is 25% or less. It has also been found that the capacity reduction phenomenon can occur remarkably

本発明では、密度が3.5g/cm以上で、空隙率が25%以下の正極合剤層を有する正極を用いて構成した扁平状巻回電極体を備えた薄形の非水二次電池において、特定の厚みと特定の強度を有する正極集電体を用いることで、扁平状巻回電極体における正極集電体の破断などを防止し、電池が本来有する容量を十分に引き出せるようにして、その高容量化を達成している。 In the present invention, a thin non-aqueous secondary provided with a flat wound electrode body constituted by using a positive electrode having a positive electrode mixture layer having a density of 3.5 g / cm 3 or more and a porosity of 25% or less. In a battery, by using a positive electrode current collector having a specific thickness and a specific strength, it is possible to prevent breakage of the positive electrode current collector in the flat wound electrode body and to sufficiently draw out the capacity originally possessed by the battery. The high capacity has been achieved.

本発明によれば、薄形で、かつ容量の大きな非水二次電池を提供することができる。   According to the present invention, a thin non-aqueous secondary battery having a large capacity can be provided.

本発明の非水二次電池は、正極集電体の片面または両面に正極合剤層を形成してなる正極と、負極とを、セパレータを介して重ね合わせ、渦巻状に巻回してなる巻回電極体を有するものである。   The non-aqueous secondary battery of the present invention is a winding in which a positive electrode formed by forming a positive electrode mixture layer on one or both sides of a positive electrode current collector and a negative electrode are overlapped with a separator and wound in a spiral shape. It has a rotating electrode body.

正極に係る正極合剤層は、正極活物質、導電助剤、バインダなどを含有する多孔質の層である。正極活物質としては、非水二次電池の正極活物質として公知の各種リチウム遷移金属酸化物が、特に制限無く使用できる。具体的には、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガン酸化物(LiMn、LiMn、LiMnO、LiMnO、LiMnなど)、LiCoNi (Mは、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の元素であり、0.96≦a≦1.03、0.60≦x≦1.00、0≦y≦0.40、0≦z≦0.05)で表されるリチウムコバルトニッケル酸化物、LiCoMn (Mは、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の元素であり、0.96≦b≦1.03、0.60≦o<1.0、0<p≦0.40、0≦q≦0.05)で表されるリチウムコバルトマンガン酸化物、LiCoNiMn (Mは、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の元素であり、0.96≦c≦1.03、0<r≦0.40、0<s≦0.40、0<t≦0.40、0≦u≦0.05)で表されるリチウムコバルトニッケルマンガン酸化物などが挙げられる。これらの正極活物質は、1種のみで用いてもよいし、2種以上を併用してもよい。 The positive electrode mixture layer relating to the positive electrode is a porous layer containing a positive electrode active material, a conductive additive, a binder and the like. As the positive electrode active material, various lithium transition metal oxides known as positive electrode active materials for non-aqueous secondary batteries can be used without particular limitation. Specifically, for example, lithium cobaltate (LiCoO 2), lithium nickel oxide (LiNiO 2), lithium manganese oxide (LiMn 2 O 4, LiMn 3 O 6, Li 2 MnO 3, LiMnO 2, LiMn 2 O 4 Li a Co x Ni y M 1 z O 2 (M 1 is at least one element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al and Sn, 0.96 ≦ a ≦ 1.03,0.60 ≦ x ≦ 1.00,0 ≦ y ≦ 0.40,0 ≦ z ≦ 0.05) lithium cobalt nickel oxide represented by, Li b Co o Mn p M 2 q O 2 (M 2 is at least one element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al, and Sn, and 0.96 ≦ b ≦ 1.03, 0.60 ≦ o <1. , 0 <p ≦ 0.40,0 ≦ q ≦ 0.05) lithium cobalt manganese oxide represented by, Li c Co r Ni s Mn t M 3 u O 2 (M 3 are, Mg, Ti, Zr , Ge, Nb, Al and Sn, at least one element selected from the group consisting of 0.96 ≦ c ≦ 1.03, 0 <r ≦ 0.40, 0 <s ≦ 0.40, 0 And lithium cobalt nickel manganese oxide represented by <t ≦ 0.40, 0 ≦ u ≦ 0.05. These positive electrode active materials may be used alone or in combination of two or more.

正極に使用する導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト、カーボンファイバーなどの炭素材料が好ましい。前記の炭素材料の中でも、添加量と導電性の効果、および正極合剤層含有組成物(後述する)の製造性の点から、アセチレンブラック、ケッチェンブラック、グラファイトが特に好ましい。   As the conductive auxiliary agent used for the positive electrode, for example, carbon materials such as carbon black, acetylene black, ketjen black, graphite, and carbon fiber are preferable. Among the carbon materials described above, acetylene black, ketjen black, and graphite are particularly preferable from the viewpoint of the amount of addition and conductivity, and the productivity of the positive electrode mixture layer-containing composition (described later).

正極に使用するバインダとしては、例えば、ポリビニリデンフルオライド系ポリマー(主成分モノマーであるビニリデンフルオライドを80質量%以上含有する含フッ素モノマー群の重合体)、ゴム系ポリマーなどが好適に用いられる。これらのバインダは、1種のみを使用してもよく、2種以上を併用してもよい。また、バインダは、例えば、粉末状のものの他、分散媒に分散した分散体や溶媒に溶解した溶液の形態で供されるものであってもよい。   As the binder used for the positive electrode, for example, a polyvinylidene fluoride polymer (a polymer of a fluorine-containing monomer group containing 80% by mass or more of the main component monomer) is a rubber polymer. . These binders may use only 1 type and may use 2 or more types together. The binder may be provided in the form of a dispersion in a dispersion medium or a solution dissolved in a solvent, in addition to a powdery one.

前記のポリビニリデンフルオライド系ポリマーを合成するための含フッ素モノマー群としては、ビニリデンフルオライド;ビニリデンフルオライドと他のモノマーとの混合物で、ビニリデンフルオライドを80質量%以上含有するモノマー混合物;などが挙げられる。前記の他のモノマーとしては、例えば、ビニルフルオライド、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテルなどが挙げられる。   Examples of the fluorine-containing monomer group for synthesizing the polyvinylidene fluoride-based polymer include vinylidene fluoride; a mixture of vinylidene fluoride and another monomer, and a monomer mixture containing 80% by mass or more of vinylidene fluoride; Is mentioned. Examples of the other monomer include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.

前記のゴム系ポリマーとしては、例えば、スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム、フッ素ゴムなどが挙げられる。   Examples of the rubber polymer include styrene butadiene rubber (SBR), ethylene propylene diene rubber, and fluorine rubber.

正極合剤層における正極活物質の含有量は、好ましくは96質量%以上、より好ましくは97.0質量%以上であって、好ましくは99.4質量%以下、より好ましくは98.0質量%以下である。   The content of the positive electrode active material in the positive electrode mixture layer is preferably 96% by mass or more, more preferably 97.0% by mass or more, preferably 99.4% by mass or less, more preferably 98.0% by mass. It is as follows.

また、正極合剤層中における導電助剤である炭素材料の含有量は、例えば、好ましくは0.5質量%以上、より好ましくは0.8質量%以上であって、好ましくは18質量%以下、より好ましくは15質量%以下である。正極合剤層中の導電助剤量が少なすぎると、正極の電子伝導性が不十分となって電池の負荷特性が低下することがあり、正極合剤層中の導電助剤量が多すぎると、正極合剤層における活物質の充填量を減少させることになるため、本発明における電池の高容量化効果が小さくなる虞がある。   Further, the content of the carbon material which is a conductive additive in the positive electrode mixture layer is, for example, preferably 0.5% by mass or more, more preferably 0.8% by mass or more, and preferably 18% by mass or less. More preferably, it is 15 mass% or less. If the amount of the conductive auxiliary agent in the positive electrode mixture layer is too small, the electron conductivity of the positive electrode may be insufficient and the load characteristics of the battery may be deteriorated, and the amount of the conductive auxiliary agent in the positive electrode mixture layer is too large. Since the amount of the active material in the positive electrode mixture layer is reduced, the effect of increasing the capacity of the battery in the present invention may be reduced.

更に、正極合剤層中におけるバインダの含有量は、好ましくは0.1質量%以上、より好ましくは0.3質量%以上であって、好ましくは5質量%以下、より好ましくは2質量%以下である。正極合剤層中のバインダの含有量が少なすぎると、正極合剤層の機械的強度が不足し、正極合剤層が集電体から剥離する虞があり、正極合剤層中のバインダの含有量が多すぎると、正極合剤層中の活物質量が減少して、本発明における電池の高容量化効果が小さくなる虞がある。   Further, the binder content in the positive electrode mixture layer is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and preferably 5% by mass or less, more preferably 2% by mass or less. It is. If the content of the binder in the positive electrode mixture layer is too small, the mechanical strength of the positive electrode mixture layer is insufficient, and the positive electrode mixture layer may be peeled off from the current collector. When there is too much content, there exists a possibility that the amount of active materials in a positive mix layer may reduce, and the high capacity | capacitance effect of the battery in this invention may become small.

前記正極合剤層を有する正極は、例えば、前記の正極活物質、導電助剤およびバインダなどを溶剤に分散(一部の成分は溶解してもよい)させて調製した正極合剤含有組成物(ペースト、スラリーなど)を、集電体の片面または両面に塗布し乾燥した後に、必要に応じてプレス処理をして正極合剤層の厚みや密度を調整することにより作製できる。なお、本発明に係る正極の作製方法はこれに限定される訳ではなく、他の方法を採用しても構わない。正極合剤含有組成物に使用できる溶剤としては、例えば、水;N−メチル−2−ピロリドン(NMP)、トルエン、キシレンなどの有機溶剤;が挙げられる。   The positive electrode having the positive electrode mixture layer is, for example, a positive electrode mixture-containing composition prepared by dispersing the positive electrode active material, a conductive additive, a binder, and the like in a solvent (some components may be dissolved). After applying (paste, slurry, etc.) on one or both sides of the current collector and drying, it can be produced by pressing as necessary to adjust the thickness and density of the positive electrode mixture layer. In addition, the manufacturing method of the positive electrode which concerns on this invention is not necessarily limited to this, You may employ | adopt another method. Examples of the solvent that can be used in the positive electrode mixture-containing composition include water; organic solvents such as N-methyl-2-pyrrolidone (NMP), toluene, and xylene.

正極合剤含有組成物を集電体に塗布する方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーターなどをはじめ、公知の各種塗布方法を採用することができる。   As a method for applying the positive electrode mixture-containing composition to the current collector, for example, various known application methods such as an extrusion coater, a reverse roller, a doctor blade, an applicator and the like can be employed.

正極集電体表面に形成される正極合剤層の厚みは、乾燥後の厚みで、例えば、80〜110μmであることが好ましい。   The thickness of the positive electrode mixture layer formed on the surface of the positive electrode current collector is preferably a thickness after drying, for example, 80 to 110 μm.

本発明に係る正極合剤層の密度は、3.5g/cm以上であり、3.8g/cm以上であることが好ましい。本発明の電池では、正極合剤層を前記のように高密度化することで、正極活物質の充填量を高めて、高容量化を図っている。ただし、正極合剤層の密度が大きすぎると、電解液(電解質)に濡れにくくなり、充放電サイクル特性の低下が生じることがあり、また容量の向上効果が小さくなることがある、その密度は、4.2g/cm以下であることが好ましい。 The density of the positive electrode mixture layer according to the present invention is 3.5 g / cm 3 or more and 3.8 g / cm 3 or more. In the battery of the present invention, by increasing the density of the positive electrode mixture layer as described above, the filling amount of the positive electrode active material is increased to increase the capacity. However, if the density of the positive electrode mixture layer is too large, it is difficult to get wet with the electrolyte (electrolyte), the charge / discharge cycle characteristics may be deteriorated, and the capacity improvement effect may be reduced. It is preferably 4.2 g / cm 3 or less.

なお、本明細書でいう正極合剤層の密度は、以下の方法により測定される値である。正極を所定面積に切り取り、その質量を最小目盛1mgの電子天秤を用いて測定し、集電体の質量を差し引いて正極合剤層の質量を算出する。一方、前記正極の全厚を最小目盛1μmのマイクロメーターで10点測定し、これらの測定値から集電体の厚みを差し引いた値の平均値と、面積とから、正極合剤層の体積を算出する。そして、前記正極合剤層の質量を前記体積で割ることにより正極合剤層の密度を算出する。   In addition, the density of the positive mix layer as used in this specification is a value measured by the following method. The positive electrode is cut into a predetermined area, the mass is measured using an electronic balance with a minimum scale of 1 mg, and the mass of the positive electrode material mixture layer is calculated by subtracting the mass of the current collector. On the other hand, the total thickness of the positive electrode was measured at 10 points with a micrometer having a minimum scale of 1 μm, and the volume of the positive electrode mixture layer was determined from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. calculate. Then, the density of the positive electrode mixture layer is calculated by dividing the mass of the positive electrode mixture layer by the volume.

また、正極合剤層は、空隙率が25%以下である。既述の通り、前記の密度を有し、かつ空隙率が25%以下の正極合剤層を備えた正極を用いて扁平状の巻回電極体を形成すると、正極集電体の破断などによる容量低下現象が生じ易くなるが、本発明の構成(特に、後述する正極集電体の構成)を採用することで、かかる容量低下現象の発生を防止して、電池の高容量化を達成できる。正極合剤層の空隙率が20%以下の場合には、本発明の効果が特に顕著となる。ただし、正極合剤層の空隙率が小さすぎると、電解液(電解質)に濡れにくくなり、充放電サイクル特性の低下が生じることがあり、また容量の向上効果が小さくなることがあるため、その空隙率は、10%以上であることが好ましい。   Further, the positive electrode mixture layer has a porosity of 25% or less. As described above, when a flat wound electrode body is formed using a positive electrode having the above-described density and having a positive electrode mixture layer with a porosity of 25% or less, the positive electrode current collector is broken or the like. Although the capacity reduction phenomenon is likely to occur, by adopting the configuration of the present invention (particularly, the configuration of the positive electrode current collector described later), it is possible to prevent the occurrence of the capacity reduction phenomenon and achieve a high capacity of the battery. . When the porosity of the positive electrode mixture layer is 20% or less, the effect of the present invention is particularly remarkable. However, if the porosity of the positive electrode mixture layer is too small, it becomes difficult to get wet with the electrolyte (electrolyte), the charge / discharge cycle characteristics may decrease, and the capacity improvement effect may be reduced. The porosity is preferably 10% or more.

本明細書でいう正極合剤層の空隙率は、前記方法により求められる正極合剤層の密度と、正極合剤層中の各種成分の比重および含有比率から求められる正極合剤層の理論密度(空隙を全く含有しないとして見積もった密度)とから算出される値である。   The porosity of the positive electrode mixture layer referred to in this specification is the theoretical density of the positive electrode mixture layer determined from the density of the positive electrode mixture layer determined by the above method and the specific gravity and content ratio of various components in the positive electrode mixture layer. (The density estimated as containing no voids).

なお、正極合剤層の最大頻度細孔径におけるLog微分細孔容積は、0.03cm/g以上であることが好ましく、これにより、正極合剤層を電解質に濡れやすくすることができ、正極合剤層への電解質の浸透速度を大きくすることができるため、電池の充放電サイクル特性や容量をより高めることができ、また、電池の生産性も向上させることができる。ただし、正極合剤層の最大頻度細孔径におけるLog微分細孔容積を大きくすると、正極合剤層への電解質の浸透速度は大きくなるが、正極合剤層を高密度化しにくくなることがあるため、より電池の高容量化を図る観点からは、正極合剤層の最大頻度細孔径におけるLog微分細孔容積は、0.09cm/g以下であることが好ましく、0.07cm/g以下であることがより好ましい。 Note that the Log differential pore volume at the maximum frequency pore diameter of the positive electrode mixture layer is preferably 0.03 cm 3 / g or more, whereby the positive electrode mixture layer can be easily wetted with the electrolyte. Since the penetration rate of the electrolyte into the mixture layer can be increased, the charge / discharge cycle characteristics and capacity of the battery can be further increased, and the productivity of the battery can also be improved. However, if the Log differential pore volume at the maximum frequency pore diameter of the positive electrode mixture layer is increased, the penetration rate of the electrolyte into the positive electrode mixture layer is increased, but it may be difficult to increase the density of the positive electrode mixture layer. more from the viewpoint of increasing the capacity of the battery, Log differential pore volume at the maximum frequency pore diameter of the positive electrode mixture layer is preferably not more than 0.09cm 3 / g, 0.07cm 3 / g or less It is more preferable that

なお、本明細書でいう正極合剤層の最大頻度細孔径のLog微分細孔容積は、水銀ポロシメーター(Micromeritic社製「Poresizer 9310」)を用い、正極集電体から剥離した正極合剤層を2×4cmに切り出し、これを直接セルに入れて測定することにより求められるLog微分細孔容積分布曲線において、最大ピークにおけるLog微分細孔容積を意味している。   In addition, the log differential pore volume of the maximum frequency pore diameter of the positive electrode mixture layer referred to in the present specification is obtained by using a mercury porosimeter (“Poresizer 9310” manufactured by Micromeritic) and the positive electrode mixture layer peeled off from the positive electrode current collector. In the Log differential pore volume distribution curve obtained by cutting out 2 × 4 cm and directly putting it in a cell, it means the Log differential pore volume at the maximum peak.

なお、正極合剤層の密度、空隙率および最大頻度細孔径のLog微分細孔容積は、正極合剤層の成分組成を調整したり、正極合剤層を形成する際のプレス処理時の条件(プレス圧、プレス温度など)を調整したりすることで制御できる。前記密度および前記最大頻度細孔径のLog微分細孔容積を有する正極合剤層を形成するには、正極合剤層中の正極活物質量、導電助剤量およびバインダ量を前記好適値とすることが好ましく、また、正極合剤層形成時のプレス条件としては、例えば、プレス温度を60〜150℃とし、プレス圧を8〜15kN/cmとすることが好ましい。   In addition, the density of the positive electrode mixture layer, the porosity, and the Log differential pore volume of the maximum frequency pore diameter are the conditions at the time of press treatment when adjusting the component composition of the positive electrode mixture layer or forming the positive electrode mixture layer. It can be controlled by adjusting (press pressure, press temperature, etc.). In order to form a positive electrode mixture layer having a Log differential pore volume of the density and the maximum frequency pore diameter, the positive electrode active material amount, the conductive auxiliary agent amount, and the binder amount in the positive electrode mixture layer are set to the preferred values. In addition, as the pressing conditions at the time of forming the positive electrode mixture layer, for example, the pressing temperature is preferably 60 to 150 ° C. and the pressing pressure is preferably 8 to 15 kN / cm.

本発明に係る正極では、正極集電体に、厚みが15μm以下で、かつ引張強度が200N/mm以上のAl合金箔を使用する。このような正極集電体を使用することで、高密度の正極合剤層を形成して正極とし、これを用いて扁平状の巻回電極体を構成しても、正極集電体の破断などによる容量低下現象の発生を防止できる。 In the positive electrode according to the present invention, an Al alloy foil having a thickness of 15 μm or less and a tensile strength of 200 N / mm 2 or more is used for the positive electrode current collector. By using such a positive electrode current collector, a high-density positive electrode mixture layer is formed as a positive electrode, and even when a flat wound electrode body is configured using this, the positive electrode current collector is broken. It is possible to prevent the occurrence of a capacity reduction phenomenon due to the above.

正極集電体の厚みは、13μm以下であることがより好ましい。このような厚みの正極集電体を用いることで、正極合剤層の厚みを大きくして、より高容量の電池を構成できるようになる。ただし、正極集電体が薄すぎると、電池製造時に正極合剤層未形成部(集電体の露出部)で切断が生じやすくなったり、集電のためのリード体(タブ)を溶接した部分において集電体の破断が生じやすくなることがあるため、その厚みは、10μm以上であることが好ましい。   The thickness of the positive electrode current collector is more preferably 13 μm or less. By using the positive electrode current collector having such a thickness, it is possible to increase the thickness of the positive electrode mixture layer and configure a battery having a higher capacity. However, if the current collector of the positive electrode is too thin, cutting is likely to occur at the portion where the positive electrode mixture layer is not formed (exposed portion of the current collector) during battery manufacture, or a lead body (tab) for current collection is welded. The thickness of the current collector is preferably 10 μm or more because the current collector may be easily broken in the portion.

また、正極集電体は、引張強度が、200N/mm以上、好ましくは220N/mm以上である。このような引張強度の正極集電体を用いることで、扁平状の巻回電極体を構成した場合の破断などを防止できる。ただし、引張強度が強すぎると、巻回電極体を低いプレス圧で押しつぶすことが難くなり、高いプレス圧で押しつぶした場合、巻回電極体内部のセパレータへダメージを与えることがあるため、引張強度は300N/mm以下であることが好ましい。 The positive electrode current collector has a tensile strength of 200 N / mm 2 or more, preferably 220 N / mm 2 or more. By using the positive electrode current collector having such a tensile strength, breakage or the like when a flat wound electrode body is configured can be prevented. However, if the tensile strength is too strong, it becomes difficult to crush the wound electrode body with a low press pressure. If it is crushed with a high press pressure, the separator inside the wound electrode body may be damaged. Is preferably 300 N / mm 2 or less.

なお、本明細書でいう正極集電体の引張強度は、島津製作所製「オートグラフ AGS−500G」を用いて、集電体を構成する金属箔の製造時の圧延方向と平行に幅15mm×長さ100mm以上の試料を作製し、標点距離100mm、速度10mm/分の条件で破断強度と伸びとを5回測定し、破断強度上位3値を平均化したものを意味している。なお、引張強度の測定値に大きな差はみられないため、試料に正極合剤層が形成されていた状態で測定しても問題はなく、正極集電体の引張強度として評価できる。   In addition, the tensile strength of the positive electrode current collector referred to in this specification is 15 mm in width parallel to the rolling direction at the time of manufacturing the metal foil constituting the current collector using “Autograph AGS-500G” manufactured by Shimadzu Corporation. A sample having a length of 100 mm or more was prepared, and the breaking strength and elongation were measured five times under the conditions of a gauge distance of 100 mm and a speed of 10 mm / min, and the upper three values of breaking strength were averaged. In addition, since there is no big difference in the measured value of the tensile strength, there is no problem even if the measurement is performed in a state where the positive electrode mixture layer is formed on the sample, and the tensile strength of the positive electrode current collector can be evaluated.

前記の特性を有する正極集電体は、例えば、少なくともMnとMgのいずれか一方を含み、かつ全体を100質量%としたとき、Alを90質量%以上、Mnを1.2質量%以下、Mgを3.5質量%以下で含有するAl合金の箔によって構成できる。より具体的には、例えば、JIS 2024、JIS 3003、JIS 3004、JIS 5052、JIS 5154などのAl合金の箔により、正極集電体を構成することができる。   The positive electrode current collector having the above characteristics includes, for example, at least one of Mn and Mg, and when the whole is 100% by mass, Al is 90% by mass or more, Mn is 1.2% by mass or less, An Al alloy foil containing 3.5% by mass or less of Mg can be used. More specifically, for example, the positive electrode current collector can be constituted by an Al alloy foil such as JIS 2024, JIS 3003, JIS 3004, JIS 5052, and JIS 5154.

本発明に係る負極としては、例えば、負極活物質やバインダを含有する負極合剤層を、負極集電体の片面または両面に形成してなるものを使用することができる。   As a negative electrode which concerns on this invention, what formed the negative mix layer containing a negative electrode active material and a binder in the single side | surface or both surfaces of a negative electrode collector can be used, for example.

負極活物質としては、Liイオンをドープ・脱ドープできるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料が挙げられる。また、Si、Sn、Inなどの合金、またはLiに近い低電位で充放電できるSi、Snなどの酸化物、Li2.6Co0.4NなどのLiとCoの窒化物などの化合物も負極活物質として用いることができる。さらに、黒鉛の一部をLiと合金化し得る金属や酸化物などと置き換えることもできる。負極活物質として黒鉛を用いた場合には、満充電時の電圧をLi基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極の電位を便宜上計算することができることから、正極の充電電位が制御しやすく好ましい。 The negative electrode active material may be any material that can be doped and dedoped with Li ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, Examples thereof include carbon materials such as carbon fiber and activated carbon. Also, alloys such as Si, Sn, In, etc., oxides such as Si, Sn that can be charged and discharged at a low potential close to Li, and compounds such as Li and Co nitrides such as Li 2.6 Co 0.4 N are also available. It can be used as a negative electrode active material. Furthermore, a part of graphite can be replaced with a metal or oxide that can be alloyed with Li. When graphite is used as the negative electrode active material, the voltage at the time of full charge can be regarded as about 0.1 V on the basis of Li. Therefore, the potential of the positive electrode is calculated for convenience by adding 0.1 V to the battery voltage. Therefore, it is preferable that the charge potential of the positive electrode is easy to control.

黒鉛の形態としては、例えば、002面の面間隔(d002 )が0.338nm以下であることが好ましい。これは、結晶性が高い方が後記の負極合剤層を高密度にし易いからである。しかし、d002が大きすぎると、高密度の負極では放電特性や負荷特性が低下する場合があるので、d002は、0.335nm以上であることが好ましく、0.3355nm以上であることが更に好ましい。 As a form of graphite, for example, it is preferable that an interplanar spacing (d 002 ) of 002 plane is 0.338 nm or less. This is because the higher the crystallinity, the higher the density of the negative electrode mixture layer described later. However, if d 002 is too large, the discharge characteristics and load characteristics of the high-density negative electrode may be deteriorated. Therefore, d 002 is preferably 0.335 nm or more, and more preferably 0.3355 nm or more. preferable.

また、黒鉛のc軸方向の結晶子サイズ(Lc)については、70nm以上が好ましく、80nm以上がより好ましく、90nm以上が更に好ましい。これは、Lcが大きいほうが、充電カーブが平坦になり正極の電位を制御し易く、また、容量を大きくできるためである。他方、Lcが大きすぎると、高密度の負極では電池容量が低下する傾向があるので、Lcは200nm未満であることが好ましい。   Further, the crystallite size (Lc) in the c-axis direction of graphite is preferably 70 nm or more, more preferably 80 nm or more, and still more preferably 90 nm or more. This is because the larger the Lc, the flatter the charging curve, the easier to control the positive electrode potential, and the larger the capacity. On the other hand, if Lc is too large, the battery capacity tends to decrease in a high-density negative electrode, so Lc is preferably less than 200 nm.

更に、黒鉛の比表面積は、0.5m/g以上であることが好ましく、1m/g以上であることがより好ましく、2m/g以上であることが更に好ましく、また、6m/g以下であることが好ましく、5m/g以下であることがより好ましい。黒鉛の比表面積がある程度大きくないと特性が低下する傾向にあり、他方、大きすぎると非水電解質との反応の影響が出易いためである。 Furthermore, the specific surface area of the graphite is preferably at 0.5 m 2 / g or more, more preferably 1 m 2 / g or more, further preferably 2m 2 / g or more,, 6 m 2 / g or less is preferable, and 5 m 2 / g or less is more preferable. This is because if the specific surface area of graphite is not large to some extent, the characteristics tend to deteriorate, while if it is too large, the influence of the reaction with the nonaqueous electrolyte tends to occur.

負極に用いる黒鉛は、天然黒鉛を原料としたものであることが好ましく、表面結晶性の異なる2種以上の黒鉛を混合したものが、高容量化の点からより好ましい。天然黒鉛は安価かつ高容量であることから、これによりコストパフォーマンスの高い負極とすることができる。通常天然黒鉛を用いて高密度の負極合剤層を形成すると電池容量が低下し易いが、表面処理によって表面の結晶性が低下した黒鉛を混合して用いることで、電池容量の低下を小さくすることができる。   The graphite used for the negative electrode is preferably made of natural graphite as a raw material, and a mixture of two or more types of graphite having different surface crystallinity is more preferable from the viewpoint of increasing the capacity. Since natural graphite is inexpensive and has a high capacity, it can be a negative electrode with high cost performance. Usually, when a high-density negative electrode mixture layer is formed using natural graphite, the battery capacity is likely to decrease, but the decrease in battery capacity is reduced by mixing and using graphite whose surface crystallinity has been reduced by surface treatment. be able to.

黒鉛の表面の結晶性はラマンスペクトル分析によって判断することができる。波長514.5nmのアルゴンレーザーで黒鉛を励起させた時のラマンスペクトルのR値[R=I1350/I1580(1350cm−1付近のラマン強度と1580cm−1付近のラマン強度との比)]が0.01以上であれば、表面の結晶性は天然黒鉛に比べ若干低下しているといえる。よって、本発明において、表面処理により表面の結晶性が低下した黒鉛としては、例えば、R値が、好ましくは0.01以上、より好ましくは0.1以上であって、好ましくは0.5以下、より好ましくは0.3以下、更に好ましくは0.15以下のものを使用することが望ましい。前記の表面の結晶性が低下した黒鉛の含有割合は、負極合剤層の高密度化のためには100質量%であることが好ましいが、電池容量の低下防止のためには、全黒鉛中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることが特に好ましい。 The crystallinity of the surface of graphite can be determined by Raman spectrum analysis. R value of Raman spectrum when excited graphite in argon laser with a wavelength of 514.5nm [R = I 1350 / I 1580 ( the ratio of the Raman intensity and 1580cm Raman intensity at around -1 around 1350 cm -1)] is If it is 0.01 or more, it can be said that the crystallinity of the surface is slightly lower than that of natural graphite. Therefore, in the present invention, as the graphite whose surface crystallinity has been lowered by the surface treatment, for example, the R value is preferably 0.01 or more, more preferably 0.1 or more, and preferably 0.5 or less. More preferably, it is 0.3 or less, more preferably 0.15 or less. The graphite content with reduced surface crystallinity is preferably 100% by mass in order to increase the density of the negative electrode mixture layer. Is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 85% by mass or more.

また、黒鉛の平均粒子径は、小さすぎると不可逆容量が大きくなるので、5μm以上であることが好ましく、12μm以上であることがより好ましく、18μm以上であることが更に好ましい。また、負極の高密度化の観点からは、黒鉛の平均粒子径は、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることが更に好ましい。   Moreover, since the irreversible capacity | capacitance will become large if the average particle diameter of graphite is too small, it is preferable that it is 5 micrometers or more, it is more preferable that it is 12 micrometers or more, and it is still more preferable that it is 18 micrometers or more. From the viewpoint of increasing the density of the negative electrode, the average particle diameter of graphite is preferably 30 μm or less, more preferably 25 μm or less, and further preferably 20 μm or less.

負極に用いるバインダは特に限定されないが、活物質比率を高めて容量を大きくする観点から、使用量を極力少なくすることが好ましく、このような理由から、水に溶解または分散する性質を有する水系樹脂とゴム系樹脂との混合物が好適である。水系樹脂は少量でも黒鉛の分散に寄与し、ゴム系樹脂は電池の充放電サイクル時の電極の膨張・収縮による負極合剤層の集電体からの剥離を防止することができるからである。   The binder used for the negative electrode is not particularly limited, but from the viewpoint of increasing the capacity by increasing the active material ratio, it is preferable to reduce the amount used as much as possible, and for this reason, an aqueous resin having the property of being dissolved or dispersed in water. A mixture of styrene and a rubber-based resin is preferred. This is because the water-based resin contributes to the dispersion of the graphite even in a small amount, and the rubber-based resin can prevent the negative electrode mixture layer from peeling from the current collector due to the expansion and contraction of the electrode during the charge / discharge cycle of the battery.

水系樹脂としては、カルボキシメチルセルロース、ヒドロキシプロピルセルロースなどのセルロース樹脂、ポリビニルピロリドン、ポリエピクロルヒドリン、ポリビニルピリジン、ポリビニルアルコール、ポリエチレンオキシド、ポリエチレングリコールなどのポリエーテル系樹脂などが挙げられる。ゴム系樹脂としては、ラテックス、ブチルゴム、フッ素ゴム、スチレンブタジエンゴム、ニトリルブタジエン共重合体ゴム、エチレン−プロピレン−ジエン共重合体、ポリブタジエン、エチレン−プロピレン−ジエン共重合体(EPDM)などが挙げられる。例えば、カルボキシメチルセルロースなどのセルロースエーテル化合物とスチレンブタジエンゴムなどのブタジエン共重合体系ゴムとを併用することが、前記黒鉛の分散や剥離防止の観点からより好ましい。カルボキシメチルセルロースとスチレンブタジエンゴム、ニトリルブタジエン共重合体ゴムなどのブタジエン共重合体系ゴムとを併用することが特に好ましい。これは、カルボキシメチルセルロースなどのセルロースエーテル化合物が、主として負極合剤含有ペーストに対して増粘作用を発揮し、スチレン・ブタジエン共重合体ゴムなどのゴム系バインダが、負極合剤に対して結着作用を発揮するからである。このように、カルボキシメチルセルロースなどのセルロースエーテル化合物とスチレンブタジエンゴムなどのゴム系バインダとを併用する場合、両者の比率としては質量比で1:1〜1:15が好ましい。   Examples of the water-based resin include cellulose resins such as carboxymethyl cellulose and hydroxypropyl cellulose, and polyether resins such as polyvinyl pyrrolidone, polyepichlorohydrin, polyvinyl pyridine, polyvinyl alcohol, polyethylene oxide, and polyethylene glycol. Examples of the rubber resin include latex, butyl rubber, fluorine rubber, styrene butadiene rubber, nitrile butadiene copolymer rubber, ethylene-propylene-diene copolymer, polybutadiene, and ethylene-propylene-diene copolymer (EPDM). . For example, it is more preferable to use a cellulose ether compound such as carboxymethyl cellulose in combination with a butadiene copolymer rubber such as styrene butadiene rubber from the viewpoint of dispersion of graphite and prevention of peeling. It is particularly preferred to use carboxymethyl cellulose in combination with a butadiene copolymer rubber such as styrene butadiene rubber or nitrile butadiene copolymer rubber. This is because cellulose ether compounds such as carboxymethyl cellulose exert a thickening action mainly on the negative electrode mixture-containing paste, and rubber binders such as styrene / butadiene copolymer rubber bind to the negative electrode mixture. This is because the effect is exhibited. Thus, when using together cellulose ether compounds, such as carboxymethylcellulose, and rubber-type binders, such as a styrene butadiene rubber, as a ratio of both, 1: 1-1: 15 are preferable by mass ratio.

負極は、負極活物質にバインダを加え、更に必要であれば、溶剤を加えて負極合剤含有組成物(ペースト、スラリーなど)を調製し、これを集電体の片面または両面に塗布し乾燥した後に、プレス処理により厚みや密度を調整しつつ負極合剤層を形成する工程を経て作製される。負極合剤含有組成物に用いる溶剤としては、例えば、水;NMP、トルエン、キシレンなどの有機溶剤;などが挙げられる。また、負極合剤含有組成物の調製に当たっては、バインダは予め有機溶剤や水に溶解させた溶液または分散させた懸濁液を用い、負極活物質などの固体粒子と混合することが好ましい。   For the negative electrode, a binder is added to the negative electrode active material, and if necessary, a solvent is added to prepare a negative electrode mixture-containing composition (paste, slurry, etc.), which is applied to one or both sides of the current collector and dried. After that, the negative electrode mixture layer is formed through a step of adjusting the thickness and density by press treatment. Examples of the solvent used in the negative electrode mixture-containing composition include water; organic solvents such as NMP, toluene, and xylene; In preparing the negative electrode mixture-containing composition, the binder is preferably mixed with solid particles such as a negative electrode active material using a solution previously dissolved or dispersed in an organic solvent or water.

負極合剤含有組成物を負極集電体表面に塗布する方法としては、前記の正極合剤含有組成物を正極集電体の表面に塗布する方法として例示した各種方法を採用することができる。   As a method of applying the negative electrode mixture-containing composition to the surface of the negative electrode current collector, various methods exemplified as a method of applying the positive electrode mixture-containing composition to the surface of the positive electrode current collector can be employed.

負極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン、銅などの金属性導電材料を、網、パンチドメタル、フォームメタルや、板状に加工した箔などが用いられる。負極集電体の厚みは、例えば、5〜12μmであることが好ましい。   As the negative electrode current collector, for example, a metal, a punched metal, a foam metal, a foil obtained by processing a metal conductive material such as aluminum, stainless steel, nickel, titanium, or copper into a plate shape is used. The thickness of the negative electrode current collector is preferably 5 to 12 μm, for example.

負極集電体表面に形成される負極合剤層の厚みは、乾燥後の厚みで、例えば、40〜160μmであることが好ましい。また、負極合剤層を、例えば、負極活物質およびバインダを含有するものとする場合には、負極活物質の含有量を、例えば、90〜99.8質量%とすることが好ましい。   The thickness of the negative electrode mixture layer formed on the surface of the negative electrode current collector is preferably the thickness after drying, for example, 40 to 160 μm. Moreover, when a negative mix layer shall contain a negative electrode active material and a binder, for example, it is preferable that content of a negative electrode active material shall be 90-99.8 mass%, for example.

また、負極合剤層を、例えば、負極活物質およびバインダを含有するものとする場合には、バインダの含有量は、例えば、0.2質量%以上とすることが好ましく、0.5質量%以上とすることがより好ましく、また、10質量%以下とすることが好ましく、2質量%以下とすることがより好ましい。バインダの含有量が少なすぎると、負極合剤層の機械的強度が不足し、負極合剤層が集電体から剥離する虞がある。また、バインダの含有量が多すぎると、負極合剤層中の活物質量が減少して、本発明における電池の高容量化効果が小さくなる虞がある。   When the negative electrode mixture layer contains, for example, a negative electrode active material and a binder, the binder content is preferably 0.2% by mass or more, for example, 0.5% by mass. The content is more preferably 10% by mass or less, and more preferably 2% by mass or less. If the binder content is too small, the mechanical strength of the negative electrode mixture layer is insufficient, and the negative electrode mixture layer may be peeled off from the current collector. Moreover, when there is too much content of a binder, there exists a possibility that the amount of active materials in a negative mix layer may reduce, and the high capacity | capacitance effect of the battery in this invention may become small.

負極合剤層は、活物質に炭素材料を用いる場合では、密度が、1.70g/cm以上であることが好ましく、1.75g/cm以上であることがより好ましい。このように負極合剤層を高密度とすることで、高密度の正極合剤層を有する正極との併用により、電池をより高容量とすることができる。なお、負極合剤層の密度は、高すぎると負極表面に金属リチウムが析出して安全性の低下を引き起こすことがあるため、1.90g/cm以下であることが好ましい。 In the case of using a carbon material as the active material, the negative electrode mixture layer preferably has a density of 1.70 g / cm 3 or more, and more preferably 1.75 g / cm 3 or more. Thus, by making a negative electrode mixture layer into high density, a battery can be made into a higher capacity | capacitance by combined use with the positive electrode which has a high-density positive electrode mixture layer. The density of the negative electrode mixture layer is preferably 1.90 g / cm 3 or less because if the density of the negative electrode mixture layer is too high, metallic lithium may precipitate on the negative electrode surface and cause a decrease in safety.

正極と負極の間に介在させるセパレータについては特に制限は無く、従来公知のものが適用できる。例えば、厚みが5〜30μmで、開孔率が30〜70%の微多孔性ポリエチレンフィルムまたは微多孔性ポリプロピレンフィルム、ポリエチレンポリプロピレン複合フィルムなどが好適に用いられる。   There is no restriction | limiting in particular about the separator interposed between a positive electrode and a negative electrode, A conventionally well-known thing is applicable. For example, a microporous polyethylene film having a thickness of 5 to 30 μm and a porosity of 30 to 70%, a microporous polypropylene film, a polyethylene polypropylene composite film, or the like is preferably used.

本発明の非水二次電池は、前記の巻回電極体を、厚みに対する幅の比が1.7〜10.0の外装体内に装填し、更に非水系の電解質を外装体内に注入した後に外装体を封止する工程を経て製造される。本発明の電池において、外装体を、厚みに対する幅の比が1.7〜10.0のものに限定するのは、このような形状の外装体を使用する場合には、巻回電極体を押しつぶす必要があるため、正極集電体の破断などによる容量低下が生じ易いからである。   In the non-aqueous secondary battery of the present invention, after the wound electrode body is loaded into the outer package having a width to thickness ratio of 1.7 to 10.0, and a non-aqueous electrolyte is injected into the outer package. It is manufactured through a step of sealing the exterior body. In the battery of the present invention, the outer casing is limited to those having a width to thickness ratio of 1.7 to 10.0. This is because it is necessary to crush, so that the capacity is easily reduced due to the fracture of the positive electrode current collector.

外装体としては、アルミニウム、アルミニウム合金、ニッケルメッキを施した鉄やステンレス鋼製などの電池ケース内(例えば、角形の電池ケース)や、アルミニウムラミネートフィルム製の外装体などが使用できる。   As the exterior body, a battery case made of aluminum, aluminum alloy, nickel-plated iron or stainless steel (for example, a rectangular battery case), an exterior body made of an aluminum laminate film, or the like can be used.

電解質には、例えば、電気特性や取り扱い易さから、有機溶媒などの非水系溶媒にリチウム塩などの電解質塩を溶解させた非水溶媒系の電解質(電解液)が好ましく用いられる。   For the electrolyte, for example, a nonaqueous solvent electrolyte (electrolytic solution) in which an electrolyte salt such as a lithium salt is dissolved in a nonaqueous solvent such as an organic solvent is preferably used from the viewpoint of electrical characteristics and ease of handling.

非水電解質の溶媒としては特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネートなどの鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;などが挙げられ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。   Although it does not specifically limit as a solvent of a nonaqueous electrolyte, For example, chain | strand ester, such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propion carbonate; High dielectric constants, such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate Cyclic ester; mixed solvent of chain ester and cyclic ester; and the like, and a mixed solvent with a cyclic ester having a chain ester as a main solvent is particularly suitable.

また、溶媒としては、前記エステル以外にも、例えば、リン酸トリメチルなどの鎖状リン酸トリエステル、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどのエーテル類、ニトリル類、ジニトリル類、イソシアネート類、ハロゲン含有溶媒なども用いることができる。更に、アミン系またはイミド系有機溶媒やスルホランなどのイオウ系有機溶媒なども用いることができる。   In addition to the ester, examples of the solvent include chain phosphate triesters such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, and diethyl ether. These ethers, nitriles, dinitriles, isocyanates, halogen-containing solvents, and the like can also be used. Further, amine-based or imide-based organic solvents, sulfur-based organic solvents such as sulfolane, and the like can also be used.

電解質塩としては、例えば、LiClO 、LiPF 、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO)、LiN(RfSO)(Rf′SO)、 LiC(RfSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfとRf′はフルオロアルキル基]などが挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。前記の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。前記含フッ素有機リチウム塩はアニオン性が大きく、かつイオン分離しやすいので前記溶媒に溶解し易いからである。非水電解質中における電解質塩の濃度は特に限定されないが、例えば、好ましくは0.3mol/l以上、より好ましくは0.4mol/l以上であって、好ましくは1.7mol/l以下、より好ましくは1.5mol/l以下である。 As the electrolyte salt, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2 , LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf and Rf ′ are fluoroalkyl groups] These may be used, and these may be used alone or in combination of two or more. Among the electrolyte salts, fluorine-containing organic lithium salts having 2 or more carbon atoms are particularly preferable. This is because the fluorine-containing organic lithium salt has a large anionic property and easily separates ions, so that it is easily dissolved in the solvent. The concentration of the electrolyte salt in the nonaqueous electrolyte is not particularly limited. For example, it is preferably 0.3 mol / l or more, more preferably 0.4 mol / l or more, preferably 1.7 mol / l or less, more preferably. Is 1.5 mol / l or less.

本発明の非水二次電池は、薄形で、かつ高容量であることから、このような特性の電池が要求される各種機器(例えば、携帯電話などの携帯機器)の電源用途を始めとして、従来公知の非水二次電池が適用されている各種用途に好ましく用いることができる。   Since the non-aqueous secondary battery of the present invention is thin and has a high capacity, it can be used as a power source for various devices (for example, mobile devices such as mobile phones) that require batteries having such characteristics. Therefore, it can be preferably used in various applications to which a conventionally known non-aqueous secondary battery is applied.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
<正極の作製>
活物質であるコバルト酸リチウム(平均粒径12μm):97質量%、導電助剤であるアセチレンブラック:1.5質量%、およびバインダであるポリフッ化ビニリデン(PVDF):1.5質量%と、溶剤であるNMPとを用いて正極合剤含有組成物を調製した。正極合剤含有組成物の調製は、PVDFをNMPに予め溶解しておき、この溶液に前記活物質とアセチレンブラックを加え、攪拌しながら更にNMPを加え、十分に分散させつつ粘度を調整することによって行った。この正極合剤含有組成物を、厚みが12μmで、引張強度250N/mm、破断伸びが1.4%のA3003HからなるAl合金箔の両面に、アプリケーターを用いて均一に塗布し、その後、ロールプレスを用いて、ロール温度100℃、圧力8kN/cmの条件で圧延処理し、所定のサイズに切断後、アルミニウム製のリード体を溶接して、全厚が138μmのシート状正極を得た。このようにして作製した正極の正極合剤層密度は、3.85g/cmであり、理論密度から算出した空隙率は20%であった。また、最大頻度細孔径0.5μmにおけるLog微分細孔容積は0.060cm/gであった。
Example 1
<Preparation of positive electrode>
Lithium cobaltate as an active material (average particle size 12 μm): 97% by mass, acetylene black as a conductive auxiliary agent: 1.5% by mass, and polyvinylidene fluoride (PVDF) as a binder: 1.5% by mass, A positive electrode mixture-containing composition was prepared using NMP as a solvent. The positive electrode mixture-containing composition is prepared by previously dissolving PVDF in NMP, adding the active material and acetylene black to this solution, adding NMP while stirring, and adjusting the viscosity while sufficiently dispersing. Went by. This positive electrode mixture-containing composition was uniformly applied to both surfaces of an Al alloy foil made of A3003H having a thickness of 12 μm, a tensile strength of 250 N / mm 2 and a breaking elongation of 1.4% using an applicator, Using a roll press, rolling was performed under conditions of a roll temperature of 100 ° C. and a pressure of 8 kN / cm, and after cutting into a predetermined size, an aluminum lead body was welded to obtain a sheet-like positive electrode having a total thickness of 138 μm. . The positive electrode mixture layer density of the positive electrode thus prepared was 3.85 g / cm 3 , and the porosity calculated from the theoretical density was 20%. The Log differential pore volume at the maximum frequency pore diameter of 0.5 μm was 0.060 cm 3 / g.

<負極の作製>
負極活物質として黒鉛系炭素材料(A)[純度99.9%以上、平均粒子径18μm、002面の面間距離(d002)=0.3356nm、c軸方向の結晶子の大きさ(Lc)=100nm、R値(波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルにおける1350cm−1付近のピーク強度と1580cm−1付近のピーク強度との比〔R=I1350/I1580〕)=0.18]:70質量部と、黒鉛系炭素材料(B)[純度99.9%以上、平均粒子径21μm、d002=0.3363nm、Lc=60nm、R値=0.11]:30質量部とを混合し、この混合物98質量部と、カルボキシメチルセルロース1質量部とスチレンブタジエンゴム1質量部とを、水の存在下で混合してスラリー状の負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥して負極合剤層を形成し、ロールプレスで負極合剤層の密度が1.75g/cmになるまで圧延処理し、所定のサイズに切断後、ニッケル製のリード体を溶接して、全厚が132μmのシート状の負極を作製した。
<Production of negative electrode>
Graphite-based carbon material (A) as a negative electrode active material [purity 99.9% or more, average particle diameter 18 μm, inter-surface distance (d 002 ) = 0.3356 nm, crystallite size in the c-axis direction (Lc ) = 100 nm, R value (ratio of peak intensity around 1350 cm −1 and peak intensity around 1580 cm −1 in the Raman spectrum when excited by an argon laser with a wavelength of 514.5 nm [R = I 1350 / I 1580 ] ) = 0.18]: 70 parts by mass and graphite-based carbon material (B) [purity 99.9% or more, average particle diameter 21 μm, d 002 = 0.3363 nm, Lc = 60 nm, R value = 0.11. : 30 parts by mass, and 98 parts by mass of this mixture, 1 part by mass of carboxymethyl cellulose and 1 part by mass of styrene butadiene rubber are mixed in the presence of water to form a slurry. The negative electrode mixture-containing paste was prepared. The obtained negative electrode mixture-containing paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and the density of the negative electrode mixture layer was 1 by roll press. The sheet was rolled to 0.75 g / cm 3 , cut to a predetermined size, and then a nickel lead was welded to prepare a sheet-like negative electrode having a total thickness of 132 μm.

<電池の組み立て>
前記の正極と前記の負極とを、微孔性ポリエチレンフィルムからなるセパレータ[空孔率53%、MD方向引張強度:2.1×10N/m、TD方向引張強度:0.28×10N/m、厚さ16μm、透気度80秒/100ml、105℃×8時間後のTD方向の熱収縮率3%、突き刺し強度:3.5N(360g)]を介して渦巻状に巻回し、巻回電極体にした後、加圧して扁平状の巻回電極体にした。それをアルミニウム合金製で幅が34mmで、厚みが4.6mmで、高さが50mmの角形(厚みに対する幅の比が7.4)の電池ケース(外装体)内に挿入し、正・負極リード体の溶接と蓋板の電池ケースへの開口端部へのレーザー溶接を行い、封口用蓋板に設けた注入口から非水電解液を電池ケース内に注入し、非水電解液をセパレータなどに十分に浸透させた後、部分充電を行い、部分充電で発生したガスを排出後、注入口を封止して密閉状態にした。なお、非水電解液には、メチルエチルカーボネートとジエチルカーボネートとエチレンカーボネートとを体積比3:1:2で混合した混合溶媒に、LiPFを1.2mol/lの濃度になるように溶解した溶液を用いた。その後、充電、エイジングを行い、図1に示すような構造で図2に示すような外観を有する非水二次電池を得た。
<Battery assembly>
The positive electrode and the negative electrode are made of a separator made of a microporous polyethylene film [porosity 53%, MD direction tensile strength: 2.1 × 10 8 N / m 2 , TD direction tensile strength: 0.28 × 10 8 N / m 2 , thickness 16 μm, air permeability 80 seconds / 100 ml, thermal shrinkage 3% in TD direction after 105 ° C. × 8 hours, puncture strength: 3.5 N (360 g)] And wound into a wound electrode body, and then pressed to form a flat wound electrode body. It is inserted into a battery case (exterior body) made of an aluminum alloy, having a width of 34 mm, a thickness of 4.6 mm, and a height of 50 mm (ratio of width to thickness is 7.4). Welding the lead body and laser welding the opening end of the lid plate to the battery case, injecting the non-aqueous electrolyte into the battery case from the inlet provided in the lid plate for sealing, and separating the non-aqueous electrolyte into the separator After sufficiently infiltrating the gas, etc., partial charging was performed, and after the gas generated by partial charging was discharged, the inlet was sealed and sealed. In the non-aqueous electrolyte, LiPF 6 was dissolved to a concentration of 1.2 mol / l in a mixed solvent obtained by mixing methyl ethyl carbonate, diethyl carbonate, and ethylene carbonate at a volume ratio of 3: 1: 2. The solution was used. Thereafter, charging and aging were performed to obtain a non-aqueous secondary battery having a structure as shown in FIG. 1 and an appearance as shown in FIG.

ここで図1および図2に示す電池について説明すると、正極1と負極2は上記のようにセパレータ3を介して渦巻状に巻回した後、加圧して扁平状の巻回電極体6として、角形の電池ケース4に電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。   Here, the battery shown in FIGS. 1 and 2 will be described. The positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed to form a flat wound electrode body 6. The prismatic battery case 4 is housed together with the electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.

電池ケース4はアルミニウム合金製で電池の外装材を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリエチレンシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状の巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The battery case 4 is made of an aluminum alloy and constitutes a battery exterior material. The battery case 4 also serves as a positive electrode terminal. And the insulator 5 which consists of a polyethylene sheet is arrange | positioned at the bottom part of the battery case 4, and from the flat wound electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3, it is to each one end of the positive electrode 1 and the negative electrode 2 The connected positive electrode lead body 7 and negative electrode lead body 8 are drawn out. A stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached.

そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に電解液注入口14が設けられており、この電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、電解液注入口14は、電解液注入口と封止部材であるが、説明を容易にするために、電解液注入口14として示している)。更に、蓋板9には、防爆ベント15が設けられている。   And this cover plate 9 is inserted in the opening part of the battery case 4, and the opening part of the battery case 4 is sealed by welding the joint part of both, and the inside of the battery is sealed. Further, in the battery of FIG. 1, an electrolyte solution inlet 14 is provided in the lid plate 9, and the electrolyte solution inlet 14 is welded and sealed by, for example, laser welding or the like with a sealing member inserted. Thus, the sealing property of the battery is ensured (therefore, in the battery of FIGS. 1 and 2, the electrolyte inlet 14 is actually the electrolyte inlet and the sealing member, but the explanation is easy. In order to achieve this, it is shown as an electrolyte inlet 14). Further, the cover plate 9 is provided with an explosion-proof vent 15.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.

図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.

実施例2
電極およびセパレ−タの幅と長さ寸法とを調整した以外は実施例1と同様にして作製した巻回電極体を、幅が17mmで、厚みが10mmで、高さが65mmの角形(厚みに対する幅の比が1.7)の電池ケース(外装体)内に挿入した他は、実施例1と同様にして非水二次電池を作製した。
Example 2
A wound electrode body produced in the same manner as in Example 1 except that the width and length dimensions of the electrode and the separator were adjusted, was a square (thickness) having a width of 17 mm, a thickness of 10 mm, and a height of 65 mm. A non-aqueous secondary battery was fabricated in the same manner as in Example 1 except that it was inserted into a battery case (exterior body) having a width ratio to 1.7.

実施例3
電極およびセパレ−タの幅と長さ寸法とを調整した以外は実施例1と同様にして作製した巻回電極体を、幅が40mmで、厚みが4mmで、高さが50mmの角形(厚みに対する幅の比が10.0)の電池ケース(外装体)内に挿入した他は、実施例1と同様にして非水二次電池を作製した。
Example 3
A wound electrode body produced in the same manner as in Example 1 except that the width and length dimensions of the electrode and the separator were adjusted, was a square (thickness) having a width of 40 mm, a thickness of 4 mm, and a height of 50 mm. A non-aqueous secondary battery was fabricated in the same manner as in Example 1 except that it was inserted into a battery case (exterior body) having a width ratio to 10.0.

実施例4
正極作製時のプレス線圧11kN/cmとして、正極合剤層の密度を4.02g/cmにした以外は、実施例1と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は16%である。また、正極合剤層の最大頻度細孔径0.2μmにおけるLog微分細孔容積は0.046cm/gであった。
Example 4
A nonaqueous secondary battery was produced in the same manner as in Example 1, except that the press linear pressure at the time of producing the positive electrode was 11 kN / cm and the density of the positive electrode mixture layer was 4.02 g / cm 3 . The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 16%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.2 μm of the positive electrode mixture layer was 0.046 cm 3 / g.

実施例5
実施例1で使用したものと同じAl合金箔について、180℃で1時間焼鈍を行い、引張強度220N/mm、破断伸びが1.2%としたAl合金箔を得た。このAl合金箔を用い、さらに、正極作製時のプレス線圧13kN/cmとして、正極合剤層の密度を4.10g/cmにした以外は、実施例1と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は15%である。また、正極合剤層の最大頻度細孔径0.17μmにおけるLog微分細孔容積は0.038cm/gであった。
Example 5
The same Al alloy foil as used in Example 1 was annealed at 180 ° C. for 1 hour to obtain an Al alloy foil having a tensile strength of 220 N / mm 2 and an elongation at break of 1.2%. A non-aqueous secondary was used in the same manner as in Example 1 except that this Al alloy foil was used and the density of the positive electrode mixture layer was changed to 4.10 g / cm 3 at a press linear pressure of 13 kN / cm at the time of producing the positive electrode. A battery was produced. The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 15%. Moreover, the Log differential pore volume in the maximum frequency pore diameter of 0.17 μm of the positive electrode mixture layer was 0.038 cm 3 / g.

実施例6
正極活物質として、実施例1で用いたコバルト酸リチウムと、ニッケル酸リチウム(平均粒径12μm)とを、質量比50:50の割合で混合したものを用い、また、正極作製時のプレス線圧17kN/cmとして、正極合剤層の密度を4.10g/cmとした以外は、実施例5と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は11%である。また、正極合剤層の最大頻度細孔径0.16μmにおけるLog微分細孔容積は0.035cm/gであった。
Example 6
As the positive electrode active material, a mixture of lithium cobaltate used in Example 1 and lithium nickelate (average particle size 12 μm) in a mass ratio of 50:50 was used. A nonaqueous secondary battery was produced in the same manner as in Example 5 except that the pressure was 17 kN / cm and the density of the positive electrode mixture layer was 4.10 g / cm 3 . The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 11%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.16 μm of the positive electrode mixture layer was 0.035 cm 3 / g.

実施例7
実施例1で使用したものと同じAl合金箔について、200℃で1時間焼鈍を行い、引張強度200N/mm、破断伸びが0.9%のAl合金箔を得た。このAl合金箔を用い、また、正極作製時のプレス線圧9kN/cmとして、正極合剤層の密度を3.90g/cmにした以外は、実施例1と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は19%である。また、正極合剤層の最大頻度細孔径0.35μmにおけるLog微分細孔容積は0.054cm/gであった。
Example 7
The same Al alloy foil as used in Example 1 was annealed at 200 ° C. for 1 hour to obtain an Al alloy foil having a tensile strength of 200 N / mm 2 and an elongation at break of 0.9%. A non-aqueous secondary was used in the same manner as in Example 1 except that this Al alloy foil was used and the density of the positive electrode mixture layer was 3.90 g / cm 3 at a press linear pressure of 9 kN / cm at the time of producing the positive electrode. A battery was produced. The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 19%. The Log differential pore volume at the maximum frequency pore size of 0.35 μm of the positive electrode mixture layer was 0.054 cm 3 / g.

実施例8
実施例6で用いたものと同じ混合正極活物質を用い、正極作製時のプレス線圧12kN/cmとして、正極合剤層の密度を3.70g/cmにした以外は、実施例7と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は23%である。また、正極合剤層の最大頻度細孔径0.5μmにおけるLog微分細孔容積は0.080cm/gであった。
Example 8
Example 7 is the same as Example 7 except that the same mixed positive electrode active material as that used in Example 6 was used and the density of the positive electrode mixture layer was 3.70 g / cm 3 with a press linear pressure of 12 kN / cm at the time of producing the positive electrode. A non-aqueous secondary battery was produced in the same manner. The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 23%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.5 μm of the positive electrode mixture layer was 0.080 cm 3 / g.

実施例9
正極作製時のプレス線圧15kN/cmとして、正極合剤層の密度を3.92g/cmにした以外は、実施例8と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は15%である。また、正極合剤層の最大頻度細孔径0.22μmにおけるLog微分細孔容積は0.040cm/gであった。
Example 9
A nonaqueous secondary battery was produced in the same manner as in Example 8, except that the press linear pressure at the time of producing the positive electrode was 15 kN / cm and the density of the positive electrode mixture layer was 3.92 g / cm 3 . The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 15%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.22 μm of the positive electrode mixture layer was 0.040 cm 3 / g.

比較例1
実施例6で用いたものと混合正極活物質を用い、また、正極集電体を構成するAl合金箔として、厚みが15μmで、引張強度180N/mm 破断伸びが1.4%の1N30H材を使用し、更に、正極作製時のプレス線圧を10kN/cmとして、正極合剤層の密度を3.70g/cmにした以外は、実施例1と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は23%である。また、正極合剤層の最大頻度細孔径0.55μmにおけるLog微分細孔容積は0.105cm/gであった。
Comparative Example 1
As the use of mixed positive electrode active material used in Example 6, also as Al alloy foil constituting the positive electrode current collector, the thickness was 15 [mu] m, a tensile strength of 180 N / mm 2 elongation at break 1.4% 1N30H material In addition, the non-aqueous secondary battery was manufactured in the same manner as in Example 1 except that the press linear pressure during positive electrode production was 10 kN / cm and the density of the positive electrode mixture layer was 3.70 g / cm 3. Produced. The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 23%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.55 μm of the positive electrode mixture layer was 0.105 cm 3 / g.

比較例2
正極集電体に使用するAl合金箔を、実施例1で使用したものと同じAl合金箔を220℃で1時間焼鈍を行って得られた引張強度130N/mm、破断伸びが2.4%のAl合金箔に変更し、また、正極作製時のプレス線圧6kN/cmとして、正極合剤層の密度を3.75g/cmにした以外は、実施例1と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は22%である。また、正極合剤層の最大頻度細孔径0.58μmにおけるLog微分細孔容積は0.070cm/gであった。
Comparative Example 2
The Al alloy foil used for the positive electrode current collector was annealed at 220 ° C. for 1 hour using the same Al alloy foil used in Example 1, and the tensile strength was 130 N / mm 2 and the elongation at break was 2.4. Non-aqueous solution in the same manner as in Example 1 except that the density of the positive electrode mixture layer was changed to 3.75 g / cm 3 and the press linear pressure at the time of producing the positive electrode was 6 kN / cm. A secondary battery was produced. The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 22%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.58 μm of the positive electrode mixture layer was 0.070 cm 3 / g.

比較例3
正極作製時のプレス線圧9kN/cmとして、正極合剤層の密度を3.90g/cmにした以外は、比較例2と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は19%である。また、正極合剤層の最大頻度細孔径0.54μmにおけるLog微分細孔容積は0.054cm/gであった。
Comparative Example 3
A nonaqueous secondary battery was produced in the same manner as in Comparative Example 2 except that the press linear pressure at the time of producing the positive electrode was 9 kN / cm and the density of the positive electrode mixture layer was 3.90 g / cm 3 . The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 19%. The Log differential pore volume at the maximum frequency pore size of 0.54 μm of the positive electrode mixture layer was 0.054 cm 3 / g.

比較例4
実施例6で用いたものと同じ混合正極活物質を使用し、また、正極作製時のプレス線圧12kN/cmとして、正極合剤層の密度を3.70g/cmにした以外は、比較例2と同様にして非水二次電池を作製した。この電池に係る正極における正極合剤層の理論密度から算出した空隙率は18%である。また、正極合剤層の最大頻度細孔径0.50μmにおけるLog微分細孔容積は0.08cm/gであった。
Comparative Example 4
The same mixed positive electrode active material as that used in Example 6 was used, and the density of the positive electrode mixture layer was 3.70 g / cm 3 as the press linear pressure 12 kN / cm at the time of producing the positive electrode. A non-aqueous secondary battery was produced in the same manner as in Example 2. The porosity calculated from the theoretical density of the positive electrode mixture layer in the positive electrode according to this battery is 18%. In addition, the Log differential pore volume at the maximum frequency pore diameter of 0.50 μm of the positive electrode mixture layer was 0.08 cm 3 / g.

実施例1〜9、比較例1〜4および参考例の非水二次電池について、正極集電体に使用したAl合金箔の種類、引張特性、正極合剤層の密度および空隙率、最大頻度細孔径におけるLog微分細孔容積(cm/g)を、表1に示す。なお、表1に示す正極合剤層の密度、空隙率および最大頻度細孔径におけるLog微分細孔容積(cm/g)は、それぞれ前記の方法により得られた値である。 About the non-aqueous secondary battery of Examples 1-9, Comparative Examples 1-4, and a reference example, the kind of Al alloy foil used for the positive electrode collector, the tensile characteristic, the density and porosity of the positive mix layer, and the maximum frequency The Log differential pore volume (cm 3 / g) at the pore diameter is shown in Table 1. In addition, the log differential pore volume (cm 3 / g) in the density, the porosity, and the maximum frequency pore diameter of the positive electrode mixture layer shown in Table 1 are values obtained by the above methods.

Figure 2009048876
Figure 2009048876

また、実施例1〜9、比較例1〜4および参考例の非水二次電池について、下記方法により放電容量を測定した。各電池を、0.2Cの定電流で4.2Vになるまで充電後、総充電時間が8時間となるまで4.2Vで定電圧充電し、続いて0.2Cで電池電圧が3.0Vまで定電流放電を行って、そのときの放電容量を求めた。また、放電容量測定後の各電池を分解して、正極集電体の破断の有無を確認した。これらの結果を表2に示す。なお、表2では、各電池について得られた放電容量を、比較例1の電池の放電容量を100としたときの相対値で示す。   Moreover, about the nonaqueous secondary battery of Examples 1-9, Comparative Examples 1-4, and a reference example, the discharge capacity was measured with the following method. After each battery is charged at a constant current of 0.2 C until it reaches 4.2 V, it is charged at a constant voltage of 4.2 V until the total charging time is 8 hours, and then the battery voltage is 3.0 V at 0.2 C. The discharge capacity at that time was determined. Moreover, each battery after the discharge capacity measurement was disassembled, and whether or not the positive electrode current collector was broken was confirmed. These results are shown in Table 2. In Table 2, the discharge capacity obtained for each battery is shown as a relative value when the discharge capacity of the battery of Comparative Example 1 is set to 100.

Figure 2009048876
Figure 2009048876

表2から明らかなように、実施例1〜9の非水二次電池は、比較例1〜4の電池に比べて放電容量が大きく、高容量化が達成できている。比較例1〜4の電池では、正極集電体が破断しており、これによって正極の一部の導電性が損なわれ、本来有する容量を十分に引き出すことができなかったために、実施例1〜9の電池よりも容量が劣っていた。   As is clear from Table 2, the nonaqueous secondary batteries of Examples 1 to 9 have a larger discharge capacity than that of Comparative Examples 1 to 4, and a high capacity can be achieved. In the batteries of Comparative Examples 1 to 4, since the positive electrode current collector was broken, the conductivity of a part of the positive electrode was impaired, and the original capacity could not be sufficiently drawn. The capacity was inferior to the battery of 9.

本発明の非水二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically an example of the non-aqueous secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. 図1に示す非水二次電池の斜視図である。It is a perspective view of the non-aqueous secondary battery shown in FIG.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (3)

正極集電体の片面または両面に正極合剤層を有する正極、負極およびセパレータを積層し、これを渦巻状に巻回してなる巻回電極体を、厚みに対する幅の比が1.7〜10.0の外装体内に、非水系の電解質と共に封入してなる非水二次電池であって、
前記正極合剤層は、密度が3.5g/cm以上であり、かつ空隙率が25%以下であり、
前記正極集電体は、厚みが15μm以下で、引張強度が200N/mm以上のAl合金箔であることを特徴とする非水二次電池。
A wound electrode body in which a positive electrode having a positive electrode mixture layer, a negative electrode, and a separator are laminated on one side or both sides of a positive electrode current collector and wound in a spiral shape has a width to thickness ratio of 1.7 to 10. 0.0 non-aqueous secondary battery encapsulated in a non-aqueous electrolyte together with a non-aqueous electrolyte,
The positive electrode mixture layer has a density of 3.5 g / cm 3 or more and a porosity of 25% or less.
The non-aqueous secondary battery, wherein the positive electrode current collector is an Al alloy foil having a thickness of 15 μm or less and a tensile strength of 200 N / mm 2 or more.
正極合剤層の最大頻度細孔径におけるLog微分細孔容積が0.09cm/g以下である請求項1に記載の非水二次電池。 The nonaqueous secondary battery according to claim 1, wherein the Log differential pore volume at the maximum frequency pore diameter of the positive electrode mixture layer is 0.09 cm 3 / g or less. 正極集電体を構成するAl合金は、少なくともMnとMgのいずれか一方を含み、かつ全体を100質量%としたとき、Alを90質量%以上、Mnを1.2質量%以下、Mgを3.5質量%以下で含有するものである請求項1または2に記載の非水二次電池。   The Al alloy constituting the positive electrode current collector contains at least one of Mn and Mg, and when the whole is 100% by mass, Al is 90% by mass or more, Mn is 1.2% by mass or less, Mg is The non-aqueous secondary battery according to claim 1 or 2, which is contained in an amount of 3.5% by mass or less.
JP2007214269A 2007-08-21 2007-08-21 Non-aqueous secondary battery Active JP5258228B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007214269A JP5258228B2 (en) 2007-08-21 2007-08-21 Non-aqueous secondary battery
KR1020080081520A KR101452875B1 (en) 2007-08-21 2008-08-20 Non-aqueous secondary battery
CN2008102130288A CN101373850B (en) 2007-08-21 2008-08-20 Non-aqueous secondary battery
HK09106252.1A HK1128828A1 (en) 2007-08-21 2009-07-13 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214269A JP5258228B2 (en) 2007-08-21 2007-08-21 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2009048876A true JP2009048876A (en) 2009-03-05
JP5258228B2 JP5258228B2 (en) 2013-08-07

Family

ID=40447863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214269A Active JP5258228B2 (en) 2007-08-21 2007-08-21 Non-aqueous secondary battery

Country Status (4)

Country Link
JP (1) JP5258228B2 (en)
KR (1) KR101452875B1 (en)
CN (1) CN101373850B (en)
HK (1) HK1128828A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001636A1 (en) * 2009-06-30 2011-01-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery and process for production thereof
JP2012028158A (en) * 2010-07-23 2012-02-09 Hitachi Maxell Energy Ltd Anode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP2012203984A (en) * 2011-03-23 2012-10-22 Toppan Printing Co Ltd Packaging material for battery and secondary battery
JPWO2011089702A1 (en) * 2010-01-21 2013-05-20 トヨタ自動車株式会社 Lithium secondary battery
JP2013222557A (en) * 2012-04-13 2013-10-28 Mitsubishi Alum Co Ltd Aluminum alloy foil for lithium ion secondary battery positive electrode collector and lithium ion secondary battery manufactured using the same
WO2014157010A1 (en) * 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
US9225008B2 (en) 2010-10-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP2016018584A (en) * 2014-07-04 2016-02-01 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2016072226A (en) * 2014-09-25 2016-05-09 東莞新能源科技有限公司Dongguan Amperex Technology Limited Lithium ion battery
JPWO2014208272A1 (en) * 2013-06-27 2017-02-23 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20170034570A (en) * 2015-09-21 2017-03-29 주식회사 엘지화학 Electrode with improved safety and secondary battery comprising the same
JP2017073329A (en) * 2015-10-09 2017-04-13 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
US20170117533A1 (en) * 2015-10-22 2017-04-27 Hitachi Maxell, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
KR20170047179A (en) * 2015-10-22 2017-05-04 히다치 막셀 가부시키가이샤 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018088320A1 (en) 2016-11-08 2018-05-17 本田技研工業株式会社 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
CN108352504A (en) * 2016-06-14 2018-07-31 株式会社Lg化学 Electrode for secondary battery and lithium secondary battery comprising the same
WO2018155314A1 (en) 2017-02-24 2018-08-30 株式会社Gsユアサ Nonaqueous electrolyte electricity storage element and method for producing same
JP2018174134A (en) * 2017-03-30 2018-11-08 東レ株式会社 Electrode for secondary battery and method for manufacturing the same
JP2020047764A (en) * 2018-09-19 2020-03-26 Tdk株式会社 Electric double layer capacitor electrode and electric double layer capacitor
JP2020095835A (en) * 2018-12-11 2020-06-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US20220140303A1 (en) * 2020-10-29 2022-05-05 Sk Innovation Co., Ltd. Cathode for secondary battery and method for manufacturing same
WO2024195243A1 (en) * 2023-03-23 2024-09-26 株式会社村田製作所 Secondary battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550923B2 (en) * 2009-03-05 2014-07-16 三洋電機株式会社 Method for manufacturing prismatic secondary battery
WO2011089701A1 (en) * 2010-01-21 2011-07-28 トヨタ自動車株式会社 Lithium secondary battery
CN102064339A (en) * 2010-12-21 2011-05-18 王正伟 Lithium battery and assembling method thereof
CN102544578B (en) * 2012-03-16 2014-04-02 天津力神电池股份有限公司 Lithium ion battery capable of improving comprehensive performance
KR101864904B1 (en) * 2013-05-09 2018-06-05 주식회사 엘지화학 Methode for measuring electrode density and porosity
CN103840151B (en) * 2013-12-13 2016-04-13 山东海特电子新材料有限公司 Tertiary cathode material of a kind of special mono-crystalline structures and preparation method thereof
JP6287186B2 (en) * 2013-12-26 2018-03-07 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2015210848A (en) * 2014-04-23 2015-11-24 オートモーティブエナジーサプライ株式会社 Nonaqueous electrolyte secondary battery
US10381630B2 (en) * 2014-12-26 2019-08-13 Gs Yuasa International Ltd. Energy storage device
KR102246628B1 (en) * 2015-10-05 2021-05-03 주식회사 엘지화학 Method for Preparing Electrode for Secondary Battery through Control of Pressing Velocity and Electrode Prepared by the Same
CN111416145B (en) * 2015-10-16 2022-02-25 宁德新能源科技有限公司 Lithium ion battery
JP6897507B2 (en) * 2017-11-09 2021-06-30 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method
KR102402639B1 (en) 2017-11-24 2022-05-26 삼성전자주식회사 Electronic device and method for communicating thereof
CN113853699B (en) * 2021-03-12 2023-06-13 宁德新能源科技有限公司 Electrochemical device and electronic device
WO2024136465A1 (en) * 2022-12-20 2024-06-27 주식회사 엘지에너지솔루션 Positive electrode and lithium secondary battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131534A (en) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
JP2005056743A (en) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd Positive electrode plate for nonaqueous electrolyte secondary batteries
JP2007141527A (en) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd Electrode and nonaqueous secondary battery using it
JP2007165074A (en) * 2005-12-13 2007-06-28 Hitachi Ltd Lithium secondary battery, electric vehicle using it, and power tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769291B2 (en) * 2004-03-31 2006-04-19 株式会社東芝 Non-aqueous electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131534A (en) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
JP2005056743A (en) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd Positive electrode plate for nonaqueous electrolyte secondary batteries
JP2007141527A (en) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd Electrode and nonaqueous secondary battery using it
JP2007165074A (en) * 2005-12-13 2007-06-28 Hitachi Ltd Lithium secondary battery, electric vehicle using it, and power tool

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011001636A1 (en) * 2009-06-30 2012-12-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2011001636A1 (en) * 2009-06-30 2011-01-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery and process for production thereof
US9263729B2 (en) 2010-01-21 2016-02-16 Toyota-Jidosha Kabushiki Kaisha Lithium secondary battery
JPWO2011089702A1 (en) * 2010-01-21 2013-05-20 トヨタ自動車株式会社 Lithium secondary battery
JP5773209B2 (en) * 2010-01-21 2015-09-02 トヨタ自動車株式会社 Lithium secondary battery
JP2012028158A (en) * 2010-07-23 2012-02-09 Hitachi Maxell Energy Ltd Anode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
US9225008B2 (en) 2010-10-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Secondary battery
JP2012203984A (en) * 2011-03-23 2012-10-22 Toppan Printing Co Ltd Packaging material for battery and secondary battery
JP2013222557A (en) * 2012-04-13 2013-10-28 Mitsubishi Alum Co Ltd Aluminum alloy foil for lithium ion secondary battery positive electrode collector and lithium ion secondary battery manufactured using the same
WO2014157010A1 (en) * 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JPWO2014157010A1 (en) * 2013-03-29 2017-02-16 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
JPWO2014208272A1 (en) * 2013-06-27 2017-02-23 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016018584A (en) * 2014-07-04 2016-02-01 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2016072226A (en) * 2014-09-25 2016-05-09 東莞新能源科技有限公司Dongguan Amperex Technology Limited Lithium ion battery
KR20170034570A (en) * 2015-09-21 2017-03-29 주식회사 엘지화학 Electrode with improved safety and secondary battery comprising the same
JP2018525790A (en) * 2015-09-21 2018-09-06 エルジー・ケム・リミテッド Electrode having improved safety and secondary battery including the same
KR102022582B1 (en) 2015-09-21 2019-09-18 주식회사 엘지화학 Electrode with improved safety and secondary battery comprising the same
WO2017052200A1 (en) * 2015-09-21 2017-03-30 주식회사 엘지화학 Electrode having improved safety and secondary battery comprising same
US10593954B2 (en) 2015-09-21 2020-03-17 Lg Chem, Ltd. Positive electrode having specified elongation for improving safety and secondary battery including the same
JP2017073329A (en) * 2015-10-09 2017-04-13 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
KR20170047179A (en) * 2015-10-22 2017-05-04 히다치 막셀 가부시키가이샤 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US11322730B2 (en) 2015-10-22 2022-05-03 Maxell, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
JP7050119B2 (en) 2015-10-22 2022-04-07 マクセル株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102620151B1 (en) * 2015-10-22 2024-01-03 맥셀 주식회사 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017084769A (en) * 2015-10-22 2017-05-18 日立マクセル株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10833313B2 (en) * 2015-10-22 2020-11-10 Maxell Holdings, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
JP2020167175A (en) * 2015-10-22 2020-10-08 マクセルホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20170117533A1 (en) * 2015-10-22 2017-04-27 Hitachi Maxell, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
US10873105B2 (en) 2016-06-14 2020-12-22 Lg Chem, Ltd. Electrode for secondary battery and lithium secondary battery including same
CN108352504A (en) * 2016-06-14 2018-07-31 株式会社Lg化学 Electrode for secondary battery and lithium secondary battery comprising the same
JP2019501492A (en) * 2016-06-14 2019-01-17 エルジー・ケム・リミテッド Secondary battery electrode and lithium secondary battery including the same
JP2022010000A (en) * 2016-06-14 2022-01-14 エルジー・ケム・リミテッド Electrode for secondary battery and lithium secondary battery including the same
US11978885B2 (en) 2016-11-08 2024-05-07 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
KR20190070353A (en) 2016-11-08 2019-06-20 혼다 기켄 고교 가부시키가이샤 Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having the same
WO2018088320A1 (en) 2016-11-08 2018-05-17 本田技研工業株式会社 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
KR20210037753A (en) 2016-11-08 2021-04-06 혼다 기켄 고교 가부시키가이샤 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
US11165051B2 (en) 2016-11-08 2021-11-02 Honda Motor Co., Ltd. Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
KR20220010584A (en) 2016-11-08 2022-01-25 혼다 기켄 고교 가부시키가이샤 Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
US11387483B2 (en) 2017-02-24 2022-07-12 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing same
WO2018155314A1 (en) 2017-02-24 2018-08-30 株式会社Gsユアサ Nonaqueous electrolyte electricity storage element and method for producing same
JP2018174134A (en) * 2017-03-30 2018-11-08 東レ株式会社 Electrode for secondary battery and method for manufacturing the same
JP2020047764A (en) * 2018-09-19 2020-03-26 Tdk株式会社 Electric double layer capacitor electrode and electric double layer capacitor
JP7305940B2 (en) 2018-09-19 2023-07-11 Tdk株式会社 Electrodes for electric double layer capacitors and electric double layer capacitors
JP7153193B2 (en) 2018-12-11 2022-10-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2020095835A (en) * 2018-12-11 2020-06-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US20220140303A1 (en) * 2020-10-29 2022-05-05 Sk Innovation Co., Ltd. Cathode for secondary battery and method for manufacturing same
WO2024195243A1 (en) * 2023-03-23 2024-09-26 株式会社村田製作所 Secondary battery

Also Published As

Publication number Publication date
HK1128828A1 (en) 2009-11-06
CN101373850A (en) 2009-02-25
CN101373850B (en) 2011-11-09
KR101452875B1 (en) 2014-10-21
KR20090019734A (en) 2009-02-25
JP5258228B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5258228B2 (en) Non-aqueous secondary battery
JP5156406B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4743752B2 (en) Lithium ion secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2011052126A1 (en) Electrode, secondary battery, and method for manufacturing secondary batteries
JP5246747B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2006260904A (en) Winding type battery and its manufacturing method
JP2008097879A (en) Lithium ion secondary battery
JP4988169B2 (en) Lithium secondary battery
JP5441143B2 (en) Lithium secondary battery for mobile devices
JP2006260864A (en) Manufacturing method of lithium secondary battery
WO2011114626A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method for same, and nonaqueous electrolyte secondary battery
CN114762167A (en) Non-aqueous electrolyte secondary battery
CN111129430B (en) Secondary battery and method for manufacturing secondary battery
JP2007265666A (en) Nonaqueous electrolyte secondary battery
JP2002279956A (en) Nonaqueous electrolyte battery
JP2018170099A (en) Active material, electrode, and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP6709991B2 (en) Lithium ion secondary battery
CN113097447B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN117999665A (en) Nonaqueous electrolyte secondary battery
JP2003242966A (en) Wound type lithium ion secondary battery
JP2005267955A (en) Nonaqueous electrolyte secondary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5258228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250