JP2009036139A - 冷媒圧縮機およびヒートポンプ給湯機 - Google Patents

冷媒圧縮機およびヒートポンプ給湯機 Download PDF

Info

Publication number
JP2009036139A
JP2009036139A JP2007202459A JP2007202459A JP2009036139A JP 2009036139 A JP2009036139 A JP 2009036139A JP 2007202459 A JP2007202459 A JP 2007202459A JP 2007202459 A JP2007202459 A JP 2007202459A JP 2009036139 A JP2009036139 A JP 2009036139A
Authority
JP
Japan
Prior art keywords
compressor
oil
film
refrigerant
refrigerant compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007202459A
Other languages
English (en)
Inventor
Norimi Sugano
典伺 菅野
Masae Kawashima
正栄 川島
Yuugo Mukai
有吾 向井
Akira Ota
亮 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007202459A priority Critical patent/JP2009036139A/ja
Publication of JP2009036139A publication Critical patent/JP2009036139A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubricants (AREA)

Abstract

【課題】
冷媒用圧縮機に使用されるオイルレート低減用遮蔽体において、二酸化炭素雰囲気下における超臨界状態によるフィルムの加水分解やオリゴマ抽出を低減し冷媒圧縮機の信頼性を向上するとともに圧縮機のオイルレートを低減させることにより冷凍サイクルの性能を向上させ比較的安価で高信頼性,高性能の圧縮機を提供することにある。
【解決手段】
超臨界状態における加水分解やオリゴマの抽出が高いPETフィルムをそれらの影響が少ないPPSフィルムで両面を保護する三相構造の複合フィルムを用いることにより比較的安価で信頼性の高い材料を用いた圧縮機を提供することができる。
【選択図】図1

Description

本発明は冷媒圧縮機及びそれを搭載したヒートポンプ給湯機に係り、特に作動冷媒に二酸化炭素を、冷凍機油にポリアルキレングリコール油系やエステル油系,エーテル油系を使用した時に好適な冷媒圧縮機及びそれを搭載したヒートポンプ給湯機に関する。
密閉型冷媒圧縮機は通常複数の部材で形成した密閉空間にガスを吸い込み、それら部材の相対運動でその密閉空間の容積を縮小して圧縮動作を行う。このため、密閉空間はそれらを形成する部材間に相対運動を可能にするための微小隙間が必要となり厳密には密閉された空間ではない。この微小隙間は圧縮途中の漏れを起こすためその箇所のシール性を向上させる対策が必要となる。
極めて有効で実現容易な手段に吸い込み時又は圧縮途中のガスへのオイルの注入がある。漏れ流れ内のオイルが漏れ隙間をシールするため、漏れ量を大幅に低減でき、オイルフリー機以外のほぼ全ての密閉型冷媒圧縮機に採用されている。ところが、この手段には吐出する圧縮機ガスに多量のオイルが混入し、圧縮ガスの清浄性を損なう弊害がある。
従来の密閉型冷媒圧縮機として、例えば特許文献1では、オイルミストの混入した圧縮機ガスを押除け容積の10倍以上の容積を有する圧縮機上部空間に吐出させ、圧縮ガスの流速を低下させ比重の大きいオイルを圧縮機から分離した後、圧縮ガスを圧縮部下部空間に導き、そこに設けた吐出パイプから圧縮機外部へ吐出することを行っていた。しかしこの方法では圧縮機上部でオイルの分離はできるが分離して液化したオイルが圧縮機の側面に付着し最終的に高速運動するシャフト等に付着し再ミスト化されることからオイルレートが低減しなかった。
また、特許文献2ではオイルレートを低減するために圧縮機内のモータ部にシャフトを介して圧縮機部を連結し、モータ部と圧縮機部の間に冷凍サイクルへ吐出される吐出パイプの開口部を有し、前記吐出パイプの開口部から前記シャフト及び前記モータ部の回転部とが直接通じない遮蔽体を設けている。ここでは遮蔽体に絶縁フィルムを介在させている。
また、ヒートポンプ給湯機等に使用されている二酸化炭素を冷媒に使用した例が、特許文献3に記載されている。この公報では、冷媒に二酸化炭素を用いたときに、冷媒との相溶性や熱化学安定性を考慮して、両末端がアルキル化されたポリアルキレングリコール油を冷凍機油に用いている。
また従来用いられているHFC冷媒用圧縮機に、加水分解の起きにくいポリエチレンナフタレート(以下PENと称す),ポリフェニレンサルファイド(以下PPSと称す),ポリアミドイミド(以下PAIと称す)等の材料を用いた例が、特許文献5に記載されている。なお、これらの材料は高価であるから、加水分解性に優れたより安価に適用できる材料として、ポリエチレンテレフタレート(以下PETと称す)フィルムの外層にPPSやPENフィルムを配置した複合フィルムを用いることが特許文献4に記載されている。
さらに、特許文献6には、HFC冷媒用圧縮機に、PETとPENの共重合体の両面にポリエチレンナフラテートの層を配置した三層構造フィルムを用いることが記載されている。
特開平9−170570号公報 特開2004−100661号公報 特開平10−46169号公報 特開平8−239677号公報 特開平7−336921号公報 特開2001−59479号公報
上記特許文献3に記載のようにポリアルキレングリコール油を冷凍機油として用いると、二酸化炭素冷媒が臨界状態になったときは、ポリアルキレングリコール油の吸湿性が高いので、持ち込み水分が増加し、シャフトとモータ部の回転部とが直接通じないように設けた遮蔽体に介在させる絶縁フィルムに用いるPETフィルムが加水分解により強度劣化する虞がある。
なお、冷凍機油としてポリアルキレングリコール油系のみならずエステル油系やエーテル油系等の冷凍機油を用いてもこの現象は生じる。PETフィルムが加水分解するとオリゴマの発生も増加する。この不具合を解消可能な特許文献4に記載のPPSフィルムやPENフィルム等は確かにオリゴマの発生も少ないが一般家庭用に使用する機器には高価であるため更なる原価低減が求められる。なお、これらのフィルムは靭性が低いので作業性の点では劣る。
従って、二酸化炭素が臨界状態になった冷媒雰囲気においても、絶縁フィルムの加水分解やオリゴマ抽出を低減でき、冷媒圧縮機の信頼性を向上させることと共に圧縮機のオイルレートを低減させることが望まれる。
本発明は、冷媒圧縮機の信頼性を向上させることを目的とする。
上記本発明の目的は、
モータ部にシャフトを介して圧縮機部を連結し、
前記シャフトの主軸受の近辺に配設され、冷凍サイクルへ吐出される吐出パイプの開口部を有し、
前記吐出パイプの前記開口部から前記モータ部の回転部とが直接通じない遮蔽体を設けた冷媒圧縮機において、
前記遮蔽体に用いる絶縁フィルムとして、ポリエチレンテレフタレートの片面にポリフェニレンサルファイドの層を有する二相構造のフィルムを用い、
前記フィルムの前記ポリフェニレンサルファイド側の面を前記遮蔽体に接着することを特徴とする冷媒圧縮機
によって達成される。
また、上記本発明の目的は、
固定子と回転子とを有するモータ部にシャフトを介して圧縮機部を連結し、
前記モータ部と前記圧縮機部との間に冷凍サイクルへ吐出される吐出パイプの開口部を有し、
前記吐出パイプの前記開口部から前記シャフト及び前記モータ部の回転部とが直接通じない遮蔽体を設けた冷媒圧縮機において、
前記遮蔽体に用いる絶縁フィルムとして、ポリエチレンテレフタレートの両面にポリフェニレンサルファイドの層を有する三相構造のフィルムを用いることを特徴とする冷媒圧縮機
によって達成される。
本発明によれば、冷媒圧縮機の信頼性を向上することができる。
近年、地球環境保全といった観点から冷凍サイクルの冷媒はHFC(ハイドロフルオロカーボン)から自然系冷媒に移行している。特に二酸化炭素冷媒については不燃性・低毒性といった点で注目されており、省エネルギー化・高効率化の点も含め活用用途は広い。主な適用可能製品としては電動カーエアコン,寒冷地用暖房機器及び給湯器等が挙げられる。ヒートポンプ給湯機では、二酸化炭素を冷媒に用いることにより、一般家庭用給湯機の主流であるガス式と比べてランニングコストが約1/5まで低減できる。また、成績係数(COP:Coefficient of Performance)を3.0以上まで高めることができ、電気温水器等と比べても高効率化が可能である。
具体的には、ヒートポンプ式給湯機にHFC冷媒を適用すると冷媒の物性から最高で約60℃の給湯しかできず、更には非常に高出力の圧縮機が必要となる。これに対して二酸化炭素冷媒を用いた場合、冷媒の熱物性から約90℃の出湯も可能である。
一方、冷凍機油は密閉型冷媒圧縮機に使用され、その摺動部の潤滑,密封,冷却等の役割を果たすものである。二酸化炭素を用いた圧縮機は、120〜130℃の高温、及び約15MPaの高圧条件下で使用される。このため、圧縮機の信頼性を確保するための潤滑性はもちろんのこと、省エネルギー性及び高効率も要求される。これらの用件を満たすために、冷凍機油にポリアルキレングリコール油を用いた密閉型冷媒圧縮機では冷凍機油がモータ部にまで流れ込むのでポリアルキレングリコール油とモータ各部との電機絶縁が必要になる。
ポリアルキレングリコール油は電気絶縁油としての体積抵抗率の規格である1013Ωを大きく下回り更に誘電率が約5.0と非常に高い。冷凍サイクルの稼動時に漏れ電流が増大し、電気用品安全法(電気用品の製造,輸入,販売等を規制するとともに、電気用品の安全性の確保につき民間人事業者の自主的な活動を促進することにより、電気用品による危険及び傷害の発生を防止することを目的)に定められる漏れ(リーク)電流値1.0mA以下を満足することが困難になっている。
更にポリアルキレングリコールエステル油は非常に吸湿性が高く、かつ加水分解に対して安定であるため冷凍機油中の水分が圧縮機内のエステル系絶縁フィルムの加水分解を促進する。
また、二酸化炭素を冷媒として活用するサイクルの場合、二酸化炭素の性質として30℃以上で超臨界状態を形成する。超臨界状態では有機材料、特にポリエチレンテレフタレート(以下PETと呼ぶ)フィルムの加水分解が促進される。冷凍サイクルを構成する圧縮機にはこれまで比較的安価であり加工性に優れていることからPETフィルムが広く使用されている。しかし、系内に水分が多量に存在すると炭化水素イオンとプロトンを生成するため加水分解が促進されることは上述したとおりである。
以下、本発明の実施例を図1〜図5を参照して説明する。
まず、構成を説明する。図1に密閉型冷媒圧縮機の断面図を示す。この密閉型圧縮機は旋回スクロール部材2を噛み合わせた固定スクロール部材1を、シャフト9が下部に突出したフレーム15にネジ固定して圧縮部200を形成する。このとき、フレーム15と旋回スクロール部材2の間にオルダムリング5を組み込む。
圧縮部200から突出したシャフト9の下方には、駆動部であるモータ17の回転運動部であるロータ17aが固定され、それと外周面で対向する位置にモータ17の静止部であるステータ17bが配されている。これら圧縮部200とシャフト9で連繋された駆動部であるモータ17を密閉容器203で包含する。この時に、圧縮部200の上部に、押除け容積の30倍程度の容積をもつ圧縮部上部空間204と、圧縮部200とモータ17の間に圧縮部下部空間205を設ける。
ここで、圧縮部から圧縮ガスが吐出する吐出口1aは固定スクロール部材の上面中央寄りにあるため、この圧縮部上部空間204には吐出口1aが臨んでいる。また、最下部には油を溜める貯油室210を設ける。ここで圧縮部200の外周側に複数の流通溝201を設け、圧縮部上部空間と圧縮部下部空間を連繋する。
また、ステータ17bには巻線17cを通す軸方向の巻線穴17dが多数開口しているが、巻線を施した後でも軸方向に貫通する空間が残っており、これが冷凍機油を貯油室210へ戻す返油路206としての役割を担う。さらに、ステータ側面に返油のための溝である返油溝207も設けてある。
圧縮部にガスを送り込む吸い込みパイプ18は、密閉容器203を貫通して圧縮部200の吸込み空間まで挿入している。吐出パイプ19は、内側Dパイプ口19aを介して圧縮部下部空間205に挿入されている。この吐出パイプ19は、シャフト9の主軸受(フレーム15でシャフト9を受けている部分)の近辺に配設されている。また、吐出パイプ19は、(シャフト方向に見た場合の)モータ部と圧縮機部との間に配設されていると考えることもできる。
筒状遮蔽体208は、圧縮部200の下面にビス固定されている。この筒状遮蔽体208は、図2で示すように、金属製の遮蔽体ベース208aと圧縮機内での使用環境下で信頼性が確認されたPETの両面にPPSの層を配置した三層構造フィルム製の遮蔽リング208bをビス留めして形成されており、ステータの巻線に接触しても問題無いように絶縁性を確保している。なお、本実施例では208aを金属としているが三層構造のフィルムで型成型された形状で遮蔽体208を構成してもよい。この筒状遮蔽体208の下端は圧縮部下部空間の下側を区切る巻線17cの上部に接するか極めて近づけて配置される。
これにより、下部流通口201aと内側Dパイプ口19aはともに筒状遮蔽体208の外側に配される。また、ステータ17bの上面で筒状遮蔽体208よりも内側、つまりシャフト9側に、圧縮機内での使用環境下で信頼性が確認されたPETの両面にPPSの層を配置した三層構造フィルム製の油リング209を設ける。この油リング209は、図3に示したその下部に突出した複数のつめ209aを上部返油口206aに押し込むか接着することにより、固定配置する。この筒状遮蔽体208は、吐出パイプ19に接続する内側Dパイプ口19aとロータ17a及びシャフト4を軸受けするフレーム15の軸受部とを遮蔽する。
次に、動作を説明する。固定スクロール部材1に組み込まれた背圧制御弁100により旋回スクロール部材2の背面空間である背圧室16の圧力は中間的な圧力に制御される。吐出口1aが密閉容器内に臨んでいるため、密閉容器内は吐出圧となる。これらの圧力差により、下部の貯油室210からオイルがシャフトの縦穴9aを通って上昇し、軸受部を潤滑した後、背圧室16に入る。
そこでオルダムリング5を潤滑した後、背圧制御弁100を通って、両スクロール部材間で形成される吸込み室と圧縮室にオイルが注入される。吸込み室と圧縮室との隙間での漏れを低減し、圧縮機の効率を向上させる。そして、このオイルは、ミスト状になって吐出口1aより圧縮ガスとともに容積の大きな圧縮室上部空間204に吐き出される。そこで、ガスの流速が急激に低下するため、ガスの有するオイルミストの搬送能力が急激に低下し、比重の大きなオイルは重力により圧縮部上面に付着し、これが集まって液化する。
この液化したオイルは粘性があるために、圧縮部200の表面を伝って下部まで流れる。そして、液化オイルが筒状遮蔽体208に達するとその大部分は筒状遮蔽体208の外周面を流下し、接している巻き線17cを伝って、ステータ17bの上面に達する。この時、内側Dパイプ口19aと下部流通口201aは、ともに筒状遮蔽体208の外部に配置されているため、筒状遮蔽体208の内外空間を流れるガスはほとんど無い。よって、筒状遮蔽体208の下端が巻き線17cと接触していなくても、スムースにオイルが流下し、再ミスト化することはほとんど無い。そして、油リング209により、ロータに触ること無く返油路206に流れ込む。このためここでも再ミスト化が回避される。
ステータ17b上面に溜まるオイルが多くて返油路206だけでは不足の時には、さらに外周に設けた返油溝207を通って下部の貯油室にオイルが戻る。よって、この実施形態では、巻き線17cが密となって返油路206の断面積が小さい場合でも、再ミスト化は回避できるという特有の効果が有る。
一方、筒状遮蔽体208をビスでフレーム15に止めているため、フレーム15と筒状遮蔽体208の間に若干の隙間ができる。この隙間にある程度のオイルが流れ込み、ロータ17aやシャフト9に滴下するものが生じる。これにより、オイルの再ミスト化が生じるが、この場合でも筒状遮蔽体208があらゆる方向に飛散したミストをその内面に付着させ液化させる。そして、その後は、筒状遮蔽体208の外周面を流下したオイルと同様に、再ミスト化することなく、貯油室210に戻る。この結果、吐出パイプに混入するオイルミストは極端に低減し、オイルレートの極めて低い圧縮機を提供できる。
図4は遮蔽体208に介在する遮蔽リング208b及び油リング209の材料である複合フィルムの断面図である。複合フィルムはPETフィルム20の両面に配置したPPSフィルム21を有しそれぞれを接着剤22で接着して形成する。PETフィルムの厚みは200〜250μm、PPSフィルムの厚みは10〜20μmである。接着剤で張り合わせた全体の厚みを220μm〜320μm程に調整している。これは現行のフィルム厚みとほぼ同等であり、作業性の低下を回避できる。
なお、PPSフィルム21はその構造上オリゴマを抽出しない性質をもっており、オリゴマを析出しやすいPETフィルムをPPSフィルムで挟持しているので、直接冷媒や冷凍機油とPETフィルムが接触することを防止でき、オリゴマの抽出を低減できる。また、二酸化炭素雰囲気下における超臨界状態においては絶縁フィルムの劣化が促進されるが、劣化しにくいPPS層があるため劣化も軽減される。
表1に2種類の試料について、オートクレーブテストの結果を示す。このオートクレーブテストは、絶縁フィルムの耐油/冷媒性評価を評価するテストである。冷凍機油は代表してポリアルキレングリコール油を用いた。オートクレーブ試験条件としては、SUS製の耐圧容器(200ml)に供試品として長さ50mm,幅3mmのダンベル形状に加工した絶縁材料を入れ、冷凍機油としてポリアルキレングリコール油40g、冷媒として二酸化炭素冷媒30gを注入後密封し130℃で42日加熱後、油の色,酸価,供試品の外観,強度などを測定した。油中の水分は<100ppmと2000ppmの2条件とした。
試験後の冷凍機油の酸価測定はJIS K2501 「石油製品及び潤滑油−中和価試験方法」に従った。また、絶縁材料の引張強度はJIS C2111「電気絶縁紙試験方法」に準じて測定した。測定結果を評価すると、試料1,2のいずれの試験においても冷凍機油の劣化は認められなかった。試料1のPPSフィルム,試料2のPENフィルムについては水分量にかかわらず引張強度の低下は見られない。比較例1のPETフィルムについては水分量200ppmにおいて強度低下率が100%となり加水分解を起こしている。
伸び率については試料1のPPSフィルムの場合、水分<100ppmで−20%低下し、水分2000ppmで−30%低下しているが、いずれも比較的少ない低下量である。但し、試料2のPENフィルムについては、水分<100ppmで−82%、水分2000ppmで−85%と伸び率がかなり低下している。比較例1のPETフィルムについては水分<100ppmでは伸び率の変化は見られなかったが、水分2000ppmでは完全に加水分解が生じており必要強度を確保できていなかった。
Figure 2009036139
表2に同様のオートクレーブテストを試料3,4について実施した結果を示す。冷凍機油及び試料形態は上記テストと同一とし封入する冷凍機油及び冷媒も上記テストと同一である。ただ、オートクレーブ試験条件として、130℃で126日加熱することとした。試験時間経過後に上記テストと同様に油の色及び酸価,供試品の外観,強度などを測定した。実際の圧縮機の稼働時間は年間20,000時間以上と推測されるため加熱時間を126日に延長して評価した。また、水分依存度を検証するために油中の水分を200ppm,400ppm,600ppm,1000ppmとした。
評価の結果、何れの試料3,4についても冷凍機油の劣化は認められなかった。絶縁材料に関しては、試料3のPPSフィルムについては、水分による影響はあまり見られず安定した引張強度を保持しているが、初期の強度はPETの方が優れている。これはPPSフィルム自体がもつ特性として靭性が低いためである。伸び率については水分400ppmを越えた所で変化率が増加している。オリゴマの抽出はない。
試料4のPENフィルムについては水分200ppmでは引張強度の低下は見られないものの、400ppm以上になると急激に低下し水分1000ppmになると強度が保てない。この試料4の伸び率についてはPET以上に水分の影響を受けやすい。オリゴマの抽出は見られなかった。比較例2のPETフィルムについては水分量の増加に比例して引張強度の低下が起きている。また、伸び率については水分200ppmでは実施例3のPPSフィルム並ではあるが、400ppm以上になると試料4のPENフィルムとほぼ同等となる。オリゴマの抽出については水分400ppmを越えた所で増加している。
表1および表2に示した試験結果から、水分の影響を最も受けない材料がPPSフィルムであり、PENフィルムは加熱時間が少ない所では水分の影響を受けにくいが加熱時間の増加に伴いPETフィルム以上に水分の影響を受けることが判明した。
従って、PETフィルムの両面に加水分解特性に優れオリゴマの抽出のないPPSフィルムを配置した三相構造の複合フィルムとすれば、フィルムの靭性を保ちつつ加水分解による引張強度及び伸び率の低下を起こすことなくオリゴマの抽出も少ない耐熱性に優れた絶縁フィルムが得られることが分かる。
或いは、絶縁フィルムとして、PETフィルムの片面にPPSフィルムを配置した二相構造の複合フィルムとし、この複合フィルムのPPS側の面を遮蔽体に接着すれば同様に優れたフィルムを得ることができる。
また、試料2のPENフィルムは加熱時間の少ない状態では引張強度に優れた特性を示したが、実際のサイクル内には吸湿性の高い冷凍機油が使用されるため、フィルムの強度低下を引き起こし、絶縁不良、更には破損したフィルムの破片による摺動部の損傷を引き起こす虞がある。そのため、PPSの代わりにPENを使用した場合、必ずしも信頼性の向上にはつながらない虞がある。
Figure 2009036139
次に絶縁フィルムの厚みについて検討した。現在、遮蔽体に使用しているPETフィルムは単層で250μmである。本発明に使用するPETの両面にPPSを有する三相構造の複合フィルムにおいてもほぼ同等の厚みにするのが望ましい。そこで、PETフィルム層を200〜250μm好ましくは210μmとし、PPS層は10〜20μm好ましくは16μmとした。接着層は4μm程度とした。
なお、全体的なフィルムの厚みを薄くすると作業性は向上するが、フィルムの破損が起きやすくなる。逆にフィルムの厚みを増すとフィルムの破損は起き難くなるが作業性は低下する。PPSフィルムの厚みを厚くした場合、加水分解性及びオリゴマ抽出特性に関しては有利になるが、作業性の低下や初期強度の低下の原因となる。また、コストアップにもつながる。逆にPPSフィルムの厚みを薄くするとPPSフィルムが有する耐加水分解特性が劣化する。なお、接着剤としてはウレタン系の接着剤やポリイミド系の接着剤を使用できる。ウレタン系の接着剤の場合には、冷凍機油の劣化を考慮して使用する。ポリイミド系の接着剤の場合には耐熱性に富むので、接着剤の影響が少なくて済む。
次に、密閉型冷媒圧縮機の遮蔽体に上記複合フィルムを適用して、ヒートポンプ給湯機100を構成した例を、図5を用いて説明する。まず、冷凍サイクルから説明する。それぞれの機器は冷媒配管で接続されていて、その中に冷媒を封入して密封し、ヒートポンプ回路110を構成しており、給湯に必要な大能力を実現させるため、さらにもう1つのヒートポンプ回路110aを追加した2つのヒートポンプ回路からなる。なお、本実施例においては、2つのヒートポンプ回路により給湯器を構成したが、圧縮機や熱交換器の性能,給湯能力によって1つの回路でも3つ以上の回路を用いても良い。
圧縮機101及び圧縮機101aにより圧縮された冷媒(CO2)は、熱交換器102
に流入される。熱交換器102は、冷媒を凝縮させる凝縮器103,103aと湯水を沸
き上げる水熱交換器111さらに浴槽水熱交換器144が一体に組込まれている。熱交換器102から流れ出た冷媒は減圧装置105,減圧装置105aの作用によって減圧され低温低圧の冷媒となる。そして、蒸発器106,蒸発器106aにおいて、送風機109及び送風機109aによって送風される外気から熱を吸収して、アキュムレータ107,アキュムレータ107aを介して再び圧縮機101及び圧縮機101aに吸入される。
108及び108aはバイパス弁で、これを開くことによって圧縮機101及び圧縮機101aから吐出される高温高圧の冷媒を蒸発器106及び106aに通流させることで、蒸発器106及び106aに付着した霜を融解させる(除霜制御)。この除霜制御のタイミングは、2つの冷媒回路同時であっても良いし、ずらしても良い。ずらした場合は、能力が多少低下するが間断無く給湯ができるという効果がある。
次に、水道管116から水を取り入れ、熱交換器102を介して直接利用側に給湯し、または後述するように内部で水を循環させることで所定の温度に沸かし上げる水循環回路122の給湯回路について説明する。この水循環回路122は、熱交換器102,減圧逆止弁117,流量センサ121,逆止弁148,149,給湯タンク113,循環ポンプ115,給湯タンク113からの湯と水熱交換器111からの出湯を混合するミキシングバルブ161,ミキシングバルブ161からの湯と水を混合するミキシングバルブ162,湯の流量を調整する流量調整弁163を水配管で接続して構成している。また、浴槽水回路は熱交換器102と、注湯電磁弁151,逆止弁150,水位センサ160,浴槽用の循環ポンプ146で構成されている。本実施例に係るヒートポンプ給湯機は、従来のように大型の貯湯槽を用いることなく小型軽量な給湯機とする。
本実施例によっても、二酸化炭素雰囲気下における超臨界状態においてフィルムの加水分解やオリゴマ抽出を低減することができ、冷媒圧縮機の信頼性が向上するとともに圧縮機のオイルレートを低減させることができるため冷凍サイクルの性能が向上する。
また、従来PETフィルムは耐熱温度が130℃であったため圧縮機の吐出温度をそれ以上あげることはできなかったが、本発明のフィルムを用いることで155℃まで耐熱温度を上げられることが可能となり、給湯機の高温沸き上げができる。
以上の通りであり、固定子と回転子とを有するモータ部にシャフトを介して圧縮機部を連結し、モータ部と圧縮機部の間に冷凍サイクルへ吐出される吐出パイプの開口部を有し、前記吐出パイプの開口部から前記シャフト及び前記モータ部の回転部とが直接通じない遮蔽体を設けた冷媒圧縮機において、前記遮蔽体に介在させる絶縁フィルムとしてポリエチレンテレフタレートの両面にポリフェニレンサルファイドの層を配置した三相構造のフィルムとすることにより、二酸化炭素雰囲気下における超臨界状態においてフィルムの加水分解やオリゴマ抽出を低減することができ、冷媒圧縮機の信頼性が向上するとともに圧縮機のオイルレートを低減させることができるため冷凍サイクルの性能が向上する。
本発明は二酸化炭素冷媒を用いた圧縮機に関するものであり、前記圧縮機を持ったヒートポンプ給湯機,電動カーエアコン,寒冷地向け暖房器等、自動販売機にも適用可能である。
密閉型冷媒圧縮機の一実施例の断面図である。 図1に示した密閉型圧縮機が有する遮蔽体の外観図である。 図1に示した密閉型圧縮機が有する油リングの外観図である。 複合フィルムの断面図である。 ヒートポンプ給湯機の一実施例のシステム図である。
符号の説明
1 固定スクロール部材
2 旋回スクロール部材
5 オルダムリング
9 シャフト
15 フレーム
17 モータ
17a 回転子
17b 固定子
18 吸い込みパイプ
19 吐出パイプ
20 PETフィルム
21 PPSフィルム
22 接着剤
100 ヒートポンプ給湯機
101 圧縮機
102 熱交換器
103 凝縮器
105 減圧装置
106 蒸発器
107 アキュムレータ
108 バイパス弁
109 送風機
110 ヒートポンプ回路
111 水熱交換機
113 給水タンク
115 循環ポンプ
116 水道管
117 減圧逆止弁
121 流量センサ
122 水循環回路
144 浴槽水熱交換器
146 浴槽用の循環ポンプ
148,149,150 逆止弁
151 注湯電磁弁
160 水位センサ
161,162 ミキシングバルブ
163 流量調整弁
200 圧縮機部
201 流通路
204 圧縮機部上部空間
205 圧縮機部下部空間
206 返油路
208 筒状遮蔽体
209 油リング
210 貯油室

Claims (7)

  1. モータ部にシャフトを介して圧縮機部を連結し、
    前記シャフトの主軸受の近辺に配設され、冷凍サイクルへ吐出される吐出パイプの開口部を有し、
    前記吐出パイプの前記開口部から前記モータ部の回転部とが直接通じない遮蔽体を設けた冷媒圧縮機において、
    前記遮蔽体に用いる絶縁フィルムとして、ポリエチレンテレフタレートの片面にポリフェニレンサルファイドの層を有する二相構造のフィルムを用い、
    前記フィルムの前記ポリフェニレンサルファイド側の面を前記遮蔽体に接着することを特徴とする冷媒圧縮機。
  2. 固定子と回転子とを有するモータ部にシャフトを介して圧縮機部を連結し、
    前記モータ部と前記圧縮機部との間に冷凍サイクルへ吐出される吐出パイプの開口部を有し、
    前記吐出パイプの前記開口部から前記シャフト及び前記モータ部の回転部とが直接通じない遮蔽体を設けた冷媒圧縮機において、
    前記遮蔽体に用いる絶縁フィルムとして、ポリエチレンテレフタレートの両面にポリフェニレンサルファイドの層を有する三相構造のフィルムを用いることを特徴とする冷媒圧縮機。
  3. 請求項2において、
    前記ポリエリレンテレフタレートの厚みが200〜250μm、ポリフェニレンサルファイドの厚みが10〜20μmであることを特徴とする冷媒圧縮機。
  4. 請求項1乃至3の何れかにおいて、
    前記冷媒圧縮機がスクロール圧縮機であることを特徴とする冷媒圧縮機。
  5. 請求項1乃至4の何れかにおいて、
    冷媒として二酸化炭素を用いることを特徴とする冷媒圧縮機。
  6. 請求項1乃至5の何れかにおいて、
    ポリアルキレングリコール油系,エステル油系またはエーテル油系の潤滑油を用いることを特徴とする冷媒圧縮機。
  7. 請求項1乃至6の何れかに記載の冷媒圧縮機を搭載したことを特徴とするヒートポンプ給湯機。
JP2007202459A 2007-08-03 2007-08-03 冷媒圧縮機およびヒートポンプ給湯機 Withdrawn JP2009036139A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202459A JP2009036139A (ja) 2007-08-03 2007-08-03 冷媒圧縮機およびヒートポンプ給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202459A JP2009036139A (ja) 2007-08-03 2007-08-03 冷媒圧縮機およびヒートポンプ給湯機

Publications (1)

Publication Number Publication Date
JP2009036139A true JP2009036139A (ja) 2009-02-19

Family

ID=40438268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202459A Withdrawn JP2009036139A (ja) 2007-08-03 2007-08-03 冷媒圧縮機およびヒートポンプ給湯機

Country Status (1)

Country Link
JP (1) JP2009036139A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094039A (ja) * 2009-10-30 2011-05-12 Hitachi Appliances Inc 冷媒圧縮機,冷凍サイクル装置
JP2012067676A (ja) * 2010-09-24 2012-04-05 Hitachi Appliances Inc スクロール圧縮機,電動圧縮機
WO2016139737A1 (ja) * 2015-03-02 2016-09-09 三菱電機株式会社 絶縁フィルム、電動機、冷媒圧縮機、及び冷凍サイクル装置
JP2017218932A (ja) * 2016-06-06 2017-12-14 日立アプライアンス株式会社 容積型圧縮機、給湯器、及び空気調和機
CN109404289A (zh) * 2017-08-16 2019-03-01 艾默生环境优化技术(苏州)有限公司 旋转机械
JP2020531728A (ja) * 2017-08-16 2020-11-05 エマソン クライメット テクノロジーズ(スーチョウ)カンパニー、リミテッド 回転機構

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094039A (ja) * 2009-10-30 2011-05-12 Hitachi Appliances Inc 冷媒圧縮機,冷凍サイクル装置
JP2012067676A (ja) * 2010-09-24 2012-04-05 Hitachi Appliances Inc スクロール圧縮機,電動圧縮機
WO2016139737A1 (ja) * 2015-03-02 2016-09-09 三菱電機株式会社 絶縁フィルム、電動機、冷媒圧縮機、及び冷凍サイクル装置
JPWO2016139737A1 (ja) * 2015-03-02 2017-09-14 三菱電機株式会社 絶縁フィルム、電動機、冷媒圧縮機、及び冷凍サイクル装置
JP2017218932A (ja) * 2016-06-06 2017-12-14 日立アプライアンス株式会社 容積型圧縮機、給湯器、及び空気調和機
CN109404289A (zh) * 2017-08-16 2019-03-01 艾默生环境优化技术(苏州)有限公司 旋转机械
JP2020531728A (ja) * 2017-08-16 2020-11-05 エマソン クライメット テクノロジーズ(スーチョウ)カンパニー、リミテッド 回転機構
CN109404289B (zh) * 2017-08-16 2024-05-14 谷轮环境科技(苏州)有限公司 旋转机械

Similar Documents

Publication Publication Date Title
CN105907376B (zh) 冷冻空调用压缩机及冷冻空调装置
JP2009036139A (ja) 冷媒圧縮機およびヒートポンプ給湯機
JP5260168B2 (ja) 冷媒圧縮機
JP5906461B2 (ja) 密閉型圧縮機
JP2011052032A (ja) 2,3,3,3−テトラフルオロプロペンを用いた冷凍空調装置
JP2010127218A (ja) 圧縮機
CN107076466B (zh) 制冷循环装置
TW201817863A (zh) 電動壓縮機及冷凍空調裝置
WO2015025515A1 (ja) 冷凍装置
KR101196536B1 (ko) 냉매 압축기 및 냉동 사이클
KR20060103831A (ko) 히트 펌프식 급탕기
CN101749891A (zh) 制冷剂压缩机及冷冻循环装置
JP2018040517A (ja) 空気調和機
JP2008241086A (ja) 二酸化炭素冷媒ヒートポンプ式給湯機
JP6012878B2 (ja) 圧縮機および冷凍サイクル装置
JP2011094039A (ja) 冷媒圧縮機,冷凍サイクル装置
JP2945844B2 (ja) 冷凍装置
JP2008185290A (ja) 二酸化炭素冷媒ヒートポンプ式給湯機
JP2008121484A (ja) 冷媒圧縮機
JP2008095506A (ja) 冷媒圧縮機およびそれを搭載したヒートポンプ給湯機
JP2014228154A (ja) 空気調和機
JP6522345B2 (ja) 冷凍装置及び密閉型電動圧縮機
JP2010031134A (ja) 冷媒圧縮機
US20190032967A1 (en) Ionic fluid / co2 cofluid refrigeration system
JP2002053881A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100423