JP2017073329A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017073329A
JP2017073329A JP2015200634A JP2015200634A JP2017073329A JP 2017073329 A JP2017073329 A JP 2017073329A JP 2015200634 A JP2015200634 A JP 2015200634A JP 2015200634 A JP2015200634 A JP 2015200634A JP 2017073329 A JP2017073329 A JP 2017073329A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
mixture layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015200634A
Other languages
Japanese (ja)
Other versions
JP6846860B2 (en
Inventor
祐介 中村
Yusuke Nakamura
祐介 中村
俊晴 下岡
Toshiharu Shimooka
俊晴 下岡
啓祐 川邊
Keisuke Kawabe
啓祐 川邊
祐大 高市
Yudai Takaichi
祐大 高市
潤珠 青木
Urumi Aoki
潤珠 青木
かおり 阪中
Kaori Sakanaka
かおり 阪中
春樹 上剃
Haruki Kamizori
春樹 上剃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2015200634A priority Critical patent/JP6846860B2/en
Publication of JP2017073329A publication Critical patent/JP2017073329A/en
Application granted granted Critical
Publication of JP6846860B2 publication Critical patent/JP6846860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is high in capacity, superior in charge/discharge cycle characteristic and high in continuous charging characteristic.SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode; a negative electrode; a nonaqueous electrolyte; and a separator. The positive electrode includes: a positive electrode current collector; and a positive electrode mixture layer on one or each of opposing faces of the positive electrode current collector. The positive electrode mixture layer includes at least a positive electrode active material and a binder. The positive electrode active material is 0.25 m/g or more in specific surface area. The positive electrode mixture layer is 4.0 g/cmor more in density. The nonaqueous electrolyte contains a compound expressed by the following general formula (1): NC-CH-CN (1) (where n is 5 to 10).SELECTED DRAWING: Figure 1

Description

本発明は、高容量で、充放電サイクル特性に優れ、連続充電特性の高い非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery having a high capacity, excellent charge / discharge cycle characteristics, and high continuous charge characteristics.

非水電解質二次電池は、その高い体積エネルギー密度と重量エネルギー密度から、携帯電話やノートパソコンなど民生機器だけではなく、車載用途やロボット用途など産業用途にも広く展開されてきている。そのため、要求される特性は多岐に渡っており、様々な手段であらゆる特性改善が要求されている。   Nonaqueous electrolyte secondary batteries have been widely deployed not only for consumer devices such as mobile phones and laptop computers, but also for industrial applications such as in-vehicle applications and robot applications because of their high volumetric energy density and weight energy density. Therefore, there are a wide variety of required characteristics, and various characteristic improvements are required by various means.

電池の体積エネルギー密度を向上させるために、正極や負極の電極密度を向上させる手段が知られているが、正極や負極の電極密度を向上させるに伴って種々の電池特性の低下が見られる場合があり、それへの対策に取り組んでいる。   In order to improve the volume energy density of a battery, means for increasing the electrode density of the positive electrode and the negative electrode are known, but when the electrode density of the positive electrode and the negative electrode is increased, various battery characteristics are deteriorated. There are, and we are working on countermeasures.

特許文献1には電池の高密度化に伴う充放電サイクル特性および貯蔵特性の低下を防止するために、特定の正極活物質を使い非水電解質に分子内にニトリル基を2つ以上含む化合物を含む非水二次電池が開示されている。   Patent Document 1 discloses a compound containing two or more nitrile groups in a non-aqueous electrolyte using a specific positive electrode active material in order to prevent deterioration of charge / discharge cycle characteristics and storage characteristics accompanying the increase in density of batteries. Including a non-aqueous secondary battery is disclosed.

特許文献2では、負極密度を高くした時に急速充放電特性及びサイクル特性に低下が少ないリチウム二次電池に好適な負極、及び二次電池の体積当りのエネルギー密度が向上した高容量リ
チウム二次電池を提供するために、負極のX線回折で測定される回折強度比(002)/(110)が500以下の負極について開示されている。
In Patent Document 2, a negative electrode suitable for a lithium secondary battery in which deterioration in rapid charge / discharge characteristics and cycle characteristics is small when the negative electrode density is increased, and a high-capacity lithium secondary battery in which the energy density per volume of the secondary battery is improved. Therefore, a negative electrode having a diffraction intensity ratio (002) / (110) measured by X-ray diffraction of the negative electrode of 500 or less is disclosed.

特開2013−145752号公報JP 2013-145752 A 特開2004−55139号公報 ところで、特許文献1にあるように、分子内にニトリル基が2以上含む化合物を用いると貯蔵特性の低下が抑制出来る。一方で、例えば正極密度が4.0g/cm3以上、正極活物質の比表面積が0.25m2/g以上のような場合には、連続充電特性や高温サイクル特性向上について、分子内にニトリル基が2以上の化合物の中でも更に最適なものがあることを本発明者らは見出した。JP, 2004-55139, A By the way, as it is in patent documents 1, when a compound which contains two or more nitrile groups in a molecule is used, a fall of storage characteristics can be controlled. On the other hand, for example, when the positive electrode density is 4.0 g / cm 3 or more and the positive electrode active material has a specific surface area of 0.25 m 2 / g or more, there is a nitrile group in the molecule for improving continuous charge characteristics and high-temperature cycle characteristics. The inventors have found that there are more optimal ones of two or more compounds.

本発明の目的は、高容量で、充放電サイクル特性に優れ、連続充電特性の高い非水電解質二次電池を提供することにある。   An object of the present invention is to provide a nonaqueous electrolyte secondary battery having a high capacity, excellent charge / discharge cycle characteristics, and high continuous charge characteristics.

上記目的を達成する本発明の非水電解質二次電池は、正極、負極、非水電解質、セパレータを備え、前記正極は、正極集電体の片面又は両面に、正極合剤層を備え、前記正極合剤層は少なくとも正極活物質とバインダとを含み、前記正極活物質の比表面積は0.25m/g以上であり、前記正極合剤層の密度は、4.0g/cm以上であり、前記非水電解質は一般式(1)で表される化合物を含むことを特徴とする。 The nonaqueous electrolyte secondary battery of the present invention that achieves the above object includes a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator, and the positive electrode includes a positive electrode mixture layer on one or both sides of a positive electrode current collector, The positive electrode mixture layer includes at least a positive electrode active material and a binder, the specific surface area of the positive electrode active material is 0.25 m 2 / g or more, and the density of the positive electrode mixture layer is 4.0 g / cm 3 or more. In addition, the non-aqueous electrolyte includes a compound represented by the general formula (1).

NC−C2n−CN (1)
(ただし、nは5以上10以下である。)
NC-C n H 2n -CN ( 1)
(However, n is 5 or more and 10 or less.)

本発明によれば、高容量で、充放電サイクル特性に優れ、連続充電特性の高い非水電解質二次電池を提供することが出来る。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having high capacity, excellent charge / discharge cycle characteristics, and high continuous charge characteristics.

本発明の実施態様の一例である非水電解質二次電池の断面図を表す。The sectional view of the nonaqueous electrolyte secondary battery which is an example of the embodiment of the present invention is represented. 本発明の実施態様の一例である非水電解質二次電池の斜視図を表す。The perspective view of the nonaqueous electrolyte secondary battery which is an example of the embodiment of this invention is represented.

本発明の非水電解質二次電池は、例えば、正極と負極とが、セパレータを介して重ねられた積層構造の電極体や、これを更に渦巻状に巻回した巻回構造の電極体などを、非水電解質と共に外装体内に封入した構成を有するものである。
〔非水電解質〕
本発明の非水電解質二次電池に係る非水電解質としては、リチウム塩を有機溶媒に溶解した非水電解液を使用できる。
The non-aqueous electrolyte secondary battery of the present invention includes, for example, a laminated electrode body in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, a wound structure electrode body obtained by further winding the electrode body, and the like. It has a configuration in which it is enclosed in an exterior body together with a non-aqueous electrolyte.
[Non-aqueous electrolyte]
As the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used.

上記非水電解液に用いるリチウム塩としては、溶媒中で解離してリチウムイオンを形成し、電池として使用される電圧範囲で分解等の副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF等の無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦7)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基〕等の有機リチウム塩等を用いることができる。 The lithium salt used in the non-aqueous electrolyte is not particularly limited as long as it dissociates in a solvent to form lithium ions and does not easily cause a side reaction such as decomposition in a voltage range used as a battery. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts, LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 7), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] or the like is used. be able to.

このリチウム塩の非水電解液中の濃度としては、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.25mol/Lとすることがより好ましい。   The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, and more preferably 0.9 to 1.25 mol / L.

上記非水電解液に用いる有機溶媒としては、上記のリチウム塩を溶解し、電池として使用される電圧範囲で分解等の副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;プロピオン酸メチル等の鎖状エステル;γ−ブチロラクトン等の環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライム等の鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル等のニトリル類;エチレングリコールサルファイト等の亜硫酸エステル類等が挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒等、高い導電率を得ることができる組み合わせで用いることが望ましい。   The organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; dimethoxyethane, Chain ethers such as diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile; ethylene Examples thereof include sulfites such as glycol sulfite, and these may be used as a mixture of two or more. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate.

なお、本発明に係る非水電解液(非水電解質)では、一般式(1)の化合物を含有させることが必要である。   In the non-aqueous electrolyte solution (non-aqueous electrolyte) according to the present invention, it is necessary to contain the compound of the general formula (1).

NC−C2n−CN (1)
(ただし、nは5以上10以下である。)
一般式(1)の化合物は、正極活物質の表面に表面保護皮膜を形成する機能を有しており、かかる表面保護皮膜によって、正極と非水電解質との直接の接触が抑制される。この化合物を用いて正極活物質の比表面積は0.25m/g以上であり、正極合剤層の密度は、4.0g/cm以上の正極活物質を用いた正極合剤層と組み合わせると、高温充放電サイクル特性に優れ、連続充電特性の高い非水電解質二次電池となる。このような効果を得られる理由は定かではないが、以下のようなことが考えられる。
NC-C n H 2n -CN ( 1)
(However, n is 5 or more and 10 or less.)
The compound of the general formula (1) has a function of forming a surface protective film on the surface of the positive electrode active material, and the direct contact between the positive electrode and the nonaqueous electrolyte is suppressed by the surface protective film. Using this compound, the specific surface area of the positive electrode active material is 0.25 m 2 / g or more, and the density of the positive electrode mixture layer is combined with a positive electrode mixture layer using a positive electrode active material of 4.0 g / cm 3 or more. Thus, a nonaqueous electrolyte secondary battery having excellent high-temperature charge / discharge cycle characteristics and high continuous charge characteristics is obtained. The reason why such an effect can be obtained is not clear, but the following may be considered.

例えば一般式(1)のnが4以下の化合物と比較した場合、一般式(1)の化合物は炭素数が多いため、初回充電時の反応性はより向上する。そのため正極表面に容易に被膜を形成することが出来る。特に、本発明では高比表面積の正極活物質を用いるため、被膜を形成すべき面積が大きいが、一般式(1)の化合物はその反応性の高さで素早く広い範囲の面積を網羅した被膜を形成することが出来る。   For example, when compared with a compound in which n in the general formula (1) is 4 or less, the compound in the general formula (1) has a larger number of carbon atoms, and thus the reactivity at the first charge is further improved. Therefore, a film can be easily formed on the positive electrode surface. In particular, since a positive electrode active material having a high specific surface area is used in the present invention, the area on which the film is to be formed is large. However, the compound of the general formula (1) is a film that covers a wide range of areas quickly due to its high reactivity. Can be formed.

したがって、従来通り分子内にニトリル基を2以上有する化合物を用いた時と同様に、貯蔵特性やサイクル特性が向上することは勿論のこと、本発明では特定の正極を用いることで、さらに連続充電特性と高温下でのサイクル特性も優れたものとなる。   Therefore, as in the case of using a compound having two or more nitrile groups in the molecule as in the prior art, the storage characteristics and cycle characteristics are improved, and in the present invention, the use of a specific positive electrode further increases the continuous charge. The characteristics and cycle characteristics at high temperatures are also excellent.

上記一般式(1)で表されるジニトリル化合物の具体例としては、例えば、1,5−ジシアノペンタン、1,6−ジシアノヘキサン、1,7−ジシアノヘプタン、2,6−ジシアノヘプタン、1,8−ジシアノオクタン、2,7−ジシアノオクタン、1,9−ジシアノノナン、2,8−ジシアノノナン、1,10−ジシアノデカン、1,6−ジシアノデカン、2,4−ジメチルグルタロニトリルなどが挙げられる。中でも、1,5−ジシアノペンタン(ピメロニトリル)、1,6−ジシアノヘキサン(スベロニトリル)が、汎用性が高く、好ましい。   Specific examples of the dinitrile compound represented by the general formula (1) include 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 2,6-dicyanoheptane, 1, Examples include 8-dicyanooctane, 2,7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1,6-dicyanodecane, 2,4-dimethylglutaronitrile and the like. . Among these, 1,5-dicyanopentane (pimelonitrile) and 1,6-dicyanohexane (suberonitrile) are preferable because of high versatility.

一般式(1)の化合物を含有する非水電解液の調製方法については、特に制限はなく、例えば、上記例示の溶媒に、分子内にニトリル基を2以上有する化合物と上記例示の電解質塩とを、常法に従って溶解させればよい。   The method for preparing the nonaqueous electrolytic solution containing the compound of the general formula (1) is not particularly limited. For example, a compound having two or more nitrile groups in the molecule in the solvent exemplified above and the electrolyte salt exemplified above. May be dissolved according to a conventional method.

一般式(1)の化合物の添加量は、これらの化合物の添加による作用をより有効に発揮させる観点から、非水電解液全量中、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上である。また、非水電解液全量中、好ましくは10質量%以下、より好ましくは8質量%、以下、更に好ましくは6%質量以下である。この範囲で一般式(1)の化合物を含むと、本発明の正極と組み合わせた場合に連続充電特性と高温下でのサイクル特性が良好となる。
The addition amount of the compound of the general formula (1) is preferably 0.05% by mass or more, more preferably 0.1% in the total amount of the non-aqueous electrolyte from the viewpoint of more effectively exerting the action of the addition of these compounds. It is at least 0.5 mass%, more preferably at least 0.5 mass%. Further, in the total amount of the non-aqueous electrolyte, it is preferably 10% by mass or less, more preferably 8% by mass, and further preferably 6% by mass or less. When the compound of the general formula (1) is included in this range, the continuous charge characteristics and the cycle characteristics at high temperatures are good when combined with the positive electrode of the present invention.

本発明の効果を阻害しない程度に、一般式(1)の化合物以外の一般的な非水電解質添加剤を用いても良い。例えば、ビニレンカーボネート、フルオロエチレンカーボネート、1,3−ジオキサン、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を、非水電解液に適宜加えることもできる。
〔正極〕
本発明の非水電解質二次電池に係る正極には、例えば、正極活物質、導電助剤、バインダ等を含有する正極合剤層を、集電体の片面又は両面に有する構造のものが使用される。
You may use common nonaqueous electrolyte additives other than the compound of General formula (1) to such an extent that the effect of this invention is not inhibited. For example, additives such as vinylene carbonate, fluoroethylene carbonate, 1,3-dioxane, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, t-butylbenzene are appropriately added to the non-aqueous electrolyte. It can also be added.
[Positive electrode]
For the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention, for example, one having a structure having a positive electrode mixture layer containing a positive electrode active material, a conductive additive, a binder, etc. on one side or both sides of a current collector is used. Is done.

<正極活物質>
上記正極に用いる正極活物質は、特に限定されず、リチウム含有遷移金属酸化物等の公知の活物質を使用すればよい。リチウム含有遷移金属酸化物の具体例としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1−yy、LiMnNiCo1−y−z、LiMn、LiMn2−y等が例示される。但し、上記の各構造式中において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、Al、Ti、Zr、Ge及びCrよりなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0<z<1.0である。エネルギー密度の観点から、リチウムとコバルトを含有する層状化合物(一般式LiCo1−y ;Mは上述のMからCoを抜いたものでyは上述したyと同じ)が特に好ましい。
<Positive electrode active material>
The positive electrode active material used for the positive electrode is not particularly limited, and a known active material such as a lithium-containing transition metal oxide may be used. Specific examples of the lithium-containing transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O 2. , etc. Li x Ni 1-y M y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 is illustrated. However, in each of the above structural formulas, M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al, Ti, Zr, Ge, and Cr. 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 <z <1.0. From the viewpoint of energy density, a layered compound containing lithium and cobalt (general formula LiCo 1-y M 2 y O 2 ; M 2 is obtained by removing Co from M and y is the same as y described above) preferable.

<バインダ>
上記正極に用いるバインダとしては、電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(PHFP)、スチレン・ブタジエンゴム(SBR)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、又は、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体及びそれら共重合体のNaイオン架橋体等の1種又は2種以上を使用できる。
<Binder>
As the binder used for the positive electrode, any of a thermoplastic resin and a thermosetting resin can be used as long as it is chemically stable in the battery. For example, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP), styrene-butadiene rubber (SBR), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoro Ethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), propylene- Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, Len - methyl acrylate copolymer, ethylene - one or more Na ion crosslinked body and the like of the methyl methacrylate copolymer and their copolymers can be used.

<導電助剤>
上記正極に用いる導電助剤としては、電池内で化学的に安定なものであればよい。例えば、天然黒鉛、人造黒鉛等のグラファイト;アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック;炭素繊維、金属繊維等の導電性繊維;アルミニウム粉等の金属粉末;フッ化炭素;酸化亜鉛;チタン酸カリウム等からなる導電性ウィスカー;酸化チタン等の導電性金属酸化物;ポリフェニレン誘導体等の有機導電性材料等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。これらの中でも、導電性の高いグラファイトと、吸液性に優れたカーボンブラックが好ましい。また、導電助剤の形態としては、一次粒子に限定されず、二次凝集体や、チェーンストラクチャー等の集合体の形態のものも用いることができる。このような集合体の方が、取り扱いが容易であり、生産性も良好となる。
<Conductive aid>
As a conductive support agent used for the said positive electrode, what is chemically stable should just be in a battery. For example, graphite such as natural graphite and artificial graphite; carbon black such as acetylene black, ketjen black (trade name), channel black, furnace black, lamp black and thermal black; conductive fiber such as carbon fiber and metal fiber; aluminum Metal powders such as powders; Fluorinated carbon; Zinc oxide; Conductive whiskers made of potassium titanate; Conductive metal oxides such as titanium oxide; Organic conductive materials such as polyphenylene derivatives, etc. You may use independently and may use 2 or more types together. Among these, highly conductive graphite and carbon black excellent in liquid absorption are preferable. Further, the form of the conductive auxiliary agent is not limited to primary particles, and secondary aggregates and aggregated forms such as chain structures can also be used. Such an assembly is easier to handle and has better productivity.

<集電体>
上記正極に用いる集電体としては、従来から知られている非水電解質二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚さが8〜30μmのアルミニウム箔が好ましい。
<Current collector>
The current collector used for the positive electrode can be the same as that used for the positive electrode of a conventionally known nonaqueous electrolyte secondary battery. For example, an aluminum foil having a thickness of 8 to 30 μm can be used. preferable.

<正極の製造方法>
上記正極は、例えば、前述した正極活物質、導電助剤及びバインダを、N−メチル−2−ピロリドン(NMP)等の溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(但し、バインダは溶剤に溶解していてもよい。)、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。
<Method for producing positive electrode>
The positive electrode is prepared, for example, as a paste-like or slurry-like positive electrode mixture-containing composition in which the above-described positive electrode active material, conductive additive and binder are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP). (However, the binder may be dissolved in a solvent.) After applying this to one or both sides of the current collector and drying, it can be produced through a process of calendering if necessary. .

<正極合剤層>
上記正極合剤層においては、正極活物質の総量を92〜99重量%とし、導電助剤の量を0.5〜6重量%とし、バインダの量を0.5〜6重量%とすることが好ましい。上記正極合剤層の厚さは、カレンダ処理後において、集電体の片面あたり、40〜300μmであることが好ましい。
<Positive electrode mixture layer>
In the positive electrode mixture layer, the total amount of the positive electrode active material is 92 to 99% by weight, the amount of the conductive auxiliary agent is 0.5 to 6% by weight, and the amount of the binder is 0.5 to 6% by weight. Is preferred. The thickness of the positive electrode mixture layer is preferably 40 to 300 μm per one side of the current collector after the calendar treatment.

本発明の正極合剤層は、4.0g/cm以上である。正極合剤層の密度を高くするには、一般に平均粒子径の異なる正極活物質粒子を2種類以上用いる。そうすると、大粒子と大粒子の間にそれよりも小さい粒子を充填することが出来るために、正極合剤層が高密度になる。 The positive electrode mixture layer of the present invention is 4.0 g / cm 3 or more. In order to increase the density of the positive electrode mixture layer, two or more types of positive electrode active material particles having different average particle diameters are generally used. If it does so, since the particle | grains smaller than it can be filled between large particles, a positive mix layer becomes high density.

4.0g/cm以上の高密度を実現させるには、平均粒子径が最も大きい正極活物質粒子と、平均粒子径が最も小さい正極活物質粒子との粒径比や、それぞれの含有率、平均粒子径が最も大きい正極活物質粒子と最も小さい正極活物質粒子の正極活物質中の含有比等をコントロールすることによって実現することが出来る。一方、このようにコントロールすると、それに伴って正極活物質の比表面積が0.25m/g以上となる傾向にある。 In order to realize a high density of 4.0 g / cm 3 or more, the particle size ratio between the positive electrode active material particles having the largest average particle diameter and the positive electrode active material particles having the smallest average particle diameter, This can be realized by controlling the content ratio of the positive electrode active material particles having the largest average particle diameter and the smallest positive electrode active material particles in the positive electrode active material. On the other hand, when controlled in this way, the specific surface area of the positive electrode active material tends to be 0.25 m 2 / g or more.

電池が高温・高圧の状態に晒されると、正極と非水電解質とが反応して、非水電解質の分解反応が起こりやすくなる。非水電解質が分解すると、ガスが発生して電池が膨れたり、分解により非水電解質が減るのでサイクル特性が低下する。これらを抑制するために本発明では正極上の被膜形成に一般式(1)の化合物を用いると、正極活物質の比表面積が0.25m/g以上で正極表面の表面積が広いような場合でも、一般式(1)の化合物の高い反応性で素早く広い範囲の面積を網羅した被膜を形成することが出来る。従って、連続充電時、高温充放電サイクル時、高温貯蔵時等のような電池が長時間高電圧また高温状態に晒される場合に、顕著に改善効果がみられる。 When the battery is exposed to high temperature and high pressure, the positive electrode and the non-aqueous electrolyte react with each other, and the decomposition reaction of the non-aqueous electrolyte easily occurs. When the non-aqueous electrolyte is decomposed, gas is generated and the battery swells or the non-aqueous electrolyte is reduced by the decomposition, so that the cycle characteristics are deteriorated. In order to suppress these, in the present invention, when the compound of the general formula (1) is used for film formation on the positive electrode, the specific surface area of the positive electrode active material is 0.25 m 2 / g or more and the surface area of the positive electrode surface is large. However, it is possible to quickly form a film covering a wide area with high reactivity of the compound of the general formula (1). Therefore, when the battery is exposed to a high voltage or a high temperature state for a long time, such as during continuous charging, high temperature charge / discharge cycle, and high temperature storage, a remarkable improvement effect is seen.

尚、本明細書でいう「平均粒子径」とは、日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」を用いて測定した粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(d50)メディアン径である。   The “average particle size” as used in this specification refers to the volume-based integrated amount when the integrated volume is obtained from particles having a small particle size distribution measured using a microtrack particle size distribution measuring apparatus “HRA9320” manufactured by Nikkiso Co., Ltd. 50% diameter value (d50) in median is the median diameter.

また、本明細書でいう合剤層の密度は、以下の測定方法により求められる値である。正極を所定面積で切り取り、その重量を、最小目盛り1mgの電子天秤を用いて測定し、この重量から集電体の重量を差し引いて正極合剤層の重量を算出する。また、正極の全厚を最小目盛り1μmのマイクロメーターで10点測定し、この厚みから集電体の厚みを差し引いた値の平均値と面積から正極合剤層の体積を算出し、この体積で上記の正極合剤層の重量を割ることにより、正極合剤層の密度を算出する。負極の合剤層密度も同様の手法で算出する。   Moreover, the density of the mixture layer as used in this specification is a value calculated | required with the following measuring methods. The positive electrode is cut out in a predetermined area, the weight thereof is measured using an electronic balance having a minimum scale of 1 mg, and the weight of the positive electrode mixture layer is calculated by subtracting the weight of the current collector from this weight. Further, the total thickness of the positive electrode was measured at 10 points with a micrometer having a minimum scale of 1 μm, and the volume of the positive electrode mixture layer was calculated from the average value and the area obtained by subtracting the thickness of the current collector from this thickness. The density of the positive electrode mixture layer is calculated by dividing the weight of the positive electrode mixture layer. The mixture layer density of the negative electrode is calculated by the same method.

また、本明細書でいう正極活物質の比表面積とは、正極合剤層に含まれる正極活物質粒子の比表面積のことで、正極活物質粒子を複数用いる場合はそれらの混合物の比表面積を言う。比表面積の測定方法はBET法による。装置例は日本ベル社製「ベルソープミニ」などである。   In addition, the specific surface area of the positive electrode active material in the present specification is the specific surface area of the positive electrode active material particles contained in the positive electrode mixture layer. When a plurality of positive electrode active material particles are used, the specific surface area of the mixture is determined. say. The specific surface area is measured by the BET method. An example of the apparatus is “Bell Soap Mini” manufactured by Bell Japan.

正極合剤層の密度を4.0g/cm以上で、正極活物質の比表面積を0.25m/g以上とするには、例えば以下のような手段が考えられる。 In order to set the density of the positive electrode mixture layer to 4.0 g / cm 3 or more and the specific surface area of the positive electrode active material to 0.25 m 2 / g or more, for example, the following means can be considered.

<例示1>平均粒子径が小さい正極活物質粒子は、1~10μmmで、平均粒子径が大きい正極活物質粒子は20~30μmmの2つの平均粒子径の異なる正極活物質粒子を組み合わせることが好ましい。このような大小の正極活物質粒子を用いることで、大粒子と大粒子の隙間を小粒子が埋めることになるため、正極合剤層密度が上がる。更に平均粒子径が1~10μmmの正極活物質粒子そのものの比表面積が大きいので、正極活物質としての比表面積も大きくなる。   <Example 1> Positive electrode active material particles having a small average particle diameter are preferably 1 to 10 μm, and positive electrode active material particles having a large average particle diameter are preferably combined with two positive electrode active material particles having a different average particle diameter of 20 to 30 μm. . By using such large and small positive electrode active material particles, since the small particles fill the gaps between the large particles and the large particles, the positive electrode mixture layer density increases. Furthermore, since the specific surface area of the positive electrode active material particles themselves having an average particle diameter of 1 to 10 μm is large, the specific surface area as the positive electrode active material is also increased.

<例示2>2つの平均粒子径の異なる正極活物質粒子を組み合わせで、平均粒子径が小さい正極活物質粒子の粒子径dsμmと平均粒子径が大きい正極活物質粒子の平均粒子径dlμmは、dl/dsが3~15であることが好ましい。このような関係であると、大粒子と大粒子の隙間に対して小粒子が密度高く入っていきやすいため正極合剤層密度が上がる。また、小粒子の比表面積の大きさに起因して正極活物質の比表面積も大きくなる。   <Example 2> A combination of two positive electrode active material particles having different average particle diameters, the positive electrode active material particles having a small average particle diameter and the average particle diameter dlμm of the positive electrode active material particles having a large average particle diameter are dl / ds is preferably 3 to 15. In such a relationship, the density of the positive electrode mixture layer increases because small particles tend to enter the gap between the large particles and the large particles with high density. Further, the specific surface area of the positive electrode active material is increased due to the size of the specific surface area of the small particles.

<例示3>2つの平均粒子径の異なる正極活物質粒子を組み合わせで、平均粒子径が小さい正極活物質粒子と平均粒子径が大きい正極活物質粒子の混合比は40:60〜5:95の範囲にあるのが好ましい。このような混合比の時に大粒子と大粒子の隙間を小粒子がちょうど充填できる量比となるために、正極合剤層密度が上がる。また、小粒子の比表面積の大きさに起因して比表面積も大きくなる。   <Example 3> Two positive electrode active material particles having different average particle diameters are combined, and the mixing ratio of positive electrode active material particles having a small average particle diameter and positive electrode active material particles having a large average particle diameter is 40:60 to 5:95. Preferably it is in the range. At such a mixing ratio, the density of the positive electrode mixture layer is increased because the small particles can just fill the gaps between the large particles and the large particles. Further, the specific surface area increases due to the size of the specific surface area of the small particles.

上述のようにいくつかの手段を例示したが、例示した手段を複数採用すると更に正極合剤層の密度と正極活物質の比表面積とを所定の範囲にコントロールしやすい。3つの手段すべてを採用するのが最もコントロールしやすい。   Although several means have been exemplified as described above, the use of a plurality of exemplified means makes it easier to control the density of the positive electrode mixture layer and the specific surface area of the positive electrode active material within a predetermined range. Adopting all three methods is the easiest to control.

上述した例示1〜3以外でも、正極合剤層の密度を4.0g/cm以上で、正極活物質の比表面積を0.25m/g以上となり、一般式(1)の化合物を用いれば、本発明の課題は解決することが出来る。 In addition to Examples 1 to 3 described above, the density of the positive electrode mixture layer is 4.0 g / cm 3 or more, the specific surface area of the positive electrode active material is 0.25 m 2 / g or more, and the compound of the general formula (1) is used. Thus, the problems of the present invention can be solved.

尚、実現性を考えると、正極合剤層の密度は5.0g/cm以下が好ましく、正極活物質の比表面積は1.0m/g以下が好ましい。 In consideration of feasibility, the density of the positive electrode mixture layer is preferably 5.0 g / cm 3 or less, and the specific surface area of the positive electrode active material is preferably 1.0 m 2 / g or less.

〔負極〕
本発明の非水電解質二次電池に用いる負極には、例えば、負極活物質、バインダ及び必要に応じて導電助剤等を含む負極合剤層を、集電体の片面又は両面に有する構造のものが使用できる。
[Negative electrode]
The negative electrode used in the non-aqueous electrolyte secondary battery of the present invention has a structure having, for example, a negative electrode active material, a binder, and a negative electrode mixture layer containing a conductive auxiliary agent, if necessary, on one side or both sides of the current collector. Things can be used.

<負極活物質>
上記負極活物質には、従来から知られている非水電解質二次電池に用いられている負極活物質、即ち、リチウムイオンを吸蔵・放出可能な材料であれば特に制限はない。例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維等の、リチウムイオンを吸蔵・放出可能な炭素系材料の1種又は2種以上の混合物が負極活物質として用いられる。また、シリコン(Si)、スズ(Sn)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)、インジウム(In)等の元素及びその合金、リチウム含有窒化物又はリチウム含有酸化物等のリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。中でも、負極活物質としては、シリコンと酸素とを構成元素に含むSiOで表される材料が好ましい。
<Negative electrode active material>
The negative electrode active material is not particularly limited as long as it is a negative electrode active material used in conventionally known non-aqueous electrolyte secondary batteries, that is, a material capable of inserting and extracting lithium ions. For example, carbon-based materials that can occlude and release lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers. One kind or a mixture of two or more kinds is used as the negative electrode active material. In addition, elements such as silicon (Si), tin (Sn), germanium (Ge), bismuth (Bi), antimony (Sb), indium (In) and alloys thereof, lithium such as lithium-containing nitride or lithium-containing oxide A compound that can be charged and discharged at a low voltage close to that of a metal, or a lithium metal or a lithium / aluminum alloy can also be used as the negative electrode active material. Among these, as the negative electrode active material, a material represented by SiO x containing silicon and oxygen as constituent elements is preferable.

SiOは、Siの微結晶又は非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶又は非晶質相のSiを含めた比率となる。即ち、SiOには、非晶質のSiOマトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、上記原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中に、Siが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 The SiO x may contain Si microcrystal or amorphous phase. In this case, the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, the SiO x to SiO 2 matrix of amorphous Si (e.g., microcrystalline Si) is include the dispersed structure, the SiO 2 of the amorphous, dispersed therein It is only necessary that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5. For example, in the case of a material in which Si is dispersed in an amorphous SiO 2 matrix and the material has a molar ratio of SiO 2 to Si of 1: 1, x = 1, so that the structural formula is represented by SiO. The In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.

上記SiOは、炭素材料と複合化した複合体であることが好ましく、例えば、SiOの表面が炭素材料で被覆されていることが望ましい。通常、SiOは導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。SiOを炭素材料と複合化した複合体であれば、例えば、単にSiOと炭素材料等の導電性材料とを混合して得られた材料を用いた場合よりも、負極における導電ネットワークが良好に形成される。 The SiO x is preferably a composite that is combined with a carbon material. For example, the surface of the SiO x is preferably covered with the carbon material. Usually, since SiO x has poor conductivity, when using it as a negative electrode active material, from the viewpoint of ensuring good battery characteristics, a conductive material (conductive aid) is used, and SiO x in the negative electrode is electrically conductive. It is necessary to form an excellent conductive network by making good mixing and dispersion with the conductive material. If it is a composite in which SiO x is combined with a carbon material, for example, a conductive network in the negative electrode is better than when a material obtained by simply mixing SiO x and a conductive material such as a carbon material is used. Formed.

<バインダ>
上記バインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース等の多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン(PVP)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミド等の熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド等のゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種又は2種以上を用いることができる。"
<導電助剤>
上記負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラック等)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀等の粉末)、金属繊維、ポリフェニレン誘導体(特開昭59−20971号公報に記載のもの)等の材料を、1種又は2種以上用いることができる。これらの中でも、カーボンブラックを用いることが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。
<Binder>
Examples of the binder include polysaccharides such as starch, polyvinyl alcohol, polyacrylic acid, carboxymethyl cellulose (CMC), hydroxypropyl cellulose, regenerated cellulose, and diacetyl cellulose, and modified products thereof; polyvinyl chloride, polyvinyl pyrrolidone (PVP), Thermoplastic resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide, and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber ( SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubber-like elasticity and their modifications; It can be used or two or more. "
<Conductive aid>
A conductive material may be further added to the negative electrode mixture layer as a conductive aid. Such a conductive material is not particularly limited as long as it does not cause a chemical change in the battery. For example, carbon black (thermal black, furnace black, channel black, ketjen black, acetylene black, etc.), carbon It is possible to use one or more materials such as fiber, metal powder (powder of copper, nickel, aluminum, silver, etc.), metal fiber, polyphenylene derivative (described in JP-A-59-20971). it can. Among these, carbon black is preferably used, and ketjen black and acetylene black are more preferable.

<集電体>
上記集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル等を用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。
<Current collector>
As the current collector, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to ensure mechanical strength. Is desirable.

<負極の製造方法>
上記負極は、例えば、前述した負極活物質及びバインダ、更には必要に応じて導電助剤を、N−メチル−2−ピロリドン(NMP)や水等の溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し、これを集電体の片面又は両面に塗布し、乾燥した後に、必要に応じてカレンダ処理を施す工程を経て製造することができる。負極の製造方法は、上記の製法に制限されるわけではなく、他の製造方法で製造することもできる。
<Method for producing negative electrode>
The negative electrode is, for example, a paste or slurry in which the above-described negative electrode active material and binder and, if necessary, a conductive assistant are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water. A negative electrode mixture-containing composition is prepared, applied to one or both sides of a current collector, dried, and then subjected to a calendering process as necessary. The manufacturing method of a negative electrode is not necessarily restricted to said manufacturing method, It can also manufacture with another manufacturing method.

<負極合剤層>
上記負極合剤層においては、負極活物質の総量を80〜99質量%とし、バインダの量を1〜20質量%とすることが好ましい。また、別途導電助剤として導電性材料を使用する場合には、負極合剤層におけるこれらの導電性材料は、負極活物質の総量及びバインダ量が、上記の好適値を満足する範囲で使用することが好ましい。前述の正極合剤層の厚さを考慮して負極合剤層の厚さは、例えば、40〜400μmであることが好ましい。
<Negative electrode mixture layer>
In the said negative mix layer, it is preferable that the total amount of a negative electrode active material shall be 80-99 mass%, and the quantity of a binder shall be 1-20 mass%. In addition, when a conductive material is separately used as a conductive auxiliary agent, these conductive materials in the negative electrode mixture layer are used in such a range that the total amount of the negative electrode active material and the binder amount satisfy the above-described preferable values. It is preferable. In consideration of the thickness of the positive electrode mixture layer, the thickness of the negative electrode mixture layer is preferably 40 to 400 μm, for example.

ところで、一般式(1)の化合物が負極で作用し、サイクル特性が向上すると考えられている。詳細は不明だが、一般式(1)の化合物は負極で還元分解して被膜を形成すると推測され、このため負極と電解液との反応抵抗が低下でき,サイクル特性は向上する。   By the way, it is thought that the compound of General formula (1) acts on a negative electrode, and cycling characteristics improve. Although details are unknown, it is presumed that the compound of the general formula (1) undergoes reductive decomposition at the negative electrode to form a film, and thus the reaction resistance between the negative electrode and the electrolytic solution can be reduced, and the cycle characteristics are improved.

本発明の正極は正極合剤層が4.0g/cm以上と非常に高密度であるため、その対極となる負極合剤層も高密度であれば電池全体の体積エネルギー密度が向上し、好ましい。例えば、負極合剤層の密度は、1.5g/cm以上がよく、好ましくは1.6g/cm以上、更に好ましくは1.65g/cm以上である。また、実現性の観点から、2.0g/cm以下が好ましい。 In the positive electrode of the present invention, the positive electrode mixture layer has a very high density of 4.0 g / cm 3 or more. Therefore, if the negative electrode mixture layer serving as the counter electrode is also high in density, the volume energy density of the entire battery is improved. preferable. For example, the density of the negative electrode mixture layer, 1.5 g / cm 3 or more is good, preferably 1.6 g / cm 3 or more, more preferably 1.65 g / cm 3 or more. Moreover, from a viewpoint of feasibility, 2.0 g / cm 3 or less is preferable.

負極合剤層の密度をこのように高密度にするには、前述したカレンダ処理時のカレンダ圧を高くする手段が知られている。しかしながら、1.6g/cm以上といった高密度にする場合に一般的な天然黒鉛を負極活物質として用いると、天然黒鉛は潰れてしまい、ベーサル面が負極合剤層の面方向に対して平行方向に配向する。Liイオンは天然黒鉛のエッジ面から層間に挿入・脱離されるので、このように配向するとLiイオンの挿入・脱離がスムーズにいかず、負極の抵抗値が上がり結果電池全体の抵抗が上がってしまう。この傾向はカレンダ圧が高ければ高いほど顕著になる。 In order to increase the density of the negative electrode mixture layer in this way, means for increasing the calendar pressure during the above-described calendar processing is known. However, when natural natural graphite is used as the negative electrode active material for a high density of 1.6 g / cm 3 or more, the natural graphite is crushed and the basal plane is parallel to the surface direction of the negative electrode mixture layer. Oriented in the direction. Since Li ions are inserted and desorbed from the edge surface of natural graphite to the interlayer, if they are oriented in this way, the insertion and desorption of Li ions does not go smoothly, and the resistance value of the negative electrode increases, resulting in an increase in overall battery resistance. End up. This tendency becomes more prominent as the calendar pressure is higher.

そこで、負極活物質として天然黒鉛とMCMBとを質量比で80:20~0:100で含むと、Liイオンのスムーズな挿入・脱離を阻害することなく、高密度の負極合剤層とすることが出来、好ましい。その理由は以下の通りである。   Therefore, when natural graphite and MCMB are contained as a negative electrode active material in a mass ratio of 80:20 to 0: 100, a high-density negative electrode mixture layer is obtained without inhibiting smooth insertion / extraction of Li ions. It is possible and preferable. The reason is as follows.

天然黒鉛は潰れやすく密度が向上しやすいが、上述した通りカレンダ圧によってはその分Liイオンのスムーズな挿入脱離が阻害されてしまうことがある。   Natural graphite is easily crushed and its density is easily improved. However, as described above, depending on the calendar pressure, smooth insertion / extraction of Li ions may be inhibited accordingly.

一方、MCMBは、負極を作製する際のカレンダ圧に対して、圧縮破壊強度(粒子硬度) が高いため、MCMBの破壊や変形が起こりにくいという特徴を持つ。そのため抵抗値は大きく上昇しない。   On the other hand, MCMB has a feature that MCMB is not easily broken or deformed because of its high compressive fracture strength (particle hardness) with respect to the calender pressure when producing the negative electrode. Therefore, the resistance value does not increase greatly.

これらの各負極活物質の利点をうまく利用できるように天然黒鉛とMCMBと質量比で80:20〜0:100で混合させると、負極合剤層の高密度化と、負極の抵抗値上昇の抑制とが同時に実現することができ、好ましい。また、このような負極の場合、MCMBの粒子硬度の高さから、負極表面が粗くなる。負極合剤層表面が粗いと電解液が浸透しやすく、特に高温サイクル特性が向上する。このため、上述した一般式(1)の化合物と組み合わせると相乗的に高温サイクル特性が向上し、好ましい。
〔セパレータ〕
本発明の非水電解質二次電池に係るセパレータは従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリオレフィン;ポリエチレンテレフタレートや共重合ポリエステルなどのポリエステル;などで構成された多孔質膜であることが好ましい。なお、セパレータは、100〜140℃において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましい。そのため、セパレータは、融点、すなわち、日本工業規格(JIS) K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100〜140℃の熱可塑性樹脂を成分とするものがより好ましく、ポリエチレンを主成分とする単層の多孔質膜であるか、ポリエチレンとポリプロピレンとを2〜5層積層した積層多孔質膜であることが好ましい。ポリエチレンとポリプロピレンなどのポリエチレンより融点の高い樹脂を混合または積層して用いる場合には、多孔質膜を構成する樹脂としてポリエチレンが30質量%以上であることが望ましく、50質量%以上であることがより望ましい。
When natural graphite and MCMB are mixed at a mass ratio of 80:20 to 0: 100 so that the advantages of each of these negative electrode active materials can be used successfully, the density of the negative electrode mixture layer increases and the resistance value of the negative electrode increases. Suppression can be realized at the same time, which is preferable. In the case of such a negative electrode, the surface of the negative electrode becomes rough due to the high particle hardness of MCMB. When the surface of the negative electrode mixture layer is rough, the electrolytic solution easily permeates, and the high temperature cycle characteristics are improved. For this reason, combining with the compound of the general formula (1) described above is preferable because the high-temperature cycle characteristics are synergistically improved.
[Separator]
As the separator for the non-aqueous electrolyte secondary battery of the present invention, conventionally known separators can be used, for example, polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymer; polyesters such as polyethylene terephthalate and copolymer polyester; It is preferable that the porous film be made. In addition, it is preferable that a separator has the property (namely, shutdown function) which the hole obstruct | occludes in 100-140 degreeC. Therefore, the separator is composed of a thermoplastic resin having a melting point, that is, a melting temperature of 100 to 140 ° C. measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K7121. It is more preferable that it is a single layer porous film mainly composed of polyethylene or a laminated porous film in which 2 to 5 layers of polyethylene and polypropylene are laminated. When a resin having a melting point higher than that of polyethylene such as polyethylene and polypropylene is used by mixing or laminating, it is desirable that polyethylene is 30% by mass or more, and 50% by mass or more as a resin constituting the porous membrane. More desirable.

このような樹脂多孔質膜としては、例えば、従来から知られている非水電解質二次電池などで使用されている上記例示の熱可塑性樹脂で構成された多孔質膜、すなわち、溶剤抽出法、乾式または湿式延伸法などにより作製されたイオン透過性の多孔質膜を用いることができる。また、上記例示の樹脂で構成された多孔質層に無機粒子を含む耐熱層を設けて耐熱性を向上させるものや、接着層を設けて電極との密着性を高くするものも使用できる。   As such a resin porous membrane, for example, a porous membrane composed of the above-exemplified thermoplastic resin used in conventionally known non-aqueous electrolyte secondary batteries, that is, a solvent extraction method, An ion-permeable porous membrane produced by a dry or wet stretching method can be used. Moreover, what improves the heat resistance by providing a heat-resistant layer containing inorganic particles on the porous layer composed of the above-described resin, and what improves adhesion with an electrode by providing an adhesive layer can also be used.

セパレータの平均孔径は、好ましくは0.01μm以上、より好ましくは0.05μm以上であって、好ましくは1μm以下、より好ましくは0.5μm以下である。   The average pore size of the separator is preferably 0.01 μm or more, more preferably 0.05 μm or more, preferably 1 μm or less, more preferably 0.5 μm or less.

また、セパレータの特性としては、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mLの空気が膜を透過する秒数で示されるガーレー値が、10〜500secであることが望ましい。透気度が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。更に、セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。 In addition, as a characteristic of the separator, a Gurley value represented by the number of seconds that 100 mL of air permeates through the membrane under a pressure of 0.879 g / mm 2 is 10 to 500 sec. It is desirable to be. If the air permeability is too high, the ion permeability is reduced, whereas if it is too low, the strength of the separator may be reduced. Further, the strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too small, a short circuit may occur due to the piercing of the separator when lithium dendrite crystals are generated.

本発明の非水電解質二次電池の形態については、特に制限はない。例えば、コイン形、ボタン形、シート形、積層形、円筒形、扁平形、角形、電気自動車などに用いる大型のものなど、いずれであってもよい。   There is no restriction | limiting in particular about the form of the nonaqueous electrolyte secondary battery of this invention. For example, any of a coin shape, a button shape, a sheet shape, a laminated shape, a cylindrical shape, a flat shape, a square shape, a large size used for an electric vehicle, etc. may be used.

尚、一般にこれらの形態に電池を組み立てた後に活性化工程を経てから非水電解質二次電池は出荷可能な状態となる。この活性化工程とは主に初回充電工程やエージング工程等を含む。この活性化工程を経ると非水電解液を吸収したりLiイオンの移動を経て、正極合剤層と負極合剤層は、合剤層の密度が下がる傾向にある。一般的に、正極では5〜10%ほど、負極では10〜20%ほど密度が下がる。   In general, the nonaqueous electrolyte secondary battery is ready for shipment after an activation process after assembling the battery in these forms. This activation process mainly includes an initial charge process and an aging process. Through this activation step, the density of the mixture layer tends to decrease in the positive electrode mixture layer and the negative electrode mixture layer through absorption of the non-aqueous electrolyte and migration of Li ions. Generally, the density decreases by about 5 to 10% for the positive electrode and about 10 to 20% for the negative electrode.

本発明の非水電解質二次電池は、従来の非水電解質二次電池と同様に、充電時の終止電圧を4.2V程度に設定して使用することも可能であるが、これより高い4.3V以上を終止電圧とする充電を行う方法で使用してもよく、このような方法で充電し高温下で使用しても、良好な充放電サイクル特性と貯蔵特性とを発揮できる。ただし、非水二次電池の充電時の終止電圧は4.6V以下であることが好ましい。   The nonaqueous electrolyte secondary battery of the present invention can be used with the end voltage at the time of charging set to about 4.2 V, similarly to the conventional nonaqueous electrolyte secondary battery. It may be used by a method of charging with a final voltage of 3 V or more, and even when charged by such a method and used at a high temperature, good charge / discharge cycle characteristics and storage characteristics can be exhibited. However, it is preferable that the end voltage at the time of charge of a non-aqueous secondary battery is 4.6V or less.

本発明の非水電解質二次電池は、従来から知られている非水電解質二次電池と同様の用途に適用することができる。本発明によると、正極合剤層密度が高いため、高容量で体積当たりのエネルギー密度を向上させることが出来る。そのため、特に限られた体積に対して高容量が求められるような機器、例えばモバイル機器や小型機器および多セルを直列に組み合わせたロボット用途など特に効果を発揮する。   The non-aqueous electrolyte secondary battery of the present invention can be applied to the same applications as conventionally known non-aqueous electrolyte secondary batteries. According to the present invention, since the density of the positive electrode mixture layer is high, the energy density per volume can be improved with a high capacity. Therefore, it is particularly effective for devices that require a high capacity for a limited volume, such as mobile devices, small devices, and robot applications that combine multiple cells in series.

<正極の作製>
LiCoOの平均粒子径5μmのものと27μmのものとを、15:85の割合(質量比)で混合した。この混合物(正極活物質)の比表面積は0.25m/gであった。この正極活物質96質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
<Preparation of positive electrode>
LiCoO 2 having an average particle diameter of 5 μm and 27 μm were mixed at a ratio (mass ratio) of 15:85. The specific surface area of this mixture (positive electrode active material) was 0.25 m 2 / g. 96 parts by mass of this positive electrode active material, 20 parts by mass of an NMP solution containing PVDF as a binder at a concentration of 10% by mass, 1 part by mass of artificial graphite and 1 part by mass of Ketjen Black, which are conductive assistants, are biaxial. The mixture was kneaded using a kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.

前記正極合剤含有ペーストを、厚みが12μmのアルミニウム箔(正極集電体)の両面および一部片面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、カレンダ処理を調整して、正極合剤層の厚さおよび密度を調節した。得られた正極における正極合剤層は、密度は、4.00g/cm、片面あたりの厚みが70μmであった。正極のアルミニウム箔露出部にアルミにウム製の正極集電タブを溶接し、長さ1000mm、幅54mmの帯状の正極を作製した。 The positive electrode mixture-containing paste is applied to both surfaces and a part of one surface of an aluminum foil (positive electrode current collector) having a thickness of 12 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a positive electrode composite on both surfaces of the aluminum foil. An agent layer was formed. Then, the calendar process was adjusted to adjust the thickness and density of the positive electrode mixture layer. The positive electrode mixture layer in the obtained positive electrode had a density of 4.00 g / cm 3 and a thickness per one side of 70 μm. A positive electrode current collector tab made of um was welded to aluminum on the exposed aluminum foil portion of the positive electrode to produce a strip-shaped positive electrode having a length of 1000 mm and a width of 54 mm.

<負極の作製>
負極活物質であるMCMB(平均粒子径20μm)と、天然黒鉛(平均粒子径20μm)とを、6:4の質量比で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
<Production of negative electrode>
A mixture of MCMB (average particle diameter 20 μm) as a negative electrode active material and natural graphite (average particle diameter 20 μm) in a mass ratio of 6: 4: 97.5 parts by mass, and SBR as a binder: 1. Water was added to and mixed with 5 parts by mass and CMC as a thickener: 1 part by mass to prepare a negative electrode mixture-containing paste.

前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面および一部片面に負極合剤層を形成した。その後、カレンダ処理を行って、負極合剤層の厚さおよび密度を調節した。この時の正極銅箔の露出部にニッケル製の負極集電タブを溶接して、得られた負極における負極合剤層は、密度が1.65g/cm、片面あたりの厚みが86μmであった。長さ990mm、幅55mmの帯状の負極を作製した。 The negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a negative electrode composite on both sides and part of the copper foil. An agent layer was formed. Then, the calendar process was performed and the thickness and density of the negative mix layer were adjusted. At this time, a negative electrode current collector tab made of nickel was welded to the exposed portion of the positive electrode copper foil, and the negative electrode mixture layer in the obtained negative electrode had a density of 1.65 g / cm 3 and a thickness of one side of 86 μm. It was. A strip-shaped negative electrode having a length of 990 mm and a width of 55 mm was produced.

<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、ビニレンカーボネート2質量%とフルオロエチレンカーボネート2質量%とピメロニトリル2質量%(一般式(1)の化合物 n=5)を、それぞれ添加して非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 at a concentration of 1.1 mol / L, 2% by weight of vinylene carbonate, 2% by weight of fluoroethylene carbonate and 2% by weight of pimelonitrile (general formula Compound (1) n = 5) was added to prepare a non-aqueous electrolyte.

<セパレータの作製>
平均粒子径d50が1μmのベーマイト5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。
<Preparation of separator>
To 5 kg of boehmite having an average particle diameter d 50 of 1 μm, 5 kg of ion exchange water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40% by mass) are added, and the internal volume is 20 L, the number of turns is 40 times. A dispersion was prepared by pulverizing with a ball mill for 10 hours per minute. The treated dispersion was vacuum-dried at 120 ° C. and observed with a scanning electron microscope (SEM). As a result, the boehmite was almost plate-shaped.

前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー〔多孔質層(II)形成用スラリー、固形分比率50質量%〕を調製した。   To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to form a uniform slurry. [Slurry for forming porous layer (II), solid content ratio: 50% by mass] was prepared.

非水電解質二次電池用PE製微多孔質セパレータ〔多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃〕の片面にコロナ放電処理(放電量40W・min/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であった。 PE microporous separator for non-aqueous electrolyte secondary battery (porous layer (I): thickness 12 μm, porosity 40%, average pore diameter 0.08 μm, PE melting point 135 ° C.) the amount 40W · min / m 2) and subjected to the treated surface porous layer (II) forming slurry was coated by a micro gravure coater, the thickness and dried to form a porous layer of 4μm to (II), A laminated separator was obtained. The mass per unit area of the porous layer (II) in this separator was 5.5 g / m 2 , the boehmite volume content was 95% by volume, and the porosity was 45%.

<電池の組み立て>
前記帯状の正極と前記帯状正極とを、前記積層型セパレータを、多孔質層(II)が正極側となるように介在させつつ重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の巻回電極体とし、この巻回電極体をポリプロピレン製の絶縁テープで固定した。次に、アルミニウム合金製の角形の電池ケースに前記巻回電極体を挿入し、リード体の溶接を行うと共に、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解液を注入し、1時間静置した後注入口を封止して、図1に示す構造で、図2に示す外観の非水電解質二次電池を作製した。
<Battery assembly>
The strip-shaped positive electrode and the strip-shaped positive electrode are overlapped with the laminated separator so that the porous layer (II) is on the positive electrode side, wound in a spiral shape, and then added in a flat shape. The wound electrode body was pressed to form a wound electrode body having a flat wound structure, and this wound electrode body was fixed with an insulating tape made of polypropylene. Next, the wound electrode body was inserted into a rectangular battery case made of aluminum alloy, the lead body was welded, and the lid plate made of aluminum alloy was welded to the open end of the battery case. Thereafter, the non-aqueous electrolyte is injected from the inlet provided on the cover plate, and left to stand for 1 hour. The inlet is then sealed, and the structure shown in FIG. A secondary battery was produced.

前記の非水電解質二次電池を、図1および図2を用いて説明する。図1はその部分断面図であって、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回電極体6として、角形(角筒形)の電池ケース4に非水電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。   The nonaqueous electrolyte secondary battery will be described with reference to FIGS. FIG. 1 is a partial cross-sectional view thereof. A positive electrode 1 and a negative electrode 2 are wound in a spiral shape via a separator 3 and then pressed so as to be flattened to form a flat wound electrode body 6 having a rectangular shape ( (Rectangular cylindrical) battery case 4 is housed together with a non-aqueous electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, a non-aqueous electrolyte, or the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated.

電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはPP製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The battery case 4 is made of an aluminum alloy and constitutes an outer package of the battery. The outer can 4 also serves as a positive electrode terminal. And the insulator 5 which consists of PE sheets is arrange | positioned at the bottom part of the battery case 4, and it connects to each one end of the positive electrode 1 and the negative electrode 2 from the flat wound electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out. A stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a PP insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached.

そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。   And this cover plate 9 is inserted in the opening part of the battery case 4, and the opening part of the battery case 4 is sealed by welding the joint part of both, and the inside of the battery is sealed. Further, in the battery of FIG. 1, a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like. As a result, the battery is sealed by welding. Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.

図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。また、セパレータについても、各層を区別して示していない。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional. Also, the separator does not show each layer separately.

<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、ビニレンカーボネート2質量%とフルオロエチレンカーボネート2質量%とスベロニトリル2質量%(一般式(1)の化合物 n=6)を、それぞれ添加して非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 at a concentration of 1.1 mol / L, and 2% by mass of vinylene carbonate, 2% by mass of fluoroethylene carbonate and 2% by mass of suberonitrile (general formula Compound (1) n = 6) was added to prepare a non-aqueous electrolyte.

この非水電解質を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used.

LiCoOの平均粒子径3μmのものと29μmのものとを、15:85の割合(質量比)で混合した。この混合物(正極活物質)の比表面積は0.35m/gであった。この正極活物質96質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。 LiCoO 2 having an average particle diameter of 3 μm and 29 μm were mixed at a ratio (mass ratio) of 15:85. The specific surface area of this mixture (positive electrode active material) was 0.35 m 2 / g. 96 parts by mass of this positive electrode active material, 20 parts by mass of an NMP solution containing PVDF as a binder at a concentration of 10% by mass, 1 part by mass of artificial graphite and 1 part by mass of Ketjen Black, which are conductive assistants, are biaxial. The mixture was kneaded using a kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.

前記正極合剤含有ペーストを、厚みが12μmのアルミニウム箔(正極集電体)の両面および一部片面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、カレンダ処理を調整して、正極合剤層の厚さおよび密度を調節した。得られた正極における正極合剤層は、密度は、4.00g/cm、片面あたりの厚みが70μmであった。正極のアルミニウム箔露出部にアルミにウム製の正極集電タブを溶接し、長さ1000mm、幅54mmの帯状の正極を作製した。 The positive electrode mixture-containing paste is applied to both surfaces and a part of one surface of an aluminum foil (positive electrode current collector) having a thickness of 12 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a positive electrode composite on both surfaces of the aluminum foil. An agent layer was formed. Then, the calendar process was adjusted to adjust the thickness and density of the positive electrode mixture layer. The positive electrode mixture layer in the obtained positive electrode had a density of 4.00 g / cm 3 and a thickness per one side of 70 μm. A positive electrode current collector tab made of um was welded to aluminum on the exposed aluminum foil portion of the positive electrode to produce a strip-shaped positive electrode having a length of 1000 mm and a width of 54 mm.

この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that this positive electrode was used.

<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、ビニレンカーボネート2質量%とフルオロエチレンカーボネート2質量%とスベロニトリル2質量%(一般式(1)の化合物 n=6)を、それぞれ添加して非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 at a concentration of 1.1 mol / L, and 2% by mass of vinylene carbonate, 2% by mass of fluoroethylene carbonate and 2% by mass of suberonitrile (general formula Compound (1) n = 6) was added to prepare a non-aqueous electrolyte.

実施例3で作成した正極と、この非水電解質を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the positive electrode prepared in Example 3 and this nonaqueous electrolyte were used.

LiCoOの平均粒子径3μmのものと29μmのものとを15:85の割合(質量比)で混合した。この混合物(正極活物質)の比表面積は0.35m/gであった。この正極活物質96質量部と、バインダであるPVDFを10質量%の濃度で含むNMP溶液20質量部と、導電助剤である人造黒鉛1質量部およびケッチェンブラック1質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。 LiCoO 2 having an average particle size of 3 μm and 29 μm were mixed at a ratio (mass ratio) of 15:85. The specific surface area of this mixture (positive electrode active material) was 0.35 m 2 / g. 96 parts by mass of this positive electrode active material, 20 parts by mass of an NMP solution containing PVDF as a binder at a concentration of 10% by mass, 1 part by mass of artificial graphite and 1 part by mass of Ketjen Black, which are conductive assistants, are biaxial. The mixture was kneaded using a kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.

前記正極合剤含有ペーストを、厚みが12μmのアルミニウム箔(正極集電体)の両面および一部片面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、カレンダ処理を調整して、正極合剤層の厚さおよび密度を調節した。得られた正極における正極合剤層は、密度は、4.11g/cm、片面あたりの厚みが68μmであった。正極のアルミニウム箔露出部にアルミにウム製の正極集電タブを溶接し、長さ1000mm、幅54mmの帯状の正極を作製した。 The positive electrode mixture-containing paste is applied to both surfaces and a part of one surface of an aluminum foil (positive electrode current collector) having a thickness of 12 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a positive electrode composite on both surfaces of the aluminum foil. An agent layer was formed. Then, the calendar process was adjusted to adjust the thickness and density of the positive electrode mixture layer. The positive electrode mixture layer in the obtained positive electrode had a density of 4.11 g / cm 3 and a thickness per side of 68 μm. A positive electrode current collector tab made of um was welded to aluminum on the exposed aluminum foil portion of the positive electrode to produce a strip-shaped positive electrode having a length of 1000 mm and a width of 54 mm.

この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that this positive electrode was used.

<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、ビニレンカーボネート2質量%とフルオロエチレンカーボネート2質量%とスベロニトリル2質量%(一般式(1)の化合物 n=6)を、それぞれ添加して非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 at a concentration of 1.1 mol / L, and 2% by mass of vinylene carbonate, 2% by mass of fluoroethylene carbonate and 2% by mass of suberonitrile (general formula Compound (1) n = 6) was added to prepare a non-aqueous electrolyte.

実施例5で作成した正極と、この非水電解質を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the positive electrode prepared in Example 5 and this nonaqueous electrolyte were used.

<負極の作製>
負極活物質であるMCMB(平均粒子径20μm)と、天然黒鉛(平均粒子径20μm)とを、6:4の質量比で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
<Production of negative electrode>
A mixture of MCMB (average particle diameter 20 μm) as a negative electrode active material and natural graphite (average particle diameter 20 μm) in a mass ratio of 6: 4: 97.5 parts by mass, and SBR as a binder: 1. Water was added to and mixed with 5 parts by mass and CMC as a thickener: 1 part by mass to prepare a negative electrode mixture-containing paste.

前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面および一部片面に負極合剤層を形成した。その後、カレンダ処理を調整し、負極合剤層の厚さおよび密度を調節した。この時の銅箔の露出部にニッケル製の負極集電タブを溶接して、得られた負極における負極合剤層は、密度が1.55g/cm、片面あたりの厚みが91μmであった。長さ990mm、幅55mmの帯状の負極を作製した。 The negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a negative electrode composite on both sides and part of the copper foil. An agent layer was formed. Then, the calendar process was adjusted and the thickness and density of the negative mix layer were adjusted. A negative electrode current collector tab made of nickel was welded to the exposed portion of the copper foil at this time, and the negative electrode mixture layer in the obtained negative electrode had a density of 1.55 g / cm 3 and a thickness of one side of 91 μm. . A strip-shaped negative electrode having a length of 990 mm and a width of 55 mm was produced.

この負極を用いた以外は実施例6と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 6 except that this negative electrode was used.

<負極の作製>
負極活物質である天然黒鉛(平均粒子径20μm):97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
<Production of negative electrode>
Water was added to natural graphite (average particle size 20 μm) as negative electrode active material: 97.5 parts by mass, SBR as binder: 1.5 parts by mass, and CMC as thickener: 1 part by mass. The mixture was mixed to prepare a negative electrode mixture-containing paste.

前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面および一部片面に負極合剤層を形成した。その後、カレンダ処理を調整し、負極合剤層の厚さおよび密度を調節した。この時の銅箔の露出部にニッケル製の負極集電タブを溶接して、得られた負極における負極合剤層は、密度が1.65g/cm、片面あたりの厚みが86μmであった。長さ990mm、幅55mmの帯状の負極を作製した。 The negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a negative electrode composite on both sides and part of the copper foil. An agent layer was formed. Then, the calendar process was adjusted and the thickness and density of the negative mix layer were adjusted. At this time, a negative electrode current collector tab made of nickel was welded to the exposed portion of the copper foil, and the negative electrode mixture layer in the obtained negative electrode had a density of 1.65 g / cm 3 and a thickness of one side of 86 μm. . A strip-shaped negative electrode having a length of 990 mm and a width of 55 mm was produced.

この負極を用いた以外は実施例6と同様にして非水電解質二次電池を作成した。
(比較例1)
<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、ビニレンカーボネート2質量%とフルオロエチレンカーボネート2質量%とアジポニトリル2質量%(一般式(1)の化合物 n=4)を、それぞれ添加して非水電解質を調製した。
A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 6 except that this negative electrode was used.
(Comparative Example 1)
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved at a concentration of 1.1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7, and 2% by mass of vinylene carbonate, 2% by mass of fluoroethylene carbonate, and 2% by mass of adiponitrile (general formula Compound (1) n = 4) was added to prepare a non-aqueous electrolyte.

この非水電解質を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。
(比較例2)
<非水電解液の調製>
エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶媒に、LiPFを1.1mol/Lの濃度で溶解させ、ビニレンカーボネート2質量%とフルオロエチレンカーボネート2質量%とアジポニトリル2質量%(一般式(1)の化合物 n=4)を、それぞれ添加して非水電解質を調製した。
A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that this nonaqueous electrolyte was used.
(Comparative Example 2)
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved at a concentration of 1.1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7, and 2% by mass of vinylene carbonate, 2% by mass of fluoroethylene carbonate, and 2% by mass of adiponitrile (general formula Compound (1) n = 4) was added to prepare a non-aqueous electrolyte.

正極は実施例5と同様のものを用いた。この正極とこの非水電解質を用いた以外は実施例1と同様にして非水電解質二次電池を作成した。
(比較例3)
<負極の作製>
負極活物質であるMCMB(平均粒子径20μm)と、天然黒鉛(平均粒子径20μm)とを、6:4の質量比で混合した混合物:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。
The same positive electrode as in Example 5 was used. A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that this positive electrode and this nonaqueous electrolyte were used.
(Comparative Example 3)
<Production of negative electrode>
A mixture of MCMB (average particle diameter 20 μm) as a negative electrode active material and natural graphite (average particle diameter 20 μm) in a mass ratio of 6: 4: 97.5 parts by mass, and SBR as a binder: 1. Water was added to and mixed with 5 parts by mass and CMC as a thickener: 1 part by mass to prepare a negative electrode mixture-containing paste.

前記負極合剤含有ペーストを、厚みが8μmの銅箔(負極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面および一部片面に負極合剤層を形成した。その後、カレンダ処理を調整し、負極合剤層の厚さおよび密度を調節した。この時の銅箔の露出部にニッケル製の負極集電タブを溶接して、得られた負極における負極合剤層は、密度が1.55g/cm、片面あたりの厚み91μmであった。長さ990mm、幅55mmの帯状の負極を作製した。 The negative electrode mixture-containing paste is applied to both sides of a copper foil (negative electrode current collector) having a thickness of 8 μm, and then vacuum-dried at 120 ° C. for 12 hours to form a negative electrode composite on both sides and part of the copper foil. An agent layer was formed. Then, the calendar process was adjusted and the thickness and density of the negative mix layer were adjusted. A negative electrode current collector tab made of nickel was welded to the exposed portion of the copper foil at this time, and the negative electrode mixture layer in the obtained negative electrode had a density of 1.55 g / cm 3 and a thickness of 91 μm per side. A strip-shaped negative electrode having a length of 990 mm and a width of 55 mm was produced.

この負極を用いた以外は比較例2と同様にして非水電解質二次電池を作成した。   A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 2 except that this negative electrode was used.

実施例および比較例の各非水電解質二次電池について、下記の各評価を行った。   The following evaluations were performed on the nonaqueous electrolyte secondary batteries of Examples and Comparative Examples.

<45℃での充放電サイクル特性>
実施例および比較例の各非水電解質二次電池を45℃の恒温槽内に5時間静置し、その後、各電池について、4.40Vまで1.0Cの定電流で充電を行い、4.40Vに達した後は、電流が0.05Cに到達するまで4.40Vで定電圧充電を行った。その後の各電池について、1.0Cの定電流で、電圧が3.0Vに到達するまで放電を行った。これらの充電および放電の一連の操作を1サイクルとして、放電容量を確認しながら充放電を繰り返した。そして、各電池について、1サイクル目の放電容量から70%の放電容量になるサイクル数を求めた。
<Charge / discharge cycle characteristics at 45 ° C.>
3. Each non-aqueous electrolyte secondary battery of Example and Comparative Example was left in a 45 ° C. constant temperature bath for 5 hours, and then each battery was charged at a constant current of 1.0 C up to 4.40 V. After reaching 40V, constant voltage charging was performed at 4.40V until the current reached 0.05C. Each of the batteries thereafter was discharged at a constant current of 1.0 C until the voltage reached 3.0V. A series of these charging and discharging operations was taken as one cycle, and charging / discharging was repeated while confirming the discharge capacity. And about each battery, the cycle number which becomes 70% of discharge capacity from the discharge capacity of the 1st cycle was calculated | required.

<貯蔵特性評価>
実施例比較例の各電池について、室温で4.40Vまで1.0Cの定電流で充電を行い、4.40Vに達した後は、電流が0.05Cに到達するまで4.40Vで定電圧充電を行った。その後の各電池について、1.0Cの定電流で、電圧が3.0Vに到達するまで放電を行った。その後、室温で4.40Vまで1.0Cの定電流で充電を行い、4.40Vに達した後は、電流が0.05Cに到達するまで4.40Vで定電圧充電を行った。その時の電池の厚み(貯蔵前厚み)を測定した。厚み測定後の各電池を85℃の恒温槽に24時間貯蔵し、恒温槽から取り出して4時間放置した後に、再び電池の厚み(貯蔵後厚み)を測定した。上記の貯蔵前厚みと貯蔵後厚みから、下記式に従って、貯蔵による電池の厚み変化率を求めた。
<Storage characteristics evaluation>
Example Each battery of the comparative example was charged at a constant current of 1.0 C up to 4.40 V at room temperature, and after reaching 4.40 V, the voltage was constant at 4.40 V until the current reached 0.05 C. Charged. Each of the batteries thereafter was discharged at a constant current of 1.0 C until the voltage reached 3.0V. Thereafter, charging was performed at a constant current of 1.0 C up to 4.40 V at room temperature, and after reaching 4.40 V, constant voltage charging was performed at 4.40 V until the current reached 0.05 C. The battery thickness (thickness before storage) at that time was measured. Each battery after thickness measurement was stored in a thermostatic bath at 85 ° C. for 24 hours, taken out of the thermostatic bath and allowed to stand for 4 hours, and then the thickness of the battery (thickness after storage) was measured again. From the thickness before storage and the thickness after storage, the rate of change in thickness of the battery due to storage was determined according to the following formula.

厚み変化率(%)=(貯蔵後厚み)÷(貯蔵前厚み)×100−100。   Thickness change rate (%) = (thickness after storage) ÷ (thickness before storage) × 100-100.

<連続充電試験>
実施例および比較例の各非水電解質二次電池について、60℃で、1.0Cの電流値で4.45Vまで定電流充電を行った後、4.45Vで定電圧充電を継続し、電流値の上昇が生じるまでの時間(リーク電流発生時間)を測定した。
<Continuous charging test>
About each nonaqueous electrolyte secondary battery of an Example and a comparative example, after carrying out constant current charge to 4.45V at a current value of 1.0C at 60 ° C, constant voltage charge was continued at 4.45V, The time until the increase in value (leakage current generation time) was measured.

Figure 2017073329
Figure 2017073329

Figure 2017073329
Figure 2017073329

1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (3)

正極、負極、非水電解質、セパレータを備える非水電解質二次電池であって、
前記正極は、正極集電体の片面又は両面に、正極合剤層を備え、
前記正極合剤層は少なくとも正極活物質とバインダと導電助剤を含み、
前記正極活物質の比表面積は0.25m/g以上であり、
前記正極合剤層の密度は、4.0g/cm以上であり、
前記非水電解質は一般式(1)で表される化合物を含むことを特徴とする非水電解質二次電池。
NC−C2n−CN (1)
(ただし、nは5以上10以下である。)
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
The positive electrode comprises a positive electrode mixture layer on one or both sides of a positive electrode current collector,
The positive electrode mixture layer includes at least a positive electrode active material, a binder, and a conductive additive,
The positive electrode active material has a specific surface area of 0.25 m 2 / g or more,
The density of the positive electrode mixture layer is 4.0 g / cm 3 or more,
The nonaqueous electrolyte secondary battery includes a compound represented by the general formula (1).
NC-C n H 2n -CN ( 1)
(However, n is 5 or more and 10 or less.)
前記負極は負極集電体の片面又は両面に、負極合剤層を備え、
前記負極合剤層の合剤密度は1.6g/cm以上である請求項1に記載の非水電解質二次電池。
The negative electrode comprises a negative electrode mixture layer on one or both sides of a negative electrode current collector,
The nonaqueous electrolyte secondary battery according to claim 1, wherein a mixture density of the negative electrode mixture layer is 1.6 g / cm 3 or more.
前記負極合剤層は、少なくとも負極活物質とバインダを含み、
前記負極活物質は、天然黒鉛とメソカーボンマイクロビーズ含み、
全負極活物質中、天然黒鉛とメソカーボンマイクロビーズとを質量比で80:20〜0:100の割合で含むことを特徴とする請求項1に記載の非水電解質二次電池。
The negative electrode mixture layer includes at least a negative electrode active material and a binder,
The negative electrode active material includes natural graphite and mesocarbon microbeads,
2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material includes natural graphite and mesocarbon microbeads in a mass ratio of 80:20 to 0: 100. 3.
JP2015200634A 2015-10-09 2015-10-09 Non-aqueous electrolyte secondary battery Active JP6846860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015200634A JP6846860B2 (en) 2015-10-09 2015-10-09 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200634A JP6846860B2 (en) 2015-10-09 2015-10-09 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2017073329A true JP2017073329A (en) 2017-04-13
JP6846860B2 JP6846860B2 (en) 2021-03-24

Family

ID=58537816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200634A Active JP6846860B2 (en) 2015-10-09 2015-10-09 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6846860B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245789A (en) * 1996-03-04 1997-09-19 Murata Mfg Co Ltd Non-aqueous electrolyte secondary battery
JP2004335187A (en) * 2003-05-02 2004-11-25 Hitachi Maxell Ltd Coin-form nonaqueous secondary battery
JP2006221935A (en) * 2005-02-09 2006-08-24 Sony Corp Negative electrode and battery using it
JP2007538365A (en) * 2004-05-28 2007-12-27 エルジー・ケム・リミテッド Additive for lithium secondary battery
JP2008108586A (en) * 2006-10-26 2008-05-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009032653A (en) * 2007-06-28 2009-02-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using it
JP2009048876A (en) * 2007-08-21 2009-03-05 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009231261A (en) * 2008-02-26 2009-10-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013065540A (en) * 2011-02-16 2013-04-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery including the same
JP2013134859A (en) * 2011-12-26 2013-07-08 Sony Corp Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic apparatus
WO2014017583A1 (en) * 2012-07-26 2014-01-30 Tdk株式会社 Lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245789A (en) * 1996-03-04 1997-09-19 Murata Mfg Co Ltd Non-aqueous electrolyte secondary battery
JP2004335187A (en) * 2003-05-02 2004-11-25 Hitachi Maxell Ltd Coin-form nonaqueous secondary battery
JP2007538365A (en) * 2004-05-28 2007-12-27 エルジー・ケム・リミテッド Additive for lithium secondary battery
JP2006221935A (en) * 2005-02-09 2006-08-24 Sony Corp Negative electrode and battery using it
JP2008108586A (en) * 2006-10-26 2008-05-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009032653A (en) * 2007-06-28 2009-02-12 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery using it
JP2009048876A (en) * 2007-08-21 2009-03-05 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009231261A (en) * 2008-02-26 2009-10-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013065540A (en) * 2011-02-16 2013-04-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery including the same
JP2013134859A (en) * 2011-12-26 2013-07-08 Sony Corp Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic apparatus
WO2014017583A1 (en) * 2012-07-26 2014-01-30 Tdk株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP6846860B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP6160602B2 (en) Lithium ion secondary battery
JPWO2018179885A1 (en) Rechargeable battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP2008300302A (en) Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
JP2014127242A (en) Lithium secondary battery
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
US10276868B2 (en) Non-aqueous electrolyte rechargeable battery
JP2017134997A (en) Nonaqueous electrolyte secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP5258499B2 (en) Non-aqueous secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
CN108352561B (en) Lithium ion secondary battery
JP6345659B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2014103755A1 (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP2014207238A (en) Nonaqueous electrolyte battery and battery pack
JP7003775B2 (en) Lithium ion secondary battery
JP2016207447A (en) Nonaqueous electrolyte secondary battery
JP2011192580A (en) Nonaqueous secondary battery
JP2019121500A (en) Cylindrical secondary cell
JP5242315B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250