JP2009034766A - 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具 - Google Patents

硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具 Download PDF

Info

Publication number
JP2009034766A
JP2009034766A JP2007200663A JP2007200663A JP2009034766A JP 2009034766 A JP2009034766 A JP 2009034766A JP 2007200663 A JP2007200663 A JP 2007200663A JP 2007200663 A JP2007200663 A JP 2007200663A JP 2009034766 A JP2009034766 A JP 2009034766A
Authority
JP
Japan
Prior art keywords
layer
zro
island
heat
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007200663A
Other languages
English (en)
Inventor
Makoto Nishida
西田  真
Hitoshi Kunugi
斉 功刀
Takeshi Ishii
剛 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007200663A priority Critical patent/JP2009034766A/ja
Publication of JP2009034766A publication Critical patent/JP2009034766A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】耐熱合金の断続切削加工において、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具およびその製造方法を提供する。
【解決手段】工具基体の表面に硬質被覆層を形成した表面被覆切削工具において、硬質被覆層の下部層はTi化合物層、同上部層は、化学蒸着で形成した島状のZrO(縦断面観察による)と、該島状ZrOの間隙を埋める物理蒸着で形成された耐熱性高強度硬質膜からなる混合組織構造を有し、上部層表面に平行な横断面において上記ZrOが占める面積(ACVD)と、上記耐熱性高強度硬質膜が占める面積(APVD)との面積比(ACVD/APVD)は、0.7〜14である混合組織層で構成される。
【選択図】 図1

Description

この発明は、特にNi基、Fe基、Co基等の耐熱合金の切削加工を、切刃に対して繰り返し大きな衝撃的負荷がかかる断続切削条件で行った場合にも、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメット(以下、これらを総称して工具基体という)で構成された工具基体の表面に、
下部層として、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層を被覆した後(あるいは、工具基体に対して工具基体表面のB−1型固溶体量を富化させる処理を行った後)、
上部層として、酸化ジルコニウム(以下、ZrOで示す)層を化学蒸着により形成した被覆工具が知られており、この被覆工具が、例えば炭素鋼、鋳鉄等の切削加工ですぐれた耐摩耗性を示すことも知られている。
特開昭55−154561号公報
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、これを特に、Ni基、Fe基、Co基等の耐熱合金の、切刃に対して繰り返し断続的に大きな衝撃的負荷かかる断続切削加工に用いた場合には、硬質被覆層は切削時に発生する高熱によって過熱されるとともに、切刃部に加わる断続的な衝撃によって、チッピング、欠損が発生しやすくなり、また摩耗進行も促進されるため、比較的短時間で使用寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、上記従来被覆工具の硬質被覆層の上部層の耐欠損性、耐摩耗性の改善を図るべく研究を行った結果、
工具基体の表面に、下部層として、通常の条件で、導電性を有するTi化合物層を化学蒸着で形成し、同じく通常の条件で、前記Ti化合物層の上に、通常の条件の化学蒸着で酸化ジルコニウム層(以下、ZrO層で示す)を蒸着形成し、その後、該ZrO層にウエットブラスト処理を施し、下部層のTi化合物層が露出する深さになるまでZrO層を掘り込み、ZrO層に谷部を形成し(Ti化合物層からなる下部層が露出した位置を谷部と称する。なお、掘り込まれずに残存したZrO層は、必然的に、島状のZrOを形成することになる)、ついで、物理蒸着で耐熱性高強度硬質膜を蒸着し、混合層からなる上部層を形成すると、谷部に露出した下部層のTi化合物層は導電性を有し、物理蒸着を行う際のカソード領域として作用するため、該谷部および島状ZrOの間隙部分には硬質膜が満遍なく密に蒸着充填され、さらに、上記硬質膜として、すぐれた高温強度と耐熱性を有する硬質膜(好ましくは、Hv2500以上の硬度)を物理蒸着することにより、島状ZrOと上記硬質膜が有する高温硬さ、高温強度と耐熱性が相俟って、耐熱合金の断続切削加工においても、硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮するようになる、
という知見を得た。
この発明は、上記知見に基づいてなされたものであって、
「 WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層を設けた表面被覆切削工具において、
(a)下部層は、いずれも化学蒸着で形成されたTiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層、および炭窒酸化物(TiCNO)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層は、1〜10μmの層厚を有し、該層の層厚方向縦断面で観察した場合に、化学蒸着で形成された酸化ジルコニウム(ZrO)が、島状酸化ジルコニウム(ZrO)として不連続に存在し、物理蒸着で形成された耐熱性高強度硬質膜が、該島状酸化ジルコニウム(ZrO)相互の間隙を埋めるように存在する混合組織構造を有し、
かつ、前記上部層を、該層表面に平行な横断面で測定した場合に、前記島状酸化ジルコニウム(ZrO)が占める面積(ACVD)と、前記耐熱性高強度硬質膜が占める面積(APVD)との面積比(ACVD/APVD)が0.7〜14である混合組織層、
からなることを特徴とする硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具(被覆工具)」
に特徴を有するものである。
以下に、この発明の被覆工具およびその製造方法について、詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層は、通常の化学蒸着条件によって蒸着形成することができ、そして、Ti化合物層からなる下部層は、それ自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになる。
さらに、耐熱性高強度硬質膜を物理蒸着により充填する際に、ZrO2層の谷部に露出したTi化合物層が蒸着時のカソードとして作用して物理蒸着が進行することにより、島状ZrO2の間隙および谷部に耐熱性高強度硬質膜を密に充填することができる。
しかも、Ti化合物層は、ZrO2層および耐熱性高強度硬質膜のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する。
ただ、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、耐熱合金の断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(b)上部層(島状ZrO2と耐熱性高強度硬質膜との混合組織層)
ZrO2層は、一般的にすぐれた高温硬さとすぐれた耐熱性を備えることが知られているが、特に、Ni基、Fe基、Co基等の耐熱合金の断続切削加工に用いた場合には、切削加工時の高熱発生で過熱が生じ、同時に、切刃部に対して繰り返し、断続的に大きな衝撃的負荷がかかるため、チッピング・欠損を生じやすくなり、また、耐摩耗性も不十分となる。
そこで、この発明では、硬質被覆層の耐摩耗性を高めるとともに、耐チッピング性、耐欠損性をも改善するために、上部層を島状ZrO2と耐熱性高強度硬質膜との混合組織層として、1〜10μmの層厚で構成した。
すなわち、硬質被覆層の上部層を、まず、ほぼ均一層厚のZrO2層として形成した後、ZrO2層にウエットブラスト処理を施し、ZrO2層の層厚方向に向かって、下部層のTi化合物層が露出する深さになるまで掘り込んでZrO2層に谷部(下部層が露出した領域)を形成し(なお、その結果として、ZrO2層は、相互に間隙を有し、不連続に存在する島状ZrO2になる)、該谷部には、物理蒸着により、好ましくはHv2500以上の硬度を有する耐熱性高強度硬質膜を充填して、島状ZrO2と耐熱性高強度硬質膜との混合組織層からなる上部層を形成した。
つまり、上記混合組織層からなる上部層をその表面に平行な横断面で観察した場合には、あたかも、物理蒸着で形成された耐熱性高強度硬質膜がマトリックスを構成し、その中に、化学蒸着で形成されたZrO2が上記耐熱性高強度硬質膜で囲繞されて島状に点在する分布形態を呈し(図1参照)、また、上部層をその層厚方向縦断面で観察した場合には、ZrO2が島状に不連続に存在し、耐熱性高強度硬質膜が島状ZrO2相互の間隙を埋めるように存在する混合組織状態を呈する(図2参照)。
このように、上部層をZrO2と耐熱性高強度硬質膜との混合組織層として構成することにより、耐チッピング性、耐欠損性、耐摩耗性の向上が図られるが、上部層の層厚が1μm未満の場合には、耐欠損性および耐摩耗性の向上効果が少なく、一方、層厚が10μmを超えた場合には、チッピングを発生しやすくなることから、上部層の層厚は1〜10μmとする必要がある。
なお、物理蒸着により谷部および島状ZrO2相互の間隙に耐熱性高強度硬質膜を充填する際に、島状に点在するZrO2の表面にごく僅かではあるが耐熱性高強度硬質膜が被覆されてしまう場合もあるが、この耐熱性高強度硬質膜の薄層の存在は、上部層の特性に特段の悪影響を与えるものではない。
また、硬質被覆層の耐欠損性および耐摩耗性の改善を図るためには、充填する耐熱性高強度硬質膜の種類ばかりでなく、ZrO2層の谷部に充填する耐熱性高強度硬質膜の充填割合も重要である。
さらに、ZrO2層の谷部および島状ZrO2相互の間隙に物理蒸着で充填する耐熱性高強度硬質膜は、その硬度がHv2500未満では上部層の耐摩耗性の向上が望めないことから、Hv2500以上の硬度を有することが望ましい。そして、硬度がHv2500以上であり、かつ、物理蒸着によって形成するのに好適な耐熱性高強度硬質膜用の材料としては、具体的に、チタン、アルミニウム、シリコン、クロム等の複合窒化物(より具体的には、例えば、(Ti,Al)N、(Ti,Al,Si)N、(Al,Cr)N)等が挙げられる。
また、島状ZrO2相互の間隙および谷部に耐熱性高強度硬質膜が充填された混合組織層からなる上部層を、上部層の表面に平行な横断面にて測定した場合、島状に点在する上記ZrO2が占める面積(ACVD)と、上記耐熱性高強度硬質膜が占める面積(APVD)との面積比(ACVD/APVD)が14を超えると、耐熱性高強度硬質膜を物理蒸着する際のカソードとなる領域、即ち、谷部において露出し導電性を有する下部層(Ti化合物層)領域、の割合が減少するため、ZrO2層の谷部に強固にかつ密に耐熱性高強度硬質膜を物理蒸着することができず、その結果、耐熱性高強度硬質膜の剥落、チッピング等が生じやすくなり耐欠損性が低下し、また、(ACVD/APVD)が0.7未満であると、混合組織層からなる上部層におけるZrO2結晶粒の剥落等が生じやすくなり耐欠損性が低下するため、(ACVD/APVD)の値を0.7〜14と定めた。
付け加えるに、上記(ACVD/APVD)の値は、上部層の層厚方向のいずれの横断面で測定したかによってある程度の幅をもって変化するが、この発明では、層厚方向のいずれの横断面で測定した場合であっても、その測定値の最小値および最大値のいずれもが、上記(ACVD/APVD)の0.7〜14の範囲内の数値でなければならない。
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、最表面層として、必要に応じて蒸着形成してもよいが、識別効果という観点からは、その層厚は0.1〜1μmで十分である。
この発明の被覆工具は、硬質被覆層の上部層を、島状ZrO相互の間隙および谷部に、物理蒸着によって耐熱性高強度硬質膜(望ましくは、Hv2500以上の硬度を有する硬質膜)を所定幅、所定深さに亘って充填し、上部層を島状ZrOと耐熱性高強度硬質膜の混合組織層として形成したことにより、特にNi基、Fe基、Co基等の耐熱合金の切削加工を、切刃に対して繰り返し断続的に大きな衝撃的負荷がかかる断続切削条件で行った場合にも、硬質被覆層は、すぐれた耐欠損性と耐摩耗性を発揮するものである。
つぎに、この発明の被覆工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
ついで、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで同じく表3に示される条件でZrO層を表4に示される組み合わせで、かつ目標層厚で蒸着形成し、これに噴射研磨材として、水との合量に占める割合で35〜60質量%かつ粒度(メッシュ)が500〜700の酸化アルミニウム微粒を配合した研磨液を、噴射圧力0.18〜0.24MPaの条件で噴射して、前記ZrO層に谷部と島状ZrOを形成し、さらに該谷部と該島状ZrO相互の間隙に、通常の物理蒸着装置を用い、表4に示される各種の耐熱性高強度硬質膜を、同じく表4に示される(ACVD/APVD)の値となるように強固にかつ密に物理蒸着で充填し上部層を形成することにより、本発明被覆工具1〜13をそれぞれ製造した。
また、比較の目的で、表3に示される条件にて(本発明被覆工具と同一条件)表5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した後、同じく表3に示される条件でZrO層を表5に示される組み合わせで、かつ目標層厚で蒸着形成し、さらに、通常の物理蒸着装置を用い、ZrO層上に、表5に示される各種の耐熱性高強度硬質膜を表5に示される目標層厚となるように物理蒸着することにより、比較被覆工具1〜13をそれぞれ製造した。
本発明被覆工具1〜13の硬質被覆層の上部層について、複数個所の横断面の(ACVD/APVD)を光学顕微鏡を用いて測定したので、測定した(ACVD/APVD)の値の最小値および最大値を表4にそれぞれ示す。
また、本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および比較被覆工具1〜13のそれぞれについては、次の切削条件A〜Cで断続切削試験を行った。
[切削条件A]
被削材: Ni:54%、Cr:19%、Mo:3%、Nb:5%、Fe:18.5%を含有するNi基耐熱合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 50 m/min、
切り込み: 1.0 mm、
送り: 0.2 mm/rev.、
切削時間: 5 分、
の条件でのNi基耐熱合金の湿式高速連続高切り込み切削試験
[切削条件B]
被削材: Ni:42.7%、Cr:13.5%、Mo:6.2%、Fe:34%を含有するFe基耐熱合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 80 m/min、
切り込み: 1.0 mm、
送り: 0.2 mm/rev.
切削時間: 5 分、
の条件でのFe基耐熱合金の湿式高速連続高送り切削試験、
[切削条件C]
被削材: Co:61%、Ni:3%、Cr:28%、W:4%、Fe:3%を含有するCo基耐熱合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 60 m/min、
切り込み: 1.0 mm、
送り: 0.25 mm/rev.
切削時間: 5 分、
の条件でのCo基耐熱合金の湿式高速連続高切り込み切削試験、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Figure 2009034766
Figure 2009034766
Figure 2009034766
Figure 2009034766
Figure 2009034766
Figure 2009034766
表4〜6に示される結果から、本発明被覆工具1〜13は、硬質被覆層の上部層が、すぐれた高温硬さと耐熱性を備える島状ZrO2と、さらに、物理蒸着によって島状ZrO2の間隙および谷部に充填された、すぐれた高温硬さと耐熱性に加えてすぐれた高温強度を備える耐熱性高強度硬質膜とからなる混合組織層によって形成されていることから、切刃に対して繰り返しかつ断続的に極めて大きな衝撃的負荷が加わるNi基、Fe基、Co基等の耐熱合金の断続切削でも、切刃部の欠損発生が著しく抑制され、しかも、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層の上部層を、ZrO2層とその上に被覆した耐熱性高強度硬質膜で構成した比較被覆工具1〜13においては、断続切削では硬質被覆層の上部層が、高熱と衝撃的負荷に耐えられず、切刃部に欠損が発生したり、耐摩耗性に劣っているため、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に対して繰り返し断続的に大きな衝撃的負荷がかかるNi基、Fe基、Co基等の耐熱合金の断続切削でも、すぐれた耐欠損性と耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
本発明被覆工具の硬質被覆層の上部層(混合組織層)の横断面を示す概略模式図である。 本発明被覆工具の硬質被覆層の上部層(混合組織層)の縦断面を示す概略模式図である。

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層を設けた表面被覆切削工具において、
    (a)下部層は、いずれも化学蒸着で形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
    (b)上部層は、1〜10μmの層厚を有し、該層の層厚方向縦断面で観察した場合に、化学蒸着で形成された酸化ジルコニウムが、島状酸化ジルコニウムとして不連続に存在し、物理蒸着で形成された耐熱性高強度硬質膜が、該島状酸化ジルコニウム相互の間隙を埋めるように存在する混合組織構造を有し、
    かつ、前記上部層を、該層表面に平行な横断面で測定した場合に、前記島状酸化ジルコニウムが占める面積(ACVD)と、前記耐熱性高強度硬質膜が占める面積(APVD)との面積比(ACVD/APVD)が0.7〜14である混合組織層、
    からなることを特徴とする硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具。
JP2007200663A 2007-08-01 2007-08-01 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具 Withdrawn JP2009034766A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200663A JP2009034766A (ja) 2007-08-01 2007-08-01 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200663A JP2009034766A (ja) 2007-08-01 2007-08-01 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具

Publications (1)

Publication Number Publication Date
JP2009034766A true JP2009034766A (ja) 2009-02-19

Family

ID=40437168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200663A Withdrawn JP2009034766A (ja) 2007-08-01 2007-08-01 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具

Country Status (1)

Country Link
JP (1) JP2009034766A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177292A (ja) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 表面被覆切削工具
JP2018034277A (ja) * 2016-09-02 2018-03-08 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2019063932A (ja) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 耐溶着チッピング性にすぐれた切削工具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177292A (ja) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 表面被覆切削工具
JP2018034277A (ja) * 2016-09-02 2018-03-08 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2019063932A (ja) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 耐溶着チッピング性にすぐれた切削工具

Similar Documents

Publication Publication Date Title
JP5321094B2 (ja) 表面被覆切削工具
JP4474646B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2007160497A (ja) 硬質被覆層の改質α型Al2O3層がすぐれた結晶粒界面強度を有する表面被覆サーメット製切削工具
JP6614446B2 (ja) 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP2008296292A (ja) 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP5861982B2 (ja) 硬質被覆層が高速断続切削ですぐれた耐剥離性を発揮する表面被覆切削工具
JP2009034766A (ja) 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具
JP2018024038A (ja) 耐溶着チッピング性と耐剥離性にすぐれた表面被覆切削工具
JP5170828B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2009056561A (ja) 表面被覆切削工具
JP2008137129A (ja) 表面被覆切削工具
JP2008149390A (ja) 表面被覆切削工具
JP2006289546A (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2010207930A (ja) 表面被覆切削工具
JP2007118155A (ja) 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ
JP5170830B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2008137130A (ja) 表面被覆切削工具
JP2006231423A (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2007296624A (ja) 硬質被覆層が高速切削ですぐれた耐摩耗性を発揮する表面被覆切削工具
JP2009034767A (ja) 硬質被覆層がすぐれた耐欠損性と耐摩耗性を発揮する表面被覆切削工具
JP2005288639A (ja) 難削材の高速断続切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2009166194A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2006315164A (ja) 硬質被覆層が高速切削ですぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP2007168029A (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2019098501A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005