JP2009045536A - Method of preparing agent for desulfurizing hydrocarbon - Google Patents

Method of preparing agent for desulfurizing hydrocarbon Download PDF

Info

Publication number
JP2009045536A
JP2009045536A JP2007212705A JP2007212705A JP2009045536A JP 2009045536 A JP2009045536 A JP 2009045536A JP 2007212705 A JP2007212705 A JP 2007212705A JP 2007212705 A JP2007212705 A JP 2007212705A JP 2009045536 A JP2009045536 A JP 2009045536A
Authority
JP
Japan
Prior art keywords
nickel
molybdenum
desulfurization
agent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007212705A
Other languages
Japanese (ja)
Other versions
JP4955483B2 (en
Inventor
Osamu Chiyoda
修 千代田
Takayuki Osaki
貴之 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2007212705A priority Critical patent/JP4955483B2/en
Publication of JP2009045536A publication Critical patent/JP2009045536A/en
Application granted granted Critical
Publication of JP4955483B2 publication Critical patent/JP4955483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing an agent comprising nickel and molybdenum for desulfurizing a hydrocarbon, having a long breakthrough time and sufficient desulfurization activity, and made to contain a prescribed amount of nickel and molybdenum in a prescribed ratio using a co-precipitation method without allowing a metal ion of nickel or molybdenum to remain in filtrate. <P>SOLUTION: The method of preparing an agent comprising nickel and molybdenum for desulfurizing a hydrocarbon by mixing an acidic solution comprising nickel and an alkaline solution comprising molybdenum for causing them to react with each other to form a precipitate is characterized in that the pH of the solution subsequent to mixing the acidic solution and the alkaline solution is 6 to 8 and its temperature is 50 to 90 °C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は炭化水素、とりわけ燃料電池などに用いられる水素製造のための改質に使用される原燃料の脱硫に用いる脱硫剤の製造方法に関するものである。   The present invention relates to a method for producing a desulfurization agent used for desulfurization of raw fuel used for reforming for producing hydrocarbons, particularly hydrogen used in fuel cells and the like.

燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池の水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、更にはLPG、ナフサ、灯油などの石油系燃料といった、様々な炭化水素の使用が研究されている。   Fuel cells convert chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and have a feature of high energy use efficiency. Research into practical use has been actively conducted for automobiles. As a hydrogen source of this fuel cell, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and further LPG, naphtha, kerosene, etc. The use of various hydrocarbons, such as petroleum-based fuels, has been studied.

ところで、このような炭化水素からの水素製造においては、炭化水素と水蒸気や酸素(空気)とから水素を生成する改質反応が利用されており、この改質反応ではニッケルもしくはルテニウムを活性金属とする触媒が使用されている。これら活性金属であるニッケルやルテニウムは硫黄に対する耐性が低いため、原料炭化水素に硫黄分が含有されている場合、あらかじめ脱硫処理を施して改質反応に使用する必要がある。   By the way, in such hydrogen production from hydrocarbons, a reforming reaction that generates hydrogen from hydrocarbons and steam or oxygen (air) is used. In this reforming reaction, nickel or ruthenium is used as an active metal. A catalyst is used. Since these active metals such as nickel and ruthenium have low resistance to sulfur, when the raw material hydrocarbon contains a sulfur content, it is necessary to perform a desulfurization treatment in advance and use it for the reforming reaction.

そこで、定置型燃料電池発電システムにおいては、市販の炭化水素をオンサイトで吸着により脱硫する手法が種々提案されており、炭化水素、とりわけ灯油などの重質炭化水素を、200℃付近の反応条件で、ニッケル−銅系脱硫剤や、ニッケル−亜鉛系脱硫剤を用いて脱硫する方法などが提案されている。(例えば、特許文献1及び2参照)。
しかし、従来提案されているニッケル系脱硫剤の中には、比較的短時間で破過(生成油の硫黄濃度が基準値を超える)してしまって、寿命が十分でないものもあり、したがって、その破過に達する時間(破過時間)を延長し、脱硫剤を十分に長寿命化することが、脱硫剤交換頻度の減少や装置の小型化・高効率化の観点から望まれている。
特開2004−230317号公報 特開2003−290660号公報
Therefore, in the stationary fuel cell power generation system, various methods for desulfurizing commercially available hydrocarbons by adsorption on-site have been proposed. The reaction conditions of hydrocarbons, particularly heavy hydrocarbons such as kerosene, are about 200 ° C. A method of desulfurization using a nickel-copper desulfurization agent or a nickel-zinc desulfurization agent has been proposed. (For example, refer to Patent Documents 1 and 2).
However, some of the nickel-based desulfurization agents that have been proposed in the past have been broken through in a relatively short time (the sulfur concentration of the product oil exceeds the standard value), and the life is not sufficient. Extending the time to reach breakthrough (breakthrough time) and sufficiently extending the life of the desulfurizing agent is desired from the viewpoint of reducing the desulfurizing agent replacement frequency and reducing the size and efficiency of the apparatus.
JP 2004230317 A JP 2003-290660 A

本発明者らは、上記従来の状況に鑑み、ニッケルにモリブデンを組み合わせることで、破過時間を延長し、その性能の向上を図る脱硫剤の開発を検討してきた。そして、先に、ニッケルを酸化物(NiO)換算で50〜95質量%、モリブデンを酸化物(MoO)換算で0.5〜25質量%、及び無機酸化物を含有することを特徴とする炭化水素用脱硫剤を発明、開発した。この開発された触媒は、相応に破過時間が延長され、長寿命化された、相応に優れた性能のものである。
ところで、上記本発明者らが開発したニッケル−モリブデン系脱硫剤(Ni−Mo系脱硫剤)においては、十分な脱硫性能を得るために、脱硫剤中のニッケル含有量を酸化物換算で50質量%以上とする必要がある。一般に、ニッケル含有量が多い脱硫剤の製造は、
含浸法による製造が困難で、共沈法による製造が一般的である。上記本発明者らが開発したNi−Mo系脱硫剤も一般に共沈法により製造される。しかし、このNi−Mo系脱硫剤の共沈法による製造に際して、沈殿しないニッケルあるいはモリブデンの金属イオンがろ液中に残存し、製造された脱硫剤中に所望量のニッケルあるいはモリブデンを、これらの金属が所望比率となるように含有させることができず、その結果、十分な脱硫活性を得られない場合がある。
In view of the above-described conventional situation, the present inventors have studied the development of a desulfurization agent that extends breakthrough time and improves the performance by combining molybdenum with nickel. First, nickel is contained in an amount of 50 to 95% by mass in terms of oxide (NiO), molybdenum is contained in an amount of 0.5 to 25% by mass in terms of oxide (MoO 3 ), and an inorganic oxide. Invented and developed hydrocarbon desulfurization agent. The developed catalyst has a correspondingly superior performance with a correspondingly extended breakthrough time and a longer life.
By the way, in the nickel-molybdenum-based desulfurizing agent (Ni-Mo-based desulfurizing agent) developed by the present inventors, the nickel content in the desulfurizing agent is 50 mass in terms of oxide in order to obtain sufficient desulfurization performance. % Or more is necessary. In general, the manufacture of desulfurizing agents with high nickel content
Production by the impregnation method is difficult, and production by a coprecipitation method is common. The Ni-Mo desulfurization agent developed by the present inventors is also generally produced by a coprecipitation method. However, in the production of the Ni-Mo-based desulfurization agent by the coprecipitation method, nickel or molybdenum metal ions that do not precipitate remain in the filtrate, and a desired amount of nickel or molybdenum is added to the produced desulfurization agent. A metal cannot be contained so that it may become a desired ratio, As a result, sufficient desulfurization activity may not be acquired.

したがって、本発明の目的は、ニッケルとモリブデンを含有し、破過時間が長く、十分な脱硫活性を有する炭化水素用脱硫剤を、共沈法により、ろ液中にニッケルやモリブデンの金属イオンが残存することなく、ニッケルとモリブデンを所望量、所望比率で含有させて製造し得る方法を提供することにある。   Accordingly, an object of the present invention is to provide a hydrocarbon desulfurization agent containing nickel and molybdenum, having a long breakthrough time and sufficient desulfurization activity, by the coprecipitation method, so that metal ions of nickel and molybdenum are contained in the filtrate. An object of the present invention is to provide a method capable of producing nickel and molybdenum in a desired amount and in a desired ratio without remaining.

本発明者らは、上記目的を達成すべく鋭意検討したところ、特定の条件において共沈を行うことによって、上記目的を達成できて、所望の脱硫剤を製造できることを見い出し、この知見に基づいて本発明を完成した。
すなわち、本発明は次の炭化水素用脱硫剤の製造方法を提供する。
(1)ニッケルを含む酸性溶液とモリブデンを含む塩基性溶液とを混合し、反応させて沈殿物を生成させることにより、ニッケルとモリブデンを含む炭化水素用脱硫剤を製造する方法であって、前記酸性溶液と前記塩基性溶液を混合した後の溶液のpHが6〜8で、温度が50〜90℃であることを特徴とする炭化水素用脱硫剤の製造方法。
(2)前記炭化水素用脱硫剤が、脱硫剤基準で、ニッケルを酸化物(NiO)換算で50〜95質量%、モリブデンを酸化物(MoO)換算で0.5〜25質量%、及び無機酸化物を含有することを特徴とする請求項1に記載の炭化水素用脱硫剤の製造方法。
The present inventors have intensively studied to achieve the above object, and found that the above object can be achieved and a desired desulfurizing agent can be produced by performing coprecipitation under specific conditions, and based on this finding. The present invention has been completed.
That is, the present invention provides the following method for producing a hydrocarbon desulfurization agent.
(1) A method for producing a hydrocarbon desulfurization agent containing nickel and molybdenum by mixing an acidic solution containing nickel and a basic solution containing molybdenum and reacting to produce a precipitate, A method for producing a hydrocarbon desulfurization agent, wherein the pH of the solution after mixing the acidic solution and the basic solution is 6 to 8, and the temperature is 50 to 90 ° C.
(2) the hydrocarbon desulfurizing agent, desulfurization agent basis, nickel oxide (NiO) 50 to 95 wt% in terms of molybdenum oxide 0.5 to 25% by weight (MoO 3) in terms of, and An inorganic oxide is contained, The manufacturing method of the desulfurization agent for hydrocarbons of Claim 1 characterized by the above-mentioned.

本発明によれば、共沈法によりニッケルとモリブデンを含有する脱硫剤を製造するに当たり、ろ液中にニッケルやモリブデンの金属イオンが残存することなく、ニッケルとモリブデンを所望量、所望比率で得られる脱硫剤中に含有させることができて、破過時間が長く、十分な脱硫活性を有する脱硫剤を製造することができる。本発明の脱硫剤は炭化水素の脱硫に最適である。   According to the present invention, in producing a desulfurization agent containing nickel and molybdenum by a coprecipitation method, nickel and molybdenum can be obtained in a desired amount and in a desired ratio without leaving any metal ions of nickel and molybdenum in the filtrate. The desulfurization agent which can be contained in the obtained desulfurization agent, has a long breakthrough time, and has sufficient desulfurization activity can be produced. The desulfurizing agent of the present invention is optimal for hydrocarbon desulfurization.

〔脱硫剤の製造方法〕
本発明の脱硫剤の製造方法は、ニッケルとモリブデンを含有する脱硫剤を共沈法により製造する方法である。そして、この共沈法による脱硫剤の製造は、ニッケル原料を含む酸性溶液とモリブデン原料を含む塩基性溶液とを混合し、反応させて沈殿物を生成させることにより行われる。本発明の方法では、この酸性溶液と塩基性溶液を混合した後の溶液のpHを6〜8とし、このpHを特定範囲とする点に特徴がある。そして、この混合液のpHは、好ましくは6.5〜7.5である。pHが6未満の条件ではニッケルの沈殿が不十分となり、逆にpHが8を超える条件ではモリブデンの沈殿が不十分となる。したがって、この混合液のpHが上記の範囲を逸脱すると、脱硫剤中に含有されるニッケルまたはモリブデンの量が不足したり、排水となるろ液中のニッケルイオンまたはモリブデンイオンの量が増加することになる。この混合液のpHは、塩基性溶液中に無機塩基を含ませて、その量と種類により調整することができ、また、酸性溶液に無機酸を含ませて、その量と種類により調整することもできる。
一般に、ニッケル原料を含む酸性溶液のpHは0.5〜3が好ましく、特に1〜2が好ましい。モリブデン原料を含む塩基性溶液のpHは8〜12が好ましく、特に9〜11が好ましい。
[Method for producing desulfurizing agent]
The method for producing a desulfurizing agent of the present invention is a method for producing a desulfurizing agent containing nickel and molybdenum by a coprecipitation method. And manufacture of the desulfurization agent by this coprecipitation method is performed by mixing the acidic solution containing a nickel raw material, and the basic solution containing a molybdenum raw material, making it react and producing | generating a deposit. The method of the present invention is characterized in that the pH of the solution after mixing the acidic solution and the basic solution is set to 6 to 8, and the pH is set in a specific range. And the pH of this liquid mixture becomes like this. Preferably it is 6.5-7.5. When the pH is less than 6, nickel precipitation is insufficient, and conversely, when the pH exceeds 8, molybdenum precipitation is insufficient. Therefore, when the pH of the mixed solution deviates from the above range, the amount of nickel or molybdenum contained in the desulfurizing agent is insufficient, or the amount of nickel ions or molybdenum ions in the filtrate serving as drainage increases. become. The pH of this mixed solution can be adjusted according to the amount and type of an inorganic base contained in the basic solution, and can be adjusted according to the amount and type of the acidic solution containing an inorganic acid. You can also.
Generally, the pH of the acidic solution containing the nickel raw material is preferably 0.5 to 3, particularly preferably 1 to 2. The pH of the basic solution containing the molybdenum raw material is preferably 8 to 12, and particularly preferably 9 to 11.

また、本発明では、上記酸性溶液と塩基性溶液を混合した後の溶液の温度を50〜90℃とし、この温度を特定範囲とする点も特徴である。そして、この混合液の温度は、好ましくは60〜80℃とすることがより効果的である。50℃以上の溶液温度とすることで、酸性溶液、塩基性溶液を混合させた際のニッケルとモリブデンの共沈反応がより促進される。一方、溶液温度は90℃以上であってもよいが、90℃を超える溶液温度では、溶媒である水が蒸発しやすくなり、溶液中のニッケル、モリブデンの制御がし難くなる場合がある。   Moreover, in this invention, the temperature of the solution after mixing the said acidic solution and a basic solution shall be 50-90 degreeC, and the point which makes this temperature a specific range is also the characteristics. And it is more effective that the temperature of this liquid mixture shall be 60-80 degreeC preferably. By setting the solution temperature to 50 ° C. or higher, the coprecipitation reaction between nickel and molybdenum when the acidic solution and the basic solution are mixed is further promoted. On the other hand, the solution temperature may be 90 ° C. or higher. However, when the solution temperature exceeds 90 ° C., water as a solvent is likely to evaporate, and it may be difficult to control nickel and molybdenum in the solution.

上記酸性溶液と塩基性溶液を混合した後は、上記条件下で、一般に0.5〜3時間程度撹拌し、反応を完結させる。そして、生成した沈殿物をろ過、水洗後、次いで成型し、これを50〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜450℃の範囲の温度において1〜5時間焼成する。
本発明では、上記のようにして脱硫剤が製造される。
After mixing the acidic solution and the basic solution, the mixture is generally stirred for about 0.5 to 3 hours under the above conditions to complete the reaction. Then, the produced precipitate is filtered, washed with water, then molded, and dried at a temperature of about 50 to 150 ° C. The dried product thus obtained is preferably fired at a temperature in the range of 200 to 450 ° C. for 1 to 5 hours.
In the present invention, the desulfurizing agent is produced as described above.

以下、本発明の製造方法に用いる各原料について説明する。
まず、ニッケル原料としては、特に限定されないが、例えば、硝酸ニッケル、硫酸ニッケル、塩化ニッケルおよび酢酸ニッケルなどの水溶性ニッケル金属塩並びにその水和物が好適に使用できる。これらのニッケル原料は、それぞれ単独で用いても、二種以上を組み合わせて用いてもよい。
ニッケル原料を含む酸性溶液には、溶媒として水を用い、また、無機酸によってそのpHを適宜調整することが好ましい。無機酸としては、例えば、塩酸、硫酸および硝酸などが挙げられ、これらはそれぞれ単独で用いても、二種以上を組み合わせて用いてもよい。
また、モリブデン原料としては、特に限定されないが、例えば、モリブデン酸アンモニウムおよびモリブドリン酸などの水溶性モリブデン金属塩並びにその水和物が好適に使用できる。これらのモリブデン原料は、それぞれ単独で用いても、二種以上を組み合わせて用いてもよい。
モリブデン原料を含む塩基性溶液には、溶媒として水を用い、また、このモリブデン原料を含む塩基性溶液は一般に無機塩基によりそのpHを適宜調整する。無機塩基としては、例えば、アルカリ金属の炭酸塩や水酸化物などが好ましく、例えば炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化ナトリウムおよび水酸化カリウムなどが挙げられる。これらはそれぞれ単独で用いても、二種以上を組み合わせて用いてよいが、特に炭酸ナトリウムが好適である。
Hereinafter, each raw material used for the manufacturing method of this invention is demonstrated.
First, the nickel raw material is not particularly limited. For example, water-soluble nickel metal salts such as nickel nitrate, nickel sulfate, nickel chloride and nickel acetate, and hydrates thereof can be preferably used. These nickel raw materials may be used alone or in combination of two or more.
In the acidic solution containing the nickel raw material, it is preferable to use water as a solvent and adjust the pH appropriately with an inorganic acid. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, and nitric acid. These may be used alone or in combination of two or more.
The molybdenum raw material is not particularly limited, and for example, water-soluble molybdenum metal salts such as ammonium molybdate and molybdophosphoric acid and hydrates thereof can be preferably used. These molybdenum raw materials may be used alone or in combination of two or more.
Water is used as a solvent for the basic solution containing the molybdenum raw material, and the pH of the basic solution containing the molybdenum raw material is generally adjusted appropriately with an inorganic base. As the inorganic base, for example, alkali metal carbonates and hydroxides are preferable, and examples thereof include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide. These may be used alone or in combination of two or more, but sodium carbonate is particularly preferred.

また、後述するように、本発明の製造方法で製造される脱硫剤には、ニッケルとモリブデンの他に、無機酸化物を含有させることができ、その場合には、上記共沈反応に供するモリブデン原料を含む塩基性溶液やニッケル原料を含む酸性溶液に、無機酸化物原料を含有させ、ニッケルとモリブデンと共に沈殿させることが好ましい。
脱硫剤に含有させる無機酸化物の種類は、後述するように特に限定されないが、特に好ましいものとしてはシリカ、アルミナおよびシリカ−アルミナが挙げられる。例えば、アルミナやシリカ−アルミナを含有させる場合には、そのアルミニウム原料としては、例えば、ベーマイト、擬ベーマイト、γアルミナおよびβアルミナなどが挙げられ、これらは粉体状であってもゾルの形態であってもよい。また、例えば、シリカやシリカ−アルミナを含有させる場合には、そのシリカ原料としては、シリカや水ガラス、メタケイ酸ソーダ、珪藻土、メソポーラスシリカ(MCM41)などが挙げられる。
Further, as will be described later, the desulfurization agent produced by the production method of the present invention can contain an inorganic oxide in addition to nickel and molybdenum, and in that case, molybdenum for the coprecipitation reaction. It is preferable that an inorganic oxide raw material is contained in a basic solution containing the raw material or an acidic solution containing the nickel raw material and precipitated together with nickel and molybdenum.
The kind of inorganic oxide to be contained in the desulfurizing agent is not particularly limited as will be described later, and particularly preferable examples include silica, alumina, and silica-alumina. For example, when alumina or silica-alumina is contained, examples of the aluminum raw material include boehmite, pseudo-boehmite, γ-alumina, and β-alumina. There may be. For example, when silica or silica-alumina is contained, examples of the silica raw material include silica, water glass, sodium metasilicate, diatomaceous earth, and mesoporous silica (MCM41).

〔製造される脱硫剤〕
本発明の製造方法で製造される脱硫剤は、ニッケル及びモリブデンを必須とし、必要に応じて無機酸化物や他の活性成分を含有するものである。
上記脱硫剤は、ニッケルを、脱硫剤基準、酸化物(NiO)換算で50〜95質量%含有することが好ましく、より好ましくは60〜90質量%、特に好ましくは60〜85質量%である。ニッケル量が50質量%以下では所望の脱硫性能が発現されないため好ましくなく、逆に95質量%を超えてしまっては、その効果が飽和することだけでなく、ニッケル同士の凝集による脱硫性能の低下や、成形性の低下が予想される。
また、上記脱硫剤は、モリブデンを、脱硫剤基準、酸化物(MoO)換算で0.5〜20質量%含有することが好ましく、より好ましくは2〜10質量%である。モリブデン酸化物が0.5質量%以下では、所望の脱硫性能が発現されないため好ましくなく、逆に20質量%を超えてしまっては、その効果が飽和することだけでなく脱硫性能の低下や、成形性の低下が予想される。
また、上記脱硫剤は、表面積を大きくしたり、成形性を高めたり、耐破壊や耐磨耗性を高めるために、無機酸化物を含有していてもよい。このような無機酸化物としては、例えば、シリカ、アルミナ、チタニア、ボリア、マグネシア、シリカ−アルミナ、アルミナ−ボリア、マグネシア−シリカおよびゼオライトなどが挙げられる。この内、上記効果の面から好ましいものは、シリカ、アルミナ、及びシリカ−アルミナである。脱硫剤における無機酸化物含有量については、特に制限はなく、各種条件において適宜選定すればよいが、通常は全脱硫剤に対して0.5〜50質量%の範囲とすることが好ましい。さらに0.5〜40質量%、特には0.5〜30質量%とすることがより好ましい。無機酸化物の含有量を0.5質量%以上とすることで効果が得やすい。一方、50質量%を超えて配合した場合には、活性成分の低下による脱硫性能の低下が予想されるため好ましくない。
更に、上記脱硫剤には、他の活性成分を含有していてもよい。例えば、より高活性とするために、ルテニウムを脱硫剤基準、酸化物(RuO)換算で0.1〜12質量%程度含有させてもよい。
脱硫剤の形状については特に規定されず、成型体(押出し円柱、タブレット円柱、球など)、メッシュ、粉末などいずれの状態でもかまわないが、取り扱いの簡便さを考えると、成型体及びメッシュが好ましい。
[Desulfurizing agent produced]
The desulfurizing agent produced by the production method of the present invention essentially contains nickel and molybdenum, and contains an inorganic oxide and other active components as necessary.
The desulfurizing agent preferably contains 50 to 95% by mass of nickel in terms of oxide (NiO), more preferably 60 to 90% by mass, and particularly preferably 60 to 85% by mass. If the amount of nickel is 50% by mass or less, the desired desulfurization performance is not exhibited, which is not preferable. Conversely, if it exceeds 95% by mass, not only the effect is saturated, but also the desulfurization performance decreases due to aggregation of nickel. In addition, a decrease in moldability is expected.
The desulfurizing agent preferably contains 0.5 to 20% by mass, more preferably 2 to 10% by mass, in terms of oxide (MoO 3 ) in terms of molybdenum. If the molybdenum oxide is 0.5% by mass or less, the desired desulfurization performance is not exhibited, which is not preferable. Conversely, if it exceeds 20% by mass, not only the effect is saturated, but also the desulfurization performance is reduced, A decrease in moldability is expected.
Further, the desulfurizing agent may contain an inorganic oxide in order to increase the surface area, improve the moldability, and enhance the resistance to breakage and wear. Examples of such inorganic oxides include silica, alumina, titania, boria, magnesia, silica-alumina, alumina-boria, magnesia-silica, and zeolite. Of these, silica, alumina, and silica-alumina are preferable from the viewpoint of the above effects. The content of the inorganic oxide in the desulfurizing agent is not particularly limited and may be appropriately selected under various conditions. Usually, it is preferably in the range of 0.5 to 50% by mass with respect to the total desulfurizing agent. Furthermore, it is more preferable to set it as 0.5-40 mass%, especially 0.5-30 mass%. An effect is easily acquired by making content of an inorganic oxide into 0.5 mass% or more. On the other hand, when the amount exceeds 50% by mass, the desulfurization performance is expected to decrease due to the decrease in the active ingredient, which is not preferable.
Furthermore, the desulfurizing agent may contain other active ingredients. For example, in order to achieve higher activity, ruthenium may be contained in an amount of about 0.1 to 12% by mass in terms of a desulfurizing agent standard and oxide (RuO 2 ).
The shape of the desulfurizing agent is not particularly specified, and any shape such as a molded body (extruded cylinder, tablet cylinder, sphere, etc.), mesh, and powder may be used, but considering the ease of handling, the molded body and mesh are preferable. .

〔得られた脱硫剤を用いた脱硫反応〕
上記のようにして製造した脱硫剤は、脱硫反応に供す前に、還元処理しておくことが好ましい。これにより、脱硫剤の含有金属が活性化され、硫黄分を吸着しやすい状態となる。還元方法は、水素、CO等による気相還元、ホルムアルデヒド、およびエタノール等を用いた液相還元等の公知の方法を用いることが可能であるが、気相による水素化還元が好ましく、この場合、水素雰囲気で200〜500℃の温度で行うことが好ましく、より好ましくは300〜450℃とする。なお、この水素還元処理は、実際の脱硫器内(オンサイト)でも、事前の水素還元処理装置(オフサイト)でもかまわないが、使用脱硫器の耐熱性などを考慮するとオフサイト還元が好ましい。更に、オフサイト水素化還元処理においては、還元処理後に脱硫剤の安定性を向上させるために、還元処理後の脱硫剤の表面を酸素や二酸化炭素などにより軽く酸化処理する、安定化処理を施すことが更に好ましい。
[Desulfurization reaction using the obtained desulfurization agent]
The desulfurizing agent produced as described above is preferably subjected to a reduction treatment before being subjected to the desulfurization reaction. As a result, the metal contained in the desulfurizing agent is activated and the sulfur component is easily adsorbed. As the reduction method, a known method such as gas phase reduction using hydrogen, CO, etc., liquid phase reduction using formaldehyde, ethanol, or the like can be used, but hydrogen reduction by gas phase is preferable, in this case, It is preferable to carry out at a temperature of 200 to 500 ° C. in a hydrogen atmosphere, and more preferably 300 to 450 ° C. The hydrogen reduction treatment may be performed in the actual desulfurizer (on-site) or in advance with a hydrogen reduction treatment apparatus (off-site), but off-site reduction is preferable in consideration of the heat resistance of the desulfurizer used. Further, in the off-site hydroreduction treatment, in order to improve the stability of the desulfurization agent after the reduction treatment, a stabilization treatment is performed in which the surface of the desulfurization agent after the reduction treatment is lightly oxidized with oxygen or carbon dioxide. More preferably.

本発明で得られた脱硫剤を用いて炭化水素の脱硫を行うには、通常、吸着槽に脱硫剤を充填し、吸着槽で原料炭化水素を脱硫剤と接触することにより脱硫が行われる。炭化水素と脱硫剤を接触させる方法としては、一般的には、固定床式脱硫剤床を吸着槽内に形成し、原料を吸着槽の下部に導入し、固定床の下から上に通過させ、吸着槽の上部から生成油を流出させることが好ましい。
脱硫反応の条件としては、特に規定されないが、圧力は常圧(0.1MPa)以上が好ましく、0.1〜1.1MPaがより好ましい。圧力を0.1MPa以下にするには減圧装置など特殊な機器が必要となり、経済的に好ましくない。逆に圧力を1.1MPa以上とするには脱硫器や供給ポンプの耐圧が必要となり経済的に好ましくない。また、温度は0〜400℃が好ましく、より好ましくは100〜300℃、特に好ましくは140〜300℃である。低温すぎると吸着脱硫速度が低下し、逆に高温すぎる場合には脱硫剤中のニッケル成分が凝集して脱硫サイト数が減少し、脱硫性能が低下する恐れがある。
また、液空間速度(LHSV)は0.01〜100hr−1とすることが好ましく、0.1〜20hr−1とすることがより好ましい。
原料とする炭化水素としては、灯油、ジェット燃料、ナフサ、ガソリン、LPG、天然ガスが好ましく、市場における流通度や取り扱いの簡便さから特に灯油が好ましい。灯油としては、硫黄分が80質量ppm程度のものまでなら本願で得られた脱硫剤による所望の効果が得られる。
脱硫条件を上記範囲で適宜選択することにより、硫黄分をppbレベルに低減した炭化水素を長時間得ることができる。
In order to desulfurize hydrocarbons using the desulfurizing agent obtained in the present invention, desulfurization is usually performed by filling the adsorption tank with a desulfurizing agent and contacting the raw material hydrocarbon with the desulfurizing agent in the adsorption tank. As a method for bringing hydrocarbons into contact with the desulfurizing agent, generally, a fixed bed type desulfurizing agent bed is formed in the adsorption tank, the raw material is introduced into the lower part of the adsorption tank, and passed from below the fixed bed to above. The produced oil is preferably allowed to flow out from the upper part of the adsorption tank.
The conditions for the desulfurization reaction are not particularly specified, but the pressure is preferably normal pressure (0.1 MPa) or more, more preferably 0.1 to 1.1 MPa. In order to reduce the pressure to 0.1 MPa or less, special equipment such as a decompression device is required, which is not economically preferable. On the other hand, if the pressure is set to 1.1 MPa or more, the pressure resistance of the desulfurizer or the supply pump is required, which is not economical. Moreover, 0-400 degreeC is preferable, More preferably, it is 100-300 degreeC, Most preferably, it is 140-300 degreeC. If the temperature is too low, the adsorptive desulfurization rate decreases. On the other hand, if the temperature is too high, the nickel component in the desulfurizing agent aggregates and the number of desulfurization sites decreases, which may reduce the desulfurization performance.
Also, the liquid hourly space velocity (LHSV) is preferably in the 0.01~100Hr -1, and more preferably to 0.1 to 20 -1.
As the hydrocarbon used as a raw material, kerosene, jet fuel, naphtha, gasoline, LPG and natural gas are preferable, and kerosene is particularly preferable from the viewpoint of market distribution and ease of handling. As kerosene, if the sulfur content is up to about 80 ppm by mass, the desired effect of the desulfurizing agent obtained in the present application can be obtained.
By appropriately selecting the desulfurization conditions within the above range, a hydrocarbon having a sulfur content reduced to the ppb level can be obtained for a long time.

次に本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.

実施例A1
ベーマイトAP−3(触媒化成工業製)1.24g、1N HNO水溶液40mLをイオン交換水1Lに加え80℃に加温後、Ni(NO・6HOを149g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテクスXS(日産化学製)33.9g、炭酸ナトリウム99.4g、(NHMo24を3.0g加え、80℃に加温し、調製液Bを得た。調製液AとBを80℃に保持しながら、B液をA液に瞬時に加えて1時間攪拌した。撹拌1時間経過後にpHを測定したところ6.23であった。その後、沈殿物をろ別し、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。上記撹拌1時間経過後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表1に示した。
Example A1
Boehmite AP-3 (manufactured by Catalysts & Chemicals Industries) 1.24 g, after pressurizing the 1N HNO 3 solution 40mL to 80 ° C. In addition to ion-exchanged water 1L temperature, Ni a (NO 3) 2 · 6H 2 O and 149g added preparation A Obtained. Colloidal silica Snowtex XS (Nissan Chemical) 33.9 g, sodium carbonate 99.4 g, (NH 4 ) 6 Mo 7 O 24 3.0 g was added to 1 L of ion exchange water separately prepared, and heated to 80 ° C., Preparation liquid B was obtained. While maintaining the prepared solutions A and B at 80 ° C., the solution B was instantaneously added to the solution A and stirred for 1 hour. It was 6.23 when pH was measured after 1 hour stirring. Thereafter, the precipitate was filtered off, the filtrate was collected, and the amounts of nickel and molybdenum contained therein were quantified. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 1 together with the pH value after 1 hour of stirring.

実施例A2
実施例1と同様な手順で調製を行い、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。ただし、攪拌1時間後のpHが7.02となるように調製液B中の炭酸ナトリウムの量を調整した。前記攪拌1時間後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表1に示した。
ろ別された沈殿物を、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成した。これを脱硫剤実A2と呼称する。この脱硫剤を100%水素流通下(GHSV=200)、400℃で2時間還元し、雰囲気ガスを窒素へ変更後に室温まで冷却し、0.5%の酸素を含む窒素ガス流通下(GHSV=200)で安定化処理を行った。なお、安定化時の最高温度は70℃であった。この脱硫剤実A2の組成を表4に示した。
脱硫剤実A2を用い、灯油の脱硫試験を行い、脱硫性能を試験した。脱硫試験では、初留温度148℃、10%留出温度172℃、30%留出温度185℃、50%留出温度202℃、70%留出温度225℃、90%留出温度251℃、終点281℃の蒸留性状を有し、硫黄分6ppmを含むJIS 1号灯油を用いた。この灯油の性状を表5に示した。
内径16mmのSUS製反応管に脱硫剤11.6mlを充填した。常圧下、水素気流中で反応管を400℃に昇温し、3時間保持することによって、脱硫剤を活性化した。その後、上記JIS 1号灯油を、圧力0.4Mpa、液空間速度10hr−1で反応管に流通させ、反応管の下流で生成油を1時間ごとに採取した。採取した生成油中の硫黄分が50ppbを越えるまで脱硫反応実験を継続し、50ppbを破過した時間を50ppb破過時間とした。この破過時間が40hであった。
Example A2
Preparation was performed in the same procedure as in Example 1, the filtrate was collected, and the amounts of nickel and molybdenum contained therein were quantified. However, the amount of sodium carbonate in Preparation Solution B was adjusted so that the pH after 1 hour of stirring was 7.02. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 1 along with the pH value after 1 hour of stirring.
The precipitate separated by filtration was washed with 5 L of ion exchange water, filtered, dried in air at 120 ° C. for 12 hours, and calcined at 400 ° C. for 1 hour. This is called desulfurization agent A2. This desulfurizing agent was reduced at 400 ° C. for 2 hours under a 100% hydrogen flow (GHSV = 200), changed to nitrogen and then cooled to room temperature, and under a nitrogen gas flow containing 0.5% oxygen (GHSV = 200). The maximum temperature during stabilization was 70 ° C. The composition of this desulfurizing agent A2 is shown in Table 4.
Using the desulfurizing agent A2, kerosene was desulfurized and the desulfurization performance was tested. In the desulfurization test, an initial distillation temperature of 148 ° C, a 10% distillation temperature of 172 ° C, a 30% distillation temperature of 185 ° C, a 50% distillation temperature of 202 ° C, a 70% distillation temperature of 225 ° C, a 90% distillation temperature of 251 ° C, JIS No. 1 kerosene having a distillation property at an end point of 281 ° C. and containing 6 ppm of sulfur was used. The properties of this kerosene are shown in Table 5.
A SUS reaction tube having an inner diameter of 16 mm was filled with 11.6 ml of a desulfurization agent. The desulfurization agent was activated by raising the temperature of the reaction tube to 400 ° C. in a hydrogen stream under normal pressure and holding it for 3 hours. Thereafter, the JIS No. 1 kerosene was passed through the reaction tube at a pressure of 0.4 Mpa and a liquid space velocity of 10 hr −1 , and the product oil was collected every hour on the downstream side of the reaction tube. The desulfurization reaction experiment was continued until the sulfur content in the collected product oil exceeded 50 ppb, and the time when 50 ppb was broken through was defined as 50 ppb breakthrough time. This breakthrough time was 40 hours.

実施例A3
実施例A1と同様な手順で調製を行い、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。ただし、撹拌1時間後のpHが7.85となるように調製液B中の炭酸ナトリウムの量を調整した。上記撹拌1時間後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表1に示した。
Example A3
Preparation was carried out in the same procedure as in Example A1, the filtrate was collected, and the amounts of nickel and molybdenum contained therein were quantified. However, the amount of sodium carbonate in Preparation Solution B was adjusted so that the pH after 1 hour of stirring was 7.85. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 1 along with the pH value after 1 hour of stirring.

比較例A1〜A7
実施例A1と同様な手順で調製を行い、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。ただし、撹拌1時間後のpHがそれぞれ5.41、5.56、5.66、8.39、9.04、9.19、9.31となるように調製液B中の炭酸ナトリウムの量を調整した。上記撹拌1時間後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表1に示した。
Comparative Examples A1 to A7
Preparation was carried out in the same procedure as in Example A1, the filtrate was collected, and the amounts of nickel and molybdenum contained therein were quantified. However, the amount of sodium carbonate in Preparation Solution B so that the pH after 1 hour of stirring was 5.41, 5.56, 5.66, 8.39, 9.04, 9.19, and 9.31, respectively. Adjusted. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 1 along with the pH value after 1 hour of stirring.

実施例B1、B2
調製液A、調製液B、混合後の撹拌液の温度を60℃とし、撹拌1時間後のpHが6.90、7.30となるように調製液B中の炭酸ナトリウムの量を調整した以外は、実施例A1と同様な手順で調製を行い、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。上記撹拌1時間後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表2に示した。
Examples B1 and B2
The temperature of preparation liquid A, preparation liquid B, and the stirring liquid after mixing was set to 60 ° C., and the amount of sodium carbonate in preparation liquid B was adjusted so that the pH after one hour of stirring was 6.90 and 7.30. Except for the above, preparation was performed in the same procedure as in Example A1, the filtrate was collected, and the amounts of nickel and molybdenum contained therein were quantified. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 2 along with the pH value after 1 hour of stirring.

比較例B1〜B7
実施例B1と同様な手順で調製を行い、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。ただし、撹拌1時間後のpHがそれぞれ5.36、5.55、5.64、5.91、8.13、9.30、9.89となるように調製液B中の炭酸ナトリウムの量を調整した。上記撹拌1時間後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表2に示した。
Comparative Examples B1-B7
Preparation was carried out in the same procedure as in Example B1, the filtrate was collected, and the amounts of nickel and molybdenum contained therein were quantified. However, the amount of sodium carbonate in Preparation Solution B so that the pH after 1 hour of stirring was 5.36, 5.55, 5.64, 5.91, 8.13, 9.30, and 9.89, respectively. Adjusted. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 2 along with the pH value after 1 hour of stirring.

比較例C1〜C5
調製液A、調製液B、混合後の撹拌液の温度を40℃とし、撹拌1時間後のpHが5.4、5.9、6.8、7.5、8.2となるように調製液B中の炭酸ナトリウムの量を調整した以外は、実施例A1と同様な手順で調製を行い、ろ液を採取して、その中に含まれるニッケル及びモリブデンの量を定量した。上記撹拌1時間後のpH値と共に、ろ液中に含まれるニッケル及びモリブデンの量を表3に示した。
Comparative Examples C1-C5
The temperature of preparation liquid A, preparation liquid B, and the stirring liquid after mixing is 40 ° C., and the pH after one hour of stirring is 5.4, 5.9, 6.8, 7.5, and 8.2. Except having adjusted the quantity of sodium carbonate in the preparation liquid B, it prepared in the same procedure as Example A1, the filtrate was extract | collected, and the quantity of nickel and molybdenum contained in it was quantified. The amounts of nickel and molybdenum contained in the filtrate are shown in Table 3 along with the pH value after 1 hour of stirring.

Figure 2009045536
Figure 2009045536

Figure 2009045536
Figure 2009045536

Figure 2009045536
Figure 2009045536

Figure 2009045536
Figure 2009045536

Figure 2009045536
Figure 2009045536

Claims (2)

ニッケルを含む酸性溶液とモリブデンを含む塩基性溶液とを混合し、反応させて沈殿物を生成させることにより、ニッケルとモリブデンを含む炭化水素用脱硫剤を製造する方法であって、前記酸性溶液と前記塩基性溶液を混合した後の溶液のpHが6〜8で、温度が50〜90℃であることを特徴とする炭化水素用脱硫剤の製造方法。   A method for producing a hydrocarbon desulfurization agent containing nickel and molybdenum by mixing an acidic solution containing nickel and a basic solution containing molybdenum and reacting to produce a precipitate, the acidic solution and A method for producing a hydrocarbon desulfurization agent, wherein the pH of the solution after mixing the basic solution is 6 to 8, and the temperature is 50 to 90 ° C. 前記炭化水素用脱硫剤が、脱硫剤基準で、ニッケルを酸化物(NiO)換算で50〜95質量%、モリブデンを酸化物(MoO)換算で0.5〜25質量%、及び無機酸化物を含有することを特徴とする請求項1に記載の炭化水素用脱硫剤の製造方法。 The desulfurizing agent for hydrocarbon is based on a desulfurizing agent, nickel is 50 to 95% by mass in terms of oxide (NiO), molybdenum is 0.5 to 25% by mass in terms of oxide (MoO 3 ), and inorganic oxide The method for producing a hydrocarbon desulfurization agent according to claim 1, comprising:
JP2007212705A 2007-08-17 2007-08-17 Method for producing hydrocarbon desulfurization agent Expired - Fee Related JP4955483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212705A JP4955483B2 (en) 2007-08-17 2007-08-17 Method for producing hydrocarbon desulfurization agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212705A JP4955483B2 (en) 2007-08-17 2007-08-17 Method for producing hydrocarbon desulfurization agent

Publications (2)

Publication Number Publication Date
JP2009045536A true JP2009045536A (en) 2009-03-05
JP4955483B2 JP4955483B2 (en) 2012-06-20

Family

ID=40498267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212705A Expired - Fee Related JP4955483B2 (en) 2007-08-17 2007-08-17 Method for producing hydrocarbon desulfurization agent

Country Status (1)

Country Link
JP (1) JP4955483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030211A (en) * 2010-08-03 2012-02-16 Japan Petroleum Energy Center Method of manufacturing desulfurizing agent for hydrocarbon
JP2012031355A (en) * 2010-08-03 2012-02-16 Japan Petroleum Energy Center Desulfurizing agent for hydrocarbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855042A (en) * 1981-09-26 1983-04-01 Daido Steel Co Ltd Deodorizer using amorphous material
JPS647947A (en) * 1987-02-16 1989-01-11 Hitachi Ltd Desulfurizing agent and treatment of gas containing hydrogen sulfide used therewith
JPH04285691A (en) * 1991-03-13 1992-10-09 Mitsubishi Kakoki Kaisha Ltd Desulfurization and steam reforming of hydrocarbon
JP2001279257A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP2004195445A (en) * 2002-12-17 2004-07-15 Toshiaki Kabe Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855042A (en) * 1981-09-26 1983-04-01 Daido Steel Co Ltd Deodorizer using amorphous material
JPS647947A (en) * 1987-02-16 1989-01-11 Hitachi Ltd Desulfurizing agent and treatment of gas containing hydrogen sulfide used therewith
JPH04285691A (en) * 1991-03-13 1992-10-09 Mitsubishi Kakoki Kaisha Ltd Desulfurization and steam reforming of hydrocarbon
JP2001279257A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP2004195445A (en) * 2002-12-17 2004-07-15 Toshiaki Kabe Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030211A (en) * 2010-08-03 2012-02-16 Japan Petroleum Energy Center Method of manufacturing desulfurizing agent for hydrocarbon
JP2012031355A (en) * 2010-08-03 2012-02-16 Japan Petroleum Energy Center Desulfurizing agent for hydrocarbon

Also Published As

Publication number Publication date
JP4955483B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5220265B2 (en) Method for removing sulfur compounds from hydrocarbon-containing gas
EP1270069B1 (en) Use of a desulfurizing agent
JP4896766B2 (en) Hydrocarbon desulfurization agent
JPWO2006101079A1 (en) Desulfurization agent and desulfurization method using the same
JP2006501065A (en) Catalyst adsorbent for sulfur compound removal for fuel cells
JP4955483B2 (en) Method for producing hydrocarbon desulfurization agent
JP4922783B2 (en) Hydrocarbon desulfurization agent
JP2009045526A (en) Method for preparing nickel-ruthenium desulfurization agent and nickel-ruthenium catalyst
WO2015083704A1 (en) Desulfurization system, hydrogen production system, fuel cell system, method of desulfurizing fuel gas, and method of producing fuel gas desulfurization catalyst
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP4878868B2 (en) Hydrocarbon desulfurization agent
JP2005095817A (en) Desulfurization agent and desulfurization method using the same
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP5326130B2 (en) Method for producing hydrocarbon desulfurization agent
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP5446060B2 (en) Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP2005082619A (en) Method for preliminarily sulfurizing hydrogenation treatment catalyst and method for desulfurizing gas oil
JP5419095B2 (en) Hydrocarbon desulfurization agent
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP5107046B2 (en) Hydrocarbon steam reforming catalyst
JP5948657B2 (en) Hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees