JP2009023864A - Functional building material - Google Patents

Functional building material Download PDF

Info

Publication number
JP2009023864A
JP2009023864A JP2007187574A JP2007187574A JP2009023864A JP 2009023864 A JP2009023864 A JP 2009023864A JP 2007187574 A JP2007187574 A JP 2007187574A JP 2007187574 A JP2007187574 A JP 2007187574A JP 2009023864 A JP2009023864 A JP 2009023864A
Authority
JP
Japan
Prior art keywords
building material
mass
functional building
calcium silicate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187574A
Other languages
Japanese (ja)
Inventor
Yutaka Nakamura
裕 中村
Yuuchiyu Ito
優忠 井東
Masaaki Nagai
正明 長井
Yasumitsu Shimada
泰光 嶋田
Kaku Matsunaga
格 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Board Co Ltd
Ube Corp
Original Assignee
Ube Industries Ltd
Ube Board Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Ube Board Co Ltd filed Critical Ube Industries Ltd
Priority to JP2007187574A priority Critical patent/JP2009023864A/en
Priority to TW097126689A priority patent/TW200916431A/en
Priority to KR1020080069865A priority patent/KR20090009146A/en
Publication of JP2009023864A publication Critical patent/JP2009023864A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/02Cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0259Hardening promoted by a rise in pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0263Hardening promoted by a rise in temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional building material which has excellent moisture absorbing and releasing characteristics, is excellent in adsorbability of VOC, malodorous components or the like and also has a function to make harmless these adsorbed materials, and has a performance preventing pollution of the air in the room over a long period of time and keeping comfortable environment. <P>SOLUTION: The functional building material is composed of calcium silicate hydrate having a structure with fine pores which can be obtained by aging an inorganic formed product that is obtained by forming a raw material containing diatomaceous earth of 30-75 mass% at a temperature of 150-200°C and under pressure of 470-1,560 kPa. Preferably in the functional building material, the calcium silicate hydrate having a structure with fine pores is one that has fine pores with a pore size of 2-200 nm and has a moisture content of 2-20 mass%, and that contains free weakly alkaline water other than the bound water of the calcium silicate inside the fine pores. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、優れた調湿能力を持ち、且つ揮発性有機化合物等の有害ガスを吸着し、アルカリ分解により有害ガスを無害化する機能を有していることから、建築物の内装建材等に好適に使用される機能性建材に関するものである。   Since the present invention has an excellent humidity control ability and has a function of adsorbing harmful gases such as volatile organic compounds and detoxifying harmful gases by alkali decomposition, it can be used for interior building materials of buildings. It is related with the functional building material used suitably.

夏場に高温多湿となる日本においては、建築物は構造的に通風性に配慮すると共に、材質的には木材、土壁等の調湿性を有する材料を使用した家屋が伝統的に利用されてきた。しかし、近年、空調機器が発達するに連れ、建築物の気密性を向上させることが要求されるようになり、それを可能にする新建材の開発も進み、各種新建材が使用されるようになった。これらの新建材は、気密性、耐火性、更には遮音性能に優れたものであり、空調機器使用下では結露等の問題はないが、調湿機能が十分でなく、空調を使用しない場合、建材表面の結露が問題となっている。   In Japan, which is hot and humid in summer, buildings have been traditionally used for buildings with consideration of ventilation and structural materials such as wood and earth walls. . However, in recent years, with the development of air-conditioning equipment, it has been required to improve the airtightness of buildings, and the development of new building materials that make it possible to progress, and various new building materials will be used. became. These new building materials have excellent airtightness, fire resistance, and sound insulation performance, and there are no problems such as condensation when using air conditioning equipment, but the humidity control function is insufficient and air conditioning is not used. Condensation on the surface of building materials is a problem.

また、建築物の機密性が高まったことにより、これらの新建材、家具に使用される接着剤・塗料やフローリングに使用される防腐剤から発生するVOC (揮発性有機物質:volatile organic compound)による室内汚染がシックハウス症候群の原因として、更に大きな問題となっている。   In addition, due to the increased confidentiality of buildings, VOCs (volatile organic compounds) generated from these new building materials, adhesives and paints used in furniture, and preservatives used in flooring Indoor contamination has become a bigger problem as a cause of sick house syndrome.

前者の結露問題に対しては、出願人は、吸放湿特性に優れた内装用建材として、特許文献1の調湿建材を提案した。この特許文献1の調湿建材は、高い吸放湿速度、吸放湿容量を示し、機械的特性も優れていることから、内装用建材として使用すれば居住空間を快適な湿度に保つことが可能となる。   For the former dew condensation problem, the applicant has proposed the humidity control building material of Patent Document 1 as an interior building material having excellent moisture absorption and desorption characteristics. Since the humidity control building material of this patent document 1 shows a high moisture absorption / release rate, moisture absorption / release capacity, and has excellent mechanical properties, if used as an interior building material, the living space can be maintained at a comfortable humidity. It becomes possible.

一方、後者のVOC問題に対しても、上記特許文献1の調湿建材は、基材中に含有される多孔質材料によってVOC等を吸着する機能も有している。しかしながら、その吸着量に限界があり、長時間使用し飽和吸着量に達すると、吸着したVOCや悪臭成分等を再放出するといった問題があった。   On the other hand, even for the latter VOC problem, the humidity control building material of Patent Document 1 also has a function of adsorbing VOC and the like by the porous material contained in the base material. However, there is a limit in the amount of adsorption, and there has been a problem that when the saturated adsorption amount is reached after long-term use, the adsorbed VOC, malodorous components and the like are re-released.

特許第3762851号公報Japanese Patent No. 3762851

本発明は、前述の特許文献1に開示された調湿建材を、その優れた吸放湿特性を維持したまま、更にそのVOCや悪臭成分等の吸着能を向上させると共に、これらの吸着した物質を無害化する機能を該調湿建材に付加した、機能性建材の提供を目的とする。   The present invention further improves the adsorption capacity of the moisture-control building material disclosed in the above-mentioned Patent Document 1 while maintaining its excellent moisture absorption and desorption characteristics, and also adsorbs these substances. It aims at providing the functional building material which added the function which makes harmless to this humidity-control building material.

本発明者等は、上記目的を達成すべく鋭意研究した結果、前述の特許文献1に開示された調湿建材の製造において、成型体の養生を高温・高圧下で行うことにより、微細な細孔を有する構造を持つ珪酸カルシウム水和物が形成され、優れた調湿速度、調湿容量を有し、且つVOCや悪臭成分を無害化し、VOCや悪臭成分が再放出することがない機能性建材が得られることを見出し、本発明を完成するに至った。
即ち、本発明は、珪藻土30〜75質量%を含む原料を成型して得られる無機質成型体を、150〜200℃の温度下で且つ470〜1560kPaの圧力下で養生させることにより得られる微細な細孔を有する構造を持つ珪酸カルシウム水和物からなる機能性建材を提供するものである。
As a result of diligent research to achieve the above object, the present inventors have conducted fine molding by curing the molded body under high temperature and high pressure in the manufacture of the humidity-controlled building material disclosed in Patent Document 1 described above. Calcium silicate hydrate with pore structure is formed, has excellent humidity control speed and humidity control capacity, detoxifies VOC and malodor components, and does not re-release VOC or malodor components The present inventors have found that building materials can be obtained and have completed the present invention.
That is, the present invention is a fine product obtained by curing an inorganic molded body obtained by molding a raw material containing 30 to 75% by mass of diatomaceous earth at a temperature of 150 to 200 ° C. and a pressure of 470 to 1560 kPa. A functional building material comprising calcium silicate hydrate having a structure having pores is provided.

本発明の機能性建材は、建築物の内装用建材として十分な機械的特性、優れた調湿機能を有するのは勿論のこと、シックハウス症候群の原因となるVOCや悪臭成分等の吸着能に優れ、且つこれらの吸着した物質を弱アルカリ水により溶解・分解して無害化する機能を有するため、長期間に渡って室内空気の汚染を防ぎ、快適な環境に保持できる性能を有しており、建築分野におけるその用途は広い。   The functional building material of the present invention has excellent mechanical properties as an interior building material of a building, excellent humidity control function, as well as excellent adsorbability of VOC and malodorous components that cause sick house syndrome. And, because it has the function of dissolving and decomposing these adsorbed substances with weak alkaline water to make them harmless, it has the ability to prevent indoor air contamination over a long period of time and maintain a comfortable environment, Its application in the architectural field is wide.

以下、本発明の機能性建材について、その好ましい製造方法に基づいて説明する。
珪藻土は、本発明の機能性建材において、微細な細孔を有する珪酸カルシウム水和物を得るための出発原料である。出発原料中の珪藻土含有量が大でも少でも目的とする珪酸カルシウム水和物の生成が困難となり、機能性建材の強度低下にも繋がることから、過多または過少の配合は避けることになる。本発明では、珪藻土の配合量は、例えば珪藻土のSiO 含有量が78質量%の場合、質量比で原料全体の30〜75%、好ましくは50〜70%とすることにより、調湿性、VOCの弱アルカリ分解(無害化)及び強度が共に優れた特性を有する機能性建材を得ることができる。
珪藻土は、産状・産地により成分組成が多少変動する。変動の大きいものは配合量を補正することにより使用できるが、SiO 含有量が70%以上の珪藻土を使用するのが好ましい。SiO 含有量が70%未満の珪藻土を使用すると不純物の影響で十分反応せず、目的とする細孔が得られないおそれがある。
珪藻土以外の無機質成型体の原料成分としては、消石灰、珪砂、石膏、パーライト、研削ダスト等が挙げられ、これら無機材料の他、パルプ、繊維(無機、有機)等を含んでいてもよい。
Hereinafter, the functional building material of the present invention will be described based on its preferable manufacturing method.
Diatomaceous earth is a starting material for obtaining calcium silicate hydrate having fine pores in the functional building material of the present invention. Even if the diatomaceous earth content in the starting material is large or small, it becomes difficult to produce the desired calcium silicate hydrate, leading to a decrease in the strength of the functional building material. Therefore, excessive or excessive blending is avoided. In the present invention, for example, when the SiO 2 content of diatomaceous earth is 78% by mass, the blending amount of diatomaceous earth is 30 to 75%, preferably 50 to 70% of the whole raw material by mass ratio. It is possible to obtain a functional building material having the characteristics that both weak alkali decomposition (detoxification) and strength are excellent.
The composition of diatomaceous earth varies slightly depending on the state of production and place of production. While having a large variation can be used by correcting the amount, SiO 2 content is preferred to use more than 70% of diatomaceous earth. If diatomaceous earth having a SiO 2 content of less than 70% is used, it does not react sufficiently due to the influence of impurities, and the intended pores may not be obtained.
Examples of the raw material component of the inorganic molded body other than diatomaceous earth include slaked lime, quartz sand, gypsum, pearlite, and grinding dust, and may include pulp, fibers (inorganic and organic), etc. in addition to these inorganic materials.

本発明で用いられる無機質成型体は、抄造で成型することが最も適しているが、プレス成型等、板状建材の製造方法であればどの方法を使用しても性能に差異はない。一例として抄造で成型する場合、無機質成型体の原料としては、珪藻土30〜75質量%、消石灰20〜40質量%、珪砂1〜10質量%、石膏1〜10質量%、パルプ1〜10質量%及び繊維0.1〜3質量%を含む原料を用いるのが好ましい。
抄造での成型を可能にするためには、抄造前のスラリーがある程度の粘性を有していることが要求されるが、原料に石膏を配合することで粘性を付与することができる。石膏を配合する場合、石膏量は、質量比で原料全体の好ましくは1〜10%、より好ましくは3〜7%とする。石膏量が1%より少ないと、抄造が困難になる。また、抄造が難しくなると十分な調湿能力を付与するための珪藻土の添加ができなくなる。一方、石膏量が10%より大であると膨張により爆裂を起こすことがあり好ましくない。
石膏は、天然品、合成品を問わず、2水、半水、無水物の何れもが使用可能である。
The inorganic molded body used in the present invention is most suitably molded by papermaking, but there is no difference in performance regardless of which method is used as long as it is a method for producing a plate-shaped building material such as press molding. As an example, when molding by papermaking, the raw material of the inorganic molded body is 30 to 75% by mass of diatomaceous earth, 20 to 40% by mass of slaked lime, 1 to 10% by mass of gypsum sand, 1 to 10% by mass of gypsum, and 1 to 10% by mass of pulp. It is preferable to use a raw material containing 0.1 to 3% by mass of fibers.
In order to enable molding in papermaking, it is required that the slurry before papermaking has a certain degree of viscosity, but viscosity can be imparted by blending gypsum into the raw material. When gypsum is blended, the amount of gypsum is preferably 1 to 10%, more preferably 3 to 7% of the entire raw material in mass ratio. If the amount of gypsum is less than 1%, papermaking becomes difficult. Moreover, when papermaking becomes difficult, the addition of diatomaceous earth for imparting sufficient humidity control ability becomes impossible. On the other hand, if the amount of gypsum is more than 10%, explosion may occur due to expansion, which is not preferable.
Regardless of natural products and synthetic products, any of two water, half water, and anhydride can be used for the gypsum.

本発明において、原料に消石灰を配合した場合、消石灰は、成型後の養生過程で、珪砂及び珪藻土の一部をSi源として、トバモライト形態(5CaO・6SiO ・nH O)の珪酸カルシウムを形成する。
トバモライトを形成するCaO/SiO モル比は、理論的には、0.83近くの値に設定する必要が在るはずであるが、CaOに比してSiO の溶解度が低いことから、Si量が過剰になるように設定することが好ましい。
原料に消石灰を配合する場合、消石灰の配合量は、質量比で原料全体の好ましくは20〜40%、より好ましくは25〜35%とする。消石灰の量が多過ぎると、成形体中に微細な細孔を得るために必要な珪藻土残存量が少なくなり、十分な調湿性、VOCの弱アルカリ分解(無害化)が得られず、逆に消石灰の量が少な過ぎると、珪酸カルシウム生成量が少なくなり、建材として十分な強度を有するものが得られないことがある。
In the present invention, when slaked lime is blended as a raw material, the slaked lime forms calcium silicate in the form of tobermorite (5CaO · 6SiO 2 · nH 2 O) using a part of quartz sand and diatomaceous earth as a Si source in the curing process after molding. To do.
The CaO / SiO 2 molar ratio forming tobermorite should theoretically need to be set to a value close to 0.83, but since the solubility of SiO 2 is lower than that of CaO, SiO It is preferable to set the amount to be excessive.
When mix | blending slaked lime with a raw material, the compounding quantity of slaked lime is 20 to 40% of the whole raw material by mass ratio, More preferably, you may be 25 to 35%. If the amount of slaked lime is too large, the residual amount of diatomaceous earth necessary to obtain fine pores in the molded body is reduced, and sufficient humidity control and weak alkali decomposition (detoxification) of VOC cannot be obtained. When there is too little quantity of slaked lime, the amount of calcium silicate production will decrease and what has sufficient intensity as a building material may not be obtained.

本発明において、珪砂は、珪酸カルシウムのSi源の一つとして原料に配合することができる。珪砂は、Caとの反応速度が緩やかなため、反応速度が速い珪藻土とCa源の反応速度を規制し、その結晶化を容易にすることから、原料に配合することが好ましい。原料に珪砂を配合する場合、珪砂の配合量は、質量比で原料全体の好ましくは1〜10%、より好ましくは1〜5%とする。   In this invention, silica sand can be mix | blended with a raw material as one of the Si sources of a calcium silicate. Since silica sand has a slow reaction rate with Ca, it is preferable to mix it with the raw material because it regulates the reaction rate between diatomaceous earth and Ca source, which has a high reaction rate, and facilitates crystallization. When silica sand is blended with the raw material, the blending amount of the silica sand is preferably 1 to 10%, more preferably 1 to 5% of the entire raw material by mass ratio.

本発明で用いられる無機質成型体の原料には、上記無機材料の他に、パルプ及び繊維を配合してもよい。パルプ及び繊維は、成型体の強度及び靭性向上に大きな役割を果たす。該繊維としては、セピオライト、ワラストナイト等の繊維状無機物、レーヨン、ナイロン、ポリプロピレン、ポリエステル、ビニロン等の有機繊維が使用でき、長さ:3〜12mm、太さ:10〜150μmのものを使用するのが好ましい。長さ及び太さが適当でないと、繊維の特性が十分に発現しなかったり、或は、繊維添加による特異的なダマ形成を引き起こし、逆に強度及び熱的特性低下を招いたり、外観不良となる。
原料に繊維を配合する場合、繊維の配合量は、質量比で原料全体の好ましくは0.1〜3%、より好ましくは0.5〜2.0%とする。繊維の配合量が少ないと強度発現の添加効果が十分発揮せず、多すぎると分散性低下によりダマを形成し強度低下に繋がるからである。
In addition to the inorganic material, pulp and fibers may be blended in the raw material of the inorganic molded body used in the present invention. Pulp and fiber play a major role in improving the strength and toughness of the molded body. As the fiber, fibrous inorganic materials such as sepiolite and wollastonite, and organic fibers such as rayon, nylon, polypropylene, polyester and vinylon can be used, and those having a length of 3 to 12 mm and a thickness of 10 to 150 μm are used. It is preferable to do this. If the length and thickness are not appropriate, the characteristics of the fiber will not be sufficiently developed, or specific damaging will be caused by the addition of the fiber, conversely, the strength and thermal characteristics will be reduced, and the appearance will be poor. Become.
When the fiber is blended with the raw material, the blending amount of the fiber is preferably 0.1 to 3%, more preferably 0.5 to 2.0% of the entire raw material by mass ratio. This is because if the blending amount of the fiber is small, the effect of adding strength cannot be sufficiently exerted, and if it is too large, a dull is formed due to a decrease in dispersibility, leading to a decrease in strength.

上記パルプとしては、木材パルプ、竹パルプ、ボロパルプ、リンターパルプ等の各種のものが使用可能であるが、生産量の90%を占める木材パルプが好ましい。また、バージンパルプを使用する必要はなく、故紙から製造した回収パルプも特性的には何等問題なく使用でき、コストの面も勘案すると最も好ましい材料である。また、パルプを叩解させて使用することもできる。
上記パルプの繊維長は、0.3〜6mm、好ましくは0.5〜4mmの範囲のものを使用することにより、無機材料との混合性に優れているだけでなく、じん性等の特性的に優れた建材ボードを得ることが可能となる。
原料にパルプを配合する場合、パルプの配合量は、質量比で原料全体の好ましくは1〜10%、より好ましくは2〜5%とする。パルプの配合量が少ないと強度発現の添加効果が十分発揮せず、多すぎると分散性低下によりダマを形成し強度低下に繋がるからである。
Various kinds of pulp such as wood pulp, bamboo pulp, boro pulp and linter pulp can be used as the pulp, but wood pulp occupying 90% of the production amount is preferable. Further, it is not necessary to use virgin pulp, and recovered pulp produced from waste paper can be used without any problems in terms of characteristics, and is the most preferable material in consideration of cost. Further, the pulp can be beaten and used.
The fiber length of the pulp is 0.3 to 6 mm, preferably 0.5 to 4 mm, so that it has not only excellent mixing with inorganic materials but also toughness and other characteristics. It is possible to obtain a building material board that is excellent in the above.
When the pulp is blended with the raw material, the blending amount of the pulp is preferably 1 to 10%, more preferably 2 to 5% of the entire raw material by mass ratio. This is because if the added amount of the pulp is small, the effect of adding strength is not sufficiently exerted, and if it is too much, a dull is formed due to a decrease in dispersibility, leading to a decrease in strength.

また、本発明で用いられる無機質成型体の原料には、パーライトを配合することもできる。パーライトは、粒径0.6mm以下の使用が混合性、強度面から好ましい。また、原料に配合する場合の配合量は、配合量を増やせばより高い軽量化が可能となるが、過度の配合は強度の低下に繋がるため、質量比で原料全体の10%以下、特に1〜5%とするのが好ましい。   Moreover, pearlite can also be mix | blended with the raw material of the inorganic molded object used by this invention. The use of pearlite having a particle size of 0.6 mm or less is preferred from the standpoint of mixing properties and strength. In addition, the blending amount in the raw material can be further reduced by increasing the blending amount, but excessive blending leads to a decrease in strength. It is preferable to set it to -5%.

本発明の機能性建材は、製造の最終段階で、サンディングマシンで研削して成形体の厚みを調整して製品とするが、その際に発生する微粉体(研削ダスト)を原料として再利用することができる。研削ダストの配合は、コスト低減に有効であるが、過剰の配合は強度低下に繋がるため、配合量は質量比で原料全体の10%以下、特に2〜7%とするのが好ましい。   The functional building material of the present invention is made into a product by adjusting the thickness of the molded body by grinding with a sanding machine at the final stage of production, but the fine powder (grinding dust) generated at that time is reused as a raw material. be able to. The blending of the grinding dust is effective for reducing the cost, but excessive blending leads to a decrease in strength, so the blending amount is preferably 10% or less, particularly 2 to 7% of the whole raw material by mass ratio.

本発明で用いられる無機質成型体の一般的な製造方法は、まず、上記の珪藻土、珪砂、消石灰、石膏、繊維及びパルプを所定量配合し、更に必要に応じて研削ダスト、パーライトを加えた原料を水と攪拌・混合してスラリーを調製する。抄造によって成型する場合は濃度2〜5%のスラリーを調整するのが好ましい。他の成型法を用いる場合はその製法に適したスラリー濃度に調整する。
成型は、該スラリーの抄造が好ましいが、公知の各種板状建材の製造方法が使用可能である。抄造は通常の方法で行えばよい。抄造後の生板は、プレス等の成型工程を経た後、切断して、最終製品である機能性建材の所定の厚さより1〜2mm厚い無機質成型体を得る。
A general method for producing an inorganic molded body used in the present invention is as follows. First, a predetermined amount of the above diatomaceous earth, silica sand, slaked lime, gypsum, fiber and pulp is blended, and further, grinding dust and pearlite are added as necessary. Is stirred and mixed with water to prepare a slurry. When molding by papermaking, it is preferable to adjust a slurry having a concentration of 2 to 5%. When other molding methods are used, the slurry concentration is adjusted to be suitable for the production method.
The molding is preferably paper making of the slurry, but various methods for producing various plate-shaped building materials can be used. Paper making may be performed by a normal method. The green board after papermaking is subjected to a molding process such as pressing, and then cut to obtain an inorganic molded body that is 1 to 2 mm thicker than a predetermined thickness of the functional building material that is the final product.

本発明の機能性建材は、上述のようにして得られた無機質成型体を、150〜200℃の温度下、好ましくは160〜180℃の温度下で且つ470〜1560kPaの圧力下、好ましくは610〜1010kPaの圧力下で養生させることにより得られる。
養生はオートクレーブ中で行うことができる。この工程で、無機質成型体中の珪藻土が反応し、珪藻土の微孔を利用して成長した微細な細孔を有する構造を持つトバモライト形態の珪酸カルシウム水和物が形成される。
養生温度が低すぎると十分反応せず、希望する細孔が得られない。養生温度が高すぎるとゾノトライト形態(6CaO・6SiO ・H O)となり、希望する細孔が得られない。また、養生圧力が低すぎると十分反応せず、希望する細孔が得られない。養生圧力が高すぎるとゾノトライト形態となり、希望する細孔が得られない。
The functional building material of the present invention is obtained by subjecting the inorganic molded body obtained as described above to a temperature of 150 to 200 ° C, preferably 160 to 180 ° C and a pressure of 470 to 1560 kPa, preferably 610. It is obtained by curing under a pressure of -1010 kPa.
Curing can be done in an autoclave. In this step, diatomaceous earth in the inorganic molded body reacts to form a tobermorite-type calcium silicate hydrate having a structure having fine pores grown using the micropores of diatomaceous earth.
If the curing temperature is too low, it does not react sufficiently and the desired pores cannot be obtained. If the curing temperature is too high, a zonotolite form (6CaO · 6SiO 2 · H 2 O) is obtained and desired pores cannot be obtained. Further, if the curing pressure is too low, the reaction does not sufficiently occur and the desired pores cannot be obtained. If the curing pressure is too high, it will be in the form of zonotolite and the desired pores will not be obtained.

本発明の機能性建材は、上記珪酸カルシウム水和物が、孔径2〜200nm、好ましくは2〜50nmの細孔を有し且つ含水率が2〜30質量%、好ましくは2〜20質量%である珪酸カルシウム水和物であって、この細孔の内部に珪酸カルシウム結合水以外の遊離の弱アルカリ水を含有するものが好ましい。
上記細孔の孔径が小さすぎると吸着能が低下するため有害ガスの分解能が低下する。上記細孔の孔径が大きすぎるとガスの分散が生じ、ガス分解能力が低下する。
上記細孔の孔径は、珪藻土量、養生温度・養生圧力により調整することができる。
In the functional building material of the present invention, the calcium silicate hydrate has pores having a pore diameter of 2 to 200 nm, preferably 2 to 50 nm and a water content of 2 to 30% by mass, preferably 2 to 20% by mass. Some calcium silicate hydrates containing free weak alkaline water other than calcium silicate-bound water inside the pores are preferred.
If the pore diameter is too small, the adsorptive capacity is lowered and the resolution of harmful gases is lowered. If the pore diameter is too large, gas dispersion occurs and the gas decomposition ability decreases.
The pore diameter of the pores can be adjusted by the amount of diatomaceous earth, curing temperature / curing pressure.

また、上記含水率は、養生後の硬化体を、例えば100〜150℃で0.5〜1時間程度乾燥することにより調整することができる。上記含水率が低すぎると弱アルカリ水の含有量が少なくなり、アルカリ分解する能力が低下する。上記含水率が高すぎると板自身の強度が低下して建材としての性能が確保できなくなる。
含水率を調整した硬化体は、通常、所定厚さに研削し、且つ所定サイズにトリミングし、最終製品(本発明の機能性建材)とする。また、最終製品には、透湿性の塗料、クロスを用いることにより、表面の化粧仕上げをすることも可能である。
Moreover, the said moisture content can be adjusted by drying the hardening body after curing, for example at 100-150 degreeC for about 0.5 to 1 hour. If the water content is too low, the content of weak alkaline water is reduced, and the ability of alkali decomposition is reduced. If the moisture content is too high, the strength of the plate itself is lowered, and performance as a building material cannot be secured.
The cured body with the adjusted moisture content is usually ground to a predetermined thickness and trimmed to a predetermined size to obtain a final product (functional building material of the present invention). In addition, it is possible to finish the surface of the final product by using a moisture-permeable paint or cloth.

以下に実施例及び比較例を挙げ、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1
(1)原料組成及びスラリーの調製
水に、叩解木材バージンパルプ2.7質量部、叩解木材回収パルプ1.3質量部及び未叩解木材バージンパルプ0.9質量部よりなるパルプ類と、長さ3mmのレーヨン0.8質量部を加え、固形分濃度2質量%の懸濁液としたものに、珪砂2質量部、珪藻土50質量部、石膏5質量部、消石灰30質量部,セピオライト1.1質量部、パーライト2.7質量部及び研削ダスト3.5質量部を添加した後,撹拌・混合して、抄造用のスラリーを得た。
Example 1
(1) Preparation of raw material composition and slurry In water, pulp composed of 2.7 parts by weight of beaten wood virgin pulp, 1.3 parts by weight of beaten wood recovered pulp and 0.9 parts by weight of unbeaten wood virgin pulp, and length Add 0.8 parts by weight of 3 mm rayon to make a suspension with a solid content concentration of 2% by weight, 2 parts by weight of silica sand, 50 parts by weight of diatomaceous earth, 5 parts by weight of gypsum, 30 parts by weight of slaked lime, sepiolite 1.1 After adding a mass part, 2.7 mass parts of pearlite, and 3.5 mass parts of grinding dust, it stirred and mixed and the slurry for papermaking was obtained.

(2)無機質成型体の製造(成型)
上記スラリーを丸網抄造機を使用して抄造を行い、得られた生板をプレスし、厚み約15mmの成型体原板を得た。該成型体原板を、長さ2420mmに切断し、更にプレスすることにより厚さ約11.5mmの無機質成型体を得た。
(2) Manufacture of inorganic moldings (molding)
The slurry was subjected to paper making using a round net paper making machine, and the obtained green plate was pressed to obtain a molded original plate having a thickness of about 15 mm. The molded body original plate was cut to a length of 2420 mm and further pressed to obtain an inorganic molded body having a thickness of about 11.5 mm.

(3)養生及び研削
上記無機質成型体を、オートクレーブ中で180℃、1003kPa(10気圧)の条件下で6時間以上養生して硬化体を得た。該硬化体をオートクレーブより取り出し、110℃で35分乾燥した後、表面の研磨及びトリミングを行い、幅900mm×長さ2420mm×厚さ9.5mmの本発明の機能性建材を得た。
(3) Curing and grinding The inorganic molded body was cured in an autoclave at 180 ° C. and 1003 kPa (10 atm) for 6 hours or more to obtain a cured body. The cured product was taken out from the autoclave and dried at 110 ° C. for 35 minutes, and then the surface was polished and trimmed to obtain the functional building material of the present invention having a width of 900 mm × length of 2420 mm × thickness of 9.5 mm.

実施例2
実施例1において珪藻土、珪砂、及び消石灰の配合量をそれぞれ珪藻土35重量部、珪砂37重量部、及び消石灰10重量部とした以外は、実施例1と同様の配合及び製造方法により本発明の機能性建材を得た。
Example 2
The function of the present invention is the same as in Example 1 except that the blending amounts of diatomaceous earth, quartz sand, and slaked lime are 35 parts by weight, 37 parts by weight of diatomaceous earth, and 10 parts by weight of slaked lime, respectively. A characteristic building material was obtained.

比較例1
市販の石膏ボード(9.5mmt)を比較例1の建材とした。
Comparative Example 1
A commercially available gypsum board (9.5 mmt) was used as the building material of Comparative Example 1.

比較例2
実施例1において無機質成型体の養生を180℃、大気圧下で行った以外は、実施例1と同様の配合及び製造方法により建材を得た。
各例の概略を表1に示す。
Comparative Example 2
A building material was obtained by the same composition and manufacturing method as in Example 1 except that the curing of the inorganic molded body in Example 1 was performed at 180 ° C. and atmospheric pressure.
The outline of each example is shown in Table 1.

評価試験例1
実施例1〜2で得られた本発明の機能性建材及び比較例1〜2で得られた建材について、機械的特性の評価を行った。機械的特性の評価項目と、その測定法、及び測定結果を表2に示す。
Evaluation test example 1
Mechanical properties of the functional building materials of the present invention obtained in Examples 1 and 2 and the building materials obtained in Comparative Examples 1 and 2 were evaluated. Table 2 shows the evaluation items of the mechanical characteristics, the measurement method, and the measurement results.

表2に示す測定結果から明らかなように、本発明の機能性建材は、強度的には、運搬時に掛かる負荷に十分耐える曲げ強度を有していることは勿論のこと、鋸引きの可能な硬さ、及び釘打ちが可能で十分な釘引抜抵抗値を示す等、内装材としての加工性にも優れた特性を有している。   As is apparent from the measurement results shown in Table 2, the functional building material of the present invention has a bending strength sufficient to withstand the load applied during transportation, and can be sawed. It has excellent properties in terms of workability as an interior material, such as hardness, nailing and sufficient nail pulling resistance.

評価試験例2
実施例1で得られた本発明の機能性建材について、微細構造の解析を電子顕微鏡、XRDにより行った。電子顕微鏡観察結果を図1に、XRD結果を図3に、それぞれ示す。
また、原料珪藻土電子顕微鏡観察結果を図2に示す。
Evaluation test example 2
About the functional building material of this invention obtained in Example 1, the analysis of the fine structure was performed with the electron microscope and XRD. The electron microscope observation results are shown in FIG. 1, and the XRD results are shown in FIG.
Moreover, the raw material diatomite electron microscope observation result is shown in FIG.

これら測定結果から次のことがわかる。実施例1で得られた本発明の機能性建材では、図1に示す電子顕微鏡観察結果から明らかなように、図2に示すような天然の珪藻土特有のクレーター状の画一的な形状は消失し、そこに微細な細孔構造を持つ珪酸カルシウム水和物が生成されているのが観察される。
また、実施例1で得られた本発明の機能性建材は、図3に示すXRD結果から特徴的なトバモライト形態の珪酸カルシウムのピークが確認され、また表1に示す細孔径分布測定結果から2〜50nmの細孔を有することが確認される。実施例2で得られた本発明の機能性建材(珪藻土量35質量部)の全細孔容積は、実施例1で得られた本発明の機能性建材の約1/2、比較例1の建材(石膏ボード)は約1/10、比較例2で得られた建材(実施例1の大気養生)は約1/3になる(表1参照)
The following can be understood from these measurement results. In the functional building material of the present invention obtained in Example 1, the crater-like uniform shape peculiar to natural diatomaceous earth as shown in FIG. 2 disappears, as is apparent from the electron microscope observation results shown in FIG. However, it is observed that calcium silicate hydrate having a fine pore structure is formed there.
In addition, the functional building material of the present invention obtained in Example 1 has a characteristic tobermorite-type calcium silicate peak confirmed from the XRD results shown in FIG. 3, and from the pore size distribution measurement results shown in Table 1, 2 It is confirmed to have pores of ˜50 nm. The total pore volume of the functional building material of the present invention obtained in Example 2 (diatomaceous earth amount 35 parts by mass) is about 1/2 that of the functional building material of the present invention obtained in Example 1 and Comparative Example 1. The building material (gypsum board) is about 1/10, and the building material (air curing in Example 1) obtained in Comparative Example 2 is about 1/3 (see Table 1).

評価試験例3
実施例1〜2で得られた本発明の機能性建材及び比較例1の建材(市販の石膏ボード)について、調湿特性を次の方法で測定した。測定は、約300mm角のテストピース3枚を使用して行った。20℃、相対湿度60%の雰囲気下に72時間放置したテストピースを、20℃、相対湿度90%の環境下に移し、24時間までの重量変化(増加)を測定して吸湿特性を調べた。次に、再度、20℃、相対湿度60%の雰囲気下に移し、24時間までの重量変化(減少)を測定した。その測定結果を図4に示す。
Evaluation test example 3
For the functional building material of the present invention obtained in Examples 1 and 2 and the building material of Comparative Example 1 (commercial gypsum board), humidity control characteristics were measured by the following method. The measurement was performed using three test pieces of about 300 mm square. The test piece left for 72 hours in an atmosphere of 20 ° C. and 60% relative humidity was transferred to an environment of 20 ° C. and 90% relative humidity, and the weight change (increase) up to 24 hours was measured to examine the moisture absorption characteristics. . Next, the sample was again transferred to an atmosphere of 20 ° C. and a relative humidity of 60%, and the weight change (decrease) up to 24 hours was measured. The measurement results are shown in FIG.

図4に示す測定結果から次のことがわかる。実施例1〜2で得られた本発明の機能性建材は、吸・放湿速度、吸・放湿量の両面で比較例1の建材(市販の石膏ボード)より格段に優れていることが分かる。   The following can be understood from the measurement results shown in FIG. The functional building materials of the present invention obtained in Examples 1 and 2 are far superior to the building material of Comparative Example 1 (commercially available gypsum board) in both absorption and desorption rates and absorption and desorption amounts. I understand.

評価試験例4
実施例1〜2で得られた本発明の機能性建材及び比較例1〜2で得られた建材について、VOCや悪臭物質のアルカリ水溶解・分解特性を、JIS K1475(活性炭試験方法、溶剤蒸気の吸着性能)を参考に次の方法で測定した。測定には、最終製品から切出した50mm角のテストピースを使用した。側面及び底面をアルミテープで被覆し重量を測定したテストピースを1.2L(リットル)の密閉容器内に挿入し、調整ガスを流速2L/minで流し、悪臭物質を吸着させた。1時間経過後にテストピースを取り出し、重量を測定して、吸着量を調べた、再び、テストピースを密閉容器内に挿入し、調整ガスを流した。この操作を繰り返してテストピースの1時間当たりの増量が5mg以下になるまで行って、増量分を悪臭物質吸着量とした。調整ガスとしては、1000ppm程度のホルムアルデヒド、酢酸を含有するガスを用いた。その結果を表3に示す。
Evaluation test example 4
For the functional building materials of the present invention obtained in Examples 1 and 2 and the building materials obtained in Comparative Examples 1 and 2, the alkaline water dissolution / decomposition characteristics of VOCs and offensive odor substances were measured according to JIS K1475 (activated carbon test method, solvent vapor). The adsorption performance was measured by the following method. For the measurement, a 50 mm square test piece cut out from the final product was used. A test piece, whose side and bottom surfaces were covered with aluminum tape and measured for weight, was inserted into a 1.2 L (liter) sealed container, and adjusted gas was flowed at a flow rate of 2 L / min to adsorb malodorous substances. After 1 hour, the test piece was taken out, the weight was measured, and the adsorption amount was examined. The test piece was again inserted into the sealed container, and the adjustment gas was allowed to flow. This operation was repeated until the amount of increase in the test piece per hour was 5 mg or less, and the increased amount was regarded as the malodorous substance adsorption amount. As the adjusting gas, a gas containing about 1000 ppm of formaldehyde and acetic acid was used. The results are shown in Table 3.

表3に示す通り、実施例1で得られた本発明の機能性建材は、1時間当たりの増量が5mg以下になることはなく、測定8時間経過しても吸着量は飽和とならず、8時間後の吸着量はホルムアルデヒド33g/m2 、酢酸317g/m2 となった。特に水の溶解度が無限である酢酸の場合、吸着量が顕著なことから、吸着・弱アルカリ水溶解・分解されていると考えられる。
実施例2で得られた建材(珪藻土量35質量部)は、8時間後のホルムアルデヒド吸着量が24g/m2 であり、アルカリを呈しない比較例1の建材(市販の石膏ボード)は、最初の1時間で増量が5mg以下と飽和になりホルムアルデヒド吸着量としては5.5g/m2 であった。
また、比較例2で得られた建材は、ホルムアルデヒド吸着量が14g/m2、酢酸64g/m2と実施例1の半分以下であった。
As shown in Table 3, the functional building material of the present invention obtained in Example 1 does not have an increase of 5 mg or less per hour, and the adsorption amount does not saturate even after 8 hours of measurement. adsorption amount after 8 hours formaldehyde 33 g / m 2, it was the acetic acid 317 g / m 2. In particular, in the case of acetic acid having infinite water solubility, the amount of adsorption is remarkable, and it is considered that adsorption / weak alkaline water dissolution / decomposition occurs.
The building material obtained in Example 2 (diatomaceous earth amount 35 parts by mass) has a formaldehyde adsorption amount of 24 g / m 2 after 8 hours, and the building material of Comparative Example 1 (commercial gypsum board) that does not exhibit alkali is the first In 1 hour, the increase was saturated to 5 mg or less, and the amount of formaldehyde adsorbed was 5.5 g / m 2 .
Also, building materials obtained in Comparative Example 2 are formaldehyde adsorption amount 14 g / m 2, was less than half of the acetic acid 64 g / m 2 as in Example 1.

評価試験例5
本発明の機能性建材において、VOCの吸着・分解能力に対する自由水の存在の影響を確認するために以下の試験を行った。
実施例1で得られた本発明の機能性建材のテストピースを2個用意し、そのうち一つを105℃にて絶乾状態とした。もう一つのテストピースは20℃、相対湿度60%で平衡含水率とした。これらのテストピース2個を前述した評価試験例4の測定方法により酢酸ガスの吸着量を測定した。
いずれのテストピースも、測定8時間では1時間当たりの増量が5mg以下になることはなかった。測定8時間経過後の酢酸ガス吸着量は、テストピース内に自由水のない絶乾品では52g/m2 、テストピース内に自由水を含む平衡含水率品では317g/m2 であり、自由水のない場合、吸着・分解能力に乏しいことがわかった。このことから自由水の存在がガスの分解に極めて重要であることが判明した。
Evaluation test example 5
In the functional building material of the present invention, the following test was conducted in order to confirm the influence of the presence of free water on the adsorption / decomposition ability of VOC.
Two test pieces of the functional building material of the present invention obtained in Example 1 were prepared, and one of them was completely dried at 105 ° C. Another test piece had an equilibrium water content at 20 ° C. and a relative humidity of 60%. The amount of acetic acid gas adsorbed was measured by the measurement method of Evaluation Test Example 4 described above for these two test pieces.
In any of the test pieces, the increase per hour was not less than 5 mg after 8 hours of measurement. Acetate gas adsorption amount after measuring 8 hours, 52 g / m 2 in the absolute dry products with no free water in the test piece, the equilibrium moisture content products containing free water in the test piece was 317 g / m 2, the free In the absence of water, it was found that adsorption / decomposition ability was poor. This indicates that the presence of free water is extremely important for gas decomposition.

実施例1で得られた本発明の機能性建材の電子顕微鏡観察結果を示す電子顕微鏡写真(倍率20000倍)である。It is an electron micrograph (magnification 20000 times) which shows the electron microscope observation result of the functional building material of this invention obtained in Example 1. FIG. 実施例1で使用した原料珪藻土の電子顕微鏡観察結果を示す電子顕微鏡写真(倍率20000倍)である。It is an electron micrograph (magnification 20000 times) which shows the electron microscope observation result of the raw material diatomaceous earth used in Example 1. 実施例1で得られた本発明の機能性建材のXRD測定結果を示図である。It is a figure which shows the XRD measurement result of the functional building material of this invention obtained in Example 1. FIG. 評価試験例3で測定した各建材の調湿特性(吸放湿量の経時変化)を示す図である。It is a figure which shows the humidity control characteristic (temporal change of moisture absorption / release amount) of each building material measured in the evaluation test example 3.

Claims (4)

珪藻土30〜75質量%を含む原料を成型して得られる無機質成型体を、150〜200℃の温度下で且つ470〜1560kPaの圧力下で養生させることにより得られる微細な細孔を有する構造を持つ珪酸カルシウム水和物からなる機能性建材。   A structure having fine pores obtained by curing an inorganic molded body obtained by molding a raw material containing 30 to 75% by mass of diatomaceous earth at a temperature of 150 to 200 ° C. and a pressure of 470 to 1560 kPa. Functional building material consisting of calcium silicate hydrate. 上記の微細な細孔を有する構造を持つ珪酸カルシウム水和物が、孔径2〜200nmの細孔を有し且つ含水率が2〜30質量%である珪酸カルシウム水和物であって、この細孔の内部に珪酸カルシウム結合水以外の遊離の弱アルカリ水を含有するものである、請求項1に記載の機能性建材   The calcium silicate hydrate having a structure having fine pores is a calcium silicate hydrate having pores with a pore diameter of 2 to 200 nm and a water content of 2 to 30% by mass. The functional building material according to claim 1, wherein the pore contains free weak alkaline water other than calcium silicate-bound water. 上記無機質成型体が、珪藻土30〜75質量%、消石灰20〜40質量%、珪砂1〜10質量%、石膏1〜10質量%、パルプ1〜10質量%及び繊維0.1〜3質量%を含む原料を用い、抄造で成型されたものである請求項1又は2に記載の機能性建材。   The said inorganic molded object is 30-75 mass% of diatomaceous earth, 20-40 mass% of slaked lime, 1-10 mass% of silica sand, 1-10 mass% of gypsum, 1-10 mass% of pulp, and 0.1-3 mass% of fibers. The functional building material according to claim 1, wherein the functional building material is formed by papermaking using a raw material. 上記原料が、更に、10質量%以下のパーライトを含むものである請求項3に記載の機能性建材。   The functional building material according to claim 3, wherein the raw material further contains 10% by mass or less of pearlite.
JP2007187574A 2007-07-18 2007-07-18 Functional building material Pending JP2009023864A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007187574A JP2009023864A (en) 2007-07-18 2007-07-18 Functional building material
TW097126689A TW200916431A (en) 2007-07-18 2008-07-14 Functional building material
KR1020080069865A KR20090009146A (en) 2007-07-18 2008-07-18 Functional building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187574A JP2009023864A (en) 2007-07-18 2007-07-18 Functional building material

Publications (1)

Publication Number Publication Date
JP2009023864A true JP2009023864A (en) 2009-02-05

Family

ID=40396029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187574A Pending JP2009023864A (en) 2007-07-18 2007-07-18 Functional building material

Country Status (3)

Country Link
JP (1) JP2009023864A (en)
KR (1) KR20090009146A (en)
TW (1) TW200916431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069109A (en) * 2012-09-28 2014-04-21 Tokai Chemical Industry Co Ltd Plate-like drier
JP2014240337A (en) * 2013-06-12 2014-12-25 ヤマカ陶料株式会社 Ceramic porous body composition and ceramic porous body
CN104495855A (en) * 2014-12-18 2015-04-08 营口渤海科技有限公司 Diatomite capable of controlling humidity absorbing and releasing performance by illumination and preparation method thereof
JP2020175510A (en) * 2019-04-15 2020-10-29 丸越工業株式会社 Molding material with diatom earth and manufacturing method of diatom earth products
JP2023081841A (en) * 2021-12-01 2023-06-13 日本欧思睦環保科技株式会社 Water-absorbable board and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401353B (en) * 2009-08-31 2013-07-11 Univ Nat Ilan Method for manufacturing environmental protection and heat insulation building materials
TWI406717B (en) * 2010-04-08 2013-09-01 Univ Nat Ilan Water-retention material and method for producing the same
FR3003880B1 (en) * 2013-03-29 2015-07-17 Siniat Int Sas PLASTER PLATES ABSORBING ORGANIC POLLUTANTS
KR102216584B1 (en) * 2020-04-20 2021-02-18 라이프앤어스 주식회사 A eco-friendly diatomitefoaming tray, and its fabrication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305041A (en) * 1991-04-02 1992-10-28 Ube Ind Ltd Calcium silicate-based interior and exterior plates and production thereof
JP2001130946A (en) * 1999-11-02 2001-05-15 Ube Ind Ltd Moisture-controlling construction material
JP2007063084A (en) * 2005-09-01 2007-03-15 Shoji Seike Diatom earth solidified body and solidifying method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305041A (en) * 1991-04-02 1992-10-28 Ube Ind Ltd Calcium silicate-based interior and exterior plates and production thereof
JP2001130946A (en) * 1999-11-02 2001-05-15 Ube Ind Ltd Moisture-controlling construction material
JP2007063084A (en) * 2005-09-01 2007-03-15 Shoji Seike Diatom earth solidified body and solidifying method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069109A (en) * 2012-09-28 2014-04-21 Tokai Chemical Industry Co Ltd Plate-like drier
JP2014240337A (en) * 2013-06-12 2014-12-25 ヤマカ陶料株式会社 Ceramic porous body composition and ceramic porous body
CN104495855A (en) * 2014-12-18 2015-04-08 营口渤海科技有限公司 Diatomite capable of controlling humidity absorbing and releasing performance by illumination and preparation method thereof
JP2020175510A (en) * 2019-04-15 2020-10-29 丸越工業株式会社 Molding material with diatom earth and manufacturing method of diatom earth products
JP7272562B2 (en) 2019-04-15 2023-05-12 丸越工業株式会社 Modeling material containing diatomaceous earth and method for producing diatomaceous earth product
JP2023081841A (en) * 2021-12-01 2023-06-13 日本欧思睦環保科技株式会社 Water-absorbable board and manufacturing method thereof
JP7446637B2 (en) 2021-12-01 2024-03-11 日本欧思睦環保科技株式会社 How to make water absorbent board

Also Published As

Publication number Publication date
KR20090009146A (en) 2009-01-22
TW200916431A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP2009023864A (en) Functional building material
JP4027029B2 (en) Building material composition
JP2008038365A (en) Interior finishing wall of building, and finishing coating material therefor
JP6584115B2 (en) Complex for adsorbing and absorbing chemical substances and method for producing the same
JP2004115340A (en) Gypsum-based building material
JP4009619B2 (en) Building material and method of manufacturing building material
KR20170028233A (en) A environmental-friendly surface finishing additives of buildings, surface finishing composition comprising the same and environmental-friendly surface finishing of buildings
JP2001130946A (en) Moisture-controlling construction material
JP6912872B2 (en) Manufacturing method of humidity control building materials
JP4684241B2 (en) Building material composition
JP2005048318A (en) Sheet for interior
KR101611426B1 (en) A environmental-friendly surface finishing additives of buildings, surface finishing composition comprising the same and environmental-friendly surface finishing of buildings
JP2006272047A (en) Aldehyde gas adsorbent and its production method
JP3212587B1 (en) Humidity control building materials
JPS5969146A (en) Production of filter-like adsorbent using powdery activated carbon as raw material
JPWO2002090070A1 (en) Gas absorber
JP2004285716A (en) Functional building material
JP4774752B2 (en) Humidity control molded body and manufacturing method thereof
JP2009256897A (en) Building material using chaff charcoal, and manufacturing method therefor
JPS61136436A (en) Malodor absorbing material and its preparation
JP3979592B2 (en) Method for producing humidity conditioning building material using allophane or imogolite-containing composition
JPH0547260B2 (en)
JP2002004447A (en) Moisture adjusting building material
RU2776843C1 (en) Building mixture or coating for interior works
JP2006198315A (en) Humidity control compound wall coating material and adsorbing deodorant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213