JP2020175510A - Molding material with diatom earth and manufacturing method of diatom earth products - Google Patents

Molding material with diatom earth and manufacturing method of diatom earth products Download PDF

Info

Publication number
JP2020175510A
JP2020175510A JP2019076919A JP2019076919A JP2020175510A JP 2020175510 A JP2020175510 A JP 2020175510A JP 2019076919 A JP2019076919 A JP 2019076919A JP 2019076919 A JP2019076919 A JP 2019076919A JP 2020175510 A JP2020175510 A JP 2020175510A
Authority
JP
Japan
Prior art keywords
diatomaceous earth
powder
gypsum
fluidity
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019076919A
Other languages
Japanese (ja)
Other versions
JP7272562B2 (en
Inventor
一夫 木地
Kazuo Kiji
一夫 木地
佐々木 直哉
Naoya Sasaki
直哉 佐々木
俊樹 山本
Toshiki Yamamoto
俊樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKOSHI KOGYO KK
Nihon Daiacom Kogyo Co Ltd
Ishikawa Prefecture
Original Assignee
MARUKOSHI KOGYO KK
Nihon Daiacom Kogyo Co Ltd
Ishikawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKOSHI KOGYO KK, Nihon Daiacom Kogyo Co Ltd, Ishikawa Prefecture filed Critical MARUKOSHI KOGYO KK
Priority to JP2019076919A priority Critical patent/JP7272562B2/en
Publication of JP2020175510A publication Critical patent/JP2020175510A/en
Application granted granted Critical
Publication of JP7272562B2 publication Critical patent/JP7272562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

To provide molding material with diatom earth which, with diatom earth being the main component and being a molding material with diatom earth for 3D printers, can be used for molding freely, and a manufacturing method of diatom earth products.SOLUTION: Its mixing ratio is such that diatom earth, aggregates, resin adhesive, and fluidity improver are contained in descending order of content, and for 31-43 vol% of diatom earth, the aggregates are adjusted at 24-36 vol%, the resin adhesive at 24-32 vol%, and the fluidity improver at 4-9 vol%.SELECTED DRAWING: Figure 2

Description

本発明は、珪藻土を主原料とした混合粉体を用いた珪藻土入り造形用材料及び珪藻土製品の製造方法に関する。 The present invention relates to a molding material containing diatomaceous earth and a method for producing a diatomaceous earth product using a mixed powder containing diatomaceous earth as a main raw material.

藻類の一種である珪藻の殻の化石よりなる堆積物(堆積岩)である珪藻土は、その特長である耐熱性、断熱性、吸水性、吸放湿性を活かして様々な製品の原材料として利用されている。
例えば、コンロや七輪の耐熱性や断熱性を活かしたピザ窯や、左官技術を応用したバスマット、切出し珪藻土を活用した珪藻土ブロックシリーズなどが開発されている。しかし、一方で、従来技術である切出し成形、プレス成形、シリコン型成形等では、珪藻土を用いて自由で複雑なデザインの製品開発は一般的には難しいと考えられている。
Diatomaceous earth, which is a deposit (sedimentary rock) composed of fossil shells of diatom, which is a type of algae, is used as a raw material for various products by taking advantage of its characteristics of heat resistance, heat insulation, water absorption, and moisture absorption and desorption. There is.
For example, pizza kilns that utilize the heat resistance and heat insulation of stoves and shichirin, bath mats that apply plastering technology, and diatomaceous earth block series that utilize cut-out diatomaceous earth have been developed. However, on the other hand, in the conventional techniques such as cutout molding, press molding, and silicon mold molding, it is generally considered difficult to develop a product having a free and complicated design using diatomaceous earth.

特許文献1には、「(課題)融点が1000℃を超えるような高融点金属を注湯可能な粉末固着積層法における造形用材料、及び、機能剤を提供する。(解決手段)70重量%以上の鋳物砂と、当該鋳物砂を相互に結着させるバインダーの粉状前駆体であるところのセメント又は耐熱性を有する樹脂とが混合されてなる粉末固着積層法における造形用材料を製造する。そして、この種の造形用材料とともに、前記粉状前駆体をバインダーに変質させる機能剤を用いる。」ことが開示されている。 Patent Document 1 provides "(problem) a modeling material in a powder-fixed lamination method capable of pouring a refractory metal having a melting point of more than 1000 ° C., and a functional agent (solution) 70% by weight. A molding material in a powder-fixed lamination method in which the above-mentioned casting sand and cement or a heat-resistant resin, which is a powdery precursor of a binder that binds the casting sand to each other, is mixed is produced. Then, together with this kind of modeling material, a functional agent that transforms the powdery precursor into a binder is used. "

特許文献2には、「(請求項1) 半水石膏、無機粉体、水溶性ポリマー、石膏硬化促進剤を含む鋳造用立体造形物を構成するための混合粉体であって、 前記半水石膏が18〜75重量%、前記無機粉体が13〜70重量%、前記水溶性ポリマーが1〜10重量%、前記石膏硬化促進剤が5〜30重量%であることを特徴とする鋳造用立体造形物を構成するための混合粉体。(請求項2) 前記無機粉体は、シリカ、アルミナ、チタニア、ジルコニア、マグネシアの少なくとも1つを含む金属酸化物、無機窒化物、無機炭化物、リン酸塩のうちの少なくとも一種を含むことを特徴とする請求項1の鋳造用立体造形物を構成するための混合粉体。(請求項3) 前記石膏硬化促進剤は、二水石膏、アルカリ金属硫酸塩、アルカリ土類金属硫酸塩、アルカリ金属塩化物塩、アルカリ土類金属塩化物塩、無機酸のアンモニウム塩、ミョウバン類から選ばれた1種または2種以上から成るものであることを特徴とする請求項1または2の鋳造用立体造形物を構成するための混合粉体。 Patent Document 2 describes "(Claim 1) a mixed powder for forming a three-dimensional cast product containing hemihydrate gypsum, an inorganic powder, a water-soluble polymer, and a gypsum hardening accelerator, and the semi-water For casting, the gypsum is 18 to 75% by weight, the inorganic powder is 13 to 70% by weight, the water-soluble polymer is 1 to 10% by weight, and the gypsum hardening accelerator is 5 to 30% by weight. Mixed powder for forming a three-dimensional molded product. (Claim 2) The inorganic powder is a metal oxide containing at least one of silica, alumina, gypsum, gypsum, and magnesia, an inorganic nitride, an inorganic carbide, and phosphorus. A mixed powder for forming a three-dimensional cast product according to claim 1, which comprises at least one of the acid salts. (Claim 3) The gypsum hardening accelerator is dihydrate gypsum or an alkali metal. It is characterized by being composed of one or more selected from gypsum, alkaline earth metal gypsum, alkali metal chloride salt, alkaline earth metal chloride salt, ammonium salt of inorganic acid, and gypsum. The mixed powder for forming the three-dimensional molded product for casting according to claim 1 or 2.

特許文献3には、「(請求項1) 珪藻土を主成分とし、かつ、これに混入されたバインダーを含み、所定形状に造形及び焼成され、全体的に珪藻殻が所有する多数の微細気孔を具備させたことを特徴とする珪藻土焼成製品。(請求項2) バインダーとして、木節粘土と無水珪酸と適量の水、又は、流紋系天然ガラス粉をそれらに加えて使用したことを特徴とする請求項1記載の珪藻土焼成製品。(請求項3) 焼成品が釉薬掛け処理されていることを特徴とする請求項1又は2記載の珪藻土焼成製品。(請求項4) 珪藻土にバインダーと水を混ぜて練り、この混練物を所定形状に造形した後、底部に造形物の収縮バランスを調整するための布を敷設して乾燥させた後、焼成して製品とすることを特徴とする珪藻土焼成製品の製造方法。」が開示されている。 Patent Document 3 states that "(Claim 1) contains a binder containing diatomaceous earth as a main component and mixed therein, and is formed and fired into a predetermined shape to form a large number of fine pores possessed by the diatomaceous earth as a whole. A diatomaceous earth fired product characterized by being provided. (Claim 2) A diatomaceous earth fired product is characterized in that diatomaceous earth clay, anhydrous silicic acid, an appropriate amount of water, or a flow pattern type natural glass powder is added to them as a binder. The diatomaceous earth fired product according to claim 1. (Claim 3) The diatomaceous earth fired product according to claim 1 or 2, wherein the fired product is glazed. (Claim 4) Binder and water on diatomaceous earth. Diatomaceous earth, which is characterized by mixing and kneading, forming this kneaded product into a predetermined shape, laying a cloth for adjusting the shrinkage balance of the modeled product on the bottom, drying it, and then firing it to obtain a product. A method for producing a baked product. ”Is disclosed.

特許第4722988号公報Japanese Patent No. 4722988 特開2015−100999号公報Japanese Unexamined Patent Publication No. 2015-100999 特許第2927415号公報Japanese Patent No. 2927415

近年、3Dプリンタにより種々の造形物が生み出されているが、その種類には、粉末焼結法、インクジェット粉末積層法等があり、後者には石膏を主原料とした造形用材料が使用されている。
そこで、石膏などの粉状の造形用材料に、珪藻土を混合することができれば、これまでにない自由で複雑な形状の開発が期待できる。しかし、珪藻土は、吸水性が高くインクジェット粉末積層法の3Dプリンタでは固着性に課題を有するために、単に石膏系材料に珪藻土を加えても、珪藻土の吸放湿性・吸水性等を活かした自由で複雑な形状の珪藻土製品を製造することはできない。
In recent years, various shaped objects have been produced by 3D printers, and the types include a powder sintering method and an inkjet powder lamination method, and the latter uses a molding material mainly made of gypsum. There is.
Therefore, if diatomaceous earth can be mixed with powdered modeling material such as gypsum, the development of unprecedented free and complicated shapes can be expected. However, diatomaceous earth has high water absorption and has a problem in stickability in 3D printers of the inkjet powder lamination method. Therefore, even if diatomaceous earth is simply added to a gypsum-based material, the moisture absorption and desorption properties and water absorption of diatomaceous earth can be utilized freely. It is not possible to manufacture diatomaceous earth products with complicated shapes.

ここで、特許文献3は、珪藻土に対してセメント材料を用いて固化するものであるが、セメント材料は、多くの水を用いる必要があることや、多孔質の孔を塞ぐおそれがあり、好ましくない。本願発明者らの研究によれば、セメント材料は固化するのに工業用の石膏材料より多くの水を必要とするため、材料として吸水性の高い珪藻土を使用した場合、インクジェット粉末積層法では固着性に課題を有し好ましくない。
特許文献1と2は、融点が1000℃を超えるような高融点金属を注湯可能な粉末固着積層法における造形用材料であるが、珪藻土は800〜1000℃程度で焼成すると、その多孔質性の特長である吸放湿性が失われることが知られており、好ましくない。
Here, Patent Document 3 solidifies diatomaceous earth with a cement material, but the cement material is preferable because it requires the use of a large amount of water and may block porous pores. Absent. According to the research by the inventors of the present application, the cement material requires more water to solidify than the industrial gypsum material. Therefore, when diatomaceous earth having high water absorption is used as the material, the cement material is fixed by the inkjet powder lamination method. It is not preferable because it has a problem in sex.
Patent Documents 1 and 2 are materials for modeling in a powder-fixing laminating method in which a refractory metal having a melting point exceeding 1000 ° C. can be poured, but diatomaceous earth is porous when fired at about 800 to 1000 ° C. It is known that the moisture absorption / desorption property, which is a feature of the above, is lost, which is not preferable.

そこで、本発明の目的は、3Dプリンタなどの造形用材料において、珪藻土を主成分として含み、自由な造形ができる珪藻土入り造形用材料及び珪藻土製品の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a modeling material containing diatomaceous earth as a main component in a modeling material such as a 3D printer and capable of freely modeling, and a method for producing a diatomaceous earth product.

上記課題を解決するために、本発明の珪藻土入り造形用材料は、珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤をこれらの順に多く含む混合割合とするとともに、31〜43vol%の珪藻土に対して、骨材、樹脂製接着剤、及び、流動性改善剤の割合を調整することを特徴とする。珪藻土の配合割合を31〜43vol%にすることで本発明の珪藻土入り造形用材料の中で一番配合割合が多くなり、多孔質の珪藻土の特長(吸放湿性、断熱性、吸水性など)を活かすことができる。
本発明によれば、3Dプリンタでの固着性に課題を有する吸水性の高い珪藻土を主原料としても、珪藻土に対する樹脂製接着剤等の割合を調整することで、多孔質の珪藻土の特長を有する造形物が製造できるようになる。
ここで、珪藻土31〜43vol%以下に対して樹脂製接着剤等を24〜32vol%の割合で調整することが好ましい。本願発明者等の実験によれば、焼成珪藻土の量を43vol%よりも多くすると、固着性が十分に確保することができなかった。しかし、樹脂製接着剤等を24vol%以上に調整することで、粉末との固着性が確保でき、吸放湿性や吸水性も十分な珪藻土製品を製造することができた。樹脂製接着剤が32vol%より多くなると、焼成珪藻土より配合割合が多くなり多孔質の珪藻土の特長に影響を及ぼすことと、骨材より配合割合が多くなりインクを塗布した際の粘性が上がり(べた付きが生じて)、粉末の積層性に影響を及ぼす可能性がある。
In order to solve the above problems, the modeling material containing diatomaceous earth of the present invention has a mixing ratio of diatomaceous earth, aggregate, resin adhesive, and fluidity improving agent in the order of these, and 31 to 43 vol%. It is characterized in that the ratio of the aggregate, the resin adhesive, and the fluidity improving agent is adjusted with respect to the diatomaceous earth of the above. By setting the blending ratio of diatomaceous earth to 31 to 43 vol%, the blending ratio is the largest among the modeling materials containing diatomaceous earth of the present invention, and the features of porous diatomaceous earth (moisture absorption / desorption, heat insulation, water absorption, etc.) Can be utilized.
According to the present invention, even if diatomaceous earth having high water absorption, which has a problem in stickability in a 3D printer, is used as a main raw material, it has the characteristics of porous diatomaceous earth by adjusting the ratio of a resin adhesive or the like to diatomaceous earth. You will be able to manufacture shaped objects.
Here, it is preferable to adjust the resin adhesive or the like at a ratio of 24 to 32 vol% with respect to 31 to 43 vol% or less of diatomaceous earth. According to the experiments of the inventors of the present application, when the amount of calcined diatomaceous earth is more than 43 vol%, the adhesiveness cannot be sufficiently ensured. However, by adjusting the resin adhesive or the like to 24 vol% or more, it was possible to secure the adhesiveness to the powder, and to produce a diatomaceous earth product having sufficient moisture absorption / desorption and water absorption. When the amount of the resin adhesive is more than 32 vol%, the compounding ratio is larger than that of calcined diatomaceous earth, which affects the characteristics of the porous diatomaceous earth, and the compounding ratio is larger than that of the aggregate, and the viscosity when the ink is applied increases ( It may become sticky) and affect the stackability of the powder.

また、本発明は、珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤を混合した珪藻土入り造形用材料であって、珪藻土の割合の方が骨材よりも多い主原料とした珪藻土入り造形用材料を用いて、インクジェット粉末積層法で製造してから、その珪藻土製品に8.5〜18.5mass%のウレタンを含有させたことを特徴とする珪藻土製品である。
本発明によれば、珪藻土を主原料としても(珪藻土の割合を骨材より多くしても)、多孔質の珪藻土の特長(吸放湿性、断熱性、吸水性など)を有する造形物が製造できるようになる。石膏3Dプリンタで造形試験を行った結果、問題なく造形でき、造形後粉の中から造形物を破損なく取り出すことができた。また、手に粉が付着しなくなる効果を有する。
Further, the present invention is a molding material containing diatomaceous earth, which is a mixture of diatomaceous earth, aggregate, resin adhesive, and fluidity improving agent, and the proportion of diatomaceous earth is larger than that of aggregate. It is a diatomaceous earth product characterized by containing 8.5 to 18.5 mass% urethane in the diatomaceous earth product after being produced by an inkjet powder laminating method using a material for molding.
According to the present invention, even if diatomaceous earth is used as a main raw material (even if the proportion of diatomaceous earth is larger than that of aggregate), a model having the characteristics of porous diatomaceous earth (moisture absorption / desorption, heat insulation, water absorption, etc.) is produced. become able to. As a result of conducting a modeling test with a plaster 3D printer, modeling was possible without any problem, and the modeled object could be taken out from the powder after modeling without damage. It also has the effect of preventing powder from adhering to the hands.

本発明としては、前記製造した珪藻土製品に8.5〜18.5mass%のウレタンを含有させることを特徴とする。ウレタンは、造形物に対してハケ塗りと浸漬が可能である。
本発明によれば、ウレタンに浸漬させると、切り出し珪藻土と比較して、吸放湿量を同程度に維持して、かつ曲げ強度を約3倍と大幅に向上させることができた。これら珪藻土製品は、吸放湿性に優れ、曲げ強度も実用化できるものが製造できた。また、水に浸漬しても崩壊するようなことはなかった。
The present invention is characterized in that the produced diatomaceous earth product contains 8.5 to 18.5 mass% urethane. Urethane can be brushed and immersed in the modeled object.
According to the present invention, when immersed in urethane, the amount of moisture absorbed and released was maintained at the same level as that of cut-out diatomaceous earth, and the bending strength could be significantly improved to about 3 times. These diatomaceous earth products have excellent moisture absorption and desorption properties, and can be manufactured with practical bending strength. Moreover, even if it was immersed in water, it did not collapse.

本発明としては、前記珪藻土が焼成珪藻土の粉末であり、前記骨材が石膏系材料の粉末であり、前記流動性改善剤がフュームドシリカ(FS)あり、前記樹脂製接着剤がポリビニルアルコール(PVA)、又は、ポリビニルピロリドン(PVP)であることを特徴とする。そして、造形試験で良好な積層性と固着性を得た配合割合は、焼成珪藻土が38vol%、石膏材料が29vol%、流動性改善剤であるFSが9vol%、PVP、又は、PVAが24vol%となった。 In the present invention, the diatomaceous earth is a powder of calcined diatomaceous earth, the aggregate is a powder of a gypsum-based material, the fluidity improving agent is fumed silica (FS), and the resin adhesive is polyvinyl alcohol (). It is characterized by being PVA) or polyvinylpyrrolidone (PVP). The blending ratios obtained in the modeling test with good stackability and stickiness were 38 vol% for calcined diatomaceous earth, 29 vol% for gypsum material, 9 vol% for FS, which is a fluidity improver, and 24 vol% for PVP or PVA. It became.

珪藻土は、能登産の焼成珪藻土を使用した。焼成珪藻土とは、様々な工業炉の断熱材として使用される珪藻土れんがを製造する際に排出される粉体である。具体的な工程は、珪藻土を押出し成形し600〜800℃で焼成後、定形のレンガに削り出す際に排出される。珪藻土は、一般に天然の珪藻土のまま製品として使用される事は稀であり、衛生上からも所定の温度で焼成してから使用されることがほとんどである。 As the diatomaceous earth, calcined diatomaceous earth produced in Noto was used. Calcined diatomaceous earth is a powder discharged when producing diatomaceous earth brick used as a heat insulating material for various industrial furnaces. In a specific step, diatomaceous earth is extruded, fired at 600 to 800 ° C., and then discharged when it is carved into a standard brick. In general, diatomaceous earth is rarely used as a product as it is, and in most cases, it is used after firing at a predetermined temperature from the viewpoint of hygiene.

骨材としては、半水石膏、二水石膏、無水石膏(可溶性無水石膏)、これらの混合物を用いることができる。半水石膏は、石膏を加熱し、脱水して得られる白色の粉末であり、水を加えると発熱・膨張して固まる性質を有する。また、骨材としてはシリカ(無水ケイ酸)等を使用することもできる。骨材の配合割合は、24〜36vol%が好ましい。骨材が36vol%よりも多くなると、焼成珪藻土より配合割合が多くなり多孔質の珪藻土の特長(吸放湿性、断熱性、吸水性など)に影響を及ぼす可能性がある。また、骨材が24vol%より少なくなると、樹脂製接着剤の配合割合が多くなりインクを塗布した際の粘性が上がり(べた付く)積層性に影響を及ぼす可能性がある。 As the aggregate, hemihydrate gypsum, dihydrate gypsum, anhydrous gypsum (soluble anhydrous gypsum), and a mixture thereof can be used. Semi-hydrated gypsum is a white powder obtained by heating gypsum and dehydrating it, and has the property of generating heat, expanding and hardening when water is added. Moreover, silica (silicic anhydride) or the like can also be used as an aggregate. The blending ratio of the aggregate is preferably 24-36 vol%. When the aggregate content is more than 36 vol%, the blending ratio is larger than that of calcined diatomaceous earth, which may affect the characteristics of porous diatomaceous earth (moisture absorption / desorption, heat insulation, water absorption, etc.). Further, when the aggregate content is less than 24 vol%, the blending ratio of the resin adhesive increases, and the viscosity when the ink is applied increases (stickiness), which may affect the stackability.

樹脂製接着剤としては、PVA、PVPなどの水溶性高分子材料とする接着剤を使用した。これらPVA、PVPのメジアン径の上限は、100±10μm以下が好ましい。100±10μm以下のPVA、PVPを使用することで、インクに溶けやすくなり珪藻土の固着性に改善が見られた。また、樹脂製接着剤は粉砕して使用してもよい。粉砕後のメジアン径は20±10μm以上が好ましい。それ以下になると、樹脂製接着剤の吸湿性の影響が大きくなり乾粉の状態で取り扱うことが難しくなる。従って樹脂製接着剤のメジアン径は、20±10〜100±10μmが好ましい。 As the resin adhesive, an adhesive made of a water-soluble polymer material such as PVA and PVP was used. The upper limit of the median diameter of these PVA and PVP is preferably 100 ± 10 μm or less. By using PVA and PVP of 100 ± 10 μm or less, it became easy to dissolve in ink and the adhesiveness of diatomaceous earth was improved. Further, the resin adhesive may be pulverized and used. The median diameter after pulverization is preferably 20 ± 10 μm or more. If it is less than that, the hygroscopic effect of the resin adhesive becomes large and it becomes difficult to handle it in the state of dry powder. Therefore, the median diameter of the resin adhesive is preferably 20 ± 10 to 100 ± 10 μm.

流動性改善剤としては、ステアリン酸マグネシウムやステアリン酸カルシウムよりも一次粒子の平均粒径が50nm以下のFSが好ましい。FSの中には親水性や疎水性のものがあるがどちらを使用してもよい。
ここで、前記珪藻土が焼成珪藻土の粉末であり、前記骨材が石膏系材料の粉末であり、前記流動性改善剤がフュームドシリカ(FS)であり、FSはCarrの流動性指数が前記焼成珪藻土の粉末及び前記石膏系材料の粉末の流動性指数よりも高いことを特徴とする。FSの添加量を増やすと、流動性指数が高くなるとともに噴流性指数も高くなり飛散しやすい状態となるので4〜9vol%が好ましい。また、FSの流動性としては、焼成珪藻土の粉末や石膏系材料の粉末である骨材よりも流動性指数が高いことにより、FSの添加量を少なくして、珪藻土の流動性指数を3D石膏粉末と同程度の流動性指数にすることができる。なお、焼成珪藻土の粉末の流動性指数と石膏系材料の粉末の流動性指数は、同じ程度か、又は、石膏系材料の流動性指数の方が高いものが好ましい。
As the fluidity improving agent, FS having an average particle size of primary particles of 50 nm or less is preferable to magnesium stearate and calcium stearate. Some FSs are hydrophilic or hydrophobic, but either one may be used.
Here, the diatomaceous earth is a powder of calcined diatomaceous earth, the aggregate is a powder of a gypsum-based material, the fluidity improver is fumed silica (FS), and the fluidity index of Carr is the calcined FS. It is characterized by having a fluidity index higher than that of the diatomaceous earth powder and the powder of the gypsum-based material. When the amount of FS added is increased, the fluidity index becomes high and the jettability index becomes high, which makes it easy to scatter. Therefore, 4 to 9 vol% is preferable. As for the fluidity of FS, the fluidity index is higher than that of the powder of calcined diatomaceous earth or the powder of gypsum-based material, so that the amount of FS added is reduced and the fluidity index of diatomaceous earth is set to 3D plaster. It can have a liquidity index similar to that of powder. It is preferable that the fluidity index of the powder of calcined diatomaceous soil and the fluidity index of the powder of the gypsum-based material are about the same, or the fluidity index of the gypsum-based material is higher.

そして、インクジェット式粉末積層法により珪藻土製品を製造した。珪藻土製品としては、正円形状と楕円形状の試作品(図2のA−1、A−2)を製造するとともに、ピン形状が5mm以上のものと穴径が2mm以上のものを(図2のB−1、B−2)、径の大きさを変えて製造した。ピン形状が5mm以上のものと穴径が2mm以上の製品は、径の大きさを変えて、その径をどこまで小さくできるかの試験品である。
本発明によれば、石膏3Dプリンタで造形試験を行った結果、上記製品のいずれも問題なく造形でき、造形後、粉の中から造形物を破損なく取り出すことができた。これら珪藻土製品(A−1、A−2、B−1、B−2)は、吸放湿性や吸水性に優れ、曲げ強度も実用化できるものが製造できた。また、水に浸漬しても崩壊するようなことはなかった。
Then, a diatomaceous earth product was manufactured by an inkjet powder lamination method. As diatomaceous earth products, we manufacture perfect circular and elliptical prototypes (A-1 and A-2 in Fig. 2), and those with a pin shape of 5 mm or more and those with a hole diameter of 2 mm or more (Fig. 2). B-1, B-2), manufactured by changing the size of the diameter. Products with a pin shape of 5 mm or more and products with a hole diameter of 2 mm or more are test products of how much the diameter can be reduced by changing the size of the diameter.
According to the present invention, as a result of performing a modeling test with a gypsum 3D printer, all of the above products could be modeled without any problem, and after modeling, the modeled object could be taken out from the powder without damage. These diatomaceous earth products (A-1, A-2, B-1, B-2) have excellent moisture absorption and desorption properties and water absorption, and can be manufactured with practical bending strength. Moreover, even if it was immersed in water, it did not collapse.

本発明の珪藻土入り造形用材料によれば、石膏系材料等の骨材よりも多く珪藻土を含ませても、多孔質の珪藻土の特長を活かした、吸放湿性、断熱性、吸水性などの特長を有する造形物が製造できるようになる。
また、本発明の珪藻土製品の製造方法によれば、上記珪藻土入り造形用材料により製造された珪藻土製品にウレタンを含有させると、切出し珪藻土と比較して、吸放湿量を同程度に維持して、曲げ強度として約3倍と大幅に向上させることができる。
According to the modeling material containing diatomaceous earth of the present invention, even if diatomaceous earth is contained in a larger amount than the aggregate such as gypsum-based material, the characteristics of the porous diatomaceous earth are utilized, such as moisture absorption / desorption, heat insulation, and water absorption. It will be possible to manufacture shaped objects with features.
Further, according to the method for producing a diatomaceous earth product of the present invention, when urethane is contained in the diatomaceous earth product produced by the above-mentioned diatomaceous earth-containing molding material, the amount of moisture absorbed and released is maintained at the same level as that of the cut diatomaceous earth. Therefore, the bending strength can be significantly improved to about 3 times.

石膏3Dプリンタの造形方法と材料開発における課題を説明する図である。It is a figure explaining the modeling method of the gypsum 3D printer and the problem in material development. 本発明の第1の実施形態である珪藻土製品の製造工程を示す図である。It is a figure which shows the manufacturing process of the diatomaceous earth product which is 1st Embodiment of this invention. 上記第1の実施形態の珪藻土入り造形用材料のメジアン径(頻度の累積が50%になる粒子径)を計測したグラフである。It is a graph which measured the median diameter (the particle diameter which the cumulative frequency becomes 50%) of the molding material containing diatomaceous earth of the first embodiment. 上記第1の実施形態の樹脂製材料のメジアン径を変えた場合の粒度を示すグラフである。It is a graph which shows the particle size when the median diameter of the resin material of the 1st Embodiment is changed. 実施例1−1で造形した試料のウレタン浸漬前後の電子顕微鏡写真である。It is an electron micrograph before and after the urethane immersion of the sample modeled in Example 1-1. 3D石膏粉末と実施例1−1で造形した試料のX線回折パターンである。It is an X-ray diffraction pattern of a 3D gypsum powder and a sample formed in Example 1-1.

本発明を適用した具体的な実施の形態について、以下、詳細に説明する。 Specific embodiments to which the present invention is applied will be described in detail below.

(第1の実施の形態)
第1の実施の形態では、石膏3Dプリンタに代表されるインクジェット粉末積層法で造形する装置に使用される珪藻土入り造形用材料の開発を行った。図1に示すようにこの方法は、粉末を0.1mmずつ積層しインクジェットのノズルからインクが吐出された部分が固まることにより造形していく方法である。従ってこの方法での粉末の材料開発における課題は、粉末の積層性と、粉末とインクとの固着性となる。本発明は、この3Dプリンタで造形可能な粉末の材料開発を行い、珪藻土製品を制作した。図2は、本発明の実施形態である珪藻土製品の製造工程を説明する図である。
(First Embodiment)
In the first embodiment, a modeling material containing diatomaceous earth was developed, which is used in an apparatus for modeling by an inkjet powder lamination method represented by a gypsum 3D printer. As shown in FIG. 1, this method is a method in which powders are laminated by 0.1 mm each and a portion where ink is ejected from an inkjet nozzle is solidified to form a model. Therefore, the problems in the development of the powder material by this method are the stackability of the powder and the adhesiveness between the powder and the ink. The present invention has developed a powder material that can be formed by this 3D printer, and produced a diatomaceous earth product. FIG. 2 is a diagram illustrating a manufacturing process of a diatomaceous earth product according to an embodiment of the present invention.

第1の実施の形態は、珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤をこれらの順に多く含む混合割合とするとともに、メジアン径の異なる4種類の樹脂製接着剤の割合を調整して珪藻土入り造形用材料(開発材料)を作製した。
珪藻土として能登産の焼成珪藻土、骨材としてサンエス石膏株式会社製の石膏系材料、流動性改善剤として株式会社トクヤマ製のFSを使用した。また樹脂製接着剤は、メジアン径の違うBASFジャパン株式会社製のPVP1とPVP2、株式会社日本触媒製のPVP3、デンカ株式会社製のPVAなどの水溶性高分子材料を使用した。
In the first embodiment, the mixing ratio is such that diatomaceous earth, aggregate, resin adhesive, and fluidity improving agent are contained in a large amount in this order, and the ratio of four types of resin adhesive having different median diameters is used. After adjustment, a modeling material (developed material) containing diatomaceous earth was prepared.
The calcined diatomaceous earth produced in Noto was used as the diatomaceous earth, the gypsum-based material manufactured by Sanes Gypsum Co., Ltd. was used as the aggregate, and the FS manufactured by Tokuyama Corporation was used as the fluidity improving agent. As the resin adhesive, water-soluble polymer materials such as PVP1 and PVP2 manufactured by BASF Japan Ltd., PVP3 manufactured by Nippon Shokubai Co., Ltd., and PVA manufactured by Denka Co., Ltd. having different median diameters were used.

表1に各実施例の配合割合と固着性の結果を示す。
Table 1 shows the results of the blending ratio and stickiness of each example.

表1に示す配合割合になるよう各材料を秤量し、混合機で約20kgの配合粉末を試作した。この配合粉末を石膏3Dプリンタ(3Dシステムズ社・Projet660Pro)に投入し固着性を確認するための造形試験を行った。 Each material was weighed so as to have the blending ratio shown in Table 1, and about 20 kg of blended powder was prototyped with a mixer. This compounded powder was put into a gypsum 3D printer (3D Systems, Inc., Project 660Pro) and a modeling test was conducted to confirm the adhesiveness.

第1の実施の形態で使用した焼成珪藻土と石膏系材料、比較として乾燥珪藻土と石膏3Dプリンタ用純正石膏粉末(3D石膏粉末)のメジアン系(頻度の累積が50%になる粒子径)を図3に示す。石膏3Dプリンタの積層幅が100μmであるため、本発明で使用する珪藻土入り造形用材料はメジアン径で100±10μm以下のものが好ましい。
第1の実施の形態で用いた樹脂製接着剤のメジアン径を図4に示す。表1に示すように実施例1−1と1−4は、固着性が良好であり粉の中から破損なく造形物を取り出すことができた。しかし実施例1−2と1−3においては、固着性が悪く、粉の中から造形物を取り出すことができないほど脆いものであった。実施例1−2では、PVPの量が22vol%と少なかったことが原因としてあげられる。実施例1−3では、PVPの量が24vol%であるが、メジアン径が100±10μm以上であったことが原因としてあげられる。
また、実施例1−5においては、メジアン径が82μmであっても、PVAの量が20vol%と少ないと、固着性が悪く粉の中から造形物を取り出すことができなかった。従って、前記樹脂製接着剤がメジアン径で100±10μm以下であり、24vol%以上含むことが好ましい(実施例1−1と実施例1−4)。
The calcined diatomaceous earth and gypsum-based materials used in the first embodiment, and the dry diatomaceous earth and gypsum for 3D printer genuine gypsum powder (3D gypsum powder) median-based (particle size at which the cumulative frequency becomes 50%) are shown. Shown in 3. Since the laminated width of the gypsum 3D printer is 100 μm, the material for modeling with diatomaceous earth used in the present invention preferably has a median diameter of 100 ± 10 μm or less.
The median diameter of the resin adhesive used in the first embodiment is shown in FIG. As shown in Table 1, Examples 1-1 and 1-4 had good adhesiveness, and the modeled object could be taken out from the powder without damage. However, in Examples 1-2 and 1-3, the adhesiveness was poor and the molded product was so brittle that it could not be taken out from the powder. In Example 1-2, the cause is that the amount of PVP was as small as 22 vol%. In Examples 1-3, the amount of PVP was 24 vol%, but the cause was that the median diameter was 100 ± 10 μm or more.
Further, in Example 1-5, even if the median diameter was 82 μm, if the amount of PVA was as small as 20 vol%, the adhesiveness was poor and the modeled object could not be taken out from the powder. Therefore, it is preferable that the resin adhesive has a median diameter of 100 ± 10 μm or less and contains 24 vol% or more (Examples 1-1 and 1-4).

これらの樹脂製接着剤は、市販品をそのまま使用しているが、乾式の粉砕機を使用してメジアン径で20±10μm程度まで粉砕したものを使用してもよい。メジアン径で20±10μm以下にすると樹脂製接着剤の吸湿性の影響が大きくなり乾粉の状態で取り扱うことが難しくなる。 As these resin adhesives, commercially available products are used as they are, but those crushed to a median diameter of about 20 ± 10 μm using a dry crusher may be used. If the median diameter is 20 ± 10 μm or less, the hygroscopic effect of the resin adhesive becomes large and it becomes difficult to handle it in the state of dry powder.

実施例1−1、1−4の珪藻土入り造形用材料を用いて、所定形状の珪藻土製品を製造した。珪藻土製品としては、正円形状と楕円形状の試作品(図2のA−1とA−2)と、ピン形状の直径が1mm以上のものと、穴径が1mm以上のものを、径の大きさを変えて製造した(図2のB−1とB−2)。その結果、ピン形状であれば直径5mm以上、穴径であれば2mm以上のものが製造できることが明らかになった。ウレタンに浸漬させることで、水に浸漬しても崩壊するようなことはなかった。また、手に珪藻土の粉やFSの粉が付着するようなことはなくなった。 A diatomaceous earth product having a predetermined shape was produced using the modeling materials containing diatomaceous earth of Examples 1-1 and 1-4. Diatomaceous earth products include perfect circular and elliptical prototypes (A-1 and A-2 in Fig. 2), pin-shaped products with a diameter of 1 mm or more, and holes with a hole diameter of 1 mm or more. Manufactured in different sizes (B-1 and B-2 in FIG. 2). As a result, it was clarified that a pin shape having a diameter of 5 mm or more and a hole diameter of 2 mm or more can be manufactured. By immersing it in urethane, it did not collapse even when immersed in water. In addition, diatomaceous earth powder and FS powder no longer adhere to the hands.

(第2の実施形態)
第2の実施の形態は、珪藻土として焼成珪藻土、流動性改善剤としてFS、骨材として3D石膏粉末を使用し、表2に示す配合割合で混合した粉末材料の流動性指数と噴流性指数を粉体特性評価装置(ホソカワミクロン株式会社・パウダテスタPT−X)で求めた。流動性指数は、粉体の流動性(=流れ性)、噴流性指数は、粉体の噴流性(=排出性)に関して総合的に把握しようとするもので、Carr(カー).R.Lが実験研究した方法に準拠する。
(Second Embodiment)
In the second embodiment, calcined diatomaceous earth is used as the diatomaceous earth, FS is used as the fluidity improver, and 3D gypsum powder is used as the aggregate, and the fluidity index and jettability index of the powder material mixed in the blending ratios shown in Table 2 are obtained. It was determined by a powder property evaluation device (Hosokawa Micron Co., Ltd., Powder Tester PT-X). The fluidity index is intended to comprehensively grasp the fluidity (= flowability) of powder, and the jettability index is intended to comprehensively grasp the jettability (= discharge property) of powder. Carr. R. It conforms to the method L studied experimentally.

表2に各実施例における珪藻土に対する流動性改善剤の割合と流動性指数、噴流性指数を示す。
Table 2 shows the ratio of the fluidity improver to the diatomaceous earth, the fluidity index, and the jettability index in each example.

表2に示す実施例2−2、2−3、2−4、2−5では、流動性指数は流動性改善剤の配合量が増えるとともに高くなる傾向を示している。珪藻土に対する流動性改善剤の割合が8.8%(実施例2−3)で流動性指数が40.5となり、メーカ純正の3D石膏粉末(実施例2−1)と同程度(41.0)になる。実施例1−1では、珪藻土に対する流動性改善剤の割合が23.7%で流動性指数が52.0となり、3D石膏粉末と比較すると流動性指数が高く流動性改善剤の配合割合が過剰な状態になっている。従って実施例1−1の石膏系材料と樹脂製接着剤の配合割合を固定した状態で、珪藻土に対する流動性改善剤の割合が8.8%となる4vol%まで流動性改善剤を減らすことができ、その分珪藻土を増やすことができる(想定例1)。今回の実験では、珪藻土を43vol%まで増やすことができたが(想定例1)、流動性改善剤で流動性指数の高いものを使用したり、メジアン径の小さな樹脂製接着剤等を使用したりすることで、更に珪藻土の量を増やすことも期待できる。
また、噴流性指数も実施例2−2、2−3、2−4、2−5では、流動性改善剤の配合量が増えるとともに高くなる傾向を示している。実施例1−1では噴流性指数が74.0になり、噴流性指数から分類される噴流性の程度は、「かなり強い(60〜79)」に分類される。これ以上流動性改善剤が増えると噴流性の程度が、「非常に強い(80〜100)」に分類され飛散しやすい状態になるため、流動性改善剤の配合割合は9vol%以下が好ましい。
In Examples 2-2, 2-3, 2-4, and 2-5 shown in Table 2, the fluidity index tends to increase as the amount of the fluidity improving agent added increases. The ratio of the fluidity improver to diatomaceous earth was 8.8% (Example 2-3), and the fluidity index was 40.5, which was about the same as the manufacturer's genuine 3D gypsum powder (Example 2-1) (41.0). )become. In Example 1-1, the ratio of the fluidity improver to the diatomaceous earth was 23.7% and the fluidity index was 52.0, which was higher than that of the 3D gypsum powder and the blending ratio of the fluidity improver was excessive. It is in a state of being. Therefore, with the blending ratio of the gypsum-based material and the resin adhesive of Example 1-1 fixed, the fluidity improving agent can be reduced to 4 vol%, which is 8.8% of the diatomaceous earth. It is possible to increase the amount of diatomaceous earth by that amount (assumed example 1). In this experiment, diatomaceous earth could be increased to 43 vol% (assumed example 1), but a fluidity improver with a high fluidity index was used, or a resin adhesive with a small median diameter was used. By doing so, it can be expected that the amount of diatomaceous earth will be further increased.
Further, in Examples 2-2, 2-3, 2-4, and 2-5, the jetability index also tends to increase as the amount of the fluidity improving agent added increases. In Example 1-1, the jetting property index is 74.0, and the degree of jetting property classified from the jetting property index is classified as "quite strong (60 to 79)". If the amount of the fluidity improving agent is increased more than this, the degree of jetting property is classified as "very strong (80 to 100)" and easily scattered. Therefore, the blending ratio of the fluidity improving agent is preferably 9 vol% or less.

(第3の実施形態)
第3の実施形態は、焼成珪藻土60mass%と3D石膏粉末40mass%の配合試料に対して、流動性改善剤としてステアリン酸カルシウム、ステアリン酸マグネシウム、FSをそれぞれ1〜5mass%添加した粉末材料の流動性指数を粉体特性評価装置で求めた。
(Third Embodiment)
In the third embodiment, the fluidity of the powder material to which calcium stearate, magnesium stearate, and FS are added as fluidity improving agents by 1 to 5 mass% to a mixed sample of 60 mass% of calcined diatomaceous earth and 40 mass% of 3D gypsum powder. The index was determined by a powder property evaluation device.

表3に各実施例における流動性指数を示す。
Table 3 shows the liquidity index in each example.

表3に示すように流動性指数は、実施例3−1の配合試料に対しステアリン酸カルシウムやステアリン酸マグネシウムを1mass%添加しても変化はないが、FSを1mass%添加すると高くなっている。さらにFSの添加量を増やすと流動性指数が高くなる傾向を示している。この結果から流動性改善に最も効果があるのはFSである。 As shown in Table 3, the fluidity index does not change even if calcium stearate or magnesium stearate is added in an amount of 1 mass% to the compounded sample of Example 3-1 but becomes higher when FS is added in an amount of 1 mass%. Further, when the amount of FS added is increased, the liquidity index tends to increase. From this result, FS is most effective in improving liquidity.

表4に各珪藻土入り造形用材料の配合割合の適正範囲となる想定例を示す。
Table 4 shows an example of assumptions in which the mixing ratio of each diatomaceous earth-containing modeling material is within an appropriate range.

表4に珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤をこれらの順に多く含む配合割合とした適正範囲の想定例を示す。それぞれ材料ごとの適正範囲は、珪藻土は31〜43vol%、骨材は24〜36vol%、樹脂製接着剤は24〜32vol%、流動性改善剤は4〜9vol%になる。珪藻土の配合割合が一番多い理由は、多孔質の珪藻土の特長を活かすためである。また骨材が次に多い理由は、樹脂製接着剤の配合割合が骨材より多くなるとインクを塗布した際の粘性が上がり(べた付きが生じて)、粉末の積層性に影響を及ぼすためである。樹脂製接着剤の下限は、良好な固着性を得るために必要であり、流動性改善剤の上限と下限は、表2に示す実施例を根拠にしている。 Table 4 shows an assumed example of an appropriate range in which diatomaceous earth, aggregate, resin adhesive, and fluidity improving agent are contained in a large amount in this order. The appropriate range for each material is 31 to 43 vol% for diatomaceous earth, 24 to 36 vol% for aggregate, 24 to 32 vol% for resin adhesive, and 4 to 9 vol% for fluidity improver. The reason why the mixing ratio of diatomaceous earth is the largest is to take advantage of the characteristics of porous diatomaceous earth. The reason why the amount of aggregate is next is that if the proportion of resin adhesive is larger than that of aggregate, the viscosity when ink is applied increases (stickiness occurs), which affects the stackability of powder. is there. The lower limit of the resin adhesive is necessary to obtain good adhesiveness, and the upper and lower limits of the fluidity improver are based on the examples shown in Table 2.

固着性の良好であった実施例1−1と実施例1−4の造形物は、粉の中から取り出した後、エアーで表面の粉を取り除き、和信化学工業株式会社製のウレタン系硬化剤(ウレタン)に3分間ほど含浸させ、常温で乾燥した。また、実施例1−4の造形物はウレタンをハケ塗りし、常温で乾燥した。その後以下に示す物性評価を行った。
造形物の曲げ強度は、オートグラフ(株式会社島津製作所・AG−5kNXplus)を使用し、幅8mm、厚さ6mm、長さ70mmの試験片をスパン60mm試験速度0.5mm/minの条件で3点曲げ試験を行った。試験はn=3で行い、その平均値を求めた。
造形物の熱伝導率は、50mm角で厚さ6mmの試験片を定常法熱伝導率測定装置(アルバック理工株式会社・GH−1)で測定し、かさ比重は同じ試験片の重量と体積から算出した。造形物の吸放湿性は、曲げ試験後の試験片を相対湿度84.7%と53.5%に調整した容器の中に静置して24時間周期で重量を測定した。相対湿度は、容器の底に塩飽和溶液として塩化カリウムと硝酸マグネシウムを入れ23℃の恒温槽に静置することで調整した。試料の養生は、相対湿度53.5%で重量が恒量に達するまで行った。
造形物の吸水率は、曲げ試験後の試験片を100℃で乾燥後、蒸留水中に浸漬させ24時間後の重量変化から算出した。
The shaped products of Examples 1-1 and 1-4 having good adhesiveness were taken out from the powder, and then the powder on the surface was removed with air, and a urethane-based curing agent manufactured by WASHIN CHEMICAL INDUSTRIES CO., LTD. It was impregnated with (urethane) for about 3 minutes and dried at room temperature. Further, the modeled product of Example 1-4 was brushed with urethane and dried at room temperature. After that, the following physical property evaluations were performed.
The bending strength of the modeled object is 3 using an autograph (Shimadzu Corporation, AG-5kNXplus) and using a test piece with a width of 8 mm, a thickness of 6 mm, and a length of 70 mm under the condition of a span of 60 mm and a test speed of 0.5 mm / min. A point bending test was performed. The test was carried out at n = 3, and the average value was calculated.
The thermal conductivity of the modeled object is measured by measuring a 50 mm square and 6 mm thick test piece with a steady-state thermal conductivity measuring device (Albac Riko Co., Ltd., GH-1), and the bulk specific gravity is based on the weight and volume of the same test piece. Calculated. The moisture absorption and desorption properties of the modeled object were measured by placing the test piece after the bending test in a container adjusted to a relative humidity of 84.7% and 53.5% and measuring the weight in a 24-hour cycle. The relative humidity was adjusted by putting potassium chloride and magnesium nitrate as a salt saturated solution in the bottom of the container and letting it stand in a constant temperature bath at 23 ° C. The sample was cured at a relative humidity of 53.5% until the weight reached a constant weight.
The water absorption rate of the modeled object was calculated from the weight change after 24 hours after drying the test piece after the bending test at 100 ° C. and immersing it in distilled water.

後処理として硬化剤の含浸が必須であるが、水やアルコール系の硬化剤では造形物が溶けてしまい、唯一ウレタンが造形物を溶かさず硬化させることができた。 Impregnation with a curing agent is essential as a post-treatment, but water or alcohol-based curing agents dissolve the modeled object, and urethane was the only one that could cure the modeled object without dissolving it.

表5に実施例1-4の造形物に対し、ウレタンをハケ塗りしたものとウレタンに浸漬させたものとの物性評価をまとめた結果を示す。
Table 5 shows the results of summarizing the physical property evaluations of the modeled products of Examples 1-4, which were brush-coated with urethane and those immersed in urethane.

ウレタンをハケ塗りすると造形物に対して最小で8.5mass%のウレタンを塗ることができる。また、ウレタンに浸漬させると、造形物に対して最大で18.5mass%のウレタンを含浸させることができる。ウレタンハケ塗りは、最小限のウレタンを含有させることができ、塗布後表面が硬化し粉が手に付かなくなる。一方、ウレタン浸漬は、気泡が出なくなるまで3分間ほど浸漬させるため、最大限のウレタンを含有させることができる。表4に示すようにウレタンに浸漬させるとハケ塗りのものより曲げ強度は約1.5倍に向上する。しかし吸放湿量と熱伝導率に関しては、珪藻土の特長である吸放湿性と断熱性に影響を及ぼすほどの大きな差は認められなかった。従って造形物に対して8.5〜18.5mass%のウレタンを含有させることが可能である。 When urethane is brushed, a minimum of 8.5 mass% urethane can be applied to the modeled object. Further, when immersed in urethane, the modeled object can be impregnated with urethane of a maximum of 18.5 mass%. Urethane brush coating can contain a minimum amount of urethane, and after coating, the surface hardens and powder does not stick to the hands. On the other hand, in the urethane immersion, the urethane is immersed for about 3 minutes until no bubbles are generated, so that the maximum amount of urethane can be contained. As shown in Table 4, when immersed in urethane, the bending strength is improved by about 1.5 times as compared with the one coated with a brush. However, there was no significant difference in the amount of moisture absorption and desorption and thermal conductivity that would affect the moisture absorption and desorption and heat insulation properties that are the characteristics of diatomaceous earth. Therefore, it is possible to contain 8.5 to 18.5 mass% of urethane in the modeled object.

図5に実施例1−1で造形した試料のウレタン浸漬前(a)後(c)のSEM像とウレタン浸漬前(b)後(d)のCOMPO像を示す。ウレタン浸漬前後のSEM像では微細組織に違いが確認されなかった。一方、COMPO像ではウレタンに浸漬後にコントラストの暗い部分が増加し、粒子同士の小さな空隙を埋めるようにウレタンが含浸していることがわかる。しかし大きさ100μm前後の空隙が確認されたことからウレタンに浸漬してもすべての空隙を埋めていないので吸放湿性に大きな影響を及ぼさなかった。 FIG. 5 shows an SEM image before (a) and after (c) the urethane immersion and a COMPO image before (b) and after (d) the urethane immersion of the sample formed in Example 1-1. No difference was confirmed in the microstructure in the SEM images before and after the urethane immersion. On the other hand, in the COMPO image, it can be seen that the dark contrast portion increases after immersion in urethane, and the urethane is impregnated so as to fill the small voids between the particles. However, since voids having a size of about 100 μm were confirmed, even if they were immersed in urethane, not all the voids were filled, so that the moisture absorption and desorption properties were not significantly affected.

表6に切出し珪藻土とウレタン浸漬後の造形物の物性評価をまとめた結果を示す。
Table 6 shows the results of summarizing the physical property evaluations of the cut-out diatomaceous earth and the modeled object after immersion in urethane.

切り出し珪藻土とは、珪藻土を大きいブロック塊のまま切出したものであり、珪藻土を練って型に入れて作る練物に比べて、天然珪藻土の無数のミクロの空胞がそのまま残っており、保温性・蓄熱性が高く熱効率が良く、しかも丈夫で、切出し七輪(七輪の形にノミで成形し窯で一昼夜焼いて造る。)などに使用される。 Cut-out diatomaceous earth is made by cutting out diatomaceous earth as a large block mass, and compared to a kneaded product made by kneading diatomaceous earth into a mold, innumerable microvacuums of natural diatomaceous earth remain as they are, and it has heat retention. It has high heat storage, high thermal efficiency, and is durable, and is used for cut-out shichirin (molded in the shape of a shichirin with a chisel and baked in a kiln for a whole day and night).

ウレタン浸漬後の造形物は、切出し珪藻土と比べて曲げ強度は約3倍高く、吸放湿量は同程度になることが明らかとなった。熱伝導率は石膏材料を配合しているため切出し珪藻土より高く、耐熱性はPVPを配合しているため200℃以上で黒褐色に変色することが確認された。吸水率は切出し珪藻土の12%程度であるが吸水性を有していることが明らかになった。切出し珪藻土より優れている点は、ウレタンに浸漬することで表面が硬化し、粉が手に着かないことと、水に浸漬しても崩壊しないことが挙げられる。
以上のように、骨材である石膏系材料よりも多く珪藻土を含ませても、多孔質の珪藻土の特長を活かした、吸放湿性、断熱性、吸水性などの特徴を有する造形物が製造できるようになる。
It was clarified that the molded product after immersion in urethane had about three times higher bending strength than the cut-out diatomaceous earth, and the amount of moisture absorbed and released was about the same. It was confirmed that the thermal conductivity is higher than that of cut diatomaceous earth because it contains a gypsum material, and the heat resistance changes to dark brown at 200 ° C. or higher because it contains PVP. The water absorption rate was about 12% of that of the cut diatomaceous earth, but it was revealed that it had water absorption. The advantages over cut diatomaceous earth are that the surface is hardened by immersing it in urethane, the powder does not reach the hands, and it does not collapse even when immersed in water.
As described above, even if diatomaceous earth is contained in a larger amount than the gypsum-based material which is the aggregate, a model having characteristics such as moisture absorption / desorption, heat insulation, and water absorption can be manufactured by utilizing the characteristics of porous diatomaceous earth. become able to.

一般的に石膏3Dプリンタで使用される石膏粉末は半水石膏(CaSO・0.5HO)であり、造形後インクと反応して二水石膏に変化する。しかし、図6に示すように実施例1−1で造形した試料は、3D石膏粉末で造形した試料より二水石膏の最強線を示す2θ=20.7°のピーク強度が低く、そのほとんどが半水石膏のままである。従って造形後の固着性に石膏系材料は、ほとんど寄与していないと考えられるため、骨材としては石膏系材料以外にもシリカ等を使用することができる。 Generally gypsum powder used in gypsum 3D printer is hemihydrate gypsum (CaSO 4 · 0.5H 2 O) , changes to the gypsum reacts with shaping after ink. However, as shown in FIG. 6, the sample formed in Example 1-1 has a lower peak intensity of 2θ = 20.7 °, which indicates the strongest line of dihydrate gypsum, than the sample formed with 3D gypsum powder, and most of them have a lower peak intensity. It remains semi-hydrated plaster. Therefore, since it is considered that the gypsum-based material hardly contributes to the fixability after modeling, silica or the like can be used as the aggregate in addition to the gypsum-based material.

以上、本実施の形態では、主に3Dプリンタで用いる造形用材料を例に説明したが、本発明は、石膏系材料を用いる造形用材料に広く適用可能なものである。 In the present embodiment, the modeling material mainly used in the 3D printer has been described as an example, but the present invention is widely applicable to the modeling material using the gypsum-based material.

A−1、A−2 珪藻土製品、
B−1、B−2 珪藻土製品

A-1, A-2 diatomaceous earth products,
B-1, B-2 diatomaceous earth products

Claims (10)

珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤をこれらの順に多く含む混合割合とするとともに、31〜43vol%の珪藻土に対して、骨材、樹脂製接着剤、及び流動性改善剤の割合を調整することを特徴とする珪藻土入り造形用材料。 The mixing ratio is such that diatomaceous earth, aggregate, resin adhesive, and fluidity improver are contained in a large amount in this order, and aggregate, resin adhesive, and fluidity improvement are made with respect to 31 to 43 vol% of diatomaceous earth. A molding material containing diatomaceous earth, which is characterized by adjusting the proportion of the agent. 31〜43vol%の珪藻土に対して、骨材を24〜36vol%、樹脂製接着剤を24〜32vol%、流動性改善剤を4〜9vol%の割合で調整することを特徴とする請求項1記載の珪藻土入り造形用材料。 Claim 1 is characterized in that the aggregate is adjusted at a ratio of 24 to 36 vol%, the resin adhesive is adjusted at 24 to 32 vol%, and the fluidity improving agent is adjusted at a ratio of 4 to 9 vol% with respect to 31 to 43 vol% of diatomaceous earth. The described material for modeling with diatomaceous earth. 前記珪藻土が焼成珪藻土の粉末であり、前記骨材が石膏系材料の粉末であり、前記流動性改善剤がフュームドシリカ(FS)であり、FSはCarrの流動性指数が前記焼成珪藻土の粉末及び前記石膏系材料の粉末の流動性指数よりも高いことを特徴とする請求項1記載の珪藻土入り造形用材料。 The diatomaceous earth is a powder of calcined diatomaceous earth, the aggregate is a powder of a gypsum-based material, the fluidity improver is fumed silica (FS), and the fluidity index of Carr is the powder of the calcined diatomaceous earth. The diatomaceous earth-containing molding material according to claim 1, which is higher than the fluidity index of the powder of the gypsum-based material. 樹脂製接着剤のメジアン径が20±10〜100±10μmであることを特徴とする請求項1記載の珪藻土入り造形用材料。 The modeling material containing diatomaceous earth according to claim 1, wherein the median diameter of the resin adhesive is 20 ± 10 to 100 ± 10 μm. 前記珪藻土が焼成珪藻土の粉末であり、前記骨材が石膏系材料の粉末であり、前記流動性改善剤がフュームドシリカ(FS)であり、前記樹脂製接着剤がポリビニルアルコール(PVA)、又は、ポリビニルピロリドン(PVP)であることを特徴とする請求項1ないし4のいずれか1項記載の珪藻土入り造形用材料。 The diatomaceous earth is a powder of calcined diatomaceous earth, the aggregate is a powder of a gypsum-based material, the fluidity improving agent is fumed silica (FS), and the resin adhesive is polyvinyl alcohol (PVA) or , The diatomaceous earth-containing molding material according to any one of claims 1 to 4, which is polyvinylpyrrolidone (PVP). 珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤をこれらの順に多く含む混合割合とする珪藻土入り造形用材料を用いて、粉末固着式積層法で珪藻土製品を製造してから、その珪藻土製品に8.5〜18.5mass%のウレタンを含有させたことを特徴とする珪藻土製品。 A diatomaceous earth product is manufactured by a powder-fixing laminating method using a diatomaceous earth-containing molding material having a mixing ratio of diatomaceous earth, aggregate, resin adhesive, and a fluidity improving agent in a large amount in this order. A diatomaceous earth product characterized by containing 8.5 to 18.5 mass% urethane in the diatomaceous earth product. 珪藻土を31〜43vol%以下に対して、骨材、樹脂製接着剤、及び、流動性改善剤の割合を調整することを特徴とする請求項6記載の珪藻土製品。 The diatomaceous earth product according to claim 6, wherein the ratio of the aggregate, the resin adhesive, and the fluidity improving agent is adjusted with respect to 31 to 43 vol% or less of the diatomaceous earth. 前記珪藻土が焼成珪藻土の粉末であり、前記骨材が石膏系材料の粉末であり、前記流動性改善剤がフュームドシリカ(FS)であり、FSはCarrの流動性指数が前記焼成珪藻土の粉末及び前記石膏系材料の粉末の流動性指数よりも高いことを特徴とする請求項6ないし7のいずれか1項記載の珪藻土製品。 The diatomaceous earth is a powder of calcined diatomaceous earth, the aggregate is a powder of a gypsum-based material, the fluidity improver is fumed silica (FS), and the fluidity index of Carr is the powder of the calcined diatomaceous earth. The diatomaceous earth product according to any one of claims 6 to 7, wherein the diatomaceous earth product is characterized by having a fluidity index higher than that of the powder of the gypsum-based material. 珪藻土、骨材、樹脂製接着剤、及び、流動性改善剤をこれらの順に多く含む混合割合とする珪藻土入り造形用材料を用いて、粉末固着式積層法で珪藻土製品を製造してから、その珪藻土製品にウレタンを含有させることを特徴とする珪藻土製品の製造方法。 A diatomaceous earth product is manufactured by a powder-fixing laminating method using a diatomaceous earth-containing molding material having a mixing ratio of diatomaceous earth, aggregate, resin adhesive, and a fluidity improving agent in a large amount in this order. A method for producing a diatomaceous earth product, which comprises adding urethane to the diatomaceous earth product. 前記珪藻土製品に、ウレタンをハケ塗りで塗布するか、又は、気泡が出なくなるまでウレタンに浸漬させることを特徴とする請求項9載の珪藻土製品の製造方法。

The method for producing a diatomaceous earth product according to claim 9, wherein urethane is applied to the diatomaceous earth product by brushing or is immersed in urethane until no bubbles are generated.

JP2019076919A 2019-04-15 2019-04-15 Modeling material containing diatomaceous earth and method for producing diatomaceous earth product Active JP7272562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076919A JP7272562B2 (en) 2019-04-15 2019-04-15 Modeling material containing diatomaceous earth and method for producing diatomaceous earth product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076919A JP7272562B2 (en) 2019-04-15 2019-04-15 Modeling material containing diatomaceous earth and method for producing diatomaceous earth product

Publications (2)

Publication Number Publication Date
JP2020175510A true JP2020175510A (en) 2020-10-29
JP7272562B2 JP7272562B2 (en) 2023-05-12

Family

ID=72935602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076919A Active JP7272562B2 (en) 2019-04-15 2019-04-15 Modeling material containing diatomaceous earth and method for producing diatomaceous earth product

Country Status (1)

Country Link
JP (1) JP7272562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045286A (en) * 2021-04-13 2021-06-29 济南大学 Magnesium phosphate cement-based material suitable for 3D printing and preparation method and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343166A (en) * 1998-06-01 1999-12-14 Tatsuo Haito Diatomaceous earth fired product and its production
JP2006027996A (en) * 2004-07-21 2006-02-02 Kagawa Prefecture Moisture-conditioning board
JP2007246306A (en) * 2006-03-14 2007-09-27 Ube Ind Ltd Reducible gypsum composition, method of manufacturing the same, cement based solidification material and solidification method
JP2008291075A (en) * 2007-05-23 2008-12-04 Infua Co Ltd Molding material and method of producing molding material
JP2009023864A (en) * 2007-07-18 2009-02-05 Ube Board Kk Functional building material
JP2010110802A (en) * 2008-11-10 2010-05-20 Komatsu Igata Seisakusho:Kk Material for molding, functional agent, molded product and product
JP2015100999A (en) * 2013-11-25 2015-06-04 株式会社ノリタケカンパニーリミテド Mixed powder for constituting solid molded article for casting and solid molded article for casting molded by using the same
JP2016050126A (en) * 2014-08-28 2016-04-11 株式会社ノリタケカンパニーリミテド Mixture powder for three-dimensional molding and three-dimensional molded article
WO2016121217A1 (en) * 2015-01-30 2016-08-04 株式会社アールテック Method for manufacturing three-dimensional moldings, apparatus for manufacturing three-dimensional moldings, three-dimensional molding, and molding material
JP2016188152A (en) * 2015-03-30 2016-11-04 株式会社ハチヤマテリアル Mortar for molding for interior or exterior
JP2018126974A (en) * 2017-02-10 2018-08-16 ローランドディー.ジー.株式会社 Three-dimensional modeling apparatus
JP2018130835A (en) * 2017-02-13 2018-08-23 株式会社ノリタケカンパニーリミテド Powder for lamination molding
WO2019026841A1 (en) * 2017-07-31 2019-02-07 太平洋セメント株式会社 Hydraulic composition for additive manufacturing device, and method for manufacturing casting mold

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343166A (en) * 1998-06-01 1999-12-14 Tatsuo Haito Diatomaceous earth fired product and its production
JP2006027996A (en) * 2004-07-21 2006-02-02 Kagawa Prefecture Moisture-conditioning board
JP2007246306A (en) * 2006-03-14 2007-09-27 Ube Ind Ltd Reducible gypsum composition, method of manufacturing the same, cement based solidification material and solidification method
JP2008291075A (en) * 2007-05-23 2008-12-04 Infua Co Ltd Molding material and method of producing molding material
JP2009023864A (en) * 2007-07-18 2009-02-05 Ube Board Kk Functional building material
JP2010110802A (en) * 2008-11-10 2010-05-20 Komatsu Igata Seisakusho:Kk Material for molding, functional agent, molded product and product
JP2015100999A (en) * 2013-11-25 2015-06-04 株式会社ノリタケカンパニーリミテド Mixed powder for constituting solid molded article for casting and solid molded article for casting molded by using the same
JP2016050126A (en) * 2014-08-28 2016-04-11 株式会社ノリタケカンパニーリミテド Mixture powder for three-dimensional molding and three-dimensional molded article
WO2016121217A1 (en) * 2015-01-30 2016-08-04 株式会社アールテック Method for manufacturing three-dimensional moldings, apparatus for manufacturing three-dimensional moldings, three-dimensional molding, and molding material
JP2016188152A (en) * 2015-03-30 2016-11-04 株式会社ハチヤマテリアル Mortar for molding for interior or exterior
JP2018126974A (en) * 2017-02-10 2018-08-16 ローランドディー.ジー.株式会社 Three-dimensional modeling apparatus
JP2018130835A (en) * 2017-02-13 2018-08-23 株式会社ノリタケカンパニーリミテド Powder for lamination molding
WO2019026841A1 (en) * 2017-07-31 2019-02-07 太平洋セメント株式会社 Hydraulic composition for additive manufacturing device, and method for manufacturing casting mold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐々木直哉: "3Dプリンタによる能登珪藻土製品の製造技術の開発", いしかわ工試技術ニュース, vol. 43, no. 2, JPN6023011422, 1 July 2018 (2018-07-01), pages 5, ISSN: 0005016388 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045286A (en) * 2021-04-13 2021-06-29 济南大学 Magnesium phosphate cement-based material suitable for 3D printing and preparation method and application thereof
CN113045286B (en) * 2021-04-13 2022-06-03 济南大学 Magnesium phosphate cement-based material suitable for 3D printing and preparation method and application thereof

Also Published As

Publication number Publication date
JP7272562B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
JP5318301B1 (en) Materials for modeling, functional agents, modeling products and products
AU2008228269B2 (en) Core-sheath particle for use as a filler for feeder masses
CN110678431B (en) Molding material, functional agent, molded product, and product
KR102520122B1 (en) Method for manufacturing hydraulic composition and mold for additive manufacturing equipment
WO2018003832A1 (en) Hydraulic composition for additive manufacturing device, and process for producing casting mold
JP6644614B2 (en) Cement composition for binder injection type additional manufacturing equipment
JP2007269605A (en) Molten siliceous refractory and method for manufacturing the same
JP6285835B2 (en) Method for producing silicate polymer molded body and silicate polymer molded body
JP5336987B2 (en) Method for producing fire-resistant molded body for metal casting and method for producing fire-resistant fired body for metal casting
JP2020175510A (en) Molding material with diatom earth and manufacturing method of diatom earth products
US9539637B2 (en) Investment casting refractory material
CN106220197A (en) A kind of fire safe type 3D printed material
US3607325A (en) Refractory-ceramic composition and method
JP6624636B2 (en) Ceramic raw material, method for producing fired body, and fired body
JP2018535919A (en) Process for providing inorganic polymer ceramic-like materials
JP7451363B2 (en) plaster for casting
JP2021154307A (en) Casting sand for additional manufacturing apparatus, and sand mold for casting
JP2017061392A (en) Strength enhancement method of cement hardened body
JP2017178671A (en) Cement composition for binder injection type additive manufacturing apparatus
JP5564229B2 (en) Inorganic composition and inorganic molded body using the same
JP5479197B2 (en) Design material
JPH06227854A (en) Production of formed ceramic article
CN115464092A (en) Shell mold material composition, shell mold manufacturing method and shell mold
JPH0971482A (en) Slurry for forming porous ceramics and production of porous ceramics using the same
CN109414847A (en) Cement compositions are as the purposes of the coating of disposable casting core and the type core of associated coated

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230418

R150 Certificate of patent or registration of utility model

Ref document number: 7272562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150