JP2016018584A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016018584A
JP2016018584A JP2014138219A JP2014138219A JP2016018584A JP 2016018584 A JP2016018584 A JP 2016018584A JP 2014138219 A JP2014138219 A JP 2014138219A JP 2014138219 A JP2014138219 A JP 2014138219A JP 2016018584 A JP2016018584 A JP 2016018584A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
nonaqueous electrolyte
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014138219A
Other languages
Japanese (ja)
Other versions
JP6392566B2 (en
Inventor
裕志 橋本
Hiroshi Hashimoto
裕志 橋本
大桃 義智
Yoshitomo Omomo
義智 大桃
潤珠 青木
Urumi Aoki
潤珠 青木
鞍懸 淳
Atsushi Kurakake
淳 鞍懸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2014138219A priority Critical patent/JP6392566B2/en
Publication of JP2016018584A publication Critical patent/JP2016018584A/en
Application granted granted Critical
Publication of JP6392566B2 publication Critical patent/JP6392566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a flat wound electrode body and good charge and discharge cycle characteristics with good productivity.SOLUTION: The problem is solved by a nonaqueous electrolyte secondary battery which comprises: a wound electrode body shaped in a flat form in cross section and arranged by put together a positive electrode, a negative electrode appropriately and a separator and winding them like a swirl; a nonaqueous electrolyte; and a battery case in which the wound electrode body and the nonaqueous electrolyte are enclosed. The battery case has a bottomed cylindrical metal outer can and a lid for sealing an opening of the metal outer can; in a particular part of the outer can, the thickness t of metal making up the part is 0.30 mm or smaller. The positive electrode has a metal collector, and a positive electrode mixture layer formed on the collector on each side thereof and including a positive electrode active material, a conductive assistant and a binding agent. The collector of the positive electrode is 11 μm or smaller in thickness, and 2.5 N/mm or larger in tensile strength.SELECTED DRAWING: Figure 1

Description

本発明は、扁平状の巻回電極体を有し、充放電サイクル特性および生産性が良好な非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery having a flat wound electrode body and good charge / discharge cycle characteristics and productivity.

近年、携帯電話、ノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型軽量で、かつ高容量の非水電解質二次電池が必要とされるようになってきた。   In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, small and light non-aqueous electrolyte secondary batteries have become necessary. .

こうした小型化・軽量化を図った非水電解質二次電池としては、例えば、正極と負極とを、セパレータを介在させつつ重ね合わせて渦巻状に巻回し、更に横断面が扁平状になるように成形した扁平状巻回電極体を、角形(角筒形)の外装缶や金属ラミネートフィルムで構成されるラミネートフィルム外装体のような薄型の外装体(電池ケース)内に収容した構造のものが挙げられる。   As such a non-aqueous electrolyte secondary battery that is reduced in size and weight, for example, a positive electrode and a negative electrode are overlapped with a separator interposed therebetween and wound in a spiral shape, and the cross section becomes flattened. A structure in which the formed flat wound electrode body is accommodated in a thin outer casing (battery case) such as a rectangular (square tube) outer can or a laminated film outer casing made of a metal laminate film. Can be mentioned.

ところが、前記のような扁平状巻回電極体においては、その湾曲部(特に最内周の湾曲部)において、正極の合剤層(正極活物質を含む合剤層)の割れや集電体の破れが生じやすく、これにより、製造した多数の電池の中に、前記の割れや破れによって信頼性の低いものが含まれることで、電池の生産効率が低下するなどの虞がある。   However, in the flat wound electrode body as described above, in the curved portion (particularly, the innermost curved portion), cracks in the positive electrode mixture layer (mixture layer containing the positive electrode active material) or current collector As a result, there is a risk that the production efficiency of the battery may be reduced because a large number of manufactured batteries include those with low reliability due to the above-described cracking or breaking.

扁平状巻回電極体における集電体の破れに関しては、例えば、特定の引張強度を有する集電体を使用することで、これを防止する技術が提案されている(例えば、特許文献1)。   Regarding the breakage of the current collector in the flat wound electrode body, for example, a technique for preventing this by using a current collector having a specific tensile strength has been proposed (for example, Patent Document 1).

特開2012−28158号公報JP 2012-28158 A

ところで、非水電解質二次電池においては、従来から、充放電を繰り返しても大きな容量が維持できるように、充放電サイクル特性に優れていることが求められており、これを達成すべく種々の技術が開発されている。   By the way, in the nonaqueous electrolyte secondary battery, conventionally, it is required to have excellent charge / discharge cycle characteristics so that a large capacity can be maintained even after repeated charge / discharge. Technology has been developed.

ところが、携帯電話などの携帯機器などのように、通常の使用環境下が常温と考えられるものであっても、現実の使用時には常温よりも高温になっているケースが多く、このような使用を想定した非水電解質二次電池の充放電サイクル特性に関しては、未だ改善の余地がある。   However, even in cases where the normal usage environment is considered to be normal temperature, such as mobile devices such as mobile phones, there are many cases where the temperature is higher than normal temperature in actual use. Regarding the assumed charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery, there is still room for improvement.

本発明は、前記事情に鑑みてなされたものであり、その目的は、扁平状の巻回電極体を有し、充放電サイクル特性および生産性が良好な非水電解質二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte secondary battery having a flat wound electrode body and good charge / discharge cycle characteristics and productivity. It is in.

前記目的を達成し得た本発明の非水電解質二次電池は、正極、負極およびセパレータを重ねて渦巻状に巻回し、横断面を扁平状にした巻回電極体と、非水電解質とが、電池ケース内に収容されてなる非水電解質二次電池であって、前記電池ケースは、有底筒形の金属製の外装缶と、前記金属製の外装缶の開口部を封口する蓋体とを有しており、前記外装缶の側面部は、互いに対向し、側面視で他の面よりも幅が広い2枚の幅広面を有しており、前記幅広面は、側面からの投影形状が四角形であり、前記外装缶を構成する金属は、前記幅広面の前記投影形状における2本の対角線の交点に相当する箇所での厚みをtとしたとき、前記tが0.30mm以下であり、前記正極は、金属製の集電体と、前記集電体の両面に形成された、正極活物質、導電助剤および結着剤を含有する正極合剤層とを有しており、前記正極の集電体は、厚みが11μm以下であり、かつ引張強度が2.5N/mm以上であることを特徴とするものである。   The non-aqueous electrolyte secondary battery of the present invention that has achieved the above object comprises a spirally wound electrode body in which a positive electrode, a negative electrode, and a separator are stacked and wound in a spiral shape, and a non-aqueous electrolyte having a flat cross section. A non-aqueous electrolyte secondary battery housed in a battery case, wherein the battery case has a bottomed cylindrical metal outer can and a lid that seals the opening of the metal outer can The side surface portion of the outer can is opposed to each other and has two wide surfaces wider than the other surfaces in a side view, and the wide surface is projected from the side surface. The shape of the metal that constitutes the outer can in the shape of a quadrangle is t is 0.30 mm or less, where t is the thickness at the location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface. The positive electrode comprises a metal current collector and a positive electrode active material formed on both sides of the current collector; A positive electrode mixture layer containing an electric assistant and a binder, and the positive electrode current collector has a thickness of 11 μm or less and a tensile strength of 2.5 N / mm or more. It is a feature.

本発明によれば、扁平状の巻回電極体を有し、充放電サイクル特性および生産性が良好な非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a nonaqueous electrolyte secondary battery that has a flat wound electrode body and has good charge / discharge cycle characteristics and good productivity.

本発明の非水電解質二次電池の一例を模式的に表す斜視図である。It is a perspective view showing typically an example of the nonaqueous electrolyte secondary battery of the present invention. 図1の非水電解質二次電池の側面図である。It is a side view of the nonaqueous electrolyte secondary battery of FIG. 本発明の非水電解質二次電池の一例を模式的に表す部分縦断面図である。It is a fragmentary longitudinal cross-sectional view which represents typically an example of the nonaqueous electrolyte secondary battery of this invention.

本発明の非水電解質二次電池は、正極、負極およびセパレータを重ねて渦巻状に巻回し、横断面を扁平状にした巻回電極体(以下、「扁平状巻回電極体」という)と、非水電解質とが、電池ケース内に収容されており、この電池ケースは、有底筒形の金属製の外装缶と、前記金属製の外装缶の開口部を封口する蓋体とを有していて、外装缶の側面部は、互いに対向し、側面視で他の面よりも幅が広い2枚の幅広面を有しており、前記幅広面は、側面からの投影形状が四角形である。すなわち、本発明の非水電解質二次電池は、いわゆる角筒形の外装缶を有する角形電池である。   The nonaqueous electrolyte secondary battery of the present invention comprises a spirally wound electrode body (hereinafter referred to as “flat spirally wound electrode body”) in which a positive electrode, a negative electrode, and a separator are overlapped and wound in a spiral shape and the cross section is flattened. The nonaqueous electrolyte is contained in a battery case, and the battery case has a bottomed cylindrical metal outer can and a lid that seals the opening of the metal outer can. The side surface of the outer can is opposed to each other and has two wide surfaces wider than the other surfaces in a side view, and the wide surface has a quadrangular projection shape from the side surface. is there. That is, the nonaqueous electrolyte secondary battery of the present invention is a prismatic battery having a so-called rectangular tube-shaped outer can.

そして、本発明の非水電解質二次電池に係る正極は、金属製の集電体と、前記集電体の両面に形成された、正極活物質、導電助剤および結着剤を含有する正極合剤層とを有している。そして、正極の集電体は、厚みが11μm以下であり、かつ引張強度が2.5N/mm以上である。   And the positive electrode which concerns on the nonaqueous electrolyte secondary battery of this invention is a positive electrode containing the positive electrode active material, the conductive support agent, and the binder which were formed in the metal collector and the both surfaces of the said collector. And a mixture layer. The positive electrode current collector has a thickness of 11 μm or less and a tensile strength of 2.5 N / mm or more.

非水電解質二次電池の充放電を繰り返すと、非水電解質の酸化分解が起こり、正極中の電解液が不足することにより、正極中に含まれる正極活物質の表層に分解生成物が堆積したり、粒子間のイオン伝導経路が減少したりし、これらが充放電サイクル特性の低下の原因となる。   Repeated charge / discharge of the nonaqueous electrolyte secondary battery causes oxidative decomposition of the nonaqueous electrolyte, resulting in a shortage of electrolyte in the positive electrode, which causes decomposition products to deposit on the surface layer of the positive electrode active material contained in the positive electrode. Or the ion conduction path between particles decreases, and these cause deterioration in charge / discharge cycle characteristics.

しかし、本発明の非水二次電池に係る正極は、厚みが11μm以下と薄い集電体を備えており、これにより、非水電解質二次電池の内容積のうち、正極集電体によって占有される割合を可及的に小さくしている。よって、本発明の非水電解質二次電池では、内部への非水電解質の導入量をより多くすることが可能であり、これにより充放電サイクル特性、(特に、45℃程度のやや高温環境下での充放電サイクル特性)を高めることができる。   However, the positive electrode according to the non-aqueous secondary battery of the present invention includes a thin current collector having a thickness of 11 μm or less, and thus, the positive electrode current collector occupies the internal volume of the non-aqueous electrolyte secondary battery. The ratio of being made is made as small as possible. Therefore, in the non-aqueous electrolyte secondary battery of the present invention, it is possible to increase the amount of non-aqueous electrolyte introduced into the interior, and thereby charge / discharge cycle characteristics (particularly in a slightly high temperature environment of about 45 ° C.). Charging / discharging cycle characteristics) can be improved.

ところが、正極の集電体を前記のように薄くすると、その強度が小さくなるため、扁平状巻回電極体を形成した際に集電体の破れが生じやすく、非水電解質二次電池の生産性が低下する。   However, if the current collector of the positive electrode is thinned as described above, the strength is reduced, so that when the flat wound electrode body is formed, the current collector is likely to be broken, producing a non-aqueous electrolyte secondary battery. Sex is reduced.

そこで、本発明の非水電解質二次電池では、電池ケースに係る金属製の外装缶に、その少なくとも一部が薄い金属で構成されたものを使用する。   Therefore, in the non-aqueous electrolyte secondary battery of the present invention, a metal outer can that is at least partly composed of a thin metal is used for the battery case.

角筒形の電池ケースを使用した角形電池においては、高容量化の観点から、電池ケースの内容積における扁平状巻回電極体が占める割合を非常に大きくすることが一般的であり、そのため、扁平状巻回電極体の巻回時に強く巻き締めたり、扁平状とするときに大きな応力で押圧したりする必要がある。よって、このような角形電池では扁平状巻回電極体にかかる応力が大きくなることから、前記のような薄く、強度が小さい集電体を正極に使用していると破れが生じやすい。   In a square battery using a rectangular battery case, from the viewpoint of increasing capacity, it is common to greatly increase the proportion of the flat wound electrode body in the internal volume of the battery case, It is necessary to strongly tighten the flat wound electrode body when it is wound, or to press it with a large stress when it is flat. Therefore, in such a rectangular battery, stress applied to the flat wound electrode body is increased, and therefore, if the thin current collector having low strength is used for the positive electrode, the battery is easily broken.

しかしながら、電池ケースに係る金属製の外装缶に、薄い金属で構成されたものを使用した場合には、外形サイズが同じ電池の場合でも、より内容積を大きくすることができるため、扁平状巻回電極体を、強く巻き締めたり、扁平状とするときにあまり大きな応力で押圧したりすることなく使用することができる。よって、電池ケース内において扁平状巻回電極体にかかる応力を小さくして、正極の集電体の破れを抑制でき、非水電解質二次電池の生産性や信頼性を高めることができる。   However, when a metal outer can made of a battery case made of a thin metal is used, the inner volume can be increased even in the case of batteries having the same outer size. The rotating electrode body can be used without being tightly wound or pressed with too much stress when flattened. Therefore, the stress applied to the flat wound electrode body in the battery case can be reduced, and the current collector of the positive electrode can be prevented from being broken, and the productivity and reliability of the nonaqueous electrolyte secondary battery can be improved.

他方、扁平状巻回電極体においては、巻回した状態から元の状態(電極とセパレータとを積層した状態)に戻ろうとする反発力が大きいため、薄い金属で構成された外装缶を使用していると、前記の反発力によって外装缶が変形しやすい。しかしながら、本発明の非水電解質二次電池では、正極の集電体を前記のように薄くしているため、扁平状巻回電極体の前記反発力が小さくなることから、薄い金属で構成された外装缶を使用しても、その変形を抑制することが可能であり、かかる観点からも生産性を高めることができる。   On the other hand, the flat wound electrode body has a large repulsive force to return from the wound state to the original state (the state in which the electrode and the separator are laminated), and therefore an outer can made of a thin metal is used. The outer can is easily deformed by the repulsive force. However, in the nonaqueous electrolyte secondary battery of the present invention, the current collector of the positive electrode is made thin as described above, and thus the repulsive force of the flat wound electrode body is reduced, so that it is made of a thin metal. Even if an outer can is used, the deformation can be suppressed, and productivity can be increased from this viewpoint.

本発明の非水電解質二次電池に係る正極の正極活物質には、従来から知られている非水電解質二次電池用の正極活物質として使用されているもの、例えば、リチウムイオンを吸蔵・放出できる活物質が使用される。このような正極活物質の具体例としては、例えば、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などが挙げられる。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOなどの他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6など)などを例示することができる。特に、非水電解質二次電池を、その使用に先立って、通常よりも高い終止電圧で充電するような場合には、高電圧に充電された状態での正極活物質の安定性を高めるために、前記例示の各種活物質が、更に安定化元素を含んでいることが好ましい。このような安定化元素としては、例えば、Mg、Al、Ti、Zr、Mo、Snなどが挙げられる。 The positive electrode active material of the positive electrode related to the non-aqueous electrolyte secondary battery of the present invention includes those conventionally used as positive electrode active materials for non-aqueous electrolyte secondary batteries, for example, occlusion of lithium ions. An active material that can be released is used. As a specific example of such a positive electrode active material, for example, a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc.) Lithium-containing transition metal oxide, LiMn 2 O 4 and spinel-structured lithium manganese oxide obtained by substituting some of its elements with other elements, LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) Type compounds. Specific examples of the lithium-containing transition metal oxide having the layered structure include LiCoO 2 and other oxides including at least Co, Ni, and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5 / 12 Ni 5/12 Co 1/6 O 2 ) and the like. In particular, in order to increase the stability of the positive electrode active material in a state of being charged at a high voltage, when the non-aqueous electrolyte secondary battery is charged with a higher final voltage than usual before its use. The various active materials exemplified above preferably further contain a stabilizing element. Examples of such stabilizing elements include Mg, Al, Ti, Zr, Mo, and Sn.

正極合剤層における正極活物質の含有量は、94〜98質量%であることが好ましい。   The content of the positive electrode active material in the positive electrode mixture layer is preferably 94 to 98% by mass.

正極の導電助剤には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。   Examples of the conductive additive for the positive electrode include graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Carbon materials such as carbon fibers; conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; Conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives; and the like can also be used.

正極合剤層における導電助剤の含有量は、1〜5質量%であることが好ましい。   It is preferable that content of the conductive support agent in a positive mix layer is 1-5 mass%.

正極の結着剤としては、例えば、アクリロニトリル、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2エチルヘキシルなど)およびメタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなど)よりなる群から選択される少なくとも1種のモノマーを含む2種以上のモノマーにより形成されるコポリマー;水素化ニトリルゴム;PVDF;フッ化ビニリデン−テトラフルオロエチレンコポリマー(VDF−TFE);フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレンコポリマー(VDF−HFP−TFE);フッ化ビニリデン−クロロトリフルオロエチレンコポリマー(VDF−CTFE);などが挙げられ、これらのうちの1種のみを使用してもよく、2種以上を併用してもよい。   Examples of the binder for the positive electrode include acrylonitrile, acrylic esters (methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.) and methacrylic esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate). A copolymer formed by two or more monomers including at least one monomer selected from the group consisting of: hydrogenated nitrile rubber; PVDF; vinylidene fluoride-tetrafluoroethylene copolymer (VDF-TFE); Vinylidene-hexafluoropropylene-tetrafluoroethylene copolymer (VDF-HFP-TFE); vinylidene fluoride-chlorotrifluoroethylene copolymer (VDF-CTFE); and the like. May be use, it may be used in combination of two or more thereof.

前記例示の結着剤の中でも、VDF−CTFEを使用することが好ましい。   Among the binders exemplified above, it is preferable to use VDF-CTFE.

非水電解質二次電池用の正極に係る正極合剤層の結着剤には、ポリフッ化ビニリデン(PVDF)が使用されることが多い。このPVDFは、正極活物質中に含まれるアルカリ成分(正極活物質の原料の未反応物や、正極活物質の合成時の副生成物など)との共存下において脱HF反応を起こして架橋形成が進むため、正極合剤層が硬くなりやすい。硬い正極合剤層を有する正極を用いて扁平状巻回電極体を形成すると、その巻回時に集電体に負荷される応力が大きくなるため、薄く、強度が小さい集電体を使用していると、破れがより生じやすい。   Polyvinylidene fluoride (PVDF) is often used as the binder of the positive electrode mixture layer relating to the positive electrode for the nonaqueous electrolyte secondary battery. This PVDF undergoes deHF reaction in the presence of alkali components (such as unreacted raw materials of the positive electrode active material and by-products during the synthesis of the positive electrode active material) contained in the positive electrode active material to form a crosslink. Therefore, the positive electrode mixture layer tends to be hard. When a flat wound electrode body is formed using a positive electrode having a hard positive electrode mixture layer, the stress applied to the current collector during winding is increased, so a thin and low strength current collector is used. If so, the tears are more likely to occur.

しかしながら、VDF−CTFEの場合には、アルカリ成分との共存下において脱HF反応が生じても、クロロトリフルオロエチレン由来の構造単位の作用によって前記反応が停止する。そのため、結着剤にVDF−CTFEを使用することで、正極合剤層の柔軟性が向上することから、前記のように薄い集電体を使用しても、扁平状巻回電極体の形成時における集電体の破れを抑制して非水電解質二次電池の生産性をより高めることが可能となり、また、集電体の破れによって生じ得る容量などの電池特性の低下を抑制し得ることから、非水電解質二次電池の信頼性を高めることもできる。   However, in the case of VDF-CTFE, even if a deHF reaction occurs in the presence of an alkali component, the reaction is stopped by the action of a structural unit derived from chlorotrifluoroethylene. Therefore, since the flexibility of the positive electrode mixture layer is improved by using VDF-CTFE as a binder, the formation of a flat wound electrode body can be achieved even if a thin current collector is used as described above. It is possible to increase the productivity of non-aqueous electrolyte secondary batteries by suppressing current collector breakage at the time, and to suppress deterioration of battery characteristics such as capacity that can occur due to current collector breakage Therefore, the reliability of the non-aqueous electrolyte secondary battery can be improved.

なお、正極合剤層の結着剤にVDF−CTFEとPVDFとを併用した場合には、VDF−CTFEにおけるクロロトリフルオロエチレン由来の構造単位の作用によって、PVDFでの架橋構造の形成が抑制されることから、正極合剤層の柔軟性を維持することができる。   In addition, when VDF-CTFE and PVDF are used together in the binder of the positive electrode mixture layer, the formation of a crosslinked structure in PVDF is suppressed by the action of the structural unit derived from chlorotrifluoroethylene in VDF-CTFE. Therefore, the flexibility of the positive electrode mixture layer can be maintained.

正極合剤層における結着剤の含有量は、正極合剤層における正極活物質や導電助剤を良好に結着できるようにして、これらの正極合剤層からの脱離を防止し、この正極が用いられる電池の信頼性をより良好に高める観点から、1質量%以上であることが好ましい。ただし、正極合剤層中の結着剤の量が多すぎると、正極活物質の量や導電助剤の量が少なくなって、高容量化の効果が小さくなる虞がある。よって、正極合剤層における結着剤の含有量は、1.6質量%以下であることが好ましい。   The content of the binder in the positive electrode mixture layer is such that the positive electrode active material and the conductive additive in the positive electrode mixture layer can be satisfactorily bound to prevent desorption from these positive electrode mixture layers. From the viewpoint of improving the reliability of the battery in which the positive electrode is used more preferably, it is preferably 1% by mass or more. However, when the amount of the binder in the positive electrode mixture layer is too large, the amount of the positive electrode active material and the amount of the conductive auxiliary agent are decreased, and the effect of increasing the capacity may be reduced. Therefore, the content of the binder in the positive electrode mixture layer is preferably 1.6% by mass or less.

また、正極に係る結着剤にVDF−CTEFと他の結着剤とを併用する場合には、VDF−CTFEの使用による前記の効果をより良好に確保する観点から、結着剤全量中のVDF−CTFEの割合は、20質量%以上であることが好ましく、50質量%以上であることがより好ましい。なお、正極合剤層の結着剤にはVDF−CTFEのみを使用してもよいため、結着剤全量中のVDF−CTFEの割合の好適上限値は100質量%である。   Moreover, when using together VDF-CTEF and another binder for the binder which concerns on a positive electrode, from a viewpoint of ensuring the said effect by use of VDF-CTFE more favorably, in binder total quantity. The ratio of VDF-CTFE is preferably 20% by mass or more, and more preferably 50% by mass or more. In addition, since only VDF-CTFE may be used for the binder of the positive electrode mixture layer, the preferable upper limit of the ratio of VDF-CTFE in the total amount of the binder is 100% by mass.

正極を作製するにあたっては、前記の正極活物質、導電助剤および結着剤などを含む正極合剤を、N−メチル−2−ピロリドン(NMP)などの溶剤を用いて均一に分散させたペースト状やスラリー状の組成物を調製し(結着剤は溶剤に溶解していてもよい)、この組成物を正極集電体表面に塗布して乾燥し、必要に応じてプレス処理により正極合剤層の厚みや密度を調整する方法が採用できる。ただし、本発明の正極の作製方法は前記の方法に限られず、他の方法を採用しても構わない。   In producing the positive electrode, a paste in which the positive electrode mixture containing the positive electrode active material, the conductive auxiliary agent and the binder is uniformly dispersed using a solvent such as N-methyl-2-pyrrolidone (NMP). A composition in the form of a slurry or slurry (the binder may be dissolved in a solvent) is applied to the surface of the positive electrode current collector and dried. A method of adjusting the thickness and density of the agent layer can be employed. However, the method for producing the positive electrode of the present invention is not limited to the above method, and other methods may be adopted.

正極集電体は、前記の通り、その厚みが、11μm以下、好ましくは10μm以下である。前記の通り、本発明では、電池ケースに係る外装缶を構成する金属の厚みを調整することで、このような厚みの集電体を有する正極であっても、扁平状巻回電極体としたときの集電体の破れの抑制を可能としている。しかしながら、正極の集電体の強度が小さすぎると、VDF−CTFEの使用による破れの抑制作用では不十分となる虞がある。よって、正極集電体に、その引張強度が、2.5N/mm以上、好ましくは2.7N/mm以上のものを使用して、扁平状巻回電極体としたときの集電体の破れをより良好に抑制している。なお、正極の集電体の引張強度は、3.9N/mm以下であることが好ましい。   As described above, the positive electrode current collector has a thickness of 11 μm or less, preferably 10 μm or less. As described above, in the present invention, by adjusting the thickness of the metal constituting the outer can according to the battery case, even a positive electrode having a current collector with such a thickness is a flat wound electrode body. The current collector can be prevented from being broken. However, if the strength of the current collector of the positive electrode is too small, there is a possibility that the action of suppressing breakage due to the use of VDF-CTFE will be insufficient. Therefore, the current collector is broken when a flat wound electrode body is formed by using a positive electrode current collector having a tensile strength of 2.5 N / mm or more, preferably 2.7 N / mm or more. Is better controlled. The tensile strength of the positive electrode current collector is preferably 3.9 N / mm or less.

本明細書でいう集電体の引張強度は、前処理として集電体を15mm×250mmの矩形に切り出して試験片とし、この試験片をチャック間距離100mmとして引張試験機(今田製作所社製「SDT−52型」)を用いて、クロスヘッド速度10mm/分で試験を行って得られた値である。   The tensile strength of the current collector referred to in this specification is a pre-treatment where the current collector is cut into a 15 mm × 250 mm rectangle to form a test piece. It is a value obtained by conducting a test at a crosshead speed of 10 mm / min using “SDT-52 type”).

前記のような引張強度を有する集電体としては、例えば、以下のものが挙げられる。   Examples of the current collector having the tensile strength as described above include the following.

正極集電体の材質としては、主成分をアルミニウムとしたアルミニウム合金が望ましい。アルミニウム合金はアルミニウムの純度が99.0質量%以上あり、その他の添加成分として、例えばSi≦0.6質量%、Fe≦0.7質量%、Cu≦0.25質量%、Mn≦1.5質量%、Mg≦1.3質量%、Zn≦0.25質量%を含有することが望ましい。このような材質で構成された箔、フィルムを集電体として使用することができる。   As a material of the positive electrode current collector, an aluminum alloy whose main component is aluminum is desirable. The aluminum alloy has an aluminum purity of 99.0% by mass or more, and as other additive components, for example, Si ≦ 0.6% by mass, Fe ≦ 0.7% by mass, Cu ≦ 0.25% by mass, Mn ≦ 1. It is desirable to contain 5% by mass, Mg ≦ 1.3% by mass, and Zn ≦ 0.25% by mass. A foil or film made of such a material can be used as a current collector.

なお、集電体が薄すぎると、前記の引張強度を確保し難くなることから、その厚みは、6μm以上であることが好ましい。   In addition, since it will become difficult to ensure the said tensile strength when a collector is too thin, it is preferable that the thickness is 6 micrometers or more.

正極合剤層の厚みは、集電体の片面あたり、30〜80μmであることが好ましい。また、正極合剤層においては、より高容量とする観点から、充填率が75%以上であることが好ましい。ただし、正極合剤層の充填率が高すぎると、正極合剤層中の空孔が少なくなりすぎて、正極合剤層中への非水電解質(非水電解液)の浸透性が低下する虞があることから、その充填率は、83%以下であることが好ましい。正極合剤層の充填率は、下記式により求められる。   The thickness of the positive electrode mixture layer is preferably 30 to 80 μm per one side of the current collector. In the positive electrode mixture layer, the filling rate is preferably 75% or more from the viewpoint of higher capacity. However, when the filling rate of the positive electrode mixture layer is too high, the number of pores in the positive electrode mixture layer becomes too small, and the permeability of the nonaqueous electrolyte (nonaqueous electrolyte solution) into the positive electrode mixture layer decreases. Since there exists a possibility, it is preferable that the filling rate is 83% or less. The filling rate of the positive electrode mixture layer is determined by the following formula.

充填率(%) = 100×(正極合剤層の実密度/正極合剤層の理論密度)     Filling rate (%) = 100 × (actual density of positive electrode mixture layer / theoretical density of positive electrode mixture layer)

正極合剤層の充填率を算出するための前記式における「正極合剤層の理論密度」とは、正極合剤層の各構成成分の密度と含有量とから算出される密度(正極合剤層中に空孔が存在しないものとして求めた密度)であり、「正極合剤層の実密度」とは、以下の方法により測定されるものである。まず、正極を1cm×1cmの大きさに切り取り、マイクロメータで厚み(l)を、精密天秤で質量(m)を測定する。次に、正極合剤層を削り取り、集電体のみを取り出して、その集電体の厚み(l)と質量(m)を正極と同様に測定する。得られた厚みと質量から、以下の式によって正極合剤層の実密度(dca)を求める(前記の厚みの単位はcm、質量の単位はgである)。
ca=(m−m)/(l−l
The “theoretical density of the positive electrode mixture layer” in the above formula for calculating the filling rate of the positive electrode mixture layer is a density (positive electrode mixture) calculated from the density and content of each component of the positive electrode mixture layer. The density obtained by assuming that there are no vacancies in the layer), and the “actual density of the positive electrode mixture layer” is measured by the following method. First, it cuts a positive electrode to a size of 1 cm × 1 cm, a thickness micrometer (l 1), measuring the mass (m 1) a precision balance. Next, the positive electrode material mixture layer is scraped off, and only the current collector is taken out, and the thickness (l c ) and mass (m c ) of the current collector are measured in the same manner as the positive electrode. From the obtained thickness and mass, the actual density (d ca ) of the positive electrode mixture layer is determined by the following formula (the unit of thickness is cm, and the unit of mass is g).
d ca = (m 1 −m c ) / (l 1 −l c )

本発明の非水電解質二次電池に係る負極としては、例えば、負極活物質を含有する負極合剤層を、集電体の片面または両面に形成したものが挙げられる。負極合剤層は、負極活物質の他に、結着剤や、必要に応じて導電助剤を含有しており、例えば、負極活物質および結着剤(更には導電助剤)などを含む混合物(負極合剤)に、適当な溶剤を加えて十分に混練して得られる負極合剤含有組成物(スラリーなど)を、集電体表面に塗布し乾燥することで、所望の厚みとしつつ形成することができる。   As a negative electrode which concerns on the nonaqueous electrolyte secondary battery of this invention, what formed the negative mix layer containing a negative electrode active material in the single side | surface or both surfaces of a collector is mentioned, for example. The negative electrode mixture layer contains, in addition to the negative electrode active material, a binder and, if necessary, a conductive aid, and includes, for example, a negative electrode active material and a binder (further, a conductive aid). A negative electrode mixture-containing composition (slurry etc.) obtained by adding a suitable solvent to the mixture (negative electrode mixture) and kneading thoroughly is applied to the surface of the current collector and dried to obtain a desired thickness. Can be formed.

負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料;ピッチをか焼して得られるコークスなどの易黒鉛化性炭素質材料;フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料;黒鉛材料の表面に、非晶質炭素や樹脂を担持するなどした表面処理炭素材料;などの炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として用いることができる。リチウム含有化合物としては、Li−Alなどのリチウム合金や、Si、Snなどのリチウムとの合金化が可能な元素を含む合金が挙げられる。更にSn酸化物やSi酸化物などの酸化物系材料も用いることができる。負極合剤層における負極活物質の含有量は、例えば、97〜99質量%であることが好ましい。   Examples of the negative electrode active material include graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; graphitizable carbonaceous materials such as coke obtained by calcining pitch; furfuryl alcohol resin ( Non-graphitizable carbonaceous material such as amorphous carbon obtained by low-temperature firing of PFA), polyparaphenylene (PPP) and phenolic resin; amorphous carbon or resin is supported on the surface of graphite material And carbon materials such as surface treated carbon materials. In addition to the carbon material, lithium or a lithium-containing compound can also be used as the negative electrode active material. Examples of the lithium-containing compound include lithium alloys such as Li—Al, and alloys containing elements that can be alloyed with lithium such as Si and Sn. Furthermore, oxide-based materials such as Sn oxide and Si oxide can also be used. The content of the negative electrode active material in the negative electrode mixture layer is preferably 97 to 99% by mass, for example.

負極活物質として表面処理炭素材料を用いると、非水電解質との過剰な反応を防ぐことができることから好ましい。   It is preferable to use a surface-treated carbon material as the negative electrode active material because excessive reaction with the nonaqueous electrolyte can be prevented.

負極活物質は、特に黒鉛材料の表面に非晶質炭素を担持した、平均粒子径が8〜18μmと比較的粒子の小さい炭素材料を用いると非水電解質の負極合剤層中への浸透性が向上するので好ましい。その理由は定かではないが、比較的小さな粒子の炭素材料であると、負極にプレス処理をした際、負極合剤層中に形成される空孔の大きさが均一化されるので、非水電解質が浸透しやすくなると考えられる。また、この種の黒鉛は、リチウムイオンの受容性(全充電容量に対する定電流充電容量の割合)が高く、この黒鉛を負極活物質として用いることで、より充放電サイクル特性に優れた非水電解質二次電池を提供することができる。   As the negative electrode active material, in particular, when a carbon material having amorphous particles supported on the surface of a graphite material and having an average particle diameter of 8 to 18 μm and relatively small particles is used, the permeability of the nonaqueous electrolyte into the negative electrode mixture layer Is preferable. The reason is not clear, but if the carbon material is relatively small particles, the pores formed in the negative electrode mixture layer are uniformed when the negative electrode is pressed. It is thought that the electrolyte easily penetrates. In addition, this type of graphite has a high lithium ion acceptability (ratio of constant current charge capacity to total charge capacity), and by using this graphite as a negative electrode active material, a non-aqueous electrolyte having more excellent charge / discharge cycle characteristics. A secondary battery can be provided.

なお、本明細書でいう前記炭素材料の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」)を用い、前記炭素材料を溶解したり、膨潤したりしない媒体に、前記炭素材料を分散させて測定した粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(d50)メディアン径である。 In addition, the average particle diameter of the carbon material referred to in the present specification is obtained by, for example, dissolving the carbon material using a laser scattering particle size distribution meter (for example, Microtrack particle size distribution measuring device “HRA9320” manufactured by Nikkiso Co., Ltd.) The value of 50% diameter (d 50 ) median diameter in the volume-based integrated fraction when the integrated volume is obtained from particles having a small particle size distribution measured by dispersing the carbon material in a medium that does not swell.

導電助剤は、電子伝導性材料であれば特に限定されないし、使用しなくても構わない。導電助剤の具体例としては、アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラックや炭素繊維が特に好ましい。ただし、負極に導電助剤を使用する場合には、高容量化のために、負極合剤層における導電助剤の含有量は、10質量%以下であることが好ましい。   The conductive aid is not particularly limited as long as it is an electron conductive material, and may not be used. Specific examples of conductive aids include acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon materials such as carbon fibers; and conductive fibers such as metal fibers. Carbon fluoride, metal powders such as copper and nickel, organic conductive materials such as polyphenylene derivatives, and the like. These may be used alone or in combination of two or more. . Among these, acetylene black, ketjen black and carbon fiber are particularly preferable. However, when a conductive additive is used for the negative electrode, the content of the conductive additive in the negative electrode mixture layer is preferably 10% by mass or less in order to increase the capacity.

負極合剤層に係る結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、本発明の正極に係る結着剤と同じ材料や、スチレンブタジエンゴム(SBR)、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体などが使用でき、それらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。 As a binder concerning a negative mix layer, any of a thermoplastic resin and a thermosetting resin may be sufficient. Specifically, for example, the same material as the binder according to the positive electrode of the present invention, a styrene butadiene rubber (SBR), an ethylene-acrylic acid copolymer, or a Na + ion crosslinked product of the copolymer, ethylene-methacrylic Acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methyl acrylate copolymer, Na + ion crosslinked product of the copolymer, ethylene-methyl methacrylate copolymer or the copolymer Na + ion crosslinked body etc. can be used, These materials may be used individually by 1 type, and may use 2 or more types together.

前記の中でも、PVDF、SBR、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体が特に好ましい。負極合剤層における結着剤の含有量は、例えば、1〜5質量%であることが好ましい。 Among these, PVDF, SBR, ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-acrylic acid A methyl copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or a Na + ion crosslinked product of the copolymer is particularly preferable. The content of the binder in the negative electrode mixture layer is preferably 1 to 5% by mass, for example.

負極合剤層の厚み(集電体の両面に負極合剤層が形成されている場合には、その片面あたりの厚み)は、30〜80μmであることが好ましい。   The thickness of the negative electrode mixture layer (when the negative electrode mixture layer is formed on both sides of the current collector, the thickness per one surface thereof) is preferably 30 to 80 μm.

負極に用いる集電体としては、非水電解質二次電池内において、実質上、化学的に安定な電子伝導体であれば特に限定されない。かかる集電体を構成する材料としては、例えば、ステンレス鋼、ニッケルやその合金、銅やその合金、チタンやその合金、炭素、導電性樹脂などの他に、銅またはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、銅および銅合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが挙げられる。集電体の厚みは特に限定されないが、例えば、5〜50μmであることが好ましい。   The current collector used for the negative electrode is not particularly limited as long as it is an electron conductor that is substantially chemically stable in the nonaqueous electrolyte secondary battery. Examples of the material constituting the current collector include stainless steel, nickel or an alloy thereof, copper or an alloy thereof, titanium or an alloy thereof, carbon, conductive resin, carbon, or the like on the surface of copper or stainless steel. A material obtained by treating titanium is used. Among these, copper and copper alloys are particularly preferable. These materials can also be used after oxidizing the surface. Moreover, it is preferable to give an unevenness | corrugation to the collector surface by surface treatment. Examples of the shape of the current collector include films, sheets, nets, punched materials, lath bodies, porous bodies, foamed bodies, and molded bodies of fiber groups, in addition to foils. Although the thickness of a collector is not specifically limited, For example, it is preferable that it is 5-50 micrometers.

非水電解質としては、例えば、下記の非水系溶媒中に、リチウム塩を溶解させることで調製した溶液(非水電解液)が使用できる。   As the non-aqueous electrolyte, for example, a solution (non-aqueous electrolyte) prepared by dissolving a lithium salt in the following non-aqueous solvent can be used.

溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン(γ-
BL)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。
Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ-butyrolactone (γ-
BL), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO), 1,3-dioxolane, formamide, dimethylformamide (DMF), dioxolane, acetonitrile, nitromethane , Aprotic such as methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propane sultone The organic solvent can be used alone or as a mixed solvent in which two or more are mixed.

非水電解液に係るリチウム塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO3(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種が挙げられる。これらのリチウム塩の非水電解液中の濃度としては、0.6〜1.8mol/lとすることが好ましく、0.9〜1.6mol/lとすることがより好ましい。 The lithium salt according to the non-aqueous electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] At least one selected from the above. The concentration of these lithium salts in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / l, and more preferably 0.9 to 1.6 mol / l.

非水電解質二次電池に使用する非水電解質には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、ビニレンカーボネート、ビニルエチレンカーボネート、無水酸、スルホン酸エステル、ジニトリル、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。   Non-aqueous electrolytes used in non-aqueous electrolyte secondary batteries include vinylene carbonate, vinyl ethylene carbonate, anhydrous water for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge. Additives (including these derivatives) such as acid, sulfonic acid ester, dinitrile, 1,3-propane sultone, diphenyl disulfide, cyclohexyl benzene, biphenyl, fluorobenzene, and t-butyl benzene may be added as appropriate.

更に、非水電解質二次電池の非水電解質には、前記の非水電解液に、ポリマーなどの公知のゲル化剤を添加してゲル化したもの(ゲル状電解質)を用いることもできる。   Further, as the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery, a gel (gel electrolyte) obtained by adding a known gelling agent such as a polymer to the non-aqueous electrolyte can be used.

本発明の非水電解質二次電池内では、前記正極と前記負極との間に、前記の非水電解質を含ませたセパレータが配される。セパレータとしては、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、一定温度以上(例えば100〜140℃)で構成材料の溶融によって孔が閉塞し、抵抗を上げる機能を有するもの(すなわち、シャットダウン機能を有するもの)が好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, a separator containing the non-aqueous electrolyte is disposed between the positive electrode and the negative electrode. As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, what has a function which a hole is obstruct | occluded by fusion | melting of a structural material above a fixed temperature (for example, 100-140 degreeC), and raises resistance (namely, what has a shutdown function) is preferable.

このようなセパレータの具体例としては、耐有機溶剤性および疎水性を有するポリエチレン、ポリプロピレンなどポリオレフィン系ポリマー、またはガラス繊維などの材料で構成されるシート(多孔質シート)、不織布若しくは織布;前記例示のポリオレフィン系ポリマーの微粒子を接着剤で固着した多孔質体;などが挙げられる。   Specific examples of such a separator include a sheet (porous sheet), a nonwoven fabric or a woven fabric composed of a material such as polyethylene solvent, hydrophobic polymer such as polyethylene, polypropylene, or glass fiber having organic solvent resistance and hydrophobicity; And a porous material in which fine particles of the exemplified polyolefin polymer are fixed with an adhesive.

セパレータの孔径は、正負極より脱離した正負極の活物質、導電助剤および結着剤などが通過しない程度であることが好ましく、例えば、0.01〜1μmであることが望ましい。セパレータの厚みは、8〜30μmとすることが一般的であるが、本発明では、10〜20μmとすることが好ましい。また、セパレータの空孔率は、構成材料や厚みに応じて決定されるが、30〜80%であることが一般的である。   The pore diameter of the separator is preferably such that the active material of the positive and negative electrodes, the conductive auxiliary agent, the binder and the like detached from the positive and negative electrodes do not pass through, and is preferably 0.01 to 1 μm, for example. The thickness of the separator is generally 8-30 μm, but is preferably 10-20 μm in the present invention. Further, the porosity of the separator is determined according to the constituent material and thickness, but is generally 30 to 80%.

本発明の非水電解質二次電池では、前記の通り、前記の正極と前記の負極とを、前記のセパレータを介して重ね合わせて渦巻状に巻回し、押しつぶすなどして横断面を扁平状にした扁平状巻回電極体を使用する。   In the non-aqueous electrolyte secondary battery of the present invention, as described above, the positive electrode and the negative electrode are overlapped via the separator, wound into a spiral shape, and crushed to make the cross section flat. A flat wound electrode body is used.

そして、前記の扁平状巻回電極体を、非水電解質と共に電池ケースに封入して、本発明の非水電解質二次電池を形成する。   And the said flat winding electrode body is enclosed with a non-aqueous electrolyte in a battery case, and the non-aqueous electrolyte secondary battery of this invention is formed.

図1に、本発明の非水電解質二次電池の一例の外観を模式的に表す斜視図を示す。図1に示す非水電解質二次電池1に係る電池ケース10は中空で、内部に正極、負極およびセパレータにより形成された扁平状巻回電極体と、非水電解質などとを収容している。   In FIG. 1, the perspective view which represents typically the external appearance of an example of the nonaqueous electrolyte secondary battery of this invention is shown. A battery case 10 according to the nonaqueous electrolyte secondary battery 1 shown in FIG. 1 is hollow, and accommodates therein a flat wound electrode body formed of a positive electrode, a negative electrode, and a separator, a nonaqueous electrolyte, and the like.

電池ケース10は、外装缶11と蓋体20とで構成され、外装缶11は有底筒形(角筒形)の形態を有しており、その開口端部に蓋体20が被せられて、溶接によって蓋体20と一体化している。外装缶11および蓋体20は、例えばアルミニウム合金などにより構成される。   The battery case 10 includes an outer can 11 and a lid 20, and the outer can 11 has a bottomed cylindrical shape (square tube shape), and the lid 20 is covered on the opening end portion thereof. It is integrated with the lid 20 by welding. The outer can 11 and the lid 20 are made of, for example, an aluminum alloy.

蓋体20からは、ステンレス鋼などで構成された端子21が突出しており、端子21と蓋体20との間には、PPなどで構成された絶縁パッキング22が介在している。端子21は電池ケース10内で、例えば負極と接続しており、その場合、端子21が負極端子として機能し、外装缶11および蓋体20が正極端子として機能する。ただし、電池ケース10の材質などによっては、端子21が電池ケース10内で正極と接続して正極端子として機能し、外装缶11および蓋体20が負極端子として機能する場合もある。また、蓋体20には、非水電解質注入口が設けられており、電池ケース10内に非水電解質を注入した後に、封止部材23を用いて封止されている。   A terminal 21 made of stainless steel or the like protrudes from the lid 20, and an insulating packing 22 made of PP or the like is interposed between the terminal 21 and the lid 20. The terminal 21 is connected to, for example, a negative electrode in the battery case 10. In this case, the terminal 21 functions as a negative electrode terminal, and the outer can 11 and the lid 20 function as a positive electrode terminal. However, depending on the material of the battery case 10, the terminal 21 may be connected to the positive electrode in the battery case 10 to function as a positive electrode terminal, and the outer can 11 and the lid 20 may function as a negative electrode terminal. Further, the lid 20 is provided with a nonaqueous electrolyte injection port, and after the nonaqueous electrolyte is injected into the battery case 10, the lid 20 is sealed with a sealing member 23.

電池ケース10の側面部、すなわち外装缶11の側面部は、互いに対向し、側面視で他の面(図中の面112、112)よりも幅の広い2枚の幅広面111、111を有している。   The side surface portion of the battery case 10, that is, the side surface portion of the outer can 11 has two wide surfaces 111 and 111 that are opposed to each other and wider than the other surfaces (surfaces 112 and 112 in the drawing). doing.

図2に、図1に示す非水電解質二次電池の、外装缶11の幅広面111側から見た側面図を示している。幅広面111、111は、図2に示すように側面からの投影形状が四角形、すなわち、側面から幅広面をみたときの形状を二次元形状とみなした場合の、その形状が四角形である。そして、外装缶11を構成する金属は、幅広面111、111の、前記投影形状(前記四角形)における2本の対角線(図中、一点鎖線で示している)の交点に相当する箇所での厚みをtとしたとき、このtが、0.30mm以下、好ましくは0.28mm以下である。   FIG. 2 shows a side view of the nonaqueous electrolyte secondary battery shown in FIG. 1 as viewed from the wide surface 111 side of the outer can 11. As shown in FIG. 2, the wide surfaces 111, 111 are quadrangular when projected from the side, that is, when the wide surface is viewed from the side as a two-dimensional shape. And the metal which comprises the armored can 11 is the thickness in the location equivalent to the intersection of two diagonal lines (it shows with the dashed-dotted line in the figure) of the wide surfaces 111 and 111 in the said projection shape (the said square). Where t is 0.30 mm or less, preferably 0.28 mm or less.

非水電解質二次電池を構成するための角筒形の外装缶は、絞り加工(深絞り加工)によって製造されることが一般的であるが、このような手法で製造した場合、外装缶を構成する金属のうち、前記2本の対角線の交点に相当する箇所やその近傍が、最も薄くなりやすい(ただし、後述するように、外装缶に開裂溝を設けている場合は、この開裂溝の形成部分を除く)。前記の通り、外装缶を構成する金属の、前記箇所における厚みを前記のように薄くすることで、薄い正極集電体の破れを抑制して、非水電解質二次電池の生産性や信頼性を高めることができる。   A rectangular tube-shaped outer can for forming a nonaqueous electrolyte secondary battery is generally manufactured by drawing (deep drawing), but when manufactured by such a method, the outer can Among the constituent metals, the portion corresponding to the intersection of the two diagonals and the vicinity thereof are most likely to be thinnest (however, as described later, when the outer can is provided with a cleavage groove, Excluding forming part). As described above, by reducing the thickness of the metal constituting the outer can at the location as described above, it is possible to suppress the breaking of the thin positive electrode current collector, and to improve the productivity and reliability of the nonaqueous electrolyte secondary battery. Can be increased.

また、幅広面1面当たりの、前記投影形状(前記四角形)の全面積中において、外装缶を構成する金属の厚みが前記tの値以下である箇所の面積の割合(例えば、前記tが0.30mmの場合には、厚みが0.30mm以下である箇所の面積の割合)は、50%以上であることが好ましく、80%以上であることがより好ましく、これにより、非水電解質二次電池の生産性や信頼性を、より良好に高めることができる。幅広面1面当たりの、前記投影形状(前記四角形)の全面積中において、外装缶を構成する金属の厚みが前記tの値以下である箇所の面積の割合は、100%であってもよい。   Further, the ratio of the area of the portion where the thickness of the metal constituting the outer can is equal to or less than the value t in the total area of the projected shape (the square) per one wide surface (for example, the t is 0). In the case of .30 mm, the ratio of the area of the portion having a thickness of 0.30 mm or less) is preferably 50% or more, more preferably 80% or more, whereby the non-aqueous electrolyte secondary The productivity and reliability of the battery can be improved more favorably. The ratio of the area of the portion where the thickness of the metal constituting the outer can is equal to or less than the value of t in the entire area of the projected shape (the square) per one wide surface may be 100%. .

本明細書でいう幅広面1面当たりの、前記投影形状(前記四角形)の全面積中における外装缶を構成する金属の厚みが前記tの値以下である箇所の面積の割合は、前記投影形状(前記四角形)における2本の対角線の交点を中心にして、中心と、各頂点から中心までを直線で結び、頂点と中心から等距離にある点と、辺で接する頂点間の中間点から中心までを直線で結び、中間点と中心から等距離にある点の合計9点を測定箇所とし、マイクロメータで測定した値が前記tの値以下になった点数を全測定点数で除して求められる値である。   The ratio of the area of the portion where the thickness of the metal constituting the outer can in the entire area of the projected shape (the square) per one wide surface referred to in this specification is equal to or less than the value of t is the projected shape. Centered from the intersection of two diagonals in the above (rectangle), the center and each vertex to the center are connected by a straight line, and the center is from the middle point between the vertex that is equidistant from the vertex and the vertex Is obtained by dividing the number of points measured with a micrometer below the value of t by the total number of measurement points. Value.

ただし、外装缶を構成する金属が薄すぎると、却って電池の信頼性が低下したり、電池の充放電に伴って膨れが生じやすくなったりすることから、外装缶を構成する金属は、幅広面の前記投影形状(前記四角形)における2本の対角線の交点に相当する箇所での厚みtが、0.10mm以上であることが好ましく、0.16mm以上であることがより好ましい。   However, if the metal constituting the outer can is too thin, the reliability of the battery will be lowered, or the battery can easily be swollen with the charging / discharging of the battery. The thickness t at a location corresponding to the intersection of two diagonal lines in the projected shape (the square) is preferably 0.10 mm or more, and more preferably 0.16 mm or more.

本発明の非水電解質二次電池においては、電池ケースの内容積をA(cm)とし、正極、負極およびセパレータの合計体積(これらの空孔部分も含む体積)をB(cm)としたとき、比A/Bが、1.14以上であることが好ましく、1.15以上であることがより好ましい。この場合には、電池ケースの内容積に対して、電池ケース内に収容する正極、負極およびセパレータの合計体積に対して、電池ケースの内容積に十分な余裕があるため、より緩やかに巻回、押圧して形成した扁平状巻回電極体を使用することが可能であり、正極集電体や正極合剤層の割れをより良好に抑制することが可能となるとともに、非水電解質の導入量をより多くすることも可能になることから、電池の充放電サイクル特性をより高めることもできる。 In the non-aqueous electrolyte secondary battery of the present invention, the internal volume of the battery case is A (cm 3 ), and the total volume of the positive electrode, the negative electrode, and the separator (the volume including these pores) is B (cm 3 ). The ratio A / B is preferably 1.14 or more, more preferably 1.15 or more. In this case, the inner volume of the battery case has a sufficient margin with respect to the total volume of the positive electrode, the negative electrode, and the separator accommodated in the battery case with respect to the inner volume of the battery case. It is possible to use a flat wound electrode body formed by pressing, and it is possible to better suppress cracking of the positive electrode current collector and the positive electrode mixture layer, and to introduce a nonaqueous electrolyte Since the amount can be increased, the charge / discharge cycle characteristics of the battery can be further improved.

ただし、前記比A/Bが大きすぎると、電池の容量が小さくなる虞があることから、比A/Bは、1.50以下であることが好ましく、1.40以下であることがより好ましい。   However, if the ratio A / B is too large, the battery capacity may be reduced. Therefore, the ratio A / B is preferably 1.50 or less, and more preferably 1.40 or less. .

なお、図1および図2に示す非水電解質二次電池は、その安全性を高めるために、外装缶11の幅広面111に、内部の圧力が閾値よりも大きくなった場合に開裂するための開裂溝12を有している。また、非水電解質二次電池は、前記の開裂溝に代えて、内部の圧力が閾値よりも大きくなった場合に開裂するための開裂ベントを蓋体に有していてもよい。   The non-aqueous electrolyte secondary battery shown in FIG. 1 and FIG. 2 is used for cleaving when the internal pressure becomes larger than the threshold value on the wide surface 111 of the outer can 11 in order to increase the safety. A cleavage groove 12 is provided. In addition, the nonaqueous electrolyte secondary battery may have a cleavage vent in the lid body for cleaving when the internal pressure becomes larger than the threshold value, instead of the cleavage groove.

電池ケースの形状(外装缶の形状)は、側面部における幅広面と他の面との間が角部である形状(例えば六面体である形状)であってもよいが、図1に示すように、幅広面と他の面との間が曲線状(例えば、上面部である蓋体および底面部のうち、他の面に相当する部分が円弧状であるなど、他の面が曲面状である形状)であってもよい。   The shape of the battery case (the shape of the outer can) may be a shape (for example, a shape that is a hexahedron) between the wide surface and the other surface in the side surface portion, as shown in FIG. , The width between the wide surface and the other surface is curved (for example, the portion corresponding to the other surface of the lid and the bottom surface, which is the top surface, is arcuate, and the other surface is curved. Shape).

本発明の非水電解質二次電池は、従来から知られている非水電解質二次電池と同様の用途に適用することができる。   The non-aqueous electrolyte secondary battery of the present invention can be applied to the same applications as conventionally known non-aqueous electrolyte secondary batteries.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
<正極の作製>
正極活物質であるLiCoO:97.3質量部、導電助剤であるアセチレンブラック:1.5質量部および結着剤であるPVDF:1.2質量部を混合して正極合剤とし、この正極合剤に、溶剤であるNMPを加え、エム・テクニック社製の「クレアミックス CLM0.8(商品名)」を用いて、回転数:10000min−1で30分間処理を行い、ペースト状の混合物とした。この混合物に、溶剤であるNMPを更に加えて、回転数:10000min−1で15分間処理を行い、正極合剤含有組成物を調製した。
Example 1
<Preparation of positive electrode>
LiCoO 2 as a positive electrode active material: 97.3 parts by mass, acetylene black as a conductive auxiliary agent: 1.5 parts by mass and PVDF as a binder: 1.2 parts by mass are mixed to form a positive electrode mixture. NMP, a solvent, is added to the positive electrode mixture and treated with “Clearmix CLM0.8 (trade name)” manufactured by M Technique Co., Ltd. for 30 minutes at a rotation speed of 10,000 min −1 to obtain a paste-like mixture It was. NMP which is a solvent was further added to this mixture, and the mixture was treated at a rotational speed of 10000 min −1 for 15 minutes to prepare a positive electrode mixture-containing composition.

前記の正極合剤含有組成物を、集電体であるアルニミウム合金箔(1100、厚み:10.0μm、引張強度:2.5N/mm)の両面に塗布し、80℃で12時間真空乾燥を施し、更にプレス処理を施して、集電体の両面に、厚みが59μmの正極合剤層を有する正極を作製した。前記の方法によって求めたプレス処理後の正極合剤層の密度(実密度)は3.83g/cmであり、充填率は76.4%であった。 The positive electrode mixture-containing composition is applied to both sides of an aluminum alloy foil (1100, thickness: 10.0 μm, tensile strength: 2.5 N / mm) as a current collector, and vacuum-dried at 80 ° C. for 12 hours. Then, press treatment was further performed to produce a positive electrode having a positive electrode mixture layer having a thickness of 59 μm on both sides of the current collector. The density (actual density) of the positive electrode mixture layer after the press treatment determined by the above method was 3.83 g / cm 3 , and the filling rate was 76.4%.

<負極の作製>
天然黒鉛(平均粒子径:19.3μm)と、天然黒鉛の表面に非晶質炭素を担持した平均粒子径が10μmの表面処理炭素材料とを、1:1の質量比で混合して混合物を得た。この混合物(負極活物質):97.5質量%、SBR:1.5質量%、およびカルボキシメチルセルロース(増粘剤):1質量%を、水を用いて混合してスラリー状の負極合剤含有組成物を調製した。この負極合剤含有組成物を、集電体である銅箔(厚み:8μm)の両面に塗布し、120℃で12時間真空乾燥を施し、更にプレス処理を施して、集電体の両面に、厚みが71μmの負極合剤層を有する負極を作製した。
<Production of negative electrode>
Natural graphite (average particle size: 19.3 μm) and a surface-treated carbon material having an average particle size of 10 μm carrying amorphous carbon on the surface of natural graphite are mixed at a mass ratio of 1: 1 to obtain a mixture. Obtained. This mixture (negative electrode active material): 97.5% by mass, SBR: 1.5% by mass, and carboxymethylcellulose (thickener): 1% by mass are mixed with water to form a slurry-like negative electrode mixture A composition was prepared. This negative electrode mixture-containing composition was applied to both sides of a copper foil (thickness: 8 μm) as a current collector, vacuum-dried at 120 ° C. for 12 hours, and further subjected to a press treatment to form both sides of the current collector. A negative electrode having a negative electrode mixture layer having a thickness of 71 μm was prepared.

<電極体の作製>
前記の正極と負極とをセパレータ(厚みが17μmで、透気度が300秒/100cmのポリエチレン製多孔膜)を介して重ね合わせ、渦巻状に巻回した後、横断面が扁平状になるように押しつぶして扁平状巻回電極体を作製した。この扁平状巻回電極体を構成している正極、負極およびセパレータの合計体積Bは、8.3cmであった。
<Production of electrode body>
The positive electrode and the negative electrode are overlapped via a separator (a polyethylene porous film having a thickness of 17 μm and an air permeability of 300 seconds / 100 cm 3 ), wound in a spiral shape, and then the cross section becomes flat. In this way, a flat wound electrode body was produced. The total volume B of the positive electrode, the negative electrode, and the separator constituting the flat wound electrode body was 8.3 cm 3 .

<非水電解液の調製>
メチルエチルカーボネートとジエチルカーボネートとエチレンカーボネートとの混合溶媒(体積比 2:1:3)に、1.2mol/lの濃度でLiPFを溶解し、これにビニレンカーボネート:2質量%、ビニルエチレンカーボネート:1質量%を加えて非水電解液(非水電解質)を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved at a concentration of 1.2 mol / l in a mixed solvent of methyl ethyl carbonate, diethyl carbonate and ethylene carbonate (volume ratio 2: 1: 3), and vinylene carbonate: 2% by mass, vinyl ethylene carbonate. 1% by mass was added to prepare a non-aqueous electrolyte (non-aqueous electrolyte).

<電池の組み立て>
外寸が厚さ3.75mm、幅52.8mm、高さ61.3mmのアルミニウム合金製の角形の外装缶に前記の電極体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記の非水電解液:3.65gを注入し、1時間静置した後注入口を封止して、図1に示す外観で、図3に示す構造の角形非水電解質二次電池を作製した。なお、非水電解質二次電池に使用した外装缶は、内容積Aが9.73cmであり、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.30mm(一方の幅広面の投影形状における全面積中の、厚みが0.30mm以下の部分の面積の割合が66%)であった。
<Battery assembly>
The electrode body is inserted into a rectangular outer can made of aluminum alloy having an outer dimension of thickness 3.75 mm, width 52.8 mm, and height 61.3 mm, the lead body is welded, and an aluminum alloy lid The plate was welded to the open end of the battery case. Thereafter, 3.65 g of the non-aqueous electrolyte solution was injected from the inlet provided in the cover plate, and after standing for 1 hour, the inlet was sealed, and the appearance shown in FIG. A square nonaqueous electrolyte secondary battery was prepared. The outer can used for the non-aqueous electrolyte secondary battery has an internal volume A of 9.73 cm 3 and corresponds to the intersection of two diagonal lines in the projected shape of the wide surface of the metal constituting the outer can. The thickness was 0.30 mm (the proportion of the area of the portion having a thickness of 0.30 mm or less in the total area in the projected shape of one wide surface was 66%).

ここで、前記の非水電解質二次電池を、図1および図3を用いて説明する。図3は、非水電解質二次電池を模式的に表す部分縦断面図である。非水電解質二次電池1においては、正極31と負極32とがセパレータ33を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回電極体30として、角形(角筒形)の外装缶11に非水電解質と共に収容されている。ただし、図3では、煩雑化を避けるため、正極31や負極32の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。また、図3では、扁平状巻回電極体30の内周側の部分は断面にしていない。   Here, the nonaqueous electrolyte secondary battery will be described with reference to FIGS. 1 and 3. FIG. 3 is a partial longitudinal sectional view schematically showing a nonaqueous electrolyte secondary battery. In the nonaqueous electrolyte secondary battery 1, the positive electrode 31 and the negative electrode 32 are spirally wound via the separator 33, and then pressed so as to be flattened to form a flat wound electrode body 30 with a rectangular shape ( It is housed in a rectangular tube-shaped outer can 11 together with a non-aqueous electrolyte. However, in FIG. 3, in order to avoid complication, a metal foil, a non-aqueous electrolyte, or the like as a current collector used for manufacturing the positive electrode 31 and the negative electrode 32 is not illustrated. Moreover, in FIG. 3, the part of the inner peripheral side of the flat winding electrode body 30 is not made into the cross section.

外装缶11はアルミニウム合金製で正極端子を兼ねている。そして、外装缶11の底部にはポリエチレンシートからなる絶縁体40が配置され、正極31、負極32およびセパレータ33からなる扁平状巻回電極体30からは、正極31および負極32のそれぞれ一端に接続された正極リード体51と負極リード体52とが引き出されている。また、外装缶11の開口部を封口するアルミニウム合金製の蓋板20にはポリプロピレン製の絶縁パッキング22を介してステンレス鋼製の端子21が取り付けられ、この端子21には絶縁体24を介してステンレス鋼製のリード板25が取り付けられている。   The outer can 11 is made of an aluminum alloy and also serves as a positive electrode terminal. And the insulator 40 which consists of a polyethylene sheet is arrange | positioned at the bottom part of the armored can 11, and it connects to each one end of the positive electrode 31 and the negative electrode 32 from the flat wound electrode body 30 which consists of the positive electrode 31, the negative electrode 32, and the separator 33. The positive electrode lead body 51 and the negative electrode lead body 52 are drawn out. A stainless steel terminal 21 is attached to an aluminum alloy cover plate 20 that seals the opening of the outer can 11 via a polypropylene insulating packing 22, and an insulator 24 is connected to the terminal 21. A stainless steel lead plate 25 is attached.

そして、この蓋板20は外装缶11の開口部に挿入され、両者の接合部を溶接することによって、外装缶11の開口部が封口され、電池内部が密閉されている。また、図3の電池では、蓋板20に非水電解液注入口23が設けられており、この非水電解液注入口23には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。   And this cover plate 20 is inserted in the opening part of the armored can 11, and the opening part of the armored can 11 is sealed by welding the junction part of both, and the inside of a battery is sealed. Further, in the battery of FIG. 3, the lid plate 20 is provided with a non-aqueous electrolyte inlet 23, and a sealing member is inserted into the non-aqueous electrolyte inlet 23, for example, laser welding or the like. As a result, the battery is sealed by welding.

この実施例1の電池では、正極リード体51を蓋板20に直接溶接することによって外装缶11と蓋板20とが正極端子として機能し、負極リード体52をリード板25に溶接し、そのリード板25を介して負極リード体52と端子21とを導通させることによって端子21が負極端子として機能するようになっている。   In the battery of Example 1, the outer can 11 and the cover plate 20 function as a positive electrode terminal by directly welding the positive electrode lead body 51 to the lid plate 20, and the negative electrode lead body 52 is welded to the lead plate 25. By connecting the negative electrode lead body 52 and the terminal 21 through the lead plate 25, the terminal 21 functions as a negative electrode terminal.

また、実施例1の電池では、図1に示すように、外装缶11の幅広面111に、内部の圧力が閾値よりも大きくなった場合に開裂するための開裂溝12が設けられている。   In the battery of Example 1, as shown in FIG. 1, the wide groove 111 of the outer can 11 is provided with a cleavage groove 12 for cleaving when the internal pressure becomes larger than a threshold value.

実施例2
外装缶を、内容積Aが10.1cmであり、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.25mm(一方の幅広面の投影形状における全面積中の、厚みが0.25mm以下の部分の面積の割合が66%)のものに変更し、注入する非水電解液の量を4.02gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Example 2
The outer can has an inner volume A of 10.1 cm 3 , and the metal constituting the outer can has a thickness of 0.25 mm (one wide width) at a location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface. The ratio of the area of the portion having a thickness of 0.25 mm or less in the total area of the projected shape of the surface is changed to 66%), and the amount of the nonaqueous electrolyte to be injected is changed to 4.02 g. A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

実施例3
外装缶を、内容積Aが10.3cmであり、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.22mm(一方の幅広面の投影形状における全面積中の、厚みが0.22mm以下の部分の面積の割合が66%)のものに変更し、注入する非水電解液の量を4.14gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Example 3
The outer can has an inner volume A of 10.3 cm 3 , and the metal constituting the outer can has a thickness of 0.22 mm (one wide width) at a location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface. The ratio of the area of the portion having a thickness of 0.22 mm or less in the total area in the projected shape of the surface is changed to 66%), and the amount of the nonaqueous electrolyte to be injected is changed to 4.14 g, A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

実施例4
外装缶を、内容積Aが10.4cmであり、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.20mm(一方の幅広面の投影形状における全面積中の、厚みが0.20mm以下の部分の面積の割合が66%)のものに変更し、注入する非水電解液の量を4.28gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Example 4
The outer can has an inner volume A of 10.4 cm 3 , and the metal constituting the outer can has a thickness of 0.20 mm (one wide width) at a point corresponding to the intersection of two diagonal lines in the projected shape of the wide surface. The ratio of the area of the portion having a thickness of 0.20 mm or less in the total area of the projected shape of the surface is changed to 66%), and the amount of the nonaqueous electrolyte to be injected is changed to 4.28 g, A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

実施例5
外装缶を、内容積Aが10.5cmであり、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.18mm(一方の幅広面の投影形状における全面積中の、厚みが0.18mm以下の部分の面積の割合が66%)のものに変更し、注入する非水電解液の量を4.43gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Example 5
The outer can has an internal volume A of 10.5 cm 3 , and the metal constituting the outer can has a thickness of 0.18 mm (one wide width) at a location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface. Except that the ratio of the area of the portion having a thickness of 0.18 mm or less in the total area of the projected shape of the surface is 66%), and the amount of the nonaqueous electrolyte to be injected is changed to 4.43 g. A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

実施例6
厚みが8.0μmで引張強度が2.5N/mmのアルニミウム合金箔(3003)を集電体に用いた以外は実施例1と同様にして正極を作製した。そして、この正極を使用し、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.16mm(一方の幅広面の投影形状における全面積中の、厚みが0.16mm以下の部分の面積の割合が66%)のものに変更し、注入する非水電解液の量を4.70gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Example 6
A positive electrode was produced in the same manner as in Example 1 except that an aluminum alloy foil (3003) having a thickness of 8.0 μm and a tensile strength of 2.5 N / mm was used as the current collector. And, using this positive electrode, the metal constituting the outer can has a thickness of 0.16 mm at the point corresponding to the intersection of two diagonal lines in the projected shape of the wide surface (the total area in the projected shape of one wide surface) The ratio of the area of the portion with a thickness of 0.16 mm or less is changed to 66%), and the amount of the nonaqueous electrolyte to be injected is changed to 4.70 g. A square nonaqueous electrolyte secondary battery was produced.

実施例7
結着剤をVDF−CTFEに変更した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして角形非水電解質二次電池を作製した。
Example 7
A positive electrode was produced in the same manner as in Example 1 except that the binder was changed to VDF-CTFE. A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.

比較例1
外装缶を、内容積Aが9.4cmであり、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚みが0.35mm(一方の幅広面の投影形状における全面積中の、厚みが0.35mm以下の部分の面積の割合が66%)のものに変更し、注入する非水電解液の量を3.28gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Comparative Example 1
The outer can has an inner volume A of 9.4 cm 3 , and the metal constituting the outer can has a thickness of 0.35 mm (one wide width) at a location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface. The ratio of the area of the portion having a thickness of 0.35 mm or less in the total area of the projected shape of the surface is changed to 66%), and the amount of the nonaqueous electrolyte to be injected is changed to 3.28 g, A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

比較例2
集電体の厚みを15.0μmに変更した以外は実施例1と同様にして正極を作製し、この正極を使用し、注入する非水電解液の量を3.48gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Comparative Example 2
A positive electrode was produced in the same manner as in Example 1 except that the thickness of the current collector was changed to 15.0 μm, and this positive electrode was used, except that the amount of nonaqueous electrolyte to be injected was changed to 3.48 g. A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1.

比較例3
集電体を厚みが10.0μmで引張強度が2.2N/mmのアルミニウム合金箔(A1N30)に変更した以外は実施例1と同様にして正極を作製し、この正極を使用し、注入する非水電解液の量を3.65gに変更した以外は、実施例1と同様にして角形非水電解質二次電池を作製した。
Comparative Example 3
A positive electrode was produced in the same manner as in Example 1 except that the current collector was changed to an aluminum alloy foil (A1N30) having a thickness of 10.0 μm and a tensile strength of 2.2 N / mm, and this positive electrode was used and injected. A square nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the amount of the nonaqueous electrolyte was changed to 3.65 g.

実施例および比較例の非水電解質二次電池に使用した正極の集電体の構成、外装缶を構成する金属の、幅広面の投影形状における2本の対角線の交点に相当する箇所での厚み(表では、「外装缶の構成金属の厚み」と記載する)、比A/Bおよびこれらの非水電解質二次電池に注入した非水電解液の量を表1に示す。   The structure of the positive electrode current collector used in the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples, the thickness of the metal constituting the outer can at the location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface Table 1 shows the ratio A / B and the amount of the non-aqueous electrolyte injected into these non-aqueous electrolyte secondary batteries.

Figure 2016018584
Figure 2016018584

実施例および比較例の非水電解質二次電池、並びに、これらの電池に用いた正極について、下記の各評価を行った。   The following evaluation was performed about the nonaqueous electrolyte secondary battery of an Example and a comparative example, and the positive electrode used for these batteries.

<正極の折り曲げ強度>
実施例および比較例の各非水電解質二次電池を分解して正極を取り出し、集電体の両面に正極合剤層を形成した部分を長尺方向に5cm、幅方向に4cmに切り出して試験片とし、この試験片長尺側の末端から15mmの位置を巻回電極体作製時の折り曲げる方向と同じ向きに折り曲げた。試験片の折り曲げた箇所に200gfの荷重を均一に加えた後に開いた試験片の両端を、引張試験機(今田製作所社製「SDT−52型」)の治具で挟んでセットし、クロスヘッド速度50mm/分で引張試験を行って、試験片の折り曲げ箇所が破断したときの強度を折り曲げ強度とした。この折り曲げ強度が大きいほど、非水電解質二次電池内での扁平状巻回電極体における正極集電体の破れを良好に抑制できていることから、非水電解質二次電池の生産性および信頼性がより良好であると評価できる。
<Bending strength of positive electrode>
Each non-aqueous electrolyte secondary battery of Example and Comparative Example was disassembled and the positive electrode was taken out, and the portion where the positive electrode mixture layer was formed on both sides of the current collector was cut out to 5 cm in the longitudinal direction and 4 cm in the width direction for testing. A piece 15 mm from the end on the long side of the test piece was bent in the same direction as the bending direction when the wound electrode body was produced. After applying a load of 200 gf uniformly to the bent part of the test piece, set both ends of the test piece opened with a jig of a tensile tester (“SDT-52 type” manufactured by Imada Seisakusho Co., Ltd.). A tensile test was performed at a speed of 50 mm / min, and the strength when the bent portion of the test piece was broken was defined as the bending strength. The greater the bending strength, the better the positive electrode current collector breakage in the flat wound electrode body in the non-aqueous electrolyte secondary battery, and thus the productivity and reliability of the non-aqueous electrolyte secondary battery. It can be evaluated that the property is better.

<非水電解質二次電池の変形度合いの評価>
実施例および比較例の各電池について、充電容量(室温の環境下で4.35Vまで1.0Cの定電流で充電後、総充電時間が2.5時間となるまで定電圧充電したときの容量)の50%まで1.0Cの定電流で充電した後、外装缶の幅広面の投影形状における2本の対角線の交点部分の厚みをノギスで測定して変形度合いを評価した。このときに求められる厚みが小さいほど、巻回した状態から元の状態(電極とセパレータとを積層した状態)に戻ろうとする反発力が小さく、また薄い金属で構成された外装缶を使用しても変形を抑制することが可能であり、非水電解質二次電池の生産性および信頼性がより良好であると評価できる。
<Evaluation of degree of deformation of nonaqueous electrolyte secondary battery>
About each battery of an Example and a comparative example, charge capacity (capacity when carrying out constant voltage charge until the total charge time will be 2.5 hours after charging with a constant current of 1.0C to 4.35V under the environment of room temperature ) Was charged at a constant current of 1.0 C up to 50%, and the thickness of the intersection of two diagonal lines in the projected shape of the wide surface of the outer can was measured with calipers to evaluate the degree of deformation. The smaller the thickness required at this time, the smaller the repulsive force to return from the wound state to the original state (the state in which the electrode and the separator are laminated), and the use of an outer can made of a thin metal. It is possible to suppress deformation, and it can be evaluated that the productivity and reliability of the nonaqueous electrolyte secondary battery are better.

<非水電解質二次電池の初回放電容量評価>
実施例および比較例の各電池について、4.35Vまで1.0Cの定電流で充電後、総充電時間が2.5時間となるまで定電圧充電し、続いて1.0Cで電池電圧が2.75Vまで定電流放電を行って、そのときの放電容量を求めた。
<Evaluation of initial discharge capacity of nonaqueous electrolyte secondary battery>
About each battery of an Example and a comparative example, after charging with a constant current of 1.0C to 4.35V, it was charged with a constant voltage until the total charging time was 2.5 hours, and then the battery voltage was 2 at 1.0C. A constant current discharge was performed up to .75 V, and the discharge capacity at that time was determined.

<非水電解質二次電池の45℃充放電サイクル特性評価>
実施例および比較例の各電池について、45℃の環境下で、4.35Vまで1.0Cの定電流で充電後、総充電時間が2.5時間となるまで定電圧充電し、続いて1.0Cで電池電圧が3.3Vまで定電流放電を行う一連の操作を1サイクルとして、これらを多数繰り返し、放電容量が1サイクル目の放電容量の60%以上であったサイクル数を求めた。
<45 ° C. charge / discharge cycle characteristics evaluation of non-aqueous electrolyte secondary battery>
Each battery of the example and the comparative example was charged at a constant current of 1.0 C up to 4.35 V in an environment of 45 ° C., and then charged at a constant voltage until the total charging time was 2.5 hours. A series of operations for performing constant current discharge at 0.0 C to a battery voltage of 3.3 V was taken as one cycle, and these were repeated many times, and the number of cycles in which the discharge capacity was 60% or more of the discharge capacity in the first cycle was determined.

前記の各評価結果を表2に示す。なお、表2では、各非水電解質二次電池の放電容量、および45℃充放電サイクル特性評価時のサイクル数を、比較例2の電池の結果を100とした場合の相対値で表す。   The evaluation results are shown in Table 2. In Table 2, the discharge capacity of each non-aqueous electrolyte secondary battery and the number of cycles at the time of 45 ° C. charge / discharge cycle characteristics evaluation are expressed as relative values when the result of the battery of Comparative Example 2 is taken as 100.

Figure 2016018584
Figure 2016018584

表2に示す通り、構成金属が薄い外装缶と、薄くかつ特定の強度を有する正極集電体とを使用した実施例1〜7の非水電解質二次電池は、内部から取り出した正極の折り曲げ強度が大きく、集電体の破れなどの正極の欠陥の発生が抑制されており、更に製造時の外装缶の変形も抑えられており、優れた生産性および信頼性を有していた。また、実施例1〜7の非水電解質二次電池は、注入可能な非水電解質量が多く、高温下での充放電サイクル特性も良好であった。   As shown in Table 2, the non-aqueous electrolyte secondary batteries of Examples 1 to 7 using an outer can having a thin constituent metal and a positive electrode current collector having a specific strength and being thin are bent positive electrodes taken from the inside. The strength was high, the occurrence of defects in the positive electrode, such as the breakage of the current collector, was suppressed, and the deformation of the outer can at the time of manufacture was also suppressed, thus providing excellent productivity and reliability. In addition, the nonaqueous electrolyte secondary batteries of Examples 1 to 7 had a large amount of nonaqueous electrolyte that could be injected, and charge / discharge cycle characteristics at high temperatures were also good.

これに対し、構成金属が厚い外装缶を使用した比較例1の電池では、内部から取り出した正極の折り曲げ強度が小さく、最内周の折り曲げ部位で集電体の破れなどの正極の欠陥が生じており、生産性および信頼性が劣っていた。また、厚い正極集電体を使用した比較例2の電池は、製造時に外装缶の変形が生じており、生産性が劣っていた。更に、強度が小さい正極集電体を使用した比較例3の電池では、最内周の折り曲げ部位で集電体が完全に破断しており、放電容量の減少が見られた。そして、比較例1の電池および比較例2の電池は、高温下での充放電サイクル特性も劣っていた。   On the other hand, in the battery of Comparative Example 1 using an outer can with a thick constituent metal, the bending strength of the positive electrode taken out from the inside is small, and the positive electrode defect such as the breaking of the current collector occurs at the innermost bent portion. Productivity and reliability were inferior. In addition, the battery of Comparative Example 2 using a thick positive electrode current collector was inferior in productivity because the outer can was deformed during production. Furthermore, in the battery of Comparative Example 3 using the positive electrode current collector having low strength, the current collector was completely broken at the innermost bent portion, and a reduction in discharge capacity was observed. And the battery of the comparative example 1 and the battery of the comparative example 2 were inferior also in the charging / discharging cycling characteristics in high temperature.

1 非水電解質二次電池
10 電池ケース
11 外装缶
111 外装缶側面部の幅広面
12 開裂溝
20 蓋体
21 端子部
30 扁平状巻回電極体
31 正極
32 負極
33 セパレータ
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 10 Battery case 11 Exterior can 111 Wide surface of exterior can side surface 12 Cleavage groove 20 Lid 21 Terminal portion 30 Flat wound electrode body 31 Positive electrode 32 Negative electrode 33 Separator

Claims (4)

正極、負極およびセパレータを重ねて渦巻状に巻回し、横断面を扁平状にした巻回電極体と、非水電解質とが、電池ケース内に収容されてなる非水電解質二次電池であって、
前記電池ケースは、有底筒形の金属製の外装缶と、前記金属製の外装缶の開口部を封口する蓋体とを有しており、
前記外装缶の側面部は、互いに対向し、側面視で他の面よりも幅が広い2枚の幅広面を有しており、
前記幅広面は、側面からの投影形状が四角形であり、
前記外装缶を構成する金属は、前記幅広面の前記投影形状における2本の対角線の交点に相当する箇所での厚みをtとしたとき、前記tが0.30mm以下であり、
前記正極は、金属製の集電体と、前記集電体の両面に形成された、正極活物質、導電助剤および結着剤を含有する正極合剤層とを有しており、
前記正極の集電体は、厚みが11μm以下であり、かつ引張強度が2.5N/mm以上であることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, and a separator are overlapped and wound in a spiral shape, and a wound electrode body having a flat cross section and a non-aqueous electrolyte are accommodated in a battery case. ,
The battery case has a bottomed cylindrical metal outer can and a lid for sealing the opening of the metal outer can,
The side portions of the outer can have two wide surfaces that are opposed to each other and wider than the other surfaces in a side view,
The wide surface has a quadrangular projection shape from the side surface,
The metal constituting the outer can, when the thickness at a location corresponding to the intersection of two diagonal lines in the projected shape of the wide surface is t, the t is 0.30 mm or less,
The positive electrode has a metal current collector and a positive electrode mixture layer formed on both surfaces of the current collector, the positive electrode active material, a conductive additive and a binder,
The positive electrode current collector has a thickness of 11 μm or less and a tensile strength of 2.5 N / mm or more.
前記正極合剤層は、前記結着剤としてフッ化ビニリデン−クロロトリフルオロエチレンコポリマーを含有している請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode mixture layer contains a vinylidene fluoride-chlorotrifluoroethylene copolymer as the binder. 前記電池ケースの内容積をA(cm)とし、前記正極、前記負極および前記セパレータの合計体積をB(cm)としたとき、比A/Bが1.14〜1.50である請求項1または2に記載の非水電解質二次電池。 When the internal volume of the battery case is A (cm 3 ) and the total volume of the positive electrode, the negative electrode and the separator is B (cm 3 ), the ratio A / B is 1.14 to 1.50. Item 3. The nonaqueous electrolyte secondary battery according to Item 1 or 2. 前記負極は、負極活物質として、黒鉛の表面に非晶質炭素を担持した、平均粒子径が8〜18μmの炭素材料を含有している請求項1〜3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte according to any one of claims 1 to 3, wherein the negative electrode contains a carbon material having an average particle diameter of 8 to 18 µm and supporting amorphous carbon on the surface of graphite as a negative electrode active material. Secondary battery.
JP2014138219A 2014-07-04 2014-07-04 Nonaqueous electrolyte secondary battery Active JP6392566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138219A JP6392566B2 (en) 2014-07-04 2014-07-04 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138219A JP6392566B2 (en) 2014-07-04 2014-07-04 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2016018584A true JP2016018584A (en) 2016-02-01
JP6392566B2 JP6392566B2 (en) 2018-09-19

Family

ID=55233694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138219A Active JP6392566B2 (en) 2014-07-04 2014-07-04 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6392566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170137355A (en) * 2016-06-03 2017-12-13 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery and method of preparing the same
CN111712963A (en) * 2018-02-22 2020-09-25 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273424A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery and negative electrode thereof
JP2006338992A (en) * 2005-06-01 2006-12-14 Nec Tokin Corp Square lithium ion battery
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2008293999A (en) * 2008-08-07 2008-12-04 Sharp Corp Battery
JP2009048876A (en) * 2007-08-21 2009-03-05 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2012009330A (en) * 2010-06-25 2012-01-12 Panasonic Corp Lithium ion secondary battery
JP2012028158A (en) * 2010-07-23 2012-02-09 Hitachi Maxell Energy Ltd Anode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP2012174569A (en) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2013114797A (en) * 2011-11-25 2013-06-10 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte battery
JP2013157299A (en) * 2012-02-01 2013-08-15 Hitachi Maxell Ltd Outer can for square type lithium ion secondary battery, and square type lithium ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273424A (en) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp Lithium secondary battery and negative electrode thereof
JP2006338992A (en) * 2005-06-01 2006-12-14 Nec Tokin Corp Square lithium ion battery
JP2007194208A (en) * 2005-12-22 2007-08-02 Mitsubishi Chemicals Corp Lithium secondary cell, and battery pack formed by connecting the plurality of it
JP2009048876A (en) * 2007-08-21 2009-03-05 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2008293999A (en) * 2008-08-07 2008-12-04 Sharp Corp Battery
JP2012009330A (en) * 2010-06-25 2012-01-12 Panasonic Corp Lithium ion secondary battery
JP2012028158A (en) * 2010-07-23 2012-02-09 Hitachi Maxell Energy Ltd Anode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP2012174569A (en) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2013114797A (en) * 2011-11-25 2013-06-10 Sanyo Electric Co Ltd Manufacturing method of nonaqueous electrolyte battery
JP2013157299A (en) * 2012-02-01 2013-08-15 Hitachi Maxell Ltd Outer can for square type lithium ion secondary battery, and square type lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170137355A (en) * 2016-06-03 2017-12-13 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery and method of preparing the same
KR102603763B1 (en) * 2016-06-03 2023-11-16 에스케이온 주식회사 Electrode for a lithium secondary battery and method of preparing the same
CN111712963A (en) * 2018-02-22 2020-09-25 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6392566B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5218808B2 (en) Lithium ion battery
JP5582587B2 (en) Lithium ion secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP6841971B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP5361029B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5734708B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR20160052382A (en) Lithium secondary battery
JP2016048624A (en) Lithium secondary battery
JP2011192541A (en) Nonaqueous secondary battery
JP6345659B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6394987B2 (en) Non-aqueous electrolyte secondary battery
KR101858334B1 (en) Non-aqueous electrolyte secondary battery
JP6632233B2 (en) Non-aqueous electrolyte secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof
JP2015050035A (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2011192580A (en) Nonaqueous secondary battery
JP6709991B2 (en) Lithium ion secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP2016072119A (en) Lithium secondary battery
JP2015133193A (en) Nonaqueous electrolyte secondary battery
JP7458033B2 (en) Nonaqueous electrolyte secondary battery and electrolyte used therein
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250