JP2009026887A - 太陽電池 - Google Patents

太陽電池 Download PDF

Info

Publication number
JP2009026887A
JP2009026887A JP2007187302A JP2007187302A JP2009026887A JP 2009026887 A JP2009026887 A JP 2009026887A JP 2007187302 A JP2007187302 A JP 2007187302A JP 2007187302 A JP2007187302 A JP 2007187302A JP 2009026887 A JP2009026887 A JP 2009026887A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
solar cell
thickness
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007187302A
Other languages
English (en)
Inventor
Yuuki Matsui
優貴 松井
Akihiro Funamoto
昭宏 船本
Shigeru Aoyama
茂 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007187302A priority Critical patent/JP2009026887A/ja
Priority to PCT/JP2008/062707 priority patent/WO2009011338A1/ja
Publication of JP2009026887A publication Critical patent/JP2009026887A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】多重量子井戸層を透過した光を再度第3の半導体層により吸収させて効率を向上させ、かつ、多重量子井戸層における層数を減らすことを可能にすることで界面における再結合を抑制し、エネルギー変換効率を向上させる。
【解決手段】障壁層33と、障壁層33よりもバンドギャップの小さな井戸層34とを複数層交互に積層して多重量子井戸層28を構成する。受光面側とは反対側の端に位置する障壁層33に隣接させて、障壁層33よりもバンドギャップが小さく、井戸層34よりも厚さの大きな第3の半導体層を設ける。
【選択図】図9

Description

本発明は太陽電池に関し、具体的には、量子井戸構造を有する太陽電池に関する。
図1は一般的な単接合太陽電池の構造を示すエネルギーバンド図である。単接合太陽電池はpn接合構造やpin接合構造によって形成されている。図1の太陽電池は、n型半導体層、i型半導体層、p型半導体層を接合して構成されており、伝導帯と価電子帯との間のバンドギャップがEgとなっている。ここに光が入射すると、Eg以上のエネルギーを持つ光が吸収されて価電子帯から伝導帯へ電子11が励起され、価電子帯には正孔12が生成し、太陽電池に起電力が発生する。
しかし、このような単接合太陽電池では、バンドギャップEgよりも小さなエネルギーの光は吸収されることなく透過してしまうので、光電変換効率が低い。一方、バンドギャップEgを小さくしても、伝導帯へ励起された電子の持つエネルギー(hν:νは光の振動数)のうち伝導帯の底のエネルギーよりも大きなエネルギー(hν−Eg)はフォノンとしてただちに放出され熱エネルギーとして消耗してしまう。そのため、単接合太陽電池はエネルギー変換効率が悪かった。
図2は多接合太陽電池の構造を示すエネルギーバンド図である。この多接合太陽電池は、バンドギャップの異なるpn接合を積層したものである。図2では、バンドギャップがEg1のpn接合とバンドギャップがEg2のpn接合とバンドギャップがEg3のpn接合を積層している(ただし、Eg1>Eg2>Eg3とする)。このような多接合太陽電池では、入射した光のうちEg1よりもエネルギーの大きな光がバンドギャップEg1のpn接合で吸収され、ついでバンドギャップEg1のpn接合で吸収されなかった光のうちEg2よりもエネルギーの大きな光がバンドギャップEg2のpn接合で吸収され、ついでバンドギャップEg2のpn接合で吸収されなかった光のうちEg3よりもエネルギーの大きな光がバンドギャップEg3のpn接合で吸収される。従って、多接合太陽電池では、広い波長域の光を吸収できるとともに、熱エネルギーロスも小さくなり、単接合太陽電池よりも高いエネルギー変換効率を実現できる。多接合太陽電池としては、例えば特開平8−204215号公報(特許文献1)に開示されたものがある。
しかし、多接合太陽電池では、各層の格子定数を一致させることとバンドギャップを最適化することとの両立が難しく、理想的な構造を得ることができなかった。また、多接合太陽電池は層構造が複雑で、プロセス制御が難しい。さらに、隣接する層間はトンネル接合13を介して直列に接続されており、出力電流は各層の中で生成される最小の電流値となるため、太陽光のスペクトル変化によりエネルギー変換効率が左右されやすい。
そこで、図3に示すように、バンドギャップがEg1とEg2の半導体層を繰り返して積層した多重量子井戸構造が提案されている。ここで、Eg1は障壁層14におけるバンドギャップ、Eg2は井戸層15におけるバンドギャップである。このような構造としては、特開平11−220150号公報(特許文献2)に開示されたものがある。
このような多重量子井戸太陽電池は、基本的にはバンドギャップエネルギーがEg1である半導体から構成された太陽電池として動作するが、バンドギャップエネルギーがEg1より小さなEg2である井戸層15の存在によって、吸収できる光の波長域が長波長側に拡大される。そのため、開放電圧を下げることなく電流を大きくすることができる。また、多接合型太陽電池と比べて、同じ材料系を使えるので作製しやすいことと、多重量子井戸のサイズにより吸収波長を制御できる。また、励起された電子のエネルギーを熱として放出しにくいというメリットがある。
また、図4に示すように、量子ドットを積層した量子ドット太陽電池も提案されている。このような構造の太陽電池としては、特開2002−141531号公報(特許文献3)に開示されたものがある。量子ドット太陽電池では、量子ドットを用いることで量子準位を離散化し、キャリアが井戸内のエネルギー準位へ緩和しにくくすることができるメリットがある。
しかし、量子井戸(量子ドット)構造の太陽電池では、異なる材料同士が接する界面が多く存在する。この界面では、材料や格子定数が異なるため、図5に示すように未結合手(ダングリングボンド)による界面準位Ed1、Ed2が生じやすい。そして、この界面準位Ed1、Ed2を介して電子と正孔が再結合(界面再結合)するため、キャリアが消滅し太陽電池のエネルギー変換効率を低下させてしまうという問題がある。また、多重量子井戸のように厚さの薄い多層構造を作製する場合や、多数の量子ドットを作製する場合には、層や量子ドットの数が多くなるほど作製プロセスが煩雑になる。
特開平8−204215号公報 特開平11−220150号公報 特開2002−141531号公報
本発明は、このような技術的課題に鑑みてなされたものであって、その目的とするところは、多重量子井戸層を透過した光を再度第3の半導体層により吸収させて効率を向上させ、かつ、多重量子井戸層における層数を減らすことを可能にすることで界面における再結合を抑制し、電気エネルギーへのエネルギー変換効率の良好な太陽電池を提供することにある。
本発明の第1の太陽電池は、第1の半導体層と前記第1の半導体層よりもバンドギャップの小さな第2の半導体層とを複数層交互に積層させた多重量子井戸層を有する太陽電池において、前記多重量子井戸層に隣接して、前記第1の半導体層よりもバンドギャップが小さく、前記第2の半導体層よりも厚さの大きな第3の半導体層を設けたことを特徴としている。
本発明にかかる第1の太陽電池にあっては、多重量子井戸層を構成する第1の半導体層では短波長の光を吸収し、第2の半導体層では長波長の光を吸収する。そして、第3の半導体層では、多重量子井戸層で吸収されなかった長波長の光を吸収することができる。よって、多重量子井戸層の層数を減らすことができるので、多重量子井戸層での界面再結合を減少させることができ、太陽電池のエネルギー変換効率(発電効率)を向上させることができる。また、多重量子井戸層の層数を減らすことができるので、太陽電池の作製プロセスも簡略化される。
本発明にかかる第1の太陽電池のある実施態様においては、前記多重量子井戸層と第3の半導体層がいずれもi型半導体であって、p型半導体層とn型半導体層の間に挟まれていることを特徴としている。かかる実施態様によれば、真正半導体の多重量子井戸層と第3の半導体層をp型半導体層とn型半導体層で挟むことにより、多重量子井戸層と第3の半導体層のバンドを傾斜させることができ、キャリアを多重量子井戸層と第3の半導体層の両端に移動させやすくなる。
本発明にかかる第1の太陽電池の別な実施態様においては、前記第3の半導体層が、前記多重量子井戸層の受光面とは反対側に設けられていることを特徴としている。かかる実施態様によれば、多重量子井戸層で吸収されることなく多重量子井戸層を透過した光を第3の半導体層により吸収させることができ、光の吸収効率を向上させることができる。
本発明にかかる第1の太陽電池のさらに別な実施態様においては、前記第1の半導体層のうち前記第3の半導体層に隣接する第1の半導体層が、厚さが10nm以下であることを特徴としている。かかる実施態様においては、第3の半導体層に隣接する第1の半導体層の厚みを10nm以下に薄くしているので、第3の半導体層で励起されたキャリアが当該第1の半導体層をトンネリングして多重量子井戸層へ移動し易くなる。
本発明にかかる第1の太陽電池のさらに別な実施態様においては、前記第2の半導体層のうち前記第3の半導体層に最も近い第2の半導体層の伝導帯量子準位と、前記第3の半導体層の伝導帯下端のエネルギー準位とがほぼ一致していることを特徴としている。かかる実施態様によれば、前記第3の半導体層の伝導帯下端のエネルギー準位が、第3の半導体層に最も近い第2の半導体層の伝導帯量子準位とほぼ一致しているので、第3の半導体層で伝導帯に励起されたキャリアは隣接する第1の半導体層をトンネリングして井戸層である第2の半導体層へ入り込み、多重量子井戸層を移動する。よって、第3の半導体層へ励起されたキャリアが再結合する確率が小さくなり、太陽電池の効率が向上する。
本発明にかかる第1の太陽電池のさらに別な実施態様においては、前記第3の半導体層の厚さが、前記多重量子井戸層の厚さの0.5倍以上3倍以下であることを特徴としている。かかる実施態様によれば、多重量子井戸層の厚さの0.5倍以上3倍以下であることにより、多重量子井戸層での光の吸収とキャリアの移動が容易になる。
本発明にかかる第1の太陽電池のさらに別な実施態様においては、前記第1の半導体層のそれぞれの厚さが、5nm以上50nm以下であり、前記第2の半導体層のそれぞれの厚さが、5nm以上10nm以下であることを特徴としている。かかる実施態様によれば、第2の半導体層の量子準位間が広くなって離散化するので、励起されたキャリアが第2の半導体層の量子準位に落ち込みにくくなり、太陽電池の効率が向上する。
本発明にかかる第2の太陽電池は、第1の半導体層よりもバンドギャップが小さな第2の半導体層が前記第1の半導体層内に含まれた量子ドット層を有する太陽電池において、前記量子ドット層に隣接して、前記第1の半導体層よりもバンドギャップが小さく、第2の半導体層の大きさよりも厚さの大きな第3の半導体層を設けたことを特徴としている。
本発明にかかる第2の太陽電池にあっては、量子ドット層を構成する第1の半導体層では短波長の光を吸収し、第2の半導体層では長波長の光を吸収する。そして、第3の半導体層では、量子ドット層で吸収されなかった長波長の光を吸収することができる。よって、量子ドット層の層数を減らすことができるので、量子ドット層での界面再結合を減少させることができ、太陽電池のエネルギー変換効率(発電効率)を向上させることができる。また、量子ドット構造の層数を減らすことができるので、太陽電池の作製プロセスも簡略化される。
本発明にかかる第2の太陽電池のある実施態様は、前記量子ドット層と第3の半導体層がいずれもi型半導体であって、p型半導体層とn型半導体層の間に挟まれていることを特徴としている。かかる実施態様によれば、真正半導体の量子ドット層と第3の半導体層をp型半導体層とn型半導体層で挟むことにより、量子ドット層と第3の半導体層のバンドを傾斜させることができ、キャリアを量子ドット層と第3の半導体層の両端に移動させやすくなる。
本発明にかかる第2の太陽電池の別な実施態様は、前記第3の半導体層が、前記量子ドット層の受光面とは反対側に設けられていることを特徴としている。かかる実施態様によれば、量子ドット層で吸収されることなく量子ドット層を透過した光を第3の半導体層により吸収させることができ、光の吸収効率を向上させることができる。
本発明にかかる第2の太陽電池のさらに別な実施態様は、前記第2の半導体層のうち前記第3の半導体層に最も近い第2の半導体層と前記第3の半導体層の間に挟まれた前記第1の半導体層の部分が、厚さが10nm以下であることを特徴としている。かかる実施態様においては、第3の半導体層に隣接する第1の半導体層の厚みを10nm以下に薄くしているので、第3の半導体層で励起されたキャリアが当該第1の半導体層をトンネリングして量子ドット層へ移動し易くなる。
本発明にかかる第2の太陽電池のさらに別な実施態様は、前記第2の半導体層のうち前記第3の半導体層に最も近い第2の半導体層の伝導帯量子準位と、前記第3の半導体層の伝導帯下端のエネルギー準位とがほぼ一致していることを特徴としている。かかる実施態様によれば、第3の半導体層の伝導帯下端のエネルギー準位が、第3の半導体層に最も近い第2の半導体層の伝導帯量子準位とほぼ一致しているので、第3の半導体層で伝導帯に励起されたキャリアは隣接する第1の半導体層をトンネリングして井戸層である第2の半導体層へ入り込み、量子ドット層を移動する。よって、第3の半導体層へ励起されたキャリアが再結合する確率が小さくなり、太陽電池の効率が向上する。
本発明にかかる第2の太陽電池のさらに別な実施態様は、第3の半導体層の厚さが、前記量子ドット層の厚さの0.5倍以上3倍以下であることを特徴としている。かかる実施態様によれば、量子ドット層の厚さの0.5倍以上3倍以下であることにより、多重量子井戸層での光の吸収とキャリアの移動が容易になる。
本発明にかかる第2の太陽電池のさらに別な実施態様は、前記量子ドット層の厚さ、幅、奥行きのうちいずれか1辺が10nm以下であり、残る2辺が30nm以下であることを特徴としている。かかる実施態様によれば、量子ドットである第2の半導体層の量子準位間が広くなって離散化するので、励起されたキャリアが第2の半導体層の量子準位間に落ち込みにくくなり、太陽電池の効率が向上する。
本発明にかかる第2の太陽電池のさらに別な実施態様は、前記第2の半導体層が前記量子ドット層の厚さ方向に沿って並んでおり、各第2の半導体層同士の間隔が10nm以下であることを特徴としている。かかる実施態様によれば、励起されたキャリアが量子ドット層内でトンネリングしながら移動しやすくなる。
なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。
以下、添付図面を参照しながら本発明の好適な実施形態を説明する。
(第1の実施形態)
以下、図6〜図15を参照して本発明の第1の実施形態を説明する。図6は本発明の第1の実施形態による太陽電池の構造を示す概略断面図である。この太陽電池21は、p型GaAs基板23(基板)の上に下層から順次、p型GaAsバッファ層24(バッファ層)、AlGaAsBSF層25(BSF層)、p型GaAs層26(p型半導体層)、第3の半導体層27、多重量子井戸層28、n型GaAs層29(n型半導体層)、AlGaAs窓層30(窓層)を積層したものであり、p型GaAs基板23の裏面にはp型電極22を設け、AlGaAs窓層30の上にはn型GaAs層31を介してn型電極32を設けている。
多重量子井戸層28は、図7に示すように、真性半導体からなる障壁層33(第1の半導体層)と井戸層34(第2の半導体層)を複数層ずつ交互に積層したものである。障壁層33は厚さが10nmのi型GaAsによって構成され、井戸層34は厚さが10nmのi型In0.2Ga0.8As層によって構成されており、多重量子井戸層28は障壁層33と井戸層34を10層ずつ交互に積層して構成されている。
AlGaAs窓層30は受光面となるものであり、多重量子井戸層28の受光面側の端の層及び受光面とは反対側(基板側)の端の層は障壁層33となっていて第3の半導体層27の上面に形成されている。第3の半導体層27は、厚さが200nmのi型In0.15Ga0.85Asによって構成されている。
図8は第3の半導体層27及び多重量子井戸層28のバンド構造を示す図である。GaAsからなる障壁層33のバンドギャップEg1は1.42eVである。In0.2Ga0.8Asからなる井戸層34(量子井戸)のバンドギャップEg2´は1.21eVであり、量子準位間のエネルギーギャップEg2は1.25eVである。
In0.15Ga0.85Asからなる第3の半導体層27は、障壁層33よりもバンドギャップが小さなバルクの層となっている。すなわち、第3の半導体層27のバンドギャップEg3は1.26eVである。また、第3の半導体層27の伝導帯の下端のエネルギー準位と、それに隣接する多重量子井戸層28(井戸層34)量子準位とはほぼ一致している。
また、積層された第3の半導体層27及び多重量子井戸層28は、その上下面をn型半導体層であるn型GaAs層29とp型半導体層であるp型GaAs層26によって挟まれている。そのため図9に示すように、伝導帯の下端と価電子帯の上端が傾斜し、キャリア(電子、正孔)が両端に集まりやすくなる。
なお、p型GaAsバッファ層24はp型GaAs基板23の表面凹凸や欠陥の影響を減らし、上層の結晶性を高めるための層である。
つぎに、図9を参照して太陽電池21の働きを説明する。この太陽電池21に受光面から光が入射すると、多重量子井戸層28においては、障壁層33でEg1=1.42eV以上のエネルギーを持つ光が吸収され、井戸層34ではEg2=1.25eV以上のエネルギーを持つ光が吸収され。そして、障壁層33で励起された電子11や、井戸層34内の量子準位に励起され、さらに光や熱により励起されて井戸内から出た電子11はn型GaAs層29側へ移動し、価電子帯に生成した正孔12はp型GaAs層26側へ移動し、太陽電池21のp型電極22とn型電極32の間に電圧が発生する。
このように多重量子井戸層28では、1.42eV(Eg1)以上のエネルギーを持つ光は障壁層33と井戸層34の双方で吸収される。一方、1.25eV(Eg2)から1.42eV(Eg1)のエネルギーを持つ光は井戸層34でしか吸収されない。そのため、多重量子井戸層28においては、エネルギーの大きな光ほど吸収されやすく、1.25eV以上のエネルギーを持つ光であってもエネルギーの小さな光は多重量子井戸層28を透過しやすい。
第3の半導体層27はEg3=1.26eV以上のエネルギーの光を吸収することができるので、多重量子井戸層28を透過しやすい長波長側の光を吸収することができる。この第3の半導体層27が多重量子井戸層28の基板側に隣接しているので、多重量子井戸層28で吸収されることなく透過してきた光のうち1.26eV(Eg3)以上のエネルギーを持つ光は第3の半導体層27で吸収される。そして、第3の半導体層27で光を吸収して生成されたキャリア電子11と正孔12もそれぞれn型GaAs層29側とp型GaAs層26側へ移動して電圧発生に寄与する。
本実施形態の太陽電池21にあっては、このような構造をとることで、量子井戸構造を有しない太陽電池に比べて、短波長から長波長までの広い範囲の光を吸収することができ、光エネルギーから電気エネルギーへの変換効率を向上させることができる。また、従来の量子井戸構造のみを有する太陽電池に比べ、多重量子井戸層28における界面の数を少なくでき、欠陥による電子−正孔対の再結合を減らしてエネルギー変換効率を向上させることができる。
また、本実施形態の太陽電池21では、基板側の端の障壁層33に隣接させて障壁層33のエネルギーギャップEg1よりもエネルギーギャップが小さい第3の半導体層27を設け、第3の半導体層27の伝導帯の下端のエネルギー準位が、障壁層33を挟んで第3の半導体層27に隣接している井戸層34の量子準位(特に、基底準位)とほぼ等しくなるようにしている。第3の半導体層27の伝導帯の下端のエネルギー準位が、隣接する井戸層34の量子準位にほぼ等しくなるようにするには、例えば第3の半導体層27の材料を選択することにより行える。
このように、第3の半導体層27の伝導帯の下端のエネルギー準位が、障壁層33を挟んで第3の半導体層27に隣接している井戸層34の量子準位(特に、基底準位)とほぼ等しくなっていると、図9に示すように、第3の半導体層27内のキャリア電子11がトンネリング35によって井戸層34へと移動しやすくなる。多重量子井戸層28(井戸層34)内ではエネルギー準位が離散化されており、そのため光吸収や熱エネルギーにより電子11が高いエネルギー準位に励起されても緩和しにくく、井戸層34から抜け出してスムーズにn型GaAs層29側へ移動できる。
このとき2つのエネルギー準位の差は、電子の熱ゆらぎ以下であればよい。すなわち、第3の半導体層27の伝導帯の下端のエネルギー準位と井戸層34の量子準位との差が、3/2kT≒30meV以下であることが好ましい。さらに、太陽電池の出力が最大となるように適切な負荷が印加された状態で、2つのエネルギー準位の差が、3/2kT≒30meV以下であることが望ましい。
図10は、本発明との比較のために示した比較例であって、量子井戸がなく第3の半導体層27のみが設けられている。この比較例の場合には、エネルギーギャップ(Eg1)が大きい領域ではEg1よりもエネルギーが大きな光を吸収して電子11が励起される。また、エネルギーギャップ(Eg2)が小さい領域、すなわち第3の半導体層27ではEg2よりもエネルギーが大きな光を吸収して電子11が励起される。しかし、第3の半導体層27には無数のエネルギー準位が分布しているので、光吸収や熱エネルギーにより第3の半導体層27の伝導帯内で電子11が高いエネルギーを得たとしても、そのエネルギーをただちに放出して伝導帯下端のエネルギー準位へと緩和してしまい、電子11は第3の半導体層27から抜け出せず、電流に寄与できない。
これに対し、本発明の実施形態1の太陽電池21では、第3の半導体層27で光を吸収して励起された電子11は多重量子井戸層28へトンネリングし、多重量子井戸層28で励起されて容易に多重量子井戸層28から抜け出すことができる。よって、エネルギー変換効率が向上させられる。
つぎに、図11は、本発明との比較のために示した別な比較例であって、多重量子井戸層28のみの場合を表している。この場合には、多重量子井戸層28のみでエネルギーがEg1以上の光とEg2以上の光を吸収させなければならないので、多重量子井戸層28における界面の数が多くなる。そして、この界面には未結合手などによる界面準位が存在するため、界面準位を介して電子と正孔が再結合してしまい、効率が悪くなる。また、層数が増えることで、作製工程も手間が掛かることになる。
これに対し、本発明の第1の実施形態では、第3の半導体層27を設けることで多重量子井戸層28における障壁層33と井戸層34の数を減らすことができ、界面準位を介しての再結合を抑制することができる。また、全体として層数が減るので、多重量子井戸層のみの場合と比べて、また多接合太陽電池の場合と比べても、作製工程が簡略になる。
よって、本発明の第1の実施形態による太陽電池21は、多重量子井戸構造と単接合太陽電池の構造とを単に組み合わせただけのものではなく、相乗的な優れた効果を得ることができる。
ここで本発明の第1の実施形態による太陽電池21と多重量子井戸層のみの太陽電池の場合とを比較したシミュレーション結果を説明する。図12(a)は多重量子井戸層28のみで構成した比較例のバンド構造を表しており、障壁層と井戸層を20層ずつ形成されている。図12(b)は多重量子井戸層28と第3の半導体層27を設けた第1の実施形態を表しており、多重量子井戸層は10層ずつの障壁層と井戸層によって構成されている。図13は、この比較例と第1の実施形態の順方向暗電流特性をシミュレーションした結果を表している。図13によれば、図12(b)のように多重量子井戸層と第3の半導体層を併用することにより暗電流が減少することが分かる。図12(b)のような構造で暗電流が減少したのは、第3の半導体層を設けたことで障壁層と井戸層の界面の数を減らすことができ、界面再結合が抑制されたためである。
つぎに、井戸層34の厚さ、障壁層の厚さ及び第3の半導体層27の厚さについて説明する。
まず井戸層34の厚さについて説明する。井戸層34の厚さが大きすぎると、エネルギー準位の間隔が狭くなって井戸層34内に多くの量子準位ができる。井戸層34内に量子準位が多数ある場合には、障壁層33の伝導帯を流れてきたキャリアは井戸層34内の量子準位に落ち込みやすくなり、光エネルギーが熱エネルギーになってロスが発生する。そのため、井戸層34の厚さは10nm以下が好ましい。
一方、井戸層34の厚さを薄くしすぎると、光を十分に吸収させるためには、多重量子井戸層28の層数が多くなりすぎる。それによって多重量子井戸層28における障壁層33と井戸層34の界面の数が多くなり、界面準位を介して再結合が起こりやすくなり、光エネルギーが熱エネルギーとなって電気エネルギーのロスが生じる。そのため、井戸層34の厚さは、5nm以上が好ましい。よって、井戸層34の厚さは、5nm以上10nm以下が好ましい。
つぎに、障壁層33の厚さについて説明する。多重量子井戸層28中をキャリアがトンネリングすると、キャリアの移動度が大きくなる。キャリアが高速で移動すると、正孔と電子が空間的に分離されるために再結合しにくくなり、キャリアの収集効率が高くなり、エネルギー変換効率が向上する。したがって、キャリアが障壁層33をトンネリングし易くして移動度を大きくするためには、障壁層33の厚さは10nm以下にするのが好ましい。
一方、障壁層33の厚さが薄すぎると、光を十分に吸収させるためには、多重量子井戸層28の層数が多くなりすぎる。それによって多重量子井戸層28における障壁層33と井戸層34の界面の数が多くなり、界面準位を介して再結合が起こりやすくなり、光エネルギーが熱エネルギーとなって電気エネルギーのロスが生じる。そのため、障壁層33の厚さは、5nm以上が好ましい。よって、障壁層33でトンネリングさせる場合には、障壁層33の厚さは、5nm以上10nm以下が好ましい。
また、障壁層33の厚さを大きくすると多重量子井戸層28の層数を少なくできるので、障壁層33におけるキャリアのトンネリングに格別な配慮を払わない場合には、障壁層33の厚さは10nmより大きくてもよい。しかし、長波長の光と短波長の光の両方を吸収させるためには、障壁層33の厚さは50nm以下とするのが好ましい。よって、障壁層33でのトンネリングを考慮しない場合には、障壁層33の厚さは5nm以上50nm以下が好ましい。
つぎに、以下に述べるような考え方に従えば、第3の半導体層27の厚さが、多重量子井戸層28の厚さの0.5倍以上3倍以下であることが好ましい。
第3の半導体層27の厚さと多重量子井戸層28の厚さとの関係について考える。多重量子井戸層28の厚さと第3の半導体層27の厚さを加えた合計の厚さを光吸収層の厚さとする。光吸収層は、その厚さが大きいほど吸収できる光の量が大きくなる。その一方で、光吸収層の厚さが大きくなると、キャリアの移動距離が長くなるため、再結合によりエネルギーをロスしやすくなる。そのため、光吸収層の厚さは、光の吸収係数とキャリアの拡散長から最適な厚さが決まる。よって、多重量子井戸層28の厚さ及び第3の半導体層27の厚さは、それぞれの厚さを変化させたときの太陽電池の変換効率を計算することにより決めることができる。ここで、第3の半導体層27の厚さに比べて多重量子井戸層28の厚さが大きくなりすぎると、多重量子井戸層28の層数が増え、キャリアが多重量子井戸層28の界面で再結合してエネルギーロスが発生しやすくなる。また、第3の半導体層27の厚さに比べて多重量子井戸層28の厚さが小さくなりすぎると、高エネルギーの光(障壁層33のバンドギャップEg1に相当するエネルギーの光)を十分に吸収できなくなってしまう。第3の半導体層27でも高エネルギーの光の吸収は起きるが、すぐに緩和してしまう。これらの状況を考えれば、第3の半導体層27の厚さは、多重量子井戸層28の厚さの0.5倍以上3倍以下であることが好ましい。
つぎにBSF(Back Surface Field)層25について説明する。第3の半導体層27又は多重量子井戸層28で光を吸収して生成した電子は、pin接合によってできた内部電界によりn型GaAs層29側へと流れる。しかし、p型GaAs層26付近で生成したキャリア電子の一部は裏面側へと拡散し、多数キャリアである正孔と再結合して損失となる。そこで、第1の実施形態の太陽電池21では、図14に示すように、p型GaAs層26の裏面側にAlGaAsBSF層25によるエネルギー障壁を設けることによって電子11が裏面側へ拡散できないようにしている。
しかし、本発明の第1の実施形態においては、下記のような理由により、AlGaAsBSF層25は省略しても差し支えない。p型GaAs層26と多重量子井戸層28の間に第3の半導体層27を設けていると、第3の半導体層27で励起された電子11は、多重量子井戸層28側へはトンネリングにより流れる。しかし、第3の半導体層27内で生成した電子11にとっては、図15に示すように、p型GaAs層26がエネルギー障壁となるので、p型GaAs層26に妨げられて電子11は裏面側へは拡散することができない。そのため、AlGaAsBSF層25を設けなくても、電子11がp型GaAs層26側へ拡散するのを防ぐことができる。よって、AlGaAsBSF層25を省くことができ、それによって層数を減らして太陽電池21の作製をより簡略化することができる。
図15に示すように、電子11が第3の半導体層27内でほぼ確実に励起され、励起された電子11がp型GaAs層26側へ漏れにくくなるようにするためには、第3の半導体層27の厚さを大きくし(多重量子井戸層28の3倍程度の厚さ)、第3の半導体層27のp型GaAs層26pに隣接する領域にp型GaAs層26と同程度の不純物を添加すればよい。
(作製方法)
つぎに、太陽電池21の作製方法を説明する。太陽電池21を作製するには、分子線エピタキシー法(MBE)を用いて以下のように作製すればよい。まず、不純物としてBeを含むp型GaAs基板23を準備し、当該基板23をアセトンやメタノール等の溶剤を用いて有機洗浄する。基板23の表面を硫酸系エッチング液でエッチングして酸化膜等を除去した後、基板23をMBE装置内に搬入してセットする。ついで、MBE装置内において、成長温度580℃、成長速度1.0μm/h、As4圧2×10−5Torrの減圧下で順次各層を下記の厚さとなるようにエピタキシャル成長させる(図6参照)。なお、n型ドーパントにはSi、p型ドーパントにはBeを用いればよい。そして、最後にn型GaAs層31を一部残してエッチング除去し、n型GaAs層31の上にn型電極32を設け、またp型GaAs基板23の下面にp型電極22を設ける。

型GaAsバッファ層24 1μm
Al0.2Ga0.8AsBSF層25 100nm
p型GaAs層26 600nm
第3の半導体層27(In0.15Ga0.85As) 200nm
多重量子井戸層28(井戸層34と障壁層33を各10層)
井戸層34(In0.2Ga0.8As 10nm
障壁層33(GaAs) 10nm
n型GaAs層29 400nm
Al0.4Ga0.6As窓層30 50nm
n型GaAs層31 50nm
なお、太陽電池21の作製方法は上記のような方法に限らずに、有機金属化学気相成長法(MOCVD)などを用いてもよい。
(第1の実施形態の変形例)
障壁層33および井戸層34の材料は、GaAs/InGaAsに限らず、例えば以下に述べるような材料でもよい。
(1) 基板としてのGaAsを用いる場合、障壁層としてAlGaAsを用い、井戸層としてGaAsを用い、第3の半導体層としてAlGaAsあるいはGaAsを用いることができる。このような例では、AlGaAsとGaAsの格子定数がほぼ同じであるので、格子歪が無いため結晶性を高くできる。その結果、界面での再結合によるエネルギー変換効率のロスを小さくできる。
(2) 基板としてのGaAsを用いる場合、障壁層としてGaAsを用い、井戸層としてInGaAsを用い、第3の半導体層としてInGaAsを用いることができる。このような例では、バンドギャップを最適化して、エネルギーギャップを太陽光スペクトルにマッチさせることができる。
(3) 基板としてのGaAsを用いる場合、障壁層としてGaAsPを用い、井戸層としてInGaAsを用い、第3の半導体層としてInGaAsを用いることができる。このような例では、GaAs基板よりも格子定数の小さなGaAsPと格子定数の大きなInGaAsを組み合わせることで格子歪を補償し、結晶転移の発生を抑制することができ、多重量子井戸層及び第3の半導体層の結晶性を高くできる。
(4) 基板としてのInPを用いる場合、障壁層としてInGa1−xAsを用い、井戸層としてInGa1−yAs(ただし、x<y)を用い、第3の半導体層としてInGa1−zAs(ただし、x<z)を用いることができる。このような例では、InP基板よりも格子定数の小さなInGa1−xAsと格子定数の大きなInGa1−yAsやInGa1−zAsを組み合わせることで格子歪を補償し、結晶転移の発生を抑制することができ、多重量子井戸層及び第3の半導体層の結晶性を高くできる。
また、各層の材料の組成比についても、バンドギャップや格子歪を考慮して最適に調整すれば特に制限は無い。このときの第3の半導体層の材料としては井戸層と同じ材料系が好ましく、バンドギャップや格子定数を考慮して組成比を調整すればよいが、その他の材料であってもよい。
(第2の実施形態)
図16に示すものは本発明の第2の実施形態による太陽電池41の一部を示す斜視図である。図16では第2の実施形態の太陽電池41のうち、p型半導体層42とn型半導体層45の間の部分だけを表している。p型半導体層42の上面にはi型(真正半導体)で第3の半導体層43が形成され、第3の半導体層43の上にi型(真正半導体)で量子ドット層44が形成され、量子ドット層44の上にn型半導体層45が設けられている。また、量子ドット層44では、障壁層46(第1の半導体)内に離散的に複数の量子ドット47(第2の半導体)が分布させられている。
量子ドット層44は第1の実施形態の多重量子井戸層28に相当するものであり、障壁層46は第1の実施形態の障壁層33に相当するものであり、量子ドット47は第1の実施形態の井戸層34に相当するものである。
第1の実施形態で井戸層34が層状に設けられていたのに対し、第2の実施形態では量子ドット47がドット状(離散的な微小領域)に形成されている点を除けば、この太陽電池41も第1の実施形態と同様な材料により同様に構成されている。特に、第3の半導体層43のバンドギャップEg3は、障壁層46のバンドギャップEg1よりも狭く、第3の半導体層43の厚さは量子ドット47の外径サイズ(高さ)よりもおおきい。また、この太陽電池41でも、量子ドット47のうち第3の半導体層43に最も近い量子ドット47の伝導帯量子準位(特に、基底準位)と、第3の半導体層の伝導帯下端のエネルギー準位とがほぼ一致している。したがって、垂直方向に並んだ量子ドット47に沿った経路に沿ってバンド構造を示せば、図9のバンド構造と同様なバンド構造となる。
そして、受光面側から光が入射すると、量子ドット層44では障壁層46でのエネルギーギャップEg1よりも大きなエネルギーの光と、量子ドット47でのエネルギーギャップEg2よりも大きなエネルギーの光が吸収され、量子ドット層44を透過した光のうちエネルギーギャップEg3よりも大きな光が第3の半導体層43で吸収される。しかも、この太陽電池41では、量子ドット構造となっているので、量子ドット47(3次元の量子井戸)内の量子準位がさらに離散化し、障壁層の伝導帯を流れてきたキャリアが量子井戸内の量子準位に緩和しにくくなる。
量子ドット47の場合、その量子準位を離散化させるためには、量子ドット47の高さ、奥行き、幅のいずれか一辺が10nm以下であり、残りの2辺の長さが30nm以下であることが望ましい。特に、高さを5nm、奥行きおよび幅を20nmとすれば、量子準位を十分離散化させることができる。
また、量子ドット47同士は高さ方向に位置が揃っている方が好ましく、高さ方向の量子ドット47間の距離(量子ドット47の表面間の最短距離)は10nm以下であることが好ましい。これによって電子が高さ方向にトンネリングして流れやすくなる。このとき、量子ドット47は水平面内(幅方向、奥行き方向)では揃って並んでいる必要はなく、規則的に配列していてもよく、ランダムに配列していてもよい。また、第3の半導体層43に最も近い量子ドット47と第3の半導体層43に間に挟まれている障壁層46の厚さも10nm以下であることが望ましい。
また、第1の実施形態と同じ理由により、第3の半導体層43の厚さは、量子ドット層44の厚さの0.5倍以上3倍以下であることが好ましい。
(第3の実施形態)
図17は第3の実施形態による太陽電池51の構造を示す斜視図である。この太陽電池51では、格子歪を利用した自己組織化により障壁層33と井戸層34を交互に積層して多重量子井戸層28を作製している。格子歪を利用した自己組織化で多重量子井戸層28を作製すると、濡れ層52と島状部53ができるが、このような構造であっても量子ドットと同様の作用効果が得られる。なお、このときも、島状部53の高さは10nm以下、島状部53の水平面内での直径(幅と奥行き)は30nm以下であることが望ましい。
図1は、一般的な単接合太陽電池のエネルギーバンドを示すバンド構造図である。 図2は、多接合太陽電池のエネルギーバンドを示すバンド構造図である。 図3は、多重量子井戸構造の太陽電池のエネルギーバンドを示すバンド構造図である。 図4は、量子ドット太陽電池の概略斜視図である。 図5は、界面における電子−正孔対の再結合を説明する図である。 図6は、本発明の第1の実施形態による太陽電池の構造を示す断面図である。 図7は、同上の太陽電池の多重量子井戸層と第3の半導体層の構造を示す斜視図である。 図8は、第3の半導体層及び多重量子井戸層のバンド構造図である。 図9は、p型GaAs層とn型GaAs層で挟まれた第3の半導体層及び多重量子井戸層のバンド構造図である。 図10は、比較例のバンド構造図である。 図10は、別な比較例のバンド構造図である。 図12(a)は多重量子井戸層のみで構成した比較例のバンド構造を表した図、図12(b)は本発明の第1の実施形態のバンド構造を表した図である。 図13は、図12(a)の比較例と図12(b)の第1の実施形態の順方向暗電流特性をシミュレーションした結果を表した図である。 図14は、AlGaAsBSF層の働きを説明するためのバンド構造図である。 図14は、AlGaAsBSF層を省略できる理由を説明するためのバンド構造図である。 図16は、本発明の第2の実施形態による太陽電池の一部を示す斜視図である。 図17は、本発明の第3の実施形態による太陽電池の変形例を示す斜視図である。
符号の説明
21 太陽電池
22 p型電極
23 p型GaAs基板
24 GaAsバッファ層
25 AlGaAsBSF層
26 p型GaAs層
27 第3の半導体層
28 多重量子井戸層
29 n型GaAs層
30 AlGaAs窓層
31 n型GaAs層
32 n型電極
33 障壁層
34 井戸層
35 トンネリング
41 太陽電池
42 p型半導体層
43 第3の半導体層
44 量子ドット層
45 n型半導体層
46 障壁層
47 量子ドット

Claims (15)

  1. 第1の半導体層と前記第1の半導体層よりもバンドギャップの小さな第2の半導体層とを複数層交互に積層させた多重量子井戸層を有する太陽電池において、
    前記多重量子井戸層に隣接して、前記第1の半導体層よりもバンドギャップが小さく、前記第2の半導体層よりも厚さの大きな第3の半導体層を設けたことを特徴とする太陽電池。
  2. 前記多重量子井戸層と第3の半導体層はいずれもi型半導体であって、p型半導体層とn型半導体層の間に挟まれていることを特徴とする、請求項1に記載の太陽電池。
  3. 前記第3の半導体層は、前記多重量子井戸層の受光面とは反対側に設けられていることを特徴とする、請求項2に記載の太陽電池。
  4. 前記第1の半導体層のうち前記第3の半導体層に隣接する第1の半導体層は、厚さが10nm以下であることを特徴とする、請求項3に記載の太陽電池。
  5. 前記第2の半導体層のうち前記第3の半導体層に最も近い第2の半導体層の伝導帯量子準位と、前記第3の半導体層の伝導帯下端のエネルギー準位とがほぼ一致していることを特徴とする、請求項4に記載の太陽電池。
  6. 前記第3の半導体層の厚さが、前記多重量子井戸層の厚さの0.5倍以上3倍以下であることを特徴とする、請求項3に記載の太陽電池。
  7. 前記第1の半導体層のそれぞれの厚さが、5nm以上50nm以下であり、前記第2の半導体層のそれぞれの厚さが、5nm以上10nm以下であることを特徴とする、請求項3に記載の太陽電池。
  8. 第1の半導体層よりもバンドギャップが小さな第2の半導体層が前記第1の半導体層内に含まれた量子ドット層を有する太陽電池において、
    前記量子ドット層に隣接して、前記第1の半導体層よりもバンドギャップが小さく、第2の半導体層の大きさよりも厚さの大きな第3の半導体層を設けたことを特徴とする太陽電池。
  9. 前記量子ドット層と第3の半導体層はいずれもi型半導体であって、p型半導体層とn型半導体層の間に挟まれていることを特徴とする、請求項8に記載の太陽電池。
  10. 前記第3の半導体層は、前記量子ドット層の受光面とは反対側に設けられていることを特徴とする、請求項9に記載の太陽電池。
  11. 前記第2の半導体層のうち前記第3の半導体層に最も近い第2の半導体層と前記第3の半導体層の間に挟まれた前記第1の半導体層の部分は、厚さが10nm以下であることを特徴とする、請求項10に記載の太陽電池。
  12. 前記第2の半導体層のうち前記第3の半導体層に最も近い第2の半導体層の伝導帯量子準位と、前記第3の半導体層の伝導帯下端のエネルギー準位とがほぼ一致していることを特徴とする、請求項11に記載の太陽電池。
  13. 前記第3の半導体層の厚さが、前記量子ドット層の厚さの0.5倍以上3倍以下であることを特徴とする、請求項10に記載の太陽電池。
  14. 前記量子ドット層の厚さ、幅、奥行きのうちいずれか1辺が10nm以下であり、残る2辺が30nm以下であることを特徴とする、請求項10に記載の太陽電池。
  15. 前記第2の半導体層が前記量子ドット層の厚さ方向に沿って並んでおり、各第2の半導体層同士の間隔が10nm以下であることを特徴とする、請求項14に記載の太陽電池。
JP2007187302A 2007-07-18 2007-07-18 太陽電池 Withdrawn JP2009026887A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007187302A JP2009026887A (ja) 2007-07-18 2007-07-18 太陽電池
PCT/JP2008/062707 WO2009011338A1 (ja) 2007-07-18 2008-07-14 太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187302A JP2009026887A (ja) 2007-07-18 2007-07-18 太陽電池

Publications (1)

Publication Number Publication Date
JP2009026887A true JP2009026887A (ja) 2009-02-05

Family

ID=40259671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187302A Withdrawn JP2009026887A (ja) 2007-07-18 2007-07-18 太陽電池

Country Status (2)

Country Link
JP (1) JP2009026887A (ja)
WO (1) WO2009011338A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206074A (ja) * 2009-03-05 2010-09-16 National Institute For Materials Science 半導体光素子と半導体太陽電池
JP2010258401A (ja) * 2009-03-30 2010-11-11 Saito Research Institute Of Technology Co Ltd 光学的および電磁気学的効果補助層の制御手法
JP2011054952A (ja) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd 光電変換装置およびその作製方法
JP2011100915A (ja) * 2009-11-09 2011-05-19 Toyota Motor Corp 光電変換素子
JP2011187646A (ja) * 2010-03-08 2011-09-22 Seiko Epson Corp 光学変換装置及び同装置を含む電子機器
JP2012169306A (ja) * 2011-02-09 2012-09-06 Toyota Motor Corp 光電変換素子
KR101241647B1 (ko) 2011-06-01 2013-03-11 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP2018026570A (ja) * 2011-03-22 2018-02-15 ザ・ボーイング・カンパニーThe Boeing Company 電流生成が向上した半導体デバイス
US10483422B2 (en) 2012-02-28 2019-11-19 Toyota Jidosha Kabushiki Kaisha Photovoltaic device and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577347B2 (ja) * 1986-02-05 1997-01-29 株式会社東芝 イメ−ジセンサ
US5055141A (en) * 1990-01-19 1991-10-08 Solarex Corporation Enhancement of short-circuit current by use of wide bandgap n-layers in p-i-n amorphous silicon photovoltaic cells
JPH07297425A (ja) * 1994-04-20 1995-11-10 Oki Electric Ind Co Ltd 太陽電池
JPH08172205A (ja) * 1994-12-20 1996-07-02 Fuji Electric Co Ltd ダイオード
JP3753605B2 (ja) * 2000-11-01 2006-03-08 シャープ株式会社 太陽電池およびその製造方法
JP2004335733A (ja) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology 薄膜太陽電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206074A (ja) * 2009-03-05 2010-09-16 National Institute For Materials Science 半導体光素子と半導体太陽電池
JP2010258401A (ja) * 2009-03-30 2010-11-11 Saito Research Institute Of Technology Co Ltd 光学的および電磁気学的効果補助層の制御手法
JP2011054952A (ja) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd 光電変換装置およびその作製方法
US8772627B2 (en) 2009-08-07 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
JP2011100915A (ja) * 2009-11-09 2011-05-19 Toyota Motor Corp 光電変換素子
JP2011187646A (ja) * 2010-03-08 2011-09-22 Seiko Epson Corp 光学変換装置及び同装置を含む電子機器
JP2012169306A (ja) * 2011-02-09 2012-09-06 Toyota Motor Corp 光電変換素子
JP2018026570A (ja) * 2011-03-22 2018-02-15 ザ・ボーイング・カンパニーThe Boeing Company 電流生成が向上した半導体デバイス
KR101241647B1 (ko) 2011-06-01 2013-03-11 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US10483422B2 (en) 2012-02-28 2019-11-19 Toyota Jidosha Kabushiki Kaisha Photovoltaic device and method for manufacturing the same

Also Published As

Publication number Publication date
WO2009011338A1 (ja) 2009-01-22

Similar Documents

Publication Publication Date Title
US8669467B2 (en) Thin absorber layer of a photovoltaic device
JP2009026887A (ja) 太陽電池
KR20100084843A (ko) 다중접합 태양전지
US20100006136A1 (en) Multijunction high efficiency photovoltaic device and methods of making the same
US20190252567A1 (en) Photovoltaic device
Sugiyama et al. Quantum wire‐on‐well (WoW) cell with long carrier lifetime for efficient carrier transport
JP4905623B2 (ja) 太陽電池
US9240507B2 (en) Intermediate band solar cell using type I and type II quantum dot superlattices
JP5481665B2 (ja) 多接合型太陽電池
US20180261709A1 (en) Solar battery
US10109758B2 (en) Photovoltaic cell with variable band gap
RU2539102C1 (ru) Многопереходный солнечный элемент
JP2011077295A (ja) 接合型太陽電池
JP5326812B2 (ja) 太陽電池
JPH0964386A (ja) 多接合太陽電池
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
JP2013172072A (ja) 2接合太陽電池
JP2662309B2 (ja) 化合物半導体太陽電池
JP3877348B2 (ja) 太陽電池
JP5487295B2 (ja) 太陽電池
JP2016028413A (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JPH0955522A (ja) トンネルダイオード
JPH08204215A (ja) 直列接続型太陽電池
JP6258712B2 (ja) 受光素子および受光素子を備えた太陽電池
RU2701873C1 (ru) Полупроводниковая структура многопереходного фотопреобразователя

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090424