JP5419095B2 - Hydrocarbon desulfurization agent - Google Patents
Hydrocarbon desulfurization agent Download PDFInfo
- Publication number
- JP5419095B2 JP5419095B2 JP2010174260A JP2010174260A JP5419095B2 JP 5419095 B2 JP5419095 B2 JP 5419095B2 JP 2010174260 A JP2010174260 A JP 2010174260A JP 2010174260 A JP2010174260 A JP 2010174260A JP 5419095 B2 JP5419095 B2 JP 5419095B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- desulfurization
- mass
- desulfurizing agent
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003795 chemical substances by application Substances 0.000 title claims description 95
- 238000006477 desulfuration reaction Methods 0.000 title claims description 82
- 230000023556 desulfurization Effects 0.000 title claims description 82
- 229930195733 hydrocarbon Natural products 0.000 title claims description 40
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 40
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 66
- 230000003009 desulfurizing effect Effects 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 48
- 239000011575 calcium Substances 0.000 claims description 36
- 229910052791 calcium Inorganic materials 0.000 claims description 35
- 229910052759 nickel Inorganic materials 0.000 claims description 35
- 239000007788 liquid Substances 0.000 claims description 33
- 229910052750 molybdenum Inorganic materials 0.000 claims description 31
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 28
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 27
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 25
- 229910052717 sulfur Inorganic materials 0.000 claims description 25
- 239000011593 sulfur Substances 0.000 claims description 25
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 24
- 239000011733 molybdenum Substances 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 239000002994 raw material Substances 0.000 description 73
- 239000007864 aqueous solution Substances 0.000 description 38
- 238000002360 preparation method Methods 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 230000002378 acidificating effect Effects 0.000 description 19
- 239000000047 product Substances 0.000 description 19
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- 239000003350 kerosene Substances 0.000 description 16
- 238000001179 sorption measurement Methods 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000000975 co-precipitation Methods 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 150000007529 inorganic bases Chemical class 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000446 fuel Substances 0.000 description 9
- 238000004821 distillation Methods 0.000 description 8
- -1 naphtha Substances 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000002407 reforming Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 241000080590 Niso Species 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 229910001593 boehmite Inorganic materials 0.000 description 6
- 239000008119 colloidal silica Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 6
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- ICSSIKVYVJQJND-UHFFFAOYSA-N calcium nitrate tetrahydrate Chemical compound O.O.O.O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ICSSIKVYVJQJND-UHFFFAOYSA-N 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 3
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910003296 Ni-Mo Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000000274 adsorptive effect Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 101000578940 Homo sapiens PDZ domain-containing protein MAGIX Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 102100028326 PDZ domain-containing protein MAGIX Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、炭化水素、とりわけ燃料電池などにおいて水素製造のための改質原料に使用される炭化水素の脱硫剤に関するものである。 The present invention relates to a hydrocarbon desulfurization agent used as a reforming raw material for producing hydrogen in hydrocarbons, particularly in fuel cells.
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池の水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらにはLPG、ナフサ、灯油などの石油系燃料といった、様々な炭化水素があり、これらの使用が研究されている。 In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like. As the hydrogen source of this fuel cell, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and further LPG, naphtha, kerosene, etc. There are various hydrocarbons, such as petroleum-based fuels, and their use is being studied.
これらの炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。しかしながら、これらの炭化水素には、硫黄分が含有されており、上記改質触媒は、炭化水素中の硫黄分により被毒される。これは、該改質触媒に一般に用いられているニッケルもしくはルテニウムといった活性金属が、硫黄に対する耐性が低いためである。そこで原料炭化水素に硫黄分が含有されている場合、改質触媒寿命の点から、あらかじめ該炭化水素に脱硫処理を施し、硫黄分含有量を通常100質量ppb以下にすることが要求される。 When hydrogen is produced using these hydrocarbons, generally, a method is used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming treatment in the presence of a reforming catalyst. However, these hydrocarbons contain a sulfur content, and the reforming catalyst is poisoned by the sulfur content in the hydrocarbons. This is because an active metal such as nickel or ruthenium generally used for the reforming catalyst has low resistance to sulfur. Therefore, when the raw material hydrocarbon contains a sulfur content, from the viewpoint of the life of the reforming catalyst, it is required that the hydrocarbon be subjected to a desulfurization treatment in advance to make the sulfur content normally 100 mass ppb or less.
一般的な脱硫方法としては、200〜400℃、2〜15MPaの水素雰囲気下でコバルト−モリブデンもしくはニッケル−モリブデン系触媒により、硫黄化合物を硫化水素の形にして取り除く、いわゆる水素化脱硫方法が多く用いられている(例えば、特許文献1参照)。このような水素を利用した炭化水素(灯油等)の脱硫方法が古くから盛んに研究されているが、水素化脱硫方法により原料炭化水素の硫黄分を低減させる場合、高温・高圧条件が必要であることや、別途水素が必要になるなど、経済的に不利である。加えて、この水素化脱硫方法は、改質触媒を被毒から保護するに十分なレベルまでの脱硫を行うには未だ至っていない。
そこで定置型燃料電池発電システムにおいては、市販の炭化水素をオンサイトで吸着により脱硫する手法が種々提案されており、炭化水素、とりわけ灯油などの重質炭化水素を、200℃付近の反応条件でNi−Cu系脱硫剤や、Ni−Zn系脱硫剤を用いて脱硫する方法などが提案されている(例えば、特許文献2及び3参照)。
As a general desulfurization method, there are many so-called hydrodesulfurization methods in which sulfur compounds are removed in the form of hydrogen sulfide with a cobalt-molybdenum or nickel-molybdenum-based catalyst in a hydrogen atmosphere of 200 to 400 ° C. and 2 to 15 MPa. Used (see, for example, Patent Document 1). Such hydrogen desulfurization methods using hydrocarbons (kerosene, etc.) have been actively researched for a long time, but high-temperature and high-pressure conditions are necessary when reducing the sulfur content of raw material hydrocarbons by hydrodesulfurization methods. It is economically disadvantageous because there are certain things and hydrogen is required separately. In addition, this hydrodesulfurization method has not yet achieved desulfurization to a level sufficient to protect the reforming catalyst from poisoning.
Therefore, in the stationary fuel cell power generation system, various techniques for desulfurizing commercially available hydrocarbons by adsorption on-site have been proposed, and hydrocarbons, especially heavy hydrocarbons such as kerosene, are reacted under reaction conditions around 200 ° C. A method of desulfurization using a Ni—Cu-based desulfurizing agent or a Ni—Zn-based desulfurizing agent has been proposed (for example, see Patent Documents 2 and 3).
しかし、従来のNi系脱硫剤の中には比較的短時間で破過(生成油の硫黄濃度が基準値を超える)してしまう場合もあり、脱硫剤の寿命が十分ではないことから、その破過に達する時間(破過時間)を延長することが、脱硫剤交換頻度の減少や装置の小型化・高効率化の観点から望まれている。
そこで、本出願人は、先に、Ni−Mo系脱硫剤を用いることで、Moを含まない他の脱硫剤と比較して大幅に破過時間を延長することができることを提案した(特許文献4参照)。しかし、脱硫剤交換頻度の減少や装置の小型化・高効率化の観点から、より一層脱硫性能に優れた脱硫剤が提供されることが望まれている。
However, some conventional Ni-based desulfurization agents may break through in a relatively short time (the sulfur concentration of the product oil exceeds the standard value), and the life of the desulfurization agent is not sufficient. Extending the time to reach breakthrough (breakthrough time) is desired from the viewpoint of reducing the frequency of replacement of the desulfurizing agent and reducing the size and efficiency of the apparatus.
Therefore, the present applicant previously proposed that the breakthrough time can be greatly extended by using a Ni-Mo-based desulfurization agent as compared with other desulfurization agents not containing Mo (patent document). 4). However, it is desired to provide a desulfurization agent having further excellent desulfurization performance from the viewpoint of reducing the frequency of desulfurization agent replacement and reducing the size and efficiency of the apparatus.
本発明は、上記従来の状況に鑑み、水素を炭化水素と共に供給することなく、より一層炭化水素中の硫黄分を効率よくppbレベルの低濃度まで除去し得て、かつ破過時間が延長された寿命の長い炭化水素用脱硫剤を提供することを目的とするものである。 In view of the above-described conventional situation, the present invention can further efficiently remove sulfur in hydrocarbons to a low concentration of ppb level without supplying hydrogen together with hydrocarbons, and the breakthrough time is extended. An object of the present invention is to provide a hydrocarbon desulfurization agent having a long life.
本発明者らは、上記目的を達成すべく炭化水素の吸着による脱硫に関して鋭意検討したところ、ニッケルとモリブデンに加えてカルシウムを含む特定組成の脱硫剤を使用することで、脱硫反応における破過時間を一層改善することができることを見出し、この知見に基づいて本発明に到達したものである。すなわち、本発明は以下の炭化水素用脱硫剤に関するものである。
1.ニッケルを酸化物(NiO)換算で50〜95質量%、モリブデンを酸化物(MoO3)換算で0.5〜25質量%、カルシウムを酸化物(CaO)換算で0.1〜3質量%、及び無機酸化物を含有することを特徴とする炭化水素用脱硫剤。
2.無機酸化物が、SiO2、Al2O3、及びSiO2−Al2O3の少なくとも1以上である上記1に記載の炭化水素用脱硫剤。
3.上記1又は2に記載の脱硫剤を用い、反応温度0〜400℃、反応圧力0.1MPa以上、液空間速度0.01〜100hr−1の条件下で、炭化水素中の硫黄分を50質量ppb以下にする、炭化水素の脱硫方法。
The inventors of the present invention have made extensive studies on desulfurization by adsorption of hydrocarbons in order to achieve the above object. By using a desulfurization agent having a specific composition containing calcium in addition to nickel and molybdenum, the breakthrough time in the desulfurization reaction can be achieved. The present invention has been found based on this finding. That is, the present invention relates to the following hydrocarbon desulfurization agent.
1. Nickel is 50 to 95% by mass in terms of oxide (NiO), molybdenum is 0.5 to 25% by mass in terms of oxide (MoO 3 ), calcium is 0.1 to 3% by mass in terms of oxide (CaO), And a hydrocarbon desulfurization agent characterized by containing an inorganic oxide.
2. Inorganic oxide, SiO 2, Al 2 O 3 , and hydrocarbon desulfurizing agent according to the above 1 is at least one or more SiO 2 -Al 2 O 3.
3. Using the desulfurization agent according to 1 or 2 above, the sulfur content in the hydrocarbon is 50 masses under the conditions of a reaction temperature of 0 to 400 ° C., a reaction pressure of 0.1 MPa or more, and a liquid space velocity of 0.01 to 100 hr −1. A hydrocarbon desulfurization method of ppb or less.
本発明の脱硫剤は特定の組成を有することにより、灯油、ジェット燃料、ナフサ、ガソリン、LPG、天然ガスなど炭化水素中の硫黄分を極めて効率よく除去でき、50質量ppb破過時間を著しく増加させることができる長寿命の炭化水素用脱硫剤である。また、ニッケルとモリブデンに加えるカルシウムは、比較的安価であるから、Ni−Mo系脱硫剤に比べての大幅な製造コスト上昇を抑制できる。 By having a specific composition, the desulfurization agent of the present invention can remove sulfur in hydrocarbons such as kerosene, jet fuel, naphtha, gasoline, LPG, and natural gas very efficiently, and remarkably increases the breakthrough time of 50 mass ppb. It is a long-life hydrocarbon desulfurization agent that can be used. Moreover, since calcium added to nickel and molybdenum is relatively inexpensive, it is possible to suppress a significant increase in manufacturing cost compared to Ni—Mo-based desulfurization agents.
<脱硫剤組成>
本発明における脱硫剤は、ニッケル、モリブデン及びカルシウムを含んでなり、原料炭化水素中に存在する硫黄含有化合物を吸着除去して、原料炭化水素中の硫黄濃度を低減(脱硫)させるものである。
本発明において、脱硫剤にカルシウムを添加することで、添加していないものと比較し、脱硫剤への炭素析出を抑制することができ、金属成分への炭素被覆が少なくなり、金属成分劣化が抑制され、結果として、破過時間が長くなるものと推測される。
<Desulfurization agent composition>
The desulfurizing agent in the present invention contains nickel, molybdenum and calcium, and adsorbs and removes sulfur-containing compounds present in the raw material hydrocarbon to reduce (desulfurize) the sulfur concentration in the raw material hydrocarbon.
In the present invention, by adding calcium to the desulfurizing agent, it is possible to suppress carbon deposition on the desulfurizing agent as compared with the case where it is not added, the carbon coating on the metal component is reduced, and the metal component is deteriorated. As a result, it is estimated that the breakthrough time becomes longer.
脱硫剤におけるニッケルの含有量は、酸化物(NiO)換算で50〜95質量%、好ましくは60〜90質量%である。ニッケル酸化物量が50質量%以上であれば所望の脱硫性能が発現されるため好ましく、95質量%以下であれば、脱硫効果が飽和せず、またNi同士の凝集による脱硫性能の低下が生じにくいため好ましい。 The content of nickel in the desulfurizing agent is 50 to 95% by mass, preferably 60 to 90% by mass in terms of oxide (NiO). If the amount of nickel oxide is 50% by mass or more, the desired desulfurization performance is exhibited, and if it is 95% by mass or less, the desulfurization effect is not saturated, and the desulfurization performance is not easily lowered due to the aggregation of Ni. Therefore, it is preferable.
脱硫剤におけるモリブデンの含有量は、酸化物(MoO3)換算で0.5〜25質量%、好ましくは0.5〜20質量%である。モリブデン酸化物量が0.5質量%以上であれば所望の脱硫性能が発現されるため好ましく、25質量%以下であれば、脱硫効果が飽和せず、また脱硫性能の低下が生じにくいため好ましい。 The content of molybdenum in the desulfurizing agent is 0.5 to 25% by mass, preferably 0.5 to 20% by mass in terms of oxide (MoO 3 ). If the amount of molybdenum oxide is 0.5% by mass or more, the desired desulfurization performance is exhibited, and if it is 25% by mass or less, the desulfurization effect is not saturated and the desulfurization performance is not easily lowered.
脱硫剤におけるカルシウムの含有量は、酸化物(CaO)換算で0.1〜3質量%、好ましくは0.5〜2.5質量%である。モリブデン酸化物量が0.1質量%以上であれば所望の脱硫性能が発現されるため好ましく、3質量%以下であれば、脱硫効果が飽和せず、また脱硫性能の低下が生じにくいため好ましい。尚、カルシウムを酸化物(CaO)換算で3質量%を超えて添加した場合、炭素析出の抑制効果はあるものの、脱硫剤の比表面積や、かさ密度が低下することにより、結果として性能が低下するものと推測される。 The content of calcium in the desulfurizing agent is 0.1 to 3% by mass, preferably 0.5 to 2.5% by mass in terms of oxide (CaO). If the amount of molybdenum oxide is 0.1% by mass or more, the desired desulfurization performance is exhibited, and if it is 3% by mass or less, the desulfurization effect is not saturated and the desulfurization performance is not easily lowered. When calcium is added in an amount exceeding 3% by mass in terms of oxide (CaO), although there is an effect of suppressing carbon deposition, the specific surface area and bulk density of the desulfurizing agent decrease, resulting in a decrease in performance. Presumed to be.
本発明の脱硫剤においては、上記ニッケル、モリブデン及びカルシウムに加えてさらに、無機酸化物を含有する。無機酸化物を用いると、それに吸着活性金属が分散付着しその分散性が良くなり、脱硫性能が向上し、破過時間の延長が期待される。また、脱硫剤の成型性や強度も向上するため、無機酸化物を用いることは高活性かつ高耐久性の脱硫剤を得る上で望ましい。
無機酸化物の種類は特に限定されないが、Si、Al、B、Mg、Ce、Zr、P、Ti、W、Mnからなる群から選ばれるいずれか1種の元素の酸化物もしくはこれらの混合物、又は2種以上の元素の複合酸化物が好ましく、これらは結晶構造が無定形であっても結晶性であっても構わない。例えば、SiO2、Al2O3、TiO2、B2O3、MgO、SiO2−Al2O3、Al2O3−B2O3、MgO−SiO2、ゼオライトなどが挙げられる。各種無機酸化物の中でも、高表面積、高成形性、高耐破壊・耐磨耗性を有していることから、SiO2、Al2O3、及びSiO2−Al2O3が特に好ましい。なお、このSiO2−Al2O3は、後述する脱硫剤の焼成工程においてSi原料及びAl原料の両者を含む混合物を焼成する過程で生成することができる。
無機酸化物成分の含有量については、特に制限はなく、各種条件において適宜選定すればよいが、通常は脱硫剤全体に対して好ましくは0.5〜50質量%、より好ましくは0.5〜40質量%、さらに好ましくは0.5〜30質量%の範囲であればよい。含有量が0.5質量%以上であれば、無機酸化物成分としての効果が十分に発揮され、また50質量%以下であれば、吸着活性成分の低下による脱硫性能の低下を防ぐことができ、好ましい。
The desulfurizing agent of the present invention further contains an inorganic oxide in addition to the nickel, molybdenum and calcium. When an inorganic oxide is used, the adsorptive active metal is dispersed and attached to the oxide, thereby improving the dispersibility, improving the desulfurization performance, and extending the breakthrough time. Also, since the moldability and strength of the desulfurizing agent are improved, it is desirable to use an inorganic oxide in order to obtain a highly active and highly durable desulfurizing agent.
The kind of the inorganic oxide is not particularly limited, but an oxide of any one element selected from the group consisting of Si, Al, B, Mg, Ce, Zr, P, Ti, W, Mn, or a mixture thereof, Alternatively, a composite oxide of two or more elements is preferable, and these may have an amorphous or crystalline structure. For example, SiO 2, Al 2 O 3 , TiO 2, B 2 O 3, MgO, SiO 2 -Al 2 O 3, Al 2 O 3 -B 2 O 3, MgO-SiO 2, etc. zeolites. Among various inorganic oxides, SiO 2 , Al 2 O 3 , and SiO 2 —Al 2 O 3 are particularly preferable because they have a high surface area, high moldability, and high fracture resistance and wear resistance. Incidentally, the SiO 2 -Al 2 O 3 can be produced in the process of firing the mixture containing both Si source and Al source in the firing step described later desulfurizing agent.
About content of an inorganic oxide component, there is no restriction | limiting in particular, What is necessary is just to select suitably in various conditions, Usually, preferably 0.5-50 mass% with respect to the whole desulfurization agent, More preferably, 0.5- It may be in the range of 40% by mass, more preferably 0.5-30% by mass. If the content is 0.5% by mass or more, the effect as an inorganic oxide component is sufficiently exhibited, and if it is 50% by mass or less, a decrease in desulfurization performance due to a decrease in the adsorption active component can be prevented. ,preferable.
さらに、本発明の脱硫剤では、脱硫反応前に、上記含有金属が脱硫反応に適する程度の金属状態に還元されていることが好ましい。これにより、含有金属は活性化され、脱硫剤の硫黄吸着能を向上することができる。脱硫剤の含有金属を金属状態とするには、使用前に水素などで還元処理を施せばよい。なお、金属の状態は、X線回折法(XRD)により、各金属のピークを測定することなどで確認することができる。例えば、金属ニッケルの存在は、X線回折測定(線源Cu−Kα線)により、2θ=51.6°付近にピークトップを有する回折ピークを検出することで確認できる。 Furthermore, in the desulfurizing agent of the present invention, it is preferable that the above-mentioned contained metal is reduced to a metal state suitable for the desulfurization reaction before the desulfurization reaction. Thereby, the contained metal is activated and the sulfur adsorption ability of the desulfurizing agent can be improved. In order to make the metal contained in the desulfurizing agent into a metallic state, reduction treatment with hydrogen or the like may be performed before use. The state of the metal can be confirmed by measuring the peak of each metal by X-ray diffraction (XRD). For example, the presence of metallic nickel can be confirmed by detecting a diffraction peak having a peak top in the vicinity of 2θ = 51.6 ° by X-ray diffraction measurement (ray source Cu—Kα ray).
また、本発明の脱硫剤の比表面積は、還元処理前の状態で150〜600m2/gであることが好ましく、180〜500m2/gであることがより好ましい。比表面積が150m2/g以上であれば、硫黄を吸着する吸着点の数が多くなり、十分な吸着能力が得られて好ましい。また、比表面積が600m2/g以下であれば、相対的に平均細孔径が大きくなり、十分な吸着能力が得られて好ましい。 Moreover, it is preferable that it is 150-600 m < 2 > / g, and, as for the specific surface area of the desulfurization agent of this invention before a reduction process, it is more preferable that it is 180-500 m < 2 > / g. If the specific surface area is 150 m 2 / g or more, the number of adsorption points for adsorbing sulfur increases, and a sufficient adsorption capacity is obtained, which is preferable. Moreover, if a specific surface area is 600 m < 2 > / g or less, an average pore diameter becomes comparatively large and sufficient adsorption capacity is obtained and it is preferable.
脱硫剤の形状については特に規定されず、成型体(押出し円柱、タブレット円柱、球など)、メッシュで篩い分けられた粒状体、粉末などいずれの状態でもかまわないが、取り扱いの簡便さを考えると、成型体又はメッシュで篩い分けられた粒状体が好ましい。脱硫剤の形状を成型体あるいはメッシュで篩い分けられた粒状体にするためには、無機酸化物を用いることが望ましい。また、脱硫剤の大きさは、成型体、メッシュで篩い分けられた粒状体に関らず特に限定されないが、通常直径、あるいは長さが0.1〜10mm、より好ましくは0.1〜5mmであることが好ましい。 The shape of the desulfurizing agent is not particularly specified, and it may be in any state such as a molded body (extruded cylinder, tablet cylinder, sphere, etc.), a granular body sieved with a mesh, or a powder, but considering the ease of handling Granules sieved with a molded body or mesh are preferred. In order to make the shape of the desulfurizing agent into a molded body or a granular body sieved with a mesh, it is desirable to use an inorganic oxide. Further, the size of the desulfurizing agent is not particularly limited regardless of the size of the molded product or the granular material sieved with a mesh, but usually the diameter or length is 0.1 to 10 mm, more preferably 0.1 to 5 mm. It is preferable that
<脱硫剤の調製>
脱硫剤の調製方法については特に規定されず、任意の方法で適宜調製することができるが、無機酸化物を用いて、含浸法、混練法、共沈法、ゾルゲル法、平衡吸着法などにより調製することができ、ニッケル、モリブデン及びカルシウムを有効的に機能させるためには含浸法及び共沈法が好ましい。さらに、ニッケルの添加には、含浸法では1回の操作による担持量が少ないため、共沈法がより好ましい。
<Preparation of desulfurizing agent>
The method for preparing the desulfurizing agent is not particularly defined and can be appropriately prepared by any method, but it is prepared by an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an equilibrium adsorption method, etc. using an inorganic oxide. An impregnation method and a coprecipitation method are preferable for effectively functioning nickel, molybdenum and calcium. Further, for the addition of nickel, the coprecipitation method is more preferable because the impregnation method requires a small amount of support by one operation.
以下に本発明の脱硫剤の好適な製造方法について具体的に説明するが、本発明の脱硫剤の製造方法はこれに限定されるものではない。 Although the suitable manufacturing method of the desulfurization agent of this invention is demonstrated concretely below, the manufacturing method of the desulfurization agent of this invention is not limited to this.
〔Ni、Mo、Ca共沈(1)〕
好適な本発明の脱硫剤の調製方法の第一の方法について説明する。この方法では、まず、ニッケル原料及びカルシウム原料を含む酸性水溶液と、モリブデン原料を含む塩基性水溶液を別個に調製する。無機酸化物原料は、酸性水溶液又は塩基性水溶液のいずれにも添加することができる。2種以上の無機酸化物原料を使用する場合は、無機酸化物原料を両方の水溶液に添加してもよい。
[Ni, Mo, Ca coprecipitation (1)]
A first method for preparing a suitable desulfurizing agent of the present invention will be described. In this method, first, an acidic aqueous solution containing a nickel raw material and a calcium raw material and a basic aqueous solution containing a molybdenum raw material are separately prepared. The inorganic oxide raw material can be added to either an acidic aqueous solution or a basic aqueous solution. When using 2 or more types of inorganic oxide raw materials, you may add an inorganic oxide raw material to both aqueous solution.
例えば、無機酸化物としてSiO2及びAl2O3を含む脱硫剤を製造する場合、ニッケル原料、カルシウム原料、及びアルミニウム原料を含む酸性水溶液と、モリブデン原料、Si原料及び無機塩基を含む塩基性水溶液をそれぞれ調製する。また、無機酸化物としてSiO2のみを含む脱硫剤を製造する場合は、例えば、ニッケル原料及びカルシウム原料を含む酸性水溶液と、モリブデン原料、Si原料及び無機塩基を含む塩基性水溶液をそれぞれ調製する。 For example, when producing a desulfurization agent containing SiO 2 and Al 2 O 3 as an inorganic oxide, an acidic aqueous solution containing nickel raw material, calcium raw material and aluminum raw material, and a basic aqueous solution containing molybdenum raw material, Si raw material and inorganic base Are prepared respectively. In the production of the desulfurizing agent containing only SiO 2 as the inorganic oxide, for example, an acidic aqueous solution containing a nickel raw material and calcium material, to prepare respectively a basic aqueous solution containing a molybdenum material, Si raw material and an inorganic base.
ニッケル原料としては、特に限定されないが、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、酢酸ニッケルなどの水溶性ニッケル金属塩及びその水和物が好適に使用できる。カルシウム原料としては、特に限定されないが、硝酸カルシウム、硫酸カルシウムなどカルシウム金属塩及びその水和物が好適に使用できる。これらのニッケル原料やモリブデン原料やカルシウム原料は、それぞれ単独で用いても、二種以上を組み合わせて用いてもよい。
また、アルミニウム原料としては、特に限定されないが、ベーマイト、擬ベーマイト、γアルミナ、βアルミナなどが好ましい。これらは粉体状、あるいはゾルの形態で用いることができ、一種用いてもよく、二種以上を組み合わせて用いてもよい。
上記酸性水溶液は、塩酸、硫酸、硝酸などの酸によって調製することが好ましい。
Although it does not specifically limit as a nickel raw material, Water-soluble nickel metal salts, such as nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, and its hydrate can be used conveniently. Although it does not specifically limit as a calcium raw material, Calcium metal salts, such as calcium nitrate and calcium sulfate, and its hydrate can be used conveniently. These nickel raw material, molybdenum raw material, and calcium raw material may be used alone or in combination of two or more.
Further, the aluminum raw material is not particularly limited, but boehmite, pseudoboehmite, γ alumina, β alumina and the like are preferable. These can be used in the form of powder or sol, and may be used alone or in combination of two or more.
The acidic aqueous solution is preferably prepared with an acid such as hydrochloric acid, sulfuric acid, or nitric acid.
モリブデン原料としては、特に限定されないが、モリブデン酸アンモニウム、モリブドリン酸などの水溶性モリブデン金属塩及びその水和物が好適に使用できる。
また、Si原料としては、特に限定されないが、シリカや水ガラス、メタケイ酸ソーダ、珪藻土、メソポーラスシリカ(MCM41)などが好ましい。
そして、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが好ましく、例えば炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどが挙げられ、特に炭酸ナトリウムが好適である。
この無機塩基の使用量は、次の工程において、酸性水溶液と塩基性水溶液との混合液が実質上中性から塩基性になるように選ぶのが有利である。Si原料及び無機塩基は、単独で用いてもよく、二種以上を組み合わせて用いてよい。
Although it does not specifically limit as a molybdenum raw material, Water-soluble molybdenum metal salts, such as ammonium molybdate and molybdophosphoric acid, and its hydrate can be used conveniently.
Further, the Si raw material is not particularly limited, but silica, water glass, sodium metasilicate, diatomaceous earth, mesoporous silica (MCM41) and the like are preferable.
And as an inorganic base, an alkali metal carbonate, a hydroxide, etc. are preferable, for example, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, sodium hydroxide, potassium hydroxide etc. are mentioned, Especially sodium carbonate is suitable. .
The amount of the inorganic base used is advantageously selected so that the mixed solution of the acidic aqueous solution and the basic aqueous solution is substantially neutral to basic in the next step. Si raw material and inorganic base may be used independently and may be used in combination of 2 or more types.
なお、アルミニウム原料やSi原料は、脱硫剤に無機酸化物成分を加えるために用いるものである。これは、後記する第二、第三の方法でも同様である。 The aluminum raw material and Si raw material are used for adding an inorganic oxide component to the desulfurization agent. The same applies to the second and third methods described later.
次に、調製した各水溶液を、それぞれ25〜90℃に加温し、両者を混合する。そして、液温を25〜90℃に保持しながら0.5〜3時間程度撹拌し、反応を完結させる。酸性水溶液と塩基性水溶液の混合後のpHは6以上であることが好ましく、6〜11の範囲であることがより好ましく、6.5〜10の範囲であることがさらに好ましい。pHが6以上であれば、ニッケル、モリブデン及びカルシウムが効率よく沈殿するため好ましい。また、pHが11以下であることが、無機塩基の使用量を節減することができるため、製造コスト面から好ましい。 Next, each prepared aqueous solution is heated at 25-90 degreeC, respectively, and both are mixed. And it stirs about 0.5 to 3 hours, hold | maintaining liquid temperature at 25-90 degreeC, and completes reaction. The pH after mixing the acidic aqueous solution and the basic aqueous solution is preferably 6 or more, more preferably in the range of 6 to 11, and still more preferably in the range of 6.5 to 10. A pH of 6 or more is preferable because nickel, molybdenum and calcium precipitate efficiently. Moreover, since the usage-amount of an inorganic base can be saved that pH is 11 or less, it is preferable from a manufacturing cost side.
反応させた水溶液の沈殿物をろ過、水洗後、固形物を公知の方法により50〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜450℃の範囲の温度において1〜5時間焼成する。
以上のようにして本発明の脱硫剤を好適に調製することができる。
After the precipitate of the reacted aqueous solution is filtered and washed with water, the solid is dried at a temperature of about 50 to 150 ° C. by a known method. The dried product thus obtained is preferably fired at a temperature in the range of 200 to 450 ° C. for 1 to 5 hours.
As described above, the desulfurization agent of the present invention can be suitably prepared.
〔Ni、Mo、Ca共沈(2)〕
次に、好適な本発明の脱硫剤の調製方法の第二の方法について説明する。この方法では、まず、ニッケル原料及びカルシウム原料及びモリブデン原料を含む酸性水溶液と、無機酸化物原料を含む塩基性水溶液を別個に調製する。2種以上の無機酸化物原料を使用する場合は、無機酸化物原料を酸性水溶液にも添加することができる。
[Ni, Mo, Ca coprecipitation (2)]
Next, a second method for preparing a suitable desulfurizing agent of the present invention will be described. In this method, first, an acidic aqueous solution containing a nickel raw material, a calcium raw material and a molybdenum raw material and a basic aqueous solution containing an inorganic oxide raw material are separately prepared. When using 2 or more types of inorganic oxide raw materials, an inorganic oxide raw material can also be added to acidic aqueous solution.
例えば、無機酸化物としてSiO2及びAl2O3を含む脱硫剤を製造する場合は、ニッケル原料、カルシウム原料、モリブデン原料及びアルミニウム原料を含む酸性水溶液と、Si原料及び無機塩基を含む塩基性水溶液をそれぞれ調製する。
ニッケル原料、カルシウム原料、モリブデン原料、アルミニウム原料、Si原料、無機塩基としては、上記第一の方法と同様のものを用いることができる。また、ニッケル原料、カルシウム原料、モリブデン原料、及びアルミニウム原料を含む酸性水溶液は、塩酸、硫酸、硝酸などの酸によって調製することが好ましい。また、酸性水溶液と塩基性水溶液の混合後のpHは、第一の方法で述べたpHと同様の範囲とすることが好ましい。
調製した上記酸性水溶液と塩基性水溶液は、第一の方法と同様の条件で、混合して反応を完結させ、生成した沈殿物は、ろ過、水洗後、乾燥処理し、乾燥処理物を焼成する。
以上のようにしても本発明の脱硫剤を好適に調製することができる。
For example, when producing a desulfurization agent containing SiO 2 and Al 2 O 3 as an inorganic oxide, an acidic aqueous solution containing a nickel raw material, a calcium raw material, a molybdenum raw material and an aluminum raw material, and a basic aqueous solution containing a Si raw material and an inorganic base Are prepared respectively.
As the nickel raw material, the calcium raw material, the molybdenum raw material, the aluminum raw material, the Si raw material, and the inorganic base, those similar to the first method can be used. Moreover, it is preferable to prepare acidic aqueous solution containing nickel raw material, calcium raw material, molybdenum raw material, and aluminum raw material with acids, such as hydrochloric acid, a sulfuric acid, and nitric acid. The pH after mixing the acidic aqueous solution and the basic aqueous solution is preferably in the same range as the pH described in the first method.
The prepared acidic aqueous solution and basic aqueous solution are mixed under the same conditions as in the first method to complete the reaction. The formed precipitate is filtered, washed with water, dried, and the dried product is fired. .
Even if it does as mentioned above, the desulfurization agent of this invention can be prepared suitably.
〔Ni、Ca共沈、Mo含浸〕
さらに、好適な本発明の脱硫剤の調製方法の第三の方法について説明する。この方法では、まず、ニッケル原料及びカルシウム原料を含む酸性水溶液と、無機酸化物原料を含む塩基性水溶液を別個に調製する。2種以上の無機酸化物原料を使用する場合は、無機酸化物原料を酸性水溶液にも添加することができる。
[Ni, Ca coprecipitation, Mo impregnation]
Furthermore, a third method for preparing a suitable desulfurizing agent of the present invention will be described. In this method, first, an acidic aqueous solution containing a nickel raw material and a calcium raw material and a basic aqueous solution containing an inorganic oxide raw material are separately prepared. When using 2 or more types of inorganic oxide raw materials, an inorganic oxide raw material can also be added to acidic aqueous solution.
例えば、無機酸化物としてSiO2及びAl2O3を含む脱硫剤を製造する場合は、ニッケル原料及びカルシウム原料及びアルミニウム原料を含む酸性水溶液と、Si原料及び無機塩基を含む塩基性水溶液をそれぞれ調製する。
ニッケル原料、カルシウム原料、アルミニウム原料、Si原料、無機塩基としては、上記第一の方法と同様のものを用いることができる。また、ニッケル原料及びカルシウム原料及びアルミニウム原料を含む酸性水溶液は、塩酸、硫酸、硝酸などの酸によって調製することが好ましい。また、酸性水溶液と塩基性水溶液の混合後のpHは、第一の方法で述べたpHと同様の範囲とすることが好ましい。
調製した上記酸性水溶液と塩基性水溶液は、第一の方法と同様の条件で、混合して反応を完結させ、生成した沈殿物は、ろ過、水洗後、乾燥処理し、乾燥処理物を焼成する。
For example, in the case of producing a desulfurization agent containing SiO 2 and Al 2 O 3 as inorganic oxides, an acidic aqueous solution containing nickel raw material, calcium raw material and aluminum raw material, and a basic aqueous solution containing Si raw material and inorganic base are prepared. To do.
As the nickel raw material, the calcium raw material, the aluminum raw material, the Si raw material, and the inorganic base, those similar to the first method can be used. Moreover, it is preferable to prepare acidic aqueous solution containing a nickel raw material, a calcium raw material, and an aluminum raw material with acids, such as hydrochloric acid, a sulfuric acid, and nitric acid. The pH after mixing the acidic aqueous solution and the basic aqueous solution is preferably in the same range as the pH described in the first method.
The prepared acidic aqueous solution and basic aqueous solution are mixed under the same conditions as in the first method to complete the reaction. The formed precipitate is filtered, washed with water, dried, and the dried product is fired. .
得られた焼成物に、モリブデン原料をイオン交換水に溶解した水溶液を含浸担持させる。モリブデン原料がイオン交換水で溶解しない場合は少量のアンモニア水を加えても良い。モリブデン原料としては、上記第一の方法と同様のものを用いることができる。
得られたモリブデン原料水溶液の含浸物を、公知の方法により50〜150℃程度の温度で乾燥処理し、その乾燥処理物を、好ましくは200〜450℃の範囲の温度において1〜5時間焼成する。
以上のようにしても本発明の脱硫剤を好適に調製することができる。
The obtained fired product is impregnated with an aqueous solution obtained by dissolving a molybdenum raw material in ion-exchanged water. If the molybdenum raw material is not dissolved in ion-exchanged water, a small amount of ammonia water may be added. As the molybdenum raw material, the same material as in the first method can be used.
The obtained impregnated product of molybdenum raw material aqueous solution is dried at a temperature of about 50 to 150 ° C. by a known method, and the dried product is preferably fired at a temperature in the range of 200 to 450 ° C. for 1 to 5 hours. .
Even if it does as mentioned above, the desulfurization agent of this invention can be prepared suitably.
<脱硫方法>
上記のようにして調製した本発明の脱硫剤は、脱硫反応に供す前に、還元処理しておくことが好ましい。これにより、脱硫剤の含有金属が活性化され、硫黄分を吸着しやすい状態となる。還元方法は、水素、CO等による気相還元、ホルムアルデヒド、エタノール等を用いた液相還元等の公知の方法を用いることが可能であるが、気相による水素化還元が好ましく、この場合、水素雰囲気で200〜500℃で行うことが好ましく、300〜450℃の温度で行うことがより好ましい。
なお、水素化還元処理は、実際の脱硫器内(オンサイト)で行っても、事前の水素化還元処理装置(オフサイト)で行ってもかまわないが、使用する脱硫器の耐熱性などを考慮するとオフサイト還元が好ましい。さらにオフサイト水素化還元処理においては、還元処理後に脱硫剤の安定性を向上させるために、酸素や二酸化炭素などによる安定化処理を施すことがさらに好ましい。
<Desulfurization method>
The desulfurization agent of the present invention prepared as described above is preferably subjected to a reduction treatment before being subjected to a desulfurization reaction. As a result, the metal contained in the desulfurizing agent is activated and the sulfur component is easily adsorbed. As the reduction method, a known method such as gas phase reduction using hydrogen, CO, etc., liquid phase reduction using formaldehyde, ethanol, or the like can be used, but hydrogen reduction by gas phase is preferable, and in this case, hydrogen reduction It is preferable to carry out at 200-500 degreeC by atmosphere, and it is more preferable to carry out at the temperature of 300-450 degreeC.
The hydroreduction treatment can be performed in the actual desulfurizer (on-site) or in advance in the hydro-reduction treatment device (off-site), but the heat resistance of the desulfurizer to be used can be improved. Considering off-site reduction is preferred. Further, in the off-site hydroreduction treatment, it is more preferable to perform a stabilization treatment with oxygen, carbon dioxide or the like in order to improve the stability of the desulfurizing agent after the reduction treatment.
本発明の脱硫剤を用いて炭化水素の脱硫を行うには、通常、吸着槽に脱硫剤を充填し、吸着槽で原料炭化水素を脱硫剤と接触することにより脱硫が行われる。炭化水素と脱硫剤を接触させる方法としては、一般的には、固定床式脱硫剤床を吸着槽内に形成し、原料を吸着槽の下部に導入し、固定床の下から上に通過させ、吸着槽の上部から生成油を流出させることにより行うことができる。 In order to desulfurize hydrocarbons using the desulfurizing agent of the present invention, desulfurization is usually performed by filling the adsorption tank with a desulfurizing agent and contacting the raw material hydrocarbon with the desulfurizing agent in the adsorption tank. As a method for bringing hydrocarbons into contact with the desulfurizing agent, generally, a fixed bed type desulfurizing agent bed is formed in the adsorption tank, the raw material is introduced into the lower part of the adsorption tank, and passed from below the fixed bed to above. The product oil can be discharged from the upper part of the adsorption tank.
脱硫反応の条件としては、特に規定されないが、圧力は常圧(0.1MPa)以上が好ましく、さらには0.1〜1.1MPaが好ましい。圧力を0.1MPa以下にするには減圧装置など特殊な機器が必要となり、経済的に好ましくない。逆に圧力を1.1MPa以上とするには脱硫器や供給ポンプの耐圧が必要となり経済的に好ましくない。
また、温度は0〜400℃が好ましく、より好ましくは100〜300℃、更に好ましくは140〜300℃である。低温すぎると吸着脱硫速度が低下し、逆に高温すぎる場合には脱硫剤中のニッケル成分が凝集して脱硫サイト数が減少し、脱硫性能が低下する恐れがある。
また、液空間速度(LHSV)は0.01〜100hr−1、より好ましくは0.1〜20hr−1が好ましい。
The conditions for the desulfurization reaction are not particularly specified, but the pressure is preferably normal pressure (0.1 MPa) or more, more preferably 0.1 to 1.1 MPa. In order to reduce the pressure to 0.1 MPa or less, special equipment such as a decompression device is required, which is not economically preferable. On the other hand, if the pressure is set to 1.1 MPa or more, the pressure resistance of the desulfurizer or the supply pump is required, which is not economical.
Moreover, 0-400 degreeC is preferable, More preferably, it is 100-300 degreeC, More preferably, it is 140-300 degreeC. If the temperature is too low, the adsorptive desulfurization rate decreases. On the other hand, if the temperature is too high, the nickel component in the desulfurizing agent aggregates and the number of desulfurization sites decreases, which may reduce the desulfurization performance.
Also, liquid hourly space velocity (LHSV) 0.01~100Hr -1, more preferably 0.1 to 20 -1.
原料とする炭化水素としては灯油、ジェット燃料、ナフサ、ガソリン、LPG、天然ガスが好ましく、市場における流通度や取り扱いの簡便さから特に灯油が好ましい。灯油としては、硫黄分が80質量ppm程度のものまでなら本発明の脱硫剤により所望のように脱硫できる。通常は、硫黄分50質量ppm以下、好ましくは30質量ppm以下、より好ましくは10質量ppm以下の灯油が用いられる。
また、灯油中の芳香族分は通常30vol%以下であることが好ましく、20vol%以下であることがより好ましい。灯油中の芳香族分が30vol%以下であることにより硫黄分をより低減しやすくなる。また、灯油の蒸留性状における95%点は、通常270℃以下であることが好ましい。脱硫条件を上記範囲で適当に選択することにより、硫黄分をppbレベルに低減した炭化水素を長時間得ることができる。
Kerosene, jet fuel, naphtha, gasoline, LPG and natural gas are preferred as the hydrocarbon used as a raw material, and kerosene is particularly preferred from the viewpoint of market distribution and ease of handling. Kerosene can be desulfurized as desired with the desulfurizing agent of the present invention as long as the sulfur content is about 80 ppm by mass. Usually, kerosene having a sulfur content of 50 mass ppm or less, preferably 30 mass ppm or less, more preferably 10 mass ppm or less is used.
Further, the aromatic content in kerosene is usually preferably 30 vol% or less, and more preferably 20 vol% or less. When the aromatic content in kerosene is 30 vol% or less, the sulfur content is more easily reduced. The 95% point in the distillation properties of kerosene is usually preferably 270 ° C. or lower. By appropriately selecting the desulfurization conditions within the above range, a hydrocarbon having a sulfur content reduced to the ppb level can be obtained for a long time.
次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
実施例及び比較例における脱硫剤の物性、及び炭化水素(生成油)中の硫黄分の機器分析方法、並びに炭素析出量の測定方法を以下に示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
The physical properties of the desulfurizing agent in Examples and Comparative Examples, the instrumental analysis method for the sulfur content in the hydrocarbon (produced oil), and the method for measuring the carbon deposition amount are shown below.
<脱硫剤の比表面積測定>
BET(Braunauer−Emmett−Tailor specific surface area)比表面積の測定には、日本ベル社製表面積測定装置(Belsorp Mini)を用いた。試料約200〜300mgを精秤し、これを石英製の試料管に充填し、10−1〜10−3mmHg台に減圧しながら室温から400℃まで1時間かけて昇温し、減圧下、同温度で3時間保持して脱気処理を行った。その後、減圧しながら室温まで降温させ、高純度ヘリウムガスで置換し、脱気後の試料重量を精秤した。この後、液化窒素温度で窒素吸着を行い、比表面積を測定した。
<Measurement of specific surface area of desulfurization agent>
A BET surface area measuring device (Belsorb Mini) was used for measurement of BET (Braunauer-Emmett-Tailor specific surface area) specific surface area. About 200 to 300 mg of the sample was precisely weighed, filled in a quartz sample tube, heated from room temperature to 400 ° C. over 1 hour while reducing the pressure on the order of 10 −1 to 10 −3 mmHg, The deaeration treatment was performed by maintaining at the same temperature for 3 hours. Thereafter, the temperature was lowered to room temperature while reducing the pressure, the gas was replaced with high purity helium gas, and the weight of the sample after deaeration was precisely weighed. Thereafter, nitrogen adsorption was performed at the liquefied nitrogen temperature, and the specific surface area was measured.
<炭化水素中の硫黄分析>
炭化水素中の硫黄分析は、HOUSTON ATLAS社製Thermo Onix XVIを用いた。
<Sulfur analysis in hydrocarbons>
For analysis of sulfur in hydrocarbons, Thermo Onix XVI manufactured by HOUSTON ATLAS was used.
<脱硫剤のX線回折分析方法>
株式会社リガク製X線回折装置(RINT−2500V)を用いた。測定する試料を粉砕し、試料板に詰め、走査範囲5〜90°、試料回転速度20rpm、発散スリット1°、散乱スリット1°、受光スリット1°、スキャンスピード2°/minでX線回折(線源Cu−Kα線)測定を行った。
<X-ray diffraction analysis method of desulfurization agent>
An X-ray diffractometer (RINT-2500V) manufactured by Rigaku Corporation was used. The sample to be measured is pulverized and packed in a sample plate. X-ray diffraction (scanning range 5 to 90 °, sample rotation speed 20 rpm, divergence slit 1 °, scattering slit 1 °, light receiving slit 1 °, scan speed 2 ° / min) (Source Cu—Kα ray) measurement was performed.
<脱硫剤上の炭素析出量の測定>
炭素分の測定には、株式会社ジェイ・サイエンス・ラボ製の有機微量元素分析装置(JM10)を用いた。標準試料を用いて検量線を作成後、試料約1mg〜5mgを採取して、測定した。
<Measurement of carbon deposition amount on desulfurization agent>
For the measurement of carbon content, an organic trace element analyzer (JM10) manufactured by J Science Lab Co., Ltd. was used. After preparing a calibration curve using a standard sample, about 1 mg to 5 mg of a sample was collected and measured.
実施例1;Ni、Mo、Ca共沈(1)(第一の方法)
ベーマイトAP−3(触媒化成工業株式会社製)1.24gをイオン交換水1Lに加え80℃に加温後、NiSO4・6H2Oを126.5g、Ca(NO3)2・4H2Oを3.0g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテックスXS(日産化学工業株式会社製)33.9g、炭酸ナトリウム59.4g、(NH4)6Mo7O24・5H2Oを3.9g加え、80℃に加温し、調製液Bを得た。調製液Aと調製液Bを80℃に保持しながら、B液をA液に瞬時に加えて、1時間攪拌した。その後、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成し、得られた焼成物を破砕し、1.0mmと1.4mmの網目を有する篩で篩い分けし、脱硫剤1を得た。
Example 1 Ni, Mo, Ca coprecipitation (1) (first method)
1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo Co., Ltd.) was added to 1 L of ion exchange water and heated to 80 ° C., then 126.5 g of NiSO 4 .6H 2 O, Ca (NO 3 ) 2 .4H 2 O 3.0 g was added to obtain Preparation A. Separately prepared ion-exchanged water 1L colloidal silica Snowtex XS (Nissan Chemical Industries, Ltd.) 33.9 g, sodium carbonate 59.4g, (NH 4) 6 Mo 7 O 24 · 5H 2 O was added 3.9 g, Heated to 80 ° C. to obtain Preparation B. While maintaining the preparation liquid A and the preparation liquid B at 80 ° C., the liquid B was instantaneously added to the liquid A and stirred for 1 hour. Then, using 5 L of ion-exchanged water, washed and filtered, dried in air at 120 ° C. for 12 hours, and fired at 400 ° C. for 1 hour. The resulting fired product was crushed, and 1.0 mm and 1.4 mm meshes were obtained. The desulfurization agent 1 was obtained by sieving with a sieve having the same.
実施例2;Ni、Mo、Ca共沈(1)(第一の方法)
ベーマイトAP−3(触媒化成工業株式会社製)1.24gをイオン交換水1Lに加え80℃に加温後、NiSO4・6H2Oを126.5g、Ca(NO3)2・4H2Oを4.4g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテックスXS(日産化学工業株式会社製)33.9g、炭酸ナトリウム59.4g、(NH4)6Mo7O24・5H2Oを3.9g加え、80℃に加温し、調製液Bを得た。調製液Aと調製液Bを80℃に保持しながら、B液をA液に瞬時に加えて、1時間攪拌した。その後、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成し、得られた焼成物を破砕し、1.0mmと1.4mmの網目を有する篩で篩い分けし、脱硫剤2を得た。
Example 2: Ni, Mo, Ca coprecipitation (1) (first method)
1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo Co., Ltd.) was added to 1 L of ion exchange water and heated to 80 ° C., then 126.5 g of NiSO 4 .6H 2 O, Ca (NO 3 ) 2 .4H 2 O Was added to obtain Preparation Liquid A. Separately prepared ion-exchanged water 1L colloidal silica Snowtex XS (Nissan Chemical Industries, Ltd.) 33.9 g, sodium carbonate 59.4g, (NH 4) 6 Mo 7 O 24 · 5H 2 O was added 3.9 g, Heated to 80 ° C. to obtain Preparation B. While maintaining the preparation liquid A and the preparation liquid B at 80 ° C., the liquid B was instantaneously added to the liquid A and stirred for 1 hour. Then, using 5 L of ion-exchanged water, washed and filtered, dried in air at 120 ° C. for 12 hours, and fired at 400 ° C. for 1 hour. The resulting fired product was crushed, and 1.0 mm and 1.4 mm meshes were obtained. The resulting product was sieved with a sieve having a desulfurizing agent 2.
実施例3;Ni、Mo、Ca共沈(1)(第一の方法)
ベーマイトAP−3(触媒化成工業株式会社製)1.24gをイオン交換水1Lに加え80℃に加温後、NiSO4・6H2Oを126.5g、Ca(NO3)2・4H2Oを6.0g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテックスXS(日産化学工業株式会社製)33.9g、炭酸ナトリウム59.4g、(NH4)6Mo7O24・5H2Oを3.9g加え、80℃に加温し、調製液Bを得た。調製液Aと調製液Bを80℃に保持しながら、B液をA液に瞬時に加えて、1時間攪拌した。その後、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成し、得られた焼成物を破砕し、1.0mmと1.4mmの網目を有する篩で篩い分けし、脱硫剤3を得た。
Example 3 Ni, Mo, Ca coprecipitation (1) (first method)
1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo Co., Ltd.) was added to 1 L of ion exchange water and heated to 80 ° C., then 126.5 g of NiSO 4 .6H 2 O, Ca (NO 3 ) 2 .4H 2 O Was added to obtain Preparation Liquid A. Separately prepared ion-exchanged water 1L colloidal silica Snowtex XS (Nissan Chemical Industries, Ltd.) 33.9 g, sodium carbonate 59.4g, (NH 4) 6 Mo 7 O 24 · 5H 2 O was added 3.9 g, Heated to 80 ° C. to obtain Preparation B. While maintaining the preparation liquid A and the preparation liquid B at 80 ° C., the liquid B was instantaneously added to the liquid A and stirred for 1 hour. Then, using 5 L of ion-exchanged water, washed and filtered, dried in air at 120 ° C. for 12 hours, and fired at 400 ° C. for 1 hour. The resulting fired product was crushed, and 1.0 mm and 1.4 mm meshes were obtained. The product was sieved with a sieve having a desulfurizing agent 3.
実施例4;Ni、Mo、Ca共沈(1)(第一の方法)
イオン交換水1Lを80℃に加温後、NiSO4・6H2Oを126.5g、Ca(NO3)2・4H2Oを5.6g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテックスXS(日産化学工業株式会社製)33.9g、炭酸ナトリウム59.4g、(NH4)6Mo7O24・5H2Oを3.9g加え、80℃に加温し、調製液Bを得た。調製液Aと調製液Bを80℃に保持しながら、B液をA液に瞬時に加えて、1時間攪拌した。その後、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成し、得られた焼成物を破砕し、1.0mmと1.4mmの網目を有する篩で篩い分けし、脱硫剤4を得た。
Example 4 Ni, Mo, Ca coprecipitation (1) (first method)
After warming deionized water 1L to 80 ° C., a NiSO 4 · 6H 2 O 126.5g, was obtained Ca (NO 3) 2 · 4H 2 O and 5.6g added preparation A. Separately prepared ion-exchanged water 1L colloidal silica Snowtex XS (Nissan Chemical Industries, Ltd.) 33.9 g, sodium carbonate 59.4g, (NH 4) 6 Mo 7 O 24 · 5H 2 O was added 3.9 g, Heated to 80 ° C. to obtain Preparation B. While maintaining the preparation liquid A and the preparation liquid B at 80 ° C., the liquid B was instantaneously added to the liquid A and stirred for 1 hour. Then, using 5 L of ion-exchanged water, washed and filtered, dried in air at 120 ° C. for 12 hours, and fired at 400 ° C. for 1 hour. The resulting fired product was crushed, and 1.0 mm and 1.4 mm meshes were obtained. The resultant was sieved with a sieve having the above to obtain a desulfurizing agent 4.
比較例1;Ni、Mo共沈(1)(第一の方法)
ベーマイトAP−3(触媒化成工業株式会社製)1.24gをイオン交換水1Lに加え80℃に加温後、NiSO4・6H2Oを126.5g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテックスXS(日産化学工業株式会社製)33.9g、炭酸ナトリウム59.4g、(NH4)6Mo7O24・5H2Oを3.9g加え、80℃に加温し、調製液Bを得た。調製液Aと調製液Bを80℃に保持しながら、B液をA液に瞬時に加えて、1時間攪拌した。その後、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成し、得られた焼成物を破砕し、1.0mmと1.4mmの網目を有する篩で篩い分けし、脱硫剤5を得た。
Comparative Example 1 Ni and Mo coprecipitation (1) (first method)
1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo Co., Ltd.) was added to 1 L of ion-exchanged water, heated to 80 ° C., and then 126.5 g of NiSO 4 .6H 2 O was added to obtain Preparation Liquid A. Separately prepared ion-exchanged water 1L colloidal silica Snowtex XS (Nissan Chemical Industries, Ltd.) 33.9 g, sodium carbonate 59.4g, (NH 4) 6 Mo 7 O 24 · 5H 2 O was added 3.9 g, Heated to 80 ° C. to obtain Preparation B. While maintaining the preparation liquid A and the preparation liquid B at 80 ° C., the liquid B was instantaneously added to the liquid A and stirred for 1 hour. Then, using 5 L of ion-exchanged water, washed and filtered, dried in air at 120 ° C. for 12 hours, and fired at 400 ° C. for 1 hour. The resulting fired product was crushed, and 1.0 mm and 1.4 mm meshes were obtained. Sieving was carried out with a sieve having the above to obtain a desulfurizing agent 5.
比較例2;Ni、Mo、Ca共沈(1)(第一の方法)
ベーマイトAP−3(触媒化成工業株式会社製)1.24gをイオン交換水1Lに加え80℃に加温後、NiSO4・6H2Oを126.5g、Ca(NO3)2・4H2Oを9.0g加え調製液Aを得た。別途用意したイオン交換水1Lにコロイダルシリカ スノーテックスXS(日産化学工業株式会社製)33.9g、炭酸ナトリウム59.4g、(NH4)6Mo7O24・5H2Oを3.9g加え、80℃に加温し、調製液Bを得た。調製液Aと調製液Bを80℃に保持しながら、B液をA液に瞬時に加えて、1時間攪拌した。その後、イオン交換水を5L用いて、洗浄、ろ過後に空気中120℃で12時間乾燥、400℃で1時間焼成し、得られた焼成物を破砕し、1.0mmと1.4mmの網目を有する篩で篩い分けし、脱硫剤6を得た。
Comparative Example 2; Ni, Mo, Ca coprecipitation (1) (first method)
1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo Co., Ltd.) was added to 1 L of ion exchange water and heated to 80 ° C., then 126.5 g of NiSO 4 .6H 2 O, Ca (NO 3 ) 2 .4H 2 O 9.0 g was added to obtain Preparation A. Separately prepared ion-exchanged water 1L colloidal silica Snowtex XS (Nissan Chemical Industries, Ltd.) 33.9 g, sodium carbonate 59.4g, (NH 4) 6 Mo 7 O 24 · 5H 2 O was added 3.9 g, Heated to 80 ° C. to obtain Preparation B. While maintaining the preparation liquid A and the preparation liquid B at 80 ° C., the liquid B was instantaneously added to the liquid A and stirred for 1 hour. Then, using 5 L of ion-exchanged water, washed and filtered, dried in air at 120 ° C. for 12 hours, and fired at 400 ° C. for 1 hour. The resulting fired product was crushed, and 1.0 mm and 1.4 mm meshes were obtained. The resultant was sieved with a sieve having the above to obtain a desulfurizing agent 6.
<実施例1〜4、比較例1〜2の脱硫剤のX線回折分析>
脱硫剤1〜6をそれぞれ反応管に充填し、H2気流下400℃で3時間還元した後、1%酸素で安定化処理を行った試料について、X線回折測定をした。その結果、いずれの脱硫剤も、2θ=51.5°に金属Niの回折ピークの存在が確認された。
<X-Ray Diffraction Analysis of Desulfurization Agents of Examples 1-4 and Comparative Examples 1-2>
Each of the desulfurization agents 1 to 6 was filled in a reaction tube, reduced at 400 ° C. for 3 hours in a H 2 stream, and then subjected to X-ray diffraction measurement for a sample subjected to stabilization treatment with 1% oxygen. As a result, it was confirmed that any desulfurization agent had a diffraction peak of metallic Ni at 2θ = 51.5 °.
<実施例1〜4、比較例1〜2の脱硫剤の灯油脱硫試験>
脱硫剤1〜6を用い、灯油の脱硫試験を行い、脱硫性能を比較した。この脱硫試験では、初留温度154℃、10%留出温度171℃、30%留出温度186℃、50%留出温度201℃、70%留出温度224℃、90%留出温度253℃、終点277℃の蒸留性状を有し、硫黄分8.8質量ppmを含むJIS 1号灯油を用いた。この用いた灯油の性状を表1に示す。
まず、脱硫反応に先立ち、脱硫剤を還元・活性化した。即ち、内径16mmのSUS製反応管に脱硫剤11.6mlを充填した。そして、反応管を400℃に昇温し、常圧下、水素気流中で3時間保持することによって、脱硫剤を還元・活性化した。
その後、上記JIS1号灯油を、圧力0.7MPa、温度200℃、液空間速度4hr−1で、上記活性化された脱硫剤が入った各反応管に流通させ、反応管の下流で生成油を1時間ごとに採取した。採取した生成油中の硫黄分が50質量ppbを超えるまで脱硫実験を継続し、50質量ppbを破過するまでの時間を50質量ppb破過時間とした。結果を表2に示す。
<The kerosene desulfurization test of the desulfurization agent of Examples 1-4 and Comparative Examples 1-2>
A desulfurization test of kerosene was performed using desulfurization agents 1 to 6, and the desulfurization performance was compared. In this desulfurization test, initial distillation temperature 154 ° C., 10% distillation temperature 171 ° C., 30% distillation temperature 186 ° C., 50% distillation temperature 201 ° C., 70% distillation temperature 224 ° C., 90% distillation temperature 253 ° C. JIS No. 1 kerosene having a distillation property of 277 ° C. at the end point and containing 8.8 ppm by mass of sulfur was used. Table 1 shows the properties of the kerosene used.
First, prior to the desulfurization reaction, the desulfurizing agent was reduced and activated. That is, 11.6 ml of a desulfurizing agent was filled in a SUS reaction tube having an inner diameter of 16 mm. Then, the temperature of the reaction tube was raised to 400 ° C., and the desulfurization agent was reduced and activated by maintaining it in a hydrogen stream under normal pressure for 3 hours.
Thereafter, the JIS No. 1 kerosene was circulated through each reaction tube containing the activated desulfurizing agent at a pressure of 0.7 MPa, a temperature of 200 ° C., and a liquid space velocity of 4 hr −1 , and the product oil was supplied downstream of the reaction tube. Collected every hour. The desulfurization experiment was continued until the sulfur content in the collected product oil exceeded 50 mass ppb, and the time taken to break through 50 mass ppb was defined as the 50 mass ppb breakthrough time. The results are shown in Table 2.
<実施例1〜4、比較例1〜2の脱硫剤上の炭素析出量の測定>
脱硫剤1〜6を用い、118時間反応後の脱硫剤上の炭素析出量を測定した。結果を表2に示す。
<Measurement of carbon deposition amount on desulfurizing agents of Examples 1 to 4 and Comparative Examples 1 and 2>
Using the desulfurizing agents 1 to 6, the amount of carbon deposited on the desulfurizing agent after the reaction for 118 hours was measured. The results are shown in Table 2.
表2に示す結果より、特定量のニッケル、モリブデン及びカルシウムを含む本発明の脱硫剤は、カルシウムを含まない比較例1の脱硫剤と比較し、脱硫剤上の炭素析出量が抑制されており、50質量ppb破過時間が延長されて、長寿命の脱硫剤であることがわかった。また、カルシウムの含有量が本発明における規定を超えて多くなると、脱硫剤の比表面積が小さくなり、所期の50質量ppb破過時間の延長を図れないことがわかった。
From the results shown in Table 2, the desulfurization agent of the present invention containing specific amounts of nickel, molybdenum, and calcium has a suppressed carbon deposition amount on the desulfurization agent as compared with the desulfurization agent of Comparative Example 1 that does not contain calcium. 50 mass ppb breakthrough time was extended and it was found to be a long-life desulfurization agent. Further, it has been found that when the calcium content increases beyond the provisions of the present invention, the specific surface area of the desulfurizing agent decreases, and the intended breakthrough time of 50 mass ppb cannot be extended.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010174260A JP5419095B2 (en) | 2010-08-03 | 2010-08-03 | Hydrocarbon desulfurization agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010174260A JP5419095B2 (en) | 2010-08-03 | 2010-08-03 | Hydrocarbon desulfurization agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012031355A JP2012031355A (en) | 2012-02-16 |
JP5419095B2 true JP5419095B2 (en) | 2014-02-19 |
Family
ID=45845142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010174260A Expired - Fee Related JP5419095B2 (en) | 2010-08-03 | 2010-08-03 | Hydrocarbon desulfurization agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5419095B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4388665B2 (en) * | 2000-03-31 | 2009-12-24 | 出光興産株式会社 | Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell |
JP4896766B2 (en) * | 2006-02-24 | 2012-03-14 | コスモ石油株式会社 | Hydrocarbon desulfurization agent |
JP4922783B2 (en) * | 2006-02-24 | 2012-04-25 | コスモ石油株式会社 | Hydrocarbon desulfurization agent |
JP2008291146A (en) * | 2007-05-25 | 2008-12-04 | Japan Energy Corp | Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same |
JP4955483B2 (en) * | 2007-08-17 | 2012-06-20 | コスモ石油株式会社 | Method for producing hydrocarbon desulfurization agent |
-
2010
- 2010-08-03 JP JP2010174260A patent/JP5419095B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012031355A (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4896766B2 (en) | Hydrocarbon desulfurization agent | |
Shen et al. | Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation | |
JP5666777B2 (en) | Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same | |
JP2006501065A (en) | Catalyst adsorbent for sulfur compound removal for fuel cells | |
JPWO2006101079A1 (en) | Desulfurization agent and desulfurization method using the same | |
TW201439302A (en) | Hydrodesulfurization catalyst for light oil, and hydrotreating method of light oil | |
Hu et al. | High temperature CO2 capture on novel Yb2O3-supported CaO-based sorbents | |
Kim et al. | Inverse opal-like, Ca3Al2O6-stabilized, CaO-based CO2 sorbent: stabilization of a highly porous structure to improve its cyclic CO2 uptake | |
WO2001072417A1 (en) | Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent | |
JP5755999B2 (en) | Method for producing desulfurizing agent, desulfurizing agent, and method for desulfurizing hydrocarbon | |
JP4922783B2 (en) | Hydrocarbon desulfurization agent | |
JP5189736B2 (en) | Method for producing solid molded adsorbent for removing sulfur-containing components and method for purifying components containing hydrocarbons | |
JP4878868B2 (en) | Hydrocarbon desulfurization agent | |
JP4773116B2 (en) | Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst | |
JP5419095B2 (en) | Hydrocarbon desulfurization agent | |
JP5748351B2 (en) | Hydrogenation catalyst for aromatic compounds and method for hydrogenating aromatic compounds using the catalyst | |
JP4521172B2 (en) | Desulfurization agent and desulfurization method using the same | |
JP4955483B2 (en) | Method for producing hydrocarbon desulfurization agent | |
JP2009045526A (en) | Method for preparing nickel-ruthenium desulfurization agent and nickel-ruthenium catalyst | |
JP5446060B2 (en) | Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body | |
JP2004305869A (en) | Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell | |
JP5326130B2 (en) | Method for producing hydrocarbon desulfurization agent | |
JP2006500202A (en) | Catalyst particles and their use for desulfurization | |
JP5748352B2 (en) | Hydrogenation catalyst for aromatic compounds and method for hydrogenating aromatic compounds using the catalyst | |
JP5948657B2 (en) | Hydrogen production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5419095 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |