JP6584115B2 - Complex for adsorbing and absorbing chemical substances and method for producing the same - Google Patents
Complex for adsorbing and absorbing chemical substances and method for producing the same Download PDFInfo
- Publication number
- JP6584115B2 JP6584115B2 JP2015070948A JP2015070948A JP6584115B2 JP 6584115 B2 JP6584115 B2 JP 6584115B2 JP 2015070948 A JP2015070948 A JP 2015070948A JP 2015070948 A JP2015070948 A JP 2015070948A JP 6584115 B2 JP6584115 B2 JP 6584115B2
- Authority
- JP
- Japan
- Prior art keywords
- composite
- macropores
- comparative example
- complex
- chemical substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000002131 composite material Substances 0.000 claims description 119
- 239000011148 porous material Substances 0.000 claims description 61
- 239000000203 mixture Substances 0.000 claims description 33
- 238000009826 distribution Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 28
- 229910052753 mercury Inorganic materials 0.000 claims description 23
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 22
- 239000010438 granite Substances 0.000 claims description 17
- 239000004572 hydraulic lime Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims description 9
- 239000003125 aqueous solvent Substances 0.000 claims description 8
- 238000006386 neutralization reaction Methods 0.000 claims description 5
- 230000035515 penetration Effects 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 64
- 238000012360 testing method Methods 0.000 description 47
- 239000007789 gas Substances 0.000 description 41
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 40
- 239000000463 material Substances 0.000 description 35
- 238000001179 sorption measurement Methods 0.000 description 33
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 30
- 239000005909 Kieselgur Substances 0.000 description 29
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 27
- 239000004566 building material Substances 0.000 description 26
- 230000000694 effects Effects 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 238000004332 deodorization Methods 0.000 description 18
- 229910021529 ammonia Inorganic materials 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 12
- 239000000920 calcium hydroxide Substances 0.000 description 12
- 235000011116 calcium hydroxide Nutrition 0.000 description 12
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 12
- 239000004744 fabric Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000011416 natural hydraulic lime Substances 0.000 description 12
- 229910021536 Zeolite Inorganic materials 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 11
- 239000012855 volatile organic compound Substances 0.000 description 11
- 239000010457 zeolite Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 9
- 229910052901 montmorillonite Inorganic materials 0.000 description 9
- 238000009423 ventilation Methods 0.000 description 9
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 8
- 235000011941 Tilia x europaea Nutrition 0.000 description 8
- 230000001877 deodorizing effect Effects 0.000 description 8
- 239000004571 lime Substances 0.000 description 8
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000010440 gypsum Substances 0.000 description 6
- 229910052602 gypsum Inorganic materials 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 125000005372 silanol group Chemical group 0.000 description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 235000012241 calcium silicate Nutrition 0.000 description 4
- 229910052918 calcium silicate Inorganic materials 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000011417 artificial hydraulic lime Substances 0.000 description 3
- 239000000378 calcium silicate Substances 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- -1 etc. Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000383 hazardous chemical Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000011941 photocatalyst Substances 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 101100026375 Arabidopsis thaliana NHL2 gene Proteins 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000002781 deodorant agent Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- SHFGJEQAOUMGJM-UHFFFAOYSA-N dialuminum dipotassium disodium dioxosilane iron(3+) oxocalcium oxomagnesium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Na+].[Na+].[Al+3].[Al+3].[K+].[K+].[Fe+3].[Fe+3].O=[Mg].O=[Ca].O=[Si]=O SHFGJEQAOUMGJM-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 150000002730 mercury Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、化学物質を吸着して吸収する複合体及びその製造方法に関し、さらに詳しくは、環境中の有害化学物質等を、容易に再放出させることなく効果的に吸着して吸収することができる安全性の高い複合体、及びその製造方法に関する。 The present invention relates to a complex that adsorbs and absorbs chemical substances and a method for producing the same, and more specifically, it can effectively adsorb and absorb harmful chemical substances in the environment without causing easy re-release. The present invention relates to a highly safe composite and a method for producing the same.
建造物の内装仕上げ構造として、下地材の表面に塗材や微粒子を吹き付けて多孔質の壁面を形成したりタイル化したりする技術が知られている。例えば、石膏ボード、木材、合板等からなる下地材の表面に、珪藻土、活性炭、活性炭素繊維、分子ふるい炭素、シリカゲル、活性アルミナ、ゼオライト等の無機多孔質物質を配合した塗材やシラス等の微粒子を吹き付けて多孔質の壁面を形成したり、それらの無機多孔質物質を焼成しタイル化したりする技術が知られている。特に無機多孔質物質は、その細孔内に種々の分子を物理吸着することが知られており、室内の湿度調整、臭気成分、揮発性有機化合物(VOCともいう。)を吸着する機能を有する内壁等の製品が市販されている。また、臭気成分やVOCの除去を目的に、光触媒を塗布した建造物の内壁等が開発されており、内壁、天井、壁、床、浴槽、洗面スペース、蛇口等を酸化チタンでコーティングして抗菌性を付与した製品も市販されている。 As an interior finishing structure of a building, a technique of forming a porous wall surface or tiling by spraying a coating material or fine particles on the surface of a base material is known. For example, on the surface of a base material made of gypsum board, wood, plywood, etc., coating materials or shirasu etc. containing inorganic porous materials such as diatomaceous earth, activated carbon, activated carbon fiber, molecular sieve carbon, silica gel, activated alumina, zeolite, etc. Techniques are known in which fine particles are sprayed to form a porous wall surface, or those inorganic porous materials are baked and tiled. In particular, inorganic porous materials are known to physically adsorb various molecules in the pores, and have functions of adsorbing indoor humidity adjustment, odor components, and volatile organic compounds (also referred to as VOCs). Products such as inner walls are commercially available. For the purpose of removing odor components and VOCs, the inner walls of buildings with photocatalyst applied have been developed. The inner walls, ceilings, walls, floors, bathtubs, wash spaces, faucets, etc. are coated with titanium oxide for antibacterial purposes. Products with added properties are also commercially available.
こうした技術については、例えば特許文献1には、組成にバラツキの多い天然のポゾラン物質の反応性を高め、高い吸湿性と放湿性、イオン吸着・交換能等を併せ持つケイ酸カルシウム水和物系の調湿材料とその製造方法を得ることにより、快適で安全な住環境を少ない環境負荷で提供できることが提案されている。この技術は、ゼオライト質凝灰岩を平均粒径10ミクロン以下に微粉砕することにより、メカノケミカル効果によってカルシウムイオンとの反応性を高め、180℃以下の水熱反応処理で平均細孔半径10ナノメートル以下の細孔を形成せしめた結晶性の良いケイ酸カルシウム水和物硬化体を、400℃以下で乾燥もしくは焼成することで多孔体を得るというものである。 Regarding such technology, for example, Patent Document 1 discloses a calcium silicate hydrate system that enhances the reactivity of a natural pozzolanic substance having a wide variation in composition, and has both high hygroscopicity and hygroscopicity, ion adsorption / exchange ability, and the like. It has been proposed that a comfortable and safe living environment can be provided with a small environmental load by obtaining a humidity control material and its manufacturing method. This technology improves the reactivity with calcium ions by mechanochemical effect by pulverizing zeolitic tuff to an average particle size of 10 microns or less, and an average pore radius of 10 nanometers by hydrothermal reaction at 180 ° C or less. A porous body is obtained by drying or baking a hardened calcium silicate hydrate having good crystallinity with the following pores formed at 400 ° C. or lower.
また、特許文献2には、室内空間への臭気成分、VOCの再放出及び無機多孔質物質の細孔の飽和を防ぐ手段を提供できることが提案されている。この技術は、表面塗材としての抗菌・有害物分解性物質である酸化チタン光触媒を含有する第1層の塗材、及び内面塗材としての吸着吸放湿能を有する無機多孔質物質を含有する第2層の塗材からなる建造物用複合内装塗材を用いて、室内空間への臭気成分、VOCの再放出及び無機多孔質物質の細孔の飽和を防ぐ建造物複合内装塗装構造を形成するというものである。 Patent Document 2 proposes that it is possible to provide a means for preventing odor components into the indoor space, re-release of VOC, and saturation of the pores of the inorganic porous material. This technology contains a first layer coating material containing a titanium oxide photocatalyst that is an antibacterial / hazardous substance decomposable material as a surface coating material, and an inorganic porous material having adsorption / desorption and absorption capacity as an inner surface coating material Using a composite interior coating material for buildings consisting of a coating material for the second layer, a composite composite interior coating structure that prevents odor components, VOC re-release into indoor spaces and saturation of pores of inorganic porous materials It is to form.
しかしながら、上記特許文献1の技術は、吸湿性、放湿性、イオン吸着・交換能等を併せ持つというものであるが、極めて小さい細孔であるため、気体を導入しにくく、効率的に機能を発揮できないという難点がある。また、マイクロ孔やメソ孔等の細孔での吸着は、吸着力の弱い物理吸着や化学吸着によって行われているため、例えば夏の閉め切った室内等のように、常温以上(例えば40℃以上)で吸着物質が再放出し易いという難点もある。 However, although the technique of the above-mentioned Patent Document 1 has hygroscopicity, moisture release, ion adsorption / exchange ability, etc., it is extremely small pores, so it is difficult to introduce gas and efficiently functions. There is a difficulty that you can not. In addition, adsorption through micropores and mesopores is performed by physical adsorption or chemical adsorption, which has a weak adsorption force. Therefore, for example, in a closed room in summer, the room temperature or higher (for example, 40 ° C. or higher). ), The adsorbed material easily re-releases.
また、上記特許文献2の技術は、室内空間への臭気成分、VOCの再放出及び無機多孔質物質の細孔の飽和を防ぐ手段を提供したものであるが、室内の化学物質を吸着するというものではなく、酸化チタン光触媒を抗菌・有害物分解性物質として用いている。さらに、2層構造に施工しなければならないという煩雑さがある。 The technique of Patent Document 2 provides means for preventing odor components, VOC re-release into the indoor space, and saturation of the pores of the inorganic porous material, but adsorbs indoor chemical substances. Instead, titanium oxide photocatalysts are used as antibacterial and harmful substance-degradable substances. Furthermore, there is a complexity that it is necessary to construct a two-layer structure.
本発明は、上記課題を解決するためになされたものであって、その目的は、環境中の有害化学物質を、容易に再放出させることなく効果的に吸着して吸収することができる安全性の高い複合体、及びその製造方法を提供することにある。 The present invention has been made in order to solve the above-mentioned problems, and its purpose is to be able to effectively adsorb and absorb harmful chemical substances in the environment without causing easy re-release. It is an object of the present invention to provide a composite having a high value and a method for producing the same.
(1)上記課題を解決するための本発明に係る複合体は、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上のマクロ孔を有する多孔性の複合体であって、前記マクロ孔内には、化学物質と反応して該化学物質を前記マクロ孔内に吸着し吸収させる成分を有することを特徴とする。 (1) A composite according to the present invention for solving the above problems is a porous composite having macropores having a pore diameter of 50 nm or more determined from a pore diameter distribution measurement by a mercury intrusion method, wherein the macro The pores have a component that reacts with a chemical substance to adsorb and absorb the chemical substance in the macropore.
この発明によれば、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上のマクロ孔を有するので、気体を容易に導入しやすく、さらにマクロ孔内には、化学物質と反応してその化学物質をマクロ孔内に吸着し吸収させる成分を有するので、その成分の作用により、マクロ孔内に導入した化学物質の再放出を抑えて無害化させることができる。 According to the present invention, since the pore diameter determined from the pore diameter distribution measurement by the mercury intrusion method has macropores of 50 nm or more, it is easy to introduce a gas, and further, the macropores react with chemical substances. Since it has a component that adsorbs and absorbs the chemical substance in the macropores, the action of the component can suppress the re-release of the chemical substance introduced into the macropores and make them harmless.
本発明に係る複合体において、前記化学物質との反応が、中和反応又は化学反応であるように構成できる。 In the complex according to the present invention, the reaction with the chemical substance can be configured to be a neutralization reaction or a chemical reaction.
本発明に係る複合体において、前記成分を有する材料が、水硬性石灰であることが好ましい。 The composite which concerns on this invention WHEREIN: It is preferable that the material which has the said component is hydraulic lime.
本発明に係る複合体において、マイクロ孔又はメソ孔をさらに有することが好ましい。 The composite according to the present invention preferably further has micropores or mesopores.
(2)上記課題を解決するための本発明に係る複合体の製造方法は、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上のマクロ孔を有する多孔性複合体の製造方法であって、化学物質と反応して該化学物質を前記マクロ孔内に吸着し吸収させる成分を有する材料と、骨材と、水系溶媒とを有する複合体組成物を準備し、該複合体組成物を対象物上に、塗り固め手段、流し込み手段、吹付手段、及びローラー手段から選ばれる1又は2以上の手段によって前記多孔性複合体を得ることを特徴とする。 (2) A method for producing a composite according to the present invention for solving the above problems is a method for producing a porous composite having macropores having a pore diameter of 50 nm or more determined from a pore diameter distribution measurement by mercury porosimetry. A composite composition comprising a material having a component that reacts with a chemical substance to adsorb and absorb the chemical substance in the macropores, an aggregate, and an aqueous solvent is prepared, and the composite composition On the object, the porous composite is obtained by one or more means selected from a coating means, a pouring means, a spraying means, and a roller means.
この発明によれば、化学物質と反応してその化学物質をマクロ孔内に吸着し、吸収させる成分を有する材料と、骨材と、水系溶媒とを有する複合体組成物を対象物上に、塗り固め手段、流し込み手段、吹付手段、ローラー手段等によって、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上のマクロ孔を有する多孔性複合体を得るので、得られた複合体は、気体を容易に導入しやすく、さらにマクロ孔内に有する成分の作用により、マクロ孔内に導入した化学物質の再放出を抑えて無害化させることができる。 According to the present invention, a composite composition comprising a material having a component that reacts with a chemical substance to adsorb and absorb the chemical substance in the macropores, an aggregate, and an aqueous solvent is placed on the object. Since a porous composite having macropores with a pore diameter of 50 nm or more determined from a pore diameter distribution measurement by a mercury intrusion method is obtained by a coating means, a pouring means, a spraying means, a roller means, etc., the obtained composite is The gas can be easily introduced, and further, by the action of the components contained in the macropores, re-release of the chemical substance introduced into the macropores can be suppressed and rendered harmless.
本発明に係る複合体の製造方法において、前記骨材の他に、マイクロ孔又はメソ孔を有する骨材を添加することが好ましい。
In the method for producing a composite according to the present invention, it is preferable to add an aggregate having micropores or mesopores in addition to the aggregate.
本発明によれば、環境中の有害化学物質を、容易に再放出させることなく効果的に吸着して吸収することができる安全性の高い複合体、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a highly safe complex capable of effectively adsorbing and absorbing harmful chemical substances in the environment without easily releasing them again, and a method for producing the same.
本発明に係る複合体及び複合体の製造方法について、図面を参照しつつ説明する。なお、本発明は下記の実施形態に限定されるものではない。 The composite and the method for producing the composite according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
本発明に係る複合体は、図1及び図2に示すように、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上のマクロ孔を有する多孔性の複合体であって、そのマクロ孔内には、化学物質と反応してその化学物質を前記マクロ孔内に吸着し吸収させる成分を有することに特徴がある。この複合体は、化学物質と反応してその化学物質をマクロ孔内に吸着して吸収させる成分を有する材料と、骨材と、水系溶媒とを有する複合体組成物を準備し、その複合体組成物を対象物上に、塗り固め手段、流し込み手段、吹付手段、及びローラー手段から選ばれる1又は2以上の手段によって製造される。 As shown in FIGS. 1 and 2, the composite according to the present invention is a porous composite having macropores having a pore diameter of 50 nm or more determined from a pore diameter distribution measurement by a mercury intrusion method. The pores are characterized by having a component that reacts with a chemical substance to adsorb and absorb the chemical substance in the macropores. This complex prepares a complex composition having a material having a component that reacts with a chemical substance and absorbs and absorbs the chemical substance in the macropores, an aggregate, and an aqueous solvent. The composition is produced on an object by one or more means selected from a compacting means, a pouring means, a spraying means, and a roller means.
この複合体は、上記範囲のマクロ孔を有するので、気体を容易に導入しやすく、さらにマクロ孔内には、化学物質と反応してその化学物質をマクロ孔内に吸着し吸収させる成分を有するので、その成分の作用により、マクロ孔内に導入した化学物質の再放出を抑えて無害化させることができる。こうした複合体は、環境中の有害化学物質を、容易に再放出させることなく効果的に吸着して吸収することができるとともに、安全性も高いという利点がある。 Since this composite has the macropores in the above range, it is easy to introduce a gas, and the macropores have a component that reacts with the chemical substance to adsorb and absorb the chemical substance in the macropore. Therefore, due to the action of the component, re-release of the chemical substance introduced into the macropores can be suppressed and rendered harmless. Such a complex has the advantage of being able to effectively adsorb and absorb harmful chemical substances in the environment without being easily re-released, and has high safety.
以下、複合体及び複合体の製造方法の構成要素を説明する。 Hereinafter, the components of the complex and the method for producing the complex will be described.
[複合体の多孔構造]
(マクロ孔)
マクロ孔は、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上の大きさで多数形成されている。細孔径が50nm以上の孔は、マクロ孔とも呼ばれ、直径2nm未満のマイクロ孔や直径2nm以上50nm未満のメソ孔とは異なり、大きな孔である。マクロ孔には、平均径50nm未満のメソ孔やマイクロ孔に比べて気体が入りやすく、特に室内等に存在する揮発性有機化合物(VOC)やその他の臭気成分等を含む空気や、揮発性有機化合物(VOC)やその他の臭気成分等が溶け込んだ水蒸気が入り易い。
[Porous structure of composite]
(Macro hole)
Many macropores are formed with a pore diameter of 50 nm or more determined from a pore diameter distribution measurement by a mercury intrusion method. A hole having a pore diameter of 50 nm or more is also called a macropore, and is a large hole unlike a micropore having a diameter of less than 2 nm or a mesopore having a diameter of 2 nm or more and less than 50 nm. The macropores are easier for gas to enter than mesopores and micropores with an average diameter of less than 50 nm, especially air containing volatile organic compounds (VOC) and other odorous components present in the room, and volatile organic compounds. Water vapor in which a compound (VOC) or other odor components are dissolved is likely to enter.
本発明に係る複合体は、従来のようなメソ孔で構成された多孔性吸着体とは異なり、50nm以上のマクロ孔で構成されている。そして、そのマクロ孔が後述する成分を内部に有するので、メソ孔で構成された従来の多孔性吸着体と同等又はそれ以上の吸着性能を得ることができるという利点がある。なお、マクロ孔の細孔径の上限は特に制限されないが、製造の容易さや気体の抜け等の観点から、500μm以下であればよい。マクロ孔の細孔径が500μmを超える場合には、マクロ孔が大きすぎて、マクロ孔内に入った化学物質が吸着される前に再放出してしまうおそれがある。 Unlike the conventional porous adsorbent composed of mesopores, the composite according to the present invention is composed of macropores of 50 nm or more. And since the macropore has the component mentioned later inside, there exists an advantage that the adsorption | suction performance equivalent to or more than the conventional porous adsorption body comprised by the mesopore can be obtained. The upper limit of the pore diameter of the macropores is not particularly limited, but may be 500 μm or less from the viewpoint of ease of production and gas escape. When the pore diameter of the macropores exceeds 500 μm, the macropores are too large, and there is a possibility that chemical substances entering the macropores are re-released before being adsorbed.
細孔径は、水銀圧入法による細孔径分布測定から求められる。この水銀圧入法は、複合体について、圧力を加えながらその細孔に水銀を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布等の情報を得る手法である。なお、水銀圧入法による測定装置の一例としては、水銀ポロシメーター(例えば、Quantachrome社製 PoreMaster60GT等)を用いることができる。水銀圧入法の測定条件としては、後述の実施例では、室温で0.2psiaから60000psiaまで昇圧しながら測定を行い、水銀の表面張力の値としては480erg/cm2、接触角の値としては140°を用いている。なお、psia(psi absolute)は、絶対圧(ゲージ圧にその地域での大気圧を足したもの)であり、ポンド毎平方インチとも呼ばれ、lbf/in2又はpsiで表される。 The pore diameter can be obtained from pore diameter distribution measurement by mercury porosimetry. This mercury intrusion method is a technique for obtaining information such as specific surface area and pore diameter distribution from the relationship between the pressure and the amount of mercury injected, by injecting mercury into the pores of the composite while applying pressure. In addition, as an example of a measuring apparatus using a mercury intrusion method, a mercury porosimeter (for example, PoleMaster 60GT manufactured by Quantachrome) can be used. As the measurement conditions of the mercury intrusion method, in the examples described later, measurement is performed while increasing the pressure from 0.2 psia to 60000 psia at room temperature, the surface tension value of mercury is 480 erg / cm 2 , and the contact angle value is 140. ° is used. Note that psia (psi absolute) is an absolute pressure (gauge pressure plus atmospheric pressure in the area), and is also called pound per square inch, and is expressed in lbf / in 2 or psi.
(成分)
「成分」は、マクロ孔内に存在しており、化学物質と反応してその化学物質をマクロ孔内に吸着して吸収させるように作用したり、化学物質を含む溶媒(例えば水蒸気)と反応してその化学物質をマクロ孔内に吸着して吸収させるように作用する。成分は、マクロ孔全体を形成していてもよいし、マクロ孔の内面だけを形成していてもよいし、マクロ孔内面の一部を形成していてもよい。こうした成分は、複合体を構成する材料に含まれており、マクロ孔内に入ってくる化学物質との間で、中和反応又は化学反応を行うことができる材料である。
(component)
“Component” exists in the macropores and reacts with a chemical substance so that the chemical substance is adsorbed and absorbed in the macropore or reacts with a solvent containing the chemical substance (for example, water vapor). Then, it acts to adsorb and absorb the chemical substance in the macropores. The component may form the whole macropore, may form only the inner surface of the macropore, or may form a part of the inner surface of the macropore. Such a component is contained in the material constituting the composite and is a material capable of performing a neutralization reaction or a chemical reaction with a chemical substance entering the macropores.
成分は、対応する化学物質の種類によっても異なるが、例えば、化学物質がアンモニア、トリメチルアミン、メチルアミン、エチルアミン等のアミン類等の塩基性成分である場合には、花崗岩等のようなシラノール基(Si−OH)を含む成分であることが好ましい。このシラノール基は、アンモニア、トリメチルアミン等の塩基性物質と化学反応を起こし易いので、室内環境中の塩基性成分を効果的に吸着し、吸収することができる。また、シラノール基は水酸基を持つものをよく吸着するので、花崗岩等のようなシラノール基を含む成分のものは、水溶性の化学物質を効果的に吸着し、吸収することができる。 The component varies depending on the type of the corresponding chemical substance. For example, when the chemical substance is a basic component such as ammonia, trimethylamine, methylamine, ethylamine or the like, a silanol group such as granite ( A component containing Si-OH) is preferable. Since this silanol group tends to cause a chemical reaction with basic substances such as ammonia and trimethylamine, it can effectively adsorb and absorb basic components in the indoor environment. Moreover, since silanol groups adsorb well those having hydroxyl groups, components containing silanol groups such as granite can effectively adsorb and absorb water-soluble chemical substances.
化学物質がホルムアルデヒド等のように、水酸化カルシウムで縮合反応(ホルモース反応)する化学物質である場合には、その水酸化カルシウムを含む水硬性石灰が好ましい。この水酸化カルシウムは、縮合反応(ホルモース反応)を起こし易いので、室内環境中のホルムアルデヒド等の成分を効果的に吸着し、吸収することができる。 When the chemical substance is a chemical substance that undergoes a condensation reaction (formose reaction) with calcium hydroxide, such as formaldehyde, hydraulic lime containing the calcium hydroxide is preferable. Since this calcium hydroxide easily causes a condensation reaction (formose reaction), it can effectively adsorb and absorb components such as formaldehyde in the indoor environment.
化学物質が硫化水素、フッ化水素、塩化水素、二酸化硫黄、塩素、二酸化窒素等のような酸性ガスである場合には、その酸性ガスに反応する水酸化カルシウムを含む水硬性石灰が好ましい。この水酸化カルシウムは、強アルカリ性で酸性ガスと中和し易いので、室内環境中の酸性ガス等の成分を効果的に吸着し、吸収することができる。また、花崗岩等のようなシラノール基を含む成分のものは、そうした水硬性石灰と配合することにより、強アルカリ状態では表面シラノール基はイオン化して強い電場を作り、化学反応を促すように作用することができる。 When the chemical substance is an acidic gas such as hydrogen sulfide, hydrogen fluoride, hydrogen chloride, sulfur dioxide, chlorine, nitrogen dioxide or the like, hydraulic lime containing calcium hydroxide that reacts with the acidic gas is preferable. Since this calcium hydroxide is strongly alkaline and easily neutralized with acidic gas, components such as acidic gas in the indoor environment can be effectively adsorbed and absorbed. In addition, components containing silanol groups, such as granite, can be combined with hydraulic lime so that the surface silanol groups ionize in a strong alkali state to create a strong electric field and promote chemical reactions. be able to.
本発明に係る複合体は、水銀圧入法による細孔径分布測定から求められる細孔径が50nm以上のマクロ孔内に、上記した成分を有するので、環境中の有害化学物質を、容易に再放出させることなく、効果的に吸着して吸収することができ、その結果、環境中の有害化学物質を無害化することができるという格別の効果を奏する。 The composite according to the present invention has the above-described components in the macropores having a pore diameter of 50 nm or more determined from the pore diameter distribution measurement by the mercury intrusion method, so that harmful chemical substances in the environment can be easily re-released. Therefore, it is possible to effectively adsorb and absorb, and as a result, it is possible to render a harmful chemical substance in the environment harmless.
以下、材料として好ましく用いられる水硬生石灰について説明する。天然水硬性石灰(NHL、Natural Hydraulic Lime)は、建築用石灰の欧州規格EN459−1(2001)によれば、「粉砕に関係なく消化によって粉末化した、いくらか粘土質または珪質の石灰石の焼成によって作られる石灰。すべてのNHLは水硬性を持つ。大気中の炭酸ガスは、硬化に寄与する。」と定義されている。本願においては、天然水硬性石灰の用語を欧州規格と同じ意味で用いる。天然水硬性石灰の他に、ローマンセメントや古代セメントと呼ばれているものがあり、これは消石灰(水酸化カルシウム)にポゾラン物質(珪酸SiO2、アルミナAl2O3、酸化鉄Fe2O3等の鉱物)を後から添加した石灰であり、粘土質又は珪質石灰石(泥灰石、marlともいう)の焼成によって得られる天然水硬性石灰とは区別されるものであって、人工水硬性石灰という。また、本願で使用する場合、「水硬性石灰」は、天然水硬性石灰と人工水硬性石灰を含む。上記の欧州規格においても、天然水硬性石灰と人工水硬性石灰とは区別されており、人工水硬性石灰は、「水硬性石灰(HL、Hydraulic Lime):水酸化カルシウム、珪酸カルシウム、アルミン酸カルシウムを主成分とし、これらの混合によって作られる石灰。水硬性を持つ。大気中の炭酸ガスは、硬化に寄与する。」と定義されている。本願では、この点についても前記の欧州規格に従うものとする。 Hereinafter, hydraulic quicklime that is preferably used as a material will be described. Natural hydraulic lime (NHL), according to European standard EN459-1 (2001) for building lime, is “calcination of some clay or siliceous limestone powdered by digestion regardless of grinding. All NHL is hydraulic. Carbon dioxide in the atmosphere contributes to hardening. " In the present application, the term natural hydraulic lime is used in the same meaning as the European standard. Other natural hydraulic lime, there is what is called Roman cement and ancient cement, which pozzolan material (silicate SiO 2 to slaked lime (calcium hydroxide), alumina Al 2 O 3, iron oxide Fe 2 O 3 Lime) added later, and is distinguished from natural hydraulic lime obtained by baking clayey or siliceous limestone (also called marlstone, marl). It is called lime. Moreover, when using it by this application, "hydraulic lime" contains natural hydraulic lime and artificial hydraulic lime. Even in the above European standards, natural hydraulic lime and artificial hydraulic lime are distinguished from each other. Artificial hydraulic lime is “Hydraulic Lime”: calcium hydroxide, calcium silicate, calcium aluminate. The main component of the lime is a mixture of these lime.It has hydraulic properties. Carbon dioxide in the atmosphere contributes to hardening. " In this application, this point is also in accordance with the European standard.
代表的な天然水硬性石灰には、以下の3種類があり、欧州規格EN459−1には圧縮強度が規定されている。NHLの種類としては、NHL2、NHL3.5、NHL5があり、それぞれの圧縮強度は、NHL2が2〜7N/mm2であり、NHL3.5が3.5〜10N/mm2であり、NHL5が、5〜15N/mm2である。 There are the following three types of typical natural hydraulic lime, and the compressive strength is defined in the European standard EN459-1. The types of NHL, NHL2, NHL3.5, there is NHL5, each compressive strength, NHL2 is 2~7N / mm 2, NHL3.5 is 3.5~10N / mm 2, is NHL5 5-15 N / mm 2 .
天然水硬性石灰は、二酸化ケイ素SiO2等を含有する石灰石を焼成・消化することによって得られ、水酸化カルシウムCa(OH)2を主成分として、ケイ酸二カルシウムC2S等の水和物を含む石灰である。NHLに含有される水和物C2Sは、β−C2Sが主である。水との接触で、C2S等の水和物は水酸化カルシウムCa(OH)2の結晶間を結合させ、さらに炭酸化により水酸化カルシウムCa(OH)2は表層面から次第に炭酸カルシウムCaCO3結晶へと変化する。炭酸カルシウムCaCO3結晶は、C2S等の水和物によって結合状態を保っており、その水和物は同じ炭酸化作用によって炭酸カルシウムCaCO3結晶へと変化する。表層が炭酸化すると、炭酸カルシウムCaCO3結晶は空隙を含んだ粒状構造を形成し、奥の水酸化カルシウムCa(OH)2に空気中の炭酸ガスが供給され、炭酸化が緩やかに進行する。すなわち、天然水硬性石灰は、水硬性・気硬性を併せ持つ材料であり、骨材・水との混合により硬化後、強度を発現するものである。 Natural hydraulic lime is obtained by baking and digesting limestone containing silicon dioxide SiO 2 and the like, and hydrated with calcium hydroxide Ca (OH) 2 as a main component and dicalcium silicate C 2 S and the like. It is lime containing. The hydrate C 2 S contained in NHL is mainly β-C 2 S. In contact with water, hydrates such as C 2 S bind between calcium hydroxide Ca (OH) 2 crystals, and further, by calcium carbonate, calcium hydroxide Ca (OH) 2 gradually becomes calcium carbonate CaCOCO from the surface. It changes to 3 crystals. The calcium carbonate CaCO 3 crystal is kept in a bonded state by a hydrate such as C 2 S, and the hydrate is converted into a calcium carbonate CaCO 3 crystal by the same carbonation action. When the surface layer is carbonated, the calcium carbonate CaCO 3 crystals form a granular structure including voids, and carbon dioxide gas in the air is supplied to the calcium hydroxide Ca (OH) 2 at the back, so that the carbonation proceeds slowly. That is, natural hydraulic lime is a material having both hydraulic properties and air hardness, and exhibits strength after being cured by mixing with aggregate and water.
[複合体の構成材料]
複合体は、上記した成分を含む材料と、骨材と、水系溶媒とを有する複合体組成物を対象物上に塗り固め手段等によって形成されている。したがって、製造された複合体は、水系溶媒が乾燥除去されたものであり、成分を含む材料と骨材とで構成されている。
[Composite materials]
The composite is formed by a means for applying a composite composition having the above-described components, an aggregate, and an aqueous solvent on an object. Therefore, the manufactured composite is obtained by removing the aqueous solvent by drying, and is composed of a material containing components and an aggregate.
材料は、上記した成分を含むものであればよいので、マクロ孔全体がその材料で形成されている場合は、マクロ孔の内面にはその成分が存在している。一方、マクロ孔の内面だけをその成分で形成してもよいが、その場合は、アクリル樹脂、酢酸ビニル樹脂、ウレタン樹脂、メタクリル樹脂のような樹脂成分と水硬性石灰等を混ぜることにより、マクロ孔の内面の全体又は一部に成分を存在させることができる。 Any material may be used as long as it contains the above-described components. Therefore, when the entire macropores are formed of the material, the components are present on the inner surfaces of the macropores. On the other hand, only the inner surface of the macro hole may be formed with the component, but in that case, the macro component can be formed by mixing a resin component such as acrylic resin, vinyl acetate resin, urethane resin, and methacrylic resin with hydraulic lime. Components can be present on all or part of the inner surface of the hole.
材料には、化学物質に対して、中和反応や化学反応を起こすことができる成分が含まれるので、化学物質が入り易い細孔径50nm以上のマクロ孔内に化学物質が入ると、その成分と化学物質とが反応し、化学物質を事実上吸着して吸収することになる。本発明に係る複合体は、こうしたメカニズムによって、化学物質の効率的な吸着して吸収を行うことができる。さらに、従来の多孔性吸着体では、夏の室内のように、室内の温度が40℃を超える場合に、多孔性吸着体の中から化学物質が再放出される場合があったが、本発明に係る複合体は、そうした再放出が起きないという利点がある。 Since the material contains a component capable of causing a neutralization reaction or a chemical reaction with respect to a chemical substance, when a chemical substance enters a macropore having a pore diameter of 50 nm or more that easily enters the chemical substance, It reacts with the chemical substance and effectively adsorbs and absorbs the chemical substance. The complex according to the present invention can absorb and absorb a chemical substance efficiently by such a mechanism. Further, in the conventional porous adsorbent, when the indoor temperature exceeds 40 ° C. as in the summer indoor, the chemical substance may be re-released from the porous adsorbent. Such a complex has the advantage that such re-release does not occur.
骨材は、複合体の脆さ等を補填して強度や耐久性を高めるための素材である。骨材としては、花崗岩;麦飯石等の花崗斑岩;珪砂等の石英;石英斑岩;凝灰岩(十和田石等);火山灰;等の天然鉱物を挙げることができる。また、モンモリロナイト、ベントナイト等の粘度鉱物、珪藻土、ゼオライト、パーライト、マールライト、バーミキュライト、ガラスビーズ、活性炭、籾殻、藁すさ、グラスファイバー、グラスウール、等々を挙げることができる。これらは、同様の成分や構造を有するものであれば、天然物であってもよいし、人工物であってもよい。 Aggregate is a material for increasing the strength and durability by compensating for the brittleness of the composite. Examples of the aggregate include natural minerals such as granite; granite porphyry such as barleystone; quartz such as quartz sand; quartz porphyry; tuff (such as Towada stone); volcanic ash; Moreover, viscosity minerals such as montmorillonite and bentonite, diatomaceous earth, zeolite, perlite, marlite, vermiculite, glass beads, activated carbon, rice husk, rice bran, glass fiber, glass wool and the like can be mentioned. These may be natural products or artificial products as long as they have similar components and structures.
こうした骨材として、2以上の骨材を混合してもよい。この場合において、添加する骨材としては、吸着性能を高めることができる骨材を添加することが望ましい。例えば、後述の実施例で説明するように、骨材として花崗岩を用いた場合、添加する骨材として、モンモリロナイト、ゼオライト、珪藻土、活性炭等を用いることができる。これらの添加骨材は、マイクロ孔やメソ孔を有することができ、本発明に係る複合体が有するマクロ孔の効果(気体の導入容易効果・通風効果)に加え、添加骨材が有するマイクロ孔やメソ孔の効果(吸着効果)を重畳させることができる。 As such an aggregate, two or more aggregates may be mixed. In this case, as the aggregate to be added, it is desirable to add an aggregate capable of enhancing the adsorption performance. For example, as will be described in Examples below, when granite is used as the aggregate, montmorillonite, zeolite, diatomaceous earth, activated carbon, or the like can be used as the aggregate to be added. These added aggregates can have micropores and mesopores, and in addition to the macropore effects (gas introduction effect and ventilation effect) of the composite according to the present invention, the micropores of the added aggregate And mesopore effect (adsorption effect) can be superimposed.
水系溶媒は、代表的には水であるが、大部分が水であれば、その中に水溶性の有機化合物等が含まれていてもよい。 The aqueous solvent is typically water, but if it is mostly water, it may contain a water-soluble organic compound or the like.
複合体は、成分を含む材料と、骨材とで主に構成されており、それぞれの特性を生かし、マイクロ孔やメソ孔よりも大きいマクロ孔を主に有している。そのマクロ孔の通風効果を最大限に利用するとともに、そのマクロ孔内の「成分」の作用により、環境中の有害化学物質を容易に再放出させることなく効果的に吸着して吸収することができ、低コストで安全性の高いものとすることができる。 The composite is mainly composed of a material containing components and an aggregate, and has macropores larger than micropores and mesopores, taking advantage of the respective characteristics. In addition to making maximum use of the ventilation effect of the macropores, the action of “components” within the macropores can effectively adsorb and absorb harmful chemical substances in the environment without easily releasing them again. It can be made low-cost and highly safe.
複合体は、上記した材料と、骨材と、水系溶媒とを混練して複合体組成物を準備し、その複合体組成物を対象物上に設けて得ることができる。対象物としては、住宅の内壁、パネル、パーテーション、床、天井、プレート、タイル等の板状物や、空調機や空気清浄機の内部、テーブルやタンス等の家具、種々のフィルター、その他の構造物を挙げることができる。これらの構造物の設置環境では、通常、空気の流れ(通風)があり、例えば自然な通風としては、部屋内への屋外からの風の吹きこみや人の移動等による自然対流があり、人口通風としては、エアコンや装置への吸排気等がある。複合体組成物をそれらの構造物に設けて多孔性複合体を形成することにより、多孔性複合体に形成されたマクロ孔は、上記の通風によって、その孔径よりも小さな化学物質と接触して取込む時間が増え、効率良く孔の中に化学物質を取り込んで化学物質を再放出することなく吸着して吸収することができ、消臭等をすることができる。 The composite can be obtained by kneading the above-described material, aggregate, and aqueous solvent to prepare a composite composition, and providing the composite composition on an object. Examples of objects include residential interior walls, panels, partitions, floors, ceilings, plates, tiles, etc., air conditioners and air purifiers, furniture such as tables and chests, various filters, and other structures. You can list things. In the installation environment of these structures, there is usually an air flow (ventilation). For example, natural ventilation includes natural convection due to blowing of air from outside into the room or movement of people, etc. Ventilation includes intake and exhaust of air conditioners and equipment. By providing the composite composition to those structures to form a porous composite, the macropores formed in the porous composite are brought into contact with a chemical substance smaller than the pore diameter by the above-mentioned ventilation. The time taken up increases, the chemical substance is efficiently taken into the pores, and the chemical substance can be adsorbed and absorbed without being re-released, and deodorization can be performed.
複合体組成物を対象物上に設けて多孔性複合体を形成する手段としては、塗り固め手段、流し込み手段、吹付手段、ローラー手段等を挙げることができる。塗り固め手段は、複合体組成物を対象物に塗って乾燥させる手段であり、流し込み手段は、複合体組成物を型に流し込んだ後に乾燥させる手段であり、吹付手段は、複合体組成物を対象物に吹き付けた後に乾燥させる手段であり、ローラー手段は、対象物上に複合体組成物を載せた後にローラーで引き延ばしてならす手段である。複合体は、上記の手段を単独で適用してもよいし、2以上の手段を適用してもよい。 Examples of means for forming the porous composite by providing the composite composition on the object include a coating means, a pouring means, a spraying means, and a roller means. The coating means is a means for applying the composite composition to an object and drying it, the pouring means is a means for drying the composite composition after pouring it into a mold, and the spraying means is a means for spraying the composite composition. It is means for drying after spraying on the object, and the roller means is means for smoothing the composite composition after it is placed on the object and then stretched with a roller. For the composite, the above-described means may be applied alone, or two or more means may be applied.
材料と骨材との配合比は特に限定されないが、少なくとも、細孔径が50nm以上のマクロ孔を生成することができる配合比で調整されていることが好ましい。例えば、後述の実施例では、材料:骨材を1:4の質量割合で配合しているが、この材料に対する骨材の質量割合は、材料1質量部に対し、骨材が0.5質量部以上、10質量部以下の範囲内であれば、得られた複合体の強度を確保できるので、任意に設定することができる。材料に対する骨材の割合が0.5質量部未満では、骨材の配合量が少なくなって強度低下が起こることがある。 The blending ratio between the material and the aggregate is not particularly limited, but it is preferable that the blending ratio is adjusted so that at least a macropore having a pore diameter of 50 nm or more can be generated. For example, in the examples described later, material: aggregate is blended at a mass ratio of 1: 4, and the mass ratio of the aggregate to this material is 0.5 mass of the aggregate with respect to 1 part by mass of the material. If it is in the range of not less than 10 parts and not more than 10 parts by mass, the strength of the obtained composite can be ensured and can be arbitrarily set. If the ratio of the aggregate with respect to material is less than 0.5 mass part, the compounding quantity of an aggregate will decrease and strength reduction may occur.
実施例と比較例により本発明を詳しく説明する。 The present invention will be described in detail by way of examples and comparative examples.
[実施例1]
水硬性石灰(産地:フランス東部、CaO:60.1質量%、SiO2:11.5質量%、Al2O3:2.83質量%、Fe2O3:0.90質量%、MgO:1.73質量%)と、花崗岩(産地:滋賀県)とを質量比で1:4の割合で水中に入れて混練し、複合体組成物を調製した。これを、幅100mm、長さ100mm、厚さ9mmの石膏ボード上に塗り、自然乾燥させて、実施例1の複合体を得た。その外観写真を図9(A)に示した。
[Example 1]
Hydraulic lime (production area: eastern France, CaO: 60.1 mass%, SiO 2 : 11.5 mass%, Al 2 O 3 : 2.83 mass%, Fe 2 O 3 : 0.90 mass%, MgO: 1.73 mass%) and granite (production area: Shiga Prefecture) were mixed in water at a mass ratio of 1: 4 to knead to prepare a composite composition. This was applied onto a gypsum board having a width of 100 mm, a length of 100 mm, and a thickness of 9 mm, followed by natural drying to obtain a composite of Example 1. The appearance photograph is shown in FIG.
[比較例1]
二酸化ケイ素を含む粘土鉱物からなる幅100mm、長さ100mm、厚さ約7mmの市販の消臭・調湿性のタイルを購入した。この購入したタイルは、社団法人日本建材・住宅設備産業協会より「調湿建材」、「ホルムアルデヒド低減建材認定」に登録されているものである。これを幅100mm、長さ100mm、厚さ9mmの石膏ボード上にアルミニウムテープで貼付固定し、比較例1の機能性タイルを得た。その外観写真を図9(B)に示した。
[Comparative Example 1]
A commercially available deodorizing / humidifying tile made of clay mineral containing silicon dioxide and having a width of 100 mm, a length of 100 mm and a thickness of about 7 mm was purchased. These purchased tiles are registered as “Humidity control building materials” and “Formaldehyde reduction building material certification” by the Japan Building Materials and Housing Equipment Industries Association. This was affixed and fixed with an aluminum tape on a gypsum board having a width of 100 mm, a length of 100 mm, and a thickness of 9 mm to obtain a functional tile of Comparative Example 1. The appearance photograph is shown in FIG.
[比較例2]
無機質骨材約60質量%、有機質骨材約10質量%、酸化チタン約5質量%、無機質紛体約5質量%、添加剤約10質量%、酢酸ビニル系再乳化形粉末樹脂約10質量%を含む市販の消臭・調湿性の珪藻土建材を購入した。この購入した珪藻土建材は、日本工業標準調査会より「建築用仕上塗材」に認定されているものである。これを幅100mm、長さ100mm、厚さ9mmの石膏ボード上に塗り、自然乾燥させて、比較例2の珪藻土建材を得た。その外観写真を図9(C)に示した。
[Comparative Example 2]
About 60% by mass of inorganic aggregate, about 10% by mass of organic aggregate, about 5% by mass of titanium oxide, about 5% by mass of inorganic powder, about 10% by mass of additive, and about 10% by mass of vinyl acetate re-emulsified powder resin A commercially available deodorant / humidifying diatomaceous earth building material was purchased. This purchased diatomaceous earth building material is certified as a “finishing coating material for construction” by the Japan Industrial Standards Committee. This was applied onto a gypsum board having a width of 100 mm, a length of 100 mm, and a thickness of 9 mm, and then naturally dried to obtain a diatomaceous earth building material of Comparative Example 2. The appearance photograph is shown in FIG.
[比較例3]
ポリ塩化ビニル樹脂、フタル酸ビス、炭酸カルシウム、二酸化チタン、安定剤、防カビ剤を含む市販の消臭・調湿性の壁紙を購入し、幅100mm、長さ100mm、厚さ約0.2mmに切り出した。この購入した壁紙は、壁紙工業会よりSV規格に認定されている。これを幅100mm、長さ100mm、厚さ9mmの石膏ボード上に接着剤で貼り付けて、比較例3の機能性クロスを得た。その外観写真を図9(D)に示した。
[Comparative Example 3]
Purchase commercially available deodorant / humidity-control wallpaper containing polyvinyl chloride resin, bisphthalate, calcium carbonate, titanium dioxide, stabilizers, and fungicides, to a width of 100mm, a length of 100mm, and a thickness of about 0.2mm Cut out. This purchased wallpaper is certified by the Wallpaper Industry Association to the SV standard. This was affixed on a gypsum board having a width of 100 mm, a length of 100 mm, and a thickness of 9 mm with an adhesive to obtain a functional cloth of Comparative Example 3. The appearance photograph is shown in FIG.
[特性評価1]
(比表面積の測定)
先ず、比表面積を測定した。比表面積は、マクロ孔については水銀圧入法による細孔径分布測定で得たP−V曲線から測定した。測定は、水銀ポロシメーター(Quantachrome社製、PoreMaster60GT)を用いて測定した。測定条件としては、室温(22℃〜25℃)で0.2psiaから60000psiaまで昇圧しながら行った。なお、水銀の表面張力の値としては480erg/cm2、接触角の値としては140°を用いた。一方、メソ孔については高精度ガス/蒸気吸着量測定装置(BELSORP−max−N−VP−CM、日本ベル株式会社製)を用い、得られた窒素ガス吸着等温線からBET理論(多分子層吸着理論)により解析した。
[Characteristic evaluation 1]
(Measurement of specific surface area)
First, the specific surface area was measured. The specific surface area of the macropores was measured from a PV curve obtained by pore size distribution measurement by mercury porosimetry. The measurement was performed using a mercury porosimeter (Quantachrome, PoleMaster 60GT). As measurement conditions, the pressure was increased from 0.2 psia to 60000 psia at room temperature (22 ° C. to 25 ° C.). The mercury surface tension value was 480 erg / cm 2 and the contact angle value was 140 °. On the other hand, with respect to mesopores, a high-precision gas / vapor adsorption amount measuring device (BELSORP-max-N-VP-CM, manufactured by Nippon Bell Co., Ltd.) was used, and BET theory (multimolecular layer) was obtained from the obtained nitrogen gas adsorption isotherm. Analysis by adsorption theory).
(細孔径分布の測定)
細孔径分布の測定は、マクロ孔については、上記した比表面積の測定と同じ装置を用い、得られた結果をWashburn式に基づいて計算した。メソ孔についても、上記した比表面積の測定と同じ装置を用い、BJH法(シリンダー型)により解析した。このBJH法は、毛管凝縮理論(ケルビン式)に基づき計算され、一般的にメソ孔(2〜50nm)の細孔径に適用される方法である。
(Measurement of pore size distribution)
For the measurement of the pore size distribution, the same apparatus as the measurement of the specific surface area described above was used for the macropores, and the obtained results were calculated based on the Washburn equation. The mesopores were also analyzed by the BJH method (cylinder type) using the same apparatus as the measurement of the specific surface area described above. This BJH method is calculated based on the capillary condensation theory (Kelvin equation) and is generally applied to the pore diameter of mesopores (2 to 50 nm).
(吸着量の測定)
吸着量の測定は、上記同様、高精度ガス/蒸気吸着量測定装置(BELSORP−max−N−VP−CM、日本ベル株式会社製)を用い、材料を一定温度(−196℃)にし、圧力を変化させたときの吸着量を測定し、その吸着等温線から評価した。このとき、IUPACで定義されている等温線の分類により、実施例1の複合体はメソ孔が少ないII型であり、比較例1〜3の比較対照品はメソ孔を持つIV型(ヒステリシス有り)であった。
(Measurement of adsorption amount)
As described above, the amount of adsorption is measured using a high-accuracy gas / vapor adsorption amount measuring device (BELSORP-max-N-VP-CM, manufactured by Nippon Bell Co., Ltd.). The amount of adsorption when changing was measured and evaluated from the adsorption isotherm. At this time, according to the isotherm classification defined in IUPAC, the composite of Example 1 is type II with few mesopores, and the comparative products of Comparative Examples 1 to 3 are type IV with mesopores (with hysteresis) )Met.
(消臭試験1)
消臭試験1をガス検知管法によって評価した。実施例の試料と比較例の試料とを、それぞれポリフッ化ビニリデン製のにおい袋(テドラーバッグ、アズワン株式会社製)に入れ、ヒートシールを施した後、空気9Lを封入し、設定したガス濃度となるように試験対象ガス(アンモニア、ホルムアルデヒド、硫化水素)を添加した。これを静置し、経過時間ごとに袋内のガス濃度を下記のガス検知管を用いて測定した。また、実施例の試料と比較例の試料を入れずに同様な操作をしたものを空試験(ブランク)とした。また、24時間経過した後のテドラーバッグを40℃の恒温槽内に静置し、1時間経過した後、及び3時間経過した後に袋内のガス濃度をガス検知管を用いて測定した。
(Deodorization test 1)
Deodorization test 1 was evaluated by the gas detector tube method. The sample of the example and the sample of the comparative example are put in an odor bag made of polyvinylidene fluoride (Tedlar bag, manufactured by AS ONE Co., Ltd.), heat-sealed, and filled with 9 L of air so that the set gas concentration is obtained. The test gas (ammonia, formaldehyde, hydrogen sulfide) was added to. This was left still, and the gas concentration in the bag was measured using the following gas detector tube for each elapsed time. Moreover, what carried out the same operation without putting the sample of an Example and the sample of a comparative example was made into the blank test (blank). Moreover, the Tedlar bag after 24 hours passed was left still in a 40 degreeC thermostat, and after 1 hour passed and after 3 hours passed, the gas concentration in a bag was measured using the gas detection tube.
実施例の試料と比較例の試料の仕様としては、幅100mm、長さ100mm、高さ9mmの石膏ボード上に実施例1の試料と比較例1〜3の試料を塗布又は貼付した。側面及び裏面は、アルミニウムテープでシールした。また、テドラーバッグの仕様は、幅500mm、長さ500mmである。ガス検知管(株式会社ガステック製)は、試験対象ガスとしてアンモニア用とホルムアルデヒド用と硫化水素用の検知管をそれぞれ用い、それぞれの初期ガス濃度は、13ppmと20ppmと10ppmに設定した。この測定は、室温(22℃〜25℃)で行い、測定時間は、30分、1時間、2時間、3時間、6時間、24時間で行った。また40℃でも1時間と3時間で行った。結果を、図6〜図8及び表1〜表3に示す。 As a specification of the sample of an Example and the sample of a comparative example, the sample of Example 1 and the sample of Comparative Examples 1-3 were apply | coated or stuck on the gypsum board of width 100mm, length 100mm, and height 9mm. The side and back surfaces were sealed with aluminum tape. The specifications of the Tedlar bag are 500 mm wide and 500 mm long. Gas detector tubes (manufactured by Gastec Co., Ltd.) used ammonia, formaldehyde detector tubes, and hydrogen sulfide detector tubes as test target gases, and the initial gas concentrations were set to 13 ppm, 20 ppm, and 10 ppm, respectively. This measurement was performed at room temperature (22 ° C. to 25 ° C.), and the measurement time was 30 minutes, 1 hour, 2 hours, 3 hours, 6 hours, and 24 hours. Moreover, it was performed at 40 ° C. for 1 hour and 3 hours. The results are shown in FIGS. 6 to 8 and Tables 1 to 3.
[結果]
図2に、水銀圧入法でWashburn式に基づき計算された実施例1の複合体の細孔径分布(マクロ孔)を示す。図2に示すように、実施例1の複合体は、50nm以上のマクロ孔を有する複合体であり、4.6μm近辺にマクロ孔分布のピークをもつことが分かった。なお、この水銀圧入法による測定から、実施例1の複合体の比表面積(マクロ孔)は、22m2/gであることが分かった。
[result]
FIG. 2 shows the pore size distribution (macropores) of the composite of Example 1 calculated by the mercury intrusion method based on the Washburn equation. As shown in FIG. 2, the composite of Example 1 was a composite having macropores of 50 nm or more and was found to have a macropore distribution peak in the vicinity of 4.6 μm. In addition, from the measurement by the mercury intrusion method, it was found that the specific surface area (macropores) of the composite of Example 1 was 22 m 2 / g.
図3に示すように、窒素ガス吸着法による測定から、実施例1の複合体(a)はINPACで定義されている等温線分類のII型に該当し、マイクロ孔やメソ孔が少なくマクロ孔が多いことが分かった。また、比較例1の機能性タイル(b)と比較例2の珪藻土建材(c)はIV型に該当し、マイクロ孔やマクロ孔が少なくメソ孔が多いことが分かった。なお、図3の縦軸の吸着量の単位中、Vaは吸着窒素ガス量であり、cm3(STP)は窒素ガスの標準体積(1気圧、25℃)である。 As shown in FIG. 3, from the measurement by the nitrogen gas adsorption method, the complex (a) of Example 1 corresponds to type II of the isotherm classification defined by INPAC, and there are few micropores and mesopores and macropores. I found that there are many. Moreover, it turned out that the functional tile (b) of the comparative example 1 and the diatomaceous earth building material (c) of the comparative example 2 correspond to IV type, and there are few micropores and macropores, and there are many mesopores. In the unit of adsorption amount on the vertical axis in FIG. 3, Va is the amount of adsorbed nitrogen gas, and cm 3 (STP) is the standard volume of nitrogen gas (1 atm, 25 ° C.).
図4に示すように、実施例1の複合体、比較例1の機能性タイル、比較例2の珪藻土建材の比表面積(メソ孔)は、それぞれ2.8m2/g、26.8m2/g、14.3m2/gであった。 As shown in FIG. 4, the complex of Example 1, functional tiles Comparative Example 1, the specific surface area of diatomaceous earth building materials of Comparative Example 2 (mesopores), respectively 2.8m 2 /g,26.8m 2 / g, 14.3 m 2 / g.
図5に、窒素ガス吸着BJH法のケルビン式に基づき計算された実施例1の複合体(a)、比較例1の機能性タイル(b)、比較例2の珪藻土建材(c)の細孔径分布(メソ孔)を示す。図5に示すように、実施例1の複合体(a)はメソ孔分布のピークが確認できないが、比較例1の機能性タイル(b)は8nm近辺にメソ孔分布のピークが確認され、比較例2の珪藻土建材(c)は10nm近辺にメソ孔分布のピークが確認された。 FIG. 5 shows pore diameters of the composite (a) of Example 1, the functional tile (b) of Comparative Example 1, and the diatomaceous earth building material (c) of Comparative Example 2 calculated based on the Kelvin formula of the nitrogen gas adsorption BJH method. Distribution (mesopores) is shown. As shown in FIG. 5, the composite (a) of Example 1 cannot confirm the peak of mesopore distribution, but the functional tile (b) of Comparative Example 1 has a mesopore distribution peak near 8 nm. In the diatomaceous earth building material (c) of Comparative Example 2, a mesopore distribution peak was confirmed around 10 nm.
図6及び表1に示す消臭試験結果(アンモニア)より、実施例1の複合体(a)は、試験開始6時間後にガス検知管の検出限界値以下となり、比較例1の機能性タイル(b)、比較例2の珪藻土建材(c)と比較してほぼ同等であることを確認できた。また、比較例3の機能性クロス(d)と比較しても、より良好な消臭効果があることが確認できた。また、環境温度を40℃に設定した場合、試験開始1時間後では、比較例1の機能性タイル、比較例2の珪藻土建材、比較例3の機能性クロスのいずれにおいても、アンモニアガスの再放出が確認されたが、実施例1の複合体は、3時間後においても再放出は確認されなかった。なお、検出限界は0.20ppmであり、符号eはブランクである。 From the deodorization test result (ammonia) shown in FIG. 6 and Table 1, the composite (a) of Example 1 was below the detection limit value of the gas detector tube 6 hours after the start of the test, and the functional tile of Comparative Example 1 ( b) Compared with the diatomaceous earth building material (c) of Comparative Example 2, it was confirmed that they were almost equivalent. Moreover, even if compared with the functional cloth (d) of Comparative Example 3, it was confirmed that there was a better deodorizing effect. In addition, when the environmental temperature is set to 40 ° C., 1 hour after the start of the test, the ammonia gas is reused in any of the functional tile of Comparative Example 1, the diatomaceous earth building material of Comparative Example 2, and the functional cloth of Comparative Example 3. Although the release was confirmed, the complex of Example 1 was not confirmed to be released again even after 3 hours. The detection limit is 0.20 ppm, and the symbol e is blank.
図7及び表2に示す消臭試験結果(ホルムアルデヒド)より、実施例1の複合体(a)は、比較例2の珪藻土建材(c)と比較してやや不良、比較例1の機能性タイル(b)と比較して同等、比較例3の機能性クロス(d)と比較してより良好な消臭効果があることが確認された。また、環境温度を40℃に設定した場合、試験開始1時間後で比較例1の機能性タイル(b)、比較例2の珪藻土建材(c)、比較例3の機能性クロス(d)のいずれにおいてもホルムアルデヒドガスの再放出が確認されたが、実施例1の複合体(a)は、3時間後においても再放出は確認されなかった。なお、検出限界は0.05ppmであり、符号eはブランクである。 From the deodorization test results (formaldehyde) shown in FIG. 7 and Table 2, the composite (a) of Example 1 is slightly poorer than the diatomaceous earth building material (c) of Comparative Example 2, and the functional tile of Comparative Example 1 ( As compared with b), it was confirmed that there was a better deodorizing effect compared with the functional cross (d) of Comparative Example 3 in comparison with b). When the environmental temperature is set to 40 ° C., the functional tile (b) of Comparative Example 1 after 1 hour from the start of the test, the diatomaceous earth building material (c) of Comparative Example 2, and the functional cloth (d) of Comparative Example 3 are used. In any case, re-release of formaldehyde gas was confirmed, but re-release of the composite (a) of Example 1 was not confirmed even after 3 hours. The detection limit is 0.05 ppm, and the symbol e is blank.
図8及び表3に示す消臭試験結果(硫化水素)より、実施例1の複合体(a)は試験開始2時間後にガス検知管の検出限界値以下となり、比較例1の機能性タイル(b)、比較例2の珪藻土建材(c)、比較例3の機能性クロス(d)と比較してより良好な消臭効果があることが確認された。また、環境温度を40℃に設定した場合、実施例1の複合体(a)は、3時間後においても再放出は確認されなかった。なお、検出限界は0.1ppmであり、符号eはブランクである。 From the deodorization test results (hydrogen sulfide) shown in FIG. 8 and Table 3, the composite (a) of Example 1 was below the detection limit value of the gas detector tube 2 hours after the start of the test, and the functional tile of Comparative Example 1 ( b) It was confirmed that the diatomaceous earth building material (c) of Comparative Example 2 and the functional cloth (d) of Comparative Example 3 had a better deodorizing effect. Further, when the environmental temperature was set to 40 ° C., the composite (a) of Example 1 was not confirmed to be released again even after 3 hours. The detection limit is 0.1 ppm, and the symbol e is blank.
通常、有害化学物質ガスはマイクロ孔やメソ孔で吸着するとされており、それらの細孔が多くなるほど比表面積が増大することが分かっている。しかしながら、実施例1の複合体は、上記測定結果より、マイクロ孔やメソ孔の分布ピークを持たず、比表面積が小さく、マイクロ孔やメソ孔が少ないにもかかわらず、実施例1の複合体は、メソ孔の分布ピークを持ち比表面積が大きい比較例1の機能性タイルや比較例2の珪藻土建材と比較して、同等の消臭効果があることが証明された。 Usually, it is said that harmful chemical gas is adsorbed by micropores or mesopores, and it has been found that the specific surface area increases as the number of pores increases. However, the composite of Example 1 does not have a distribution peak of micropores or mesopores, has a small specific surface area, and has few micropores or mesopores. Compared with the functional tile of Comparative Example 1 having a distribution peak of mesopores and a large specific surface area and the diatomaceous earth building material of Comparative Example 2, it was proved to have an equivalent deodorizing effect.
この原因としては、上記測定結果より、実施例1の複合体は、比較例1の機能性タイルや比較例2の珪藻土建材に少ないマクロ孔が多く分布することで比表面積が増大し、有害化学物質ガスの吸着吸収に大きく影響している。図2に示すように、実施例1の複合体は、細孔径が0.1μm〜10μmと広く分布するマクロ孔によって効率よく有害化学物質ガスがマクロ孔内に導入され、マクロ孔内で有する成分によって中和反応又は化学反応で無害化され、有害化学物質ガスが再放出されないことが確認された。 As a cause of this, from the above measurement results, the composite of Example 1 increases the specific surface area due to the large number of macropores distributed in the functional tile of Comparative Example 1 and the diatomaceous earth building material of Comparative Example 2, which causes harmful chemistry. It greatly affects the absorption and absorption of material gases. As shown in FIG. 2, the composite of Example 1 is a component in which harmful chemical substance gas is efficiently introduced into the macropores by the macropores having a pore size widely distributed as 0.1 μm to 10 μm. It was confirmed that the hazardous chemical gas was not re-released by the neutralization reaction or chemical reaction.
有害化学物質ガスは、アンモニア、トリメチルアミン等の塩基性化学物質、硫化水素、メチルメルカプタン等の酸性化学物質、ホルムアルデヒド、トルエン等の揮発性有機化合物のいずれに対しても、実施例1の複合体は、比較例1の機能性タイルや比較例2の珪藻土建材と比較して、同等もしくはそれ以上の吸着吸収効果が確認された。実施例1の複合体は、特に水溶性の高い化学物質のアンモニア、硫化水素、ホルムアルデヒドについて効果が高いことが確認された。 The toxic chemical gas is composed of basic chemical substances such as ammonia and trimethylamine, acidic chemical substances such as hydrogen sulfide and methyl mercaptan, and volatile organic compounds such as formaldehyde and toluene. As compared with the functional tile of Comparative Example 1 and the diatomaceous earth building material of Comparative Example 2, an adsorption absorption effect equal to or higher than that was confirmed. It was confirmed that the composite of Example 1 was particularly effective for ammonia, hydrogen sulfide, and formaldehyde, which are highly water-soluble chemical substances.
[特性評価2]
(消臭試験2)
消臭試験2をガス検知管法によって評価した。この消臭試験2は、(1)用いたにおい袋(テドラーバッグ)の中に小型ファンを入れて対流状態(通風状態)を作り出したこと、(2)実施例1の複合体で行ったこと、(3)試験対象ガスとしてアンモニアとホルムアルデヒドを用いたこと以外は、上記した消臭試験1と同じ測定方法で行った。結果を図10、図11、表4、表5に示す。なお、図10及び図11において、符号aは対流時、符号bは無風時、符号cは空試験ブランクの結果である。
[Characteristic evaluation 2]
(Deodorization test 2)
Deodorization test 2 was evaluated by the gas detector tube method. This deodorization test 2 was conducted by (1) creating a convection state (ventilation state) by putting a small fan in the used odor bag (Tedlar bag), and (2) performing the composite of Example 1. 3) The measurement method was the same as the deodorization test 1 described above except that ammonia and formaldehyde were used as the test target gases. The results are shown in FIG. 10, FIG. 11, Table 4, and Table 5. In FIGS. 10 and 11, the symbol a is the result of convection, the symbol b is no wind, and the symbol c is the result of the blank test blank.
これらの結果より、アンモニアに対して、試験開始から0.5時間後の初期濃度からの減少率は、無風時で46.2%、対流時で84.6%であった。また、試験開始から1時間後の初期濃度からの減少率は、無風時で84.6%、対流時で88.5%であった。試験開始から0.5時間後の結果では、対流時は無風時の約1.8倍の効果が確認された。 From these results, with respect to ammonia, the rate of decrease from the initial concentration 0.5 hours after the start of the test was 46.2% in the absence of wind and 84.6% in the convection. In addition, the rate of decrease from the initial concentration 1 hour after the start of the test was 84.6% when there was no wind, and 88.5% when convection. As a result 0.5 hours after the start of the test, an effect about 1.8 times that of no wind at the time of convection was confirmed.
また、ホルムアルデヒドに対して、試験開始から0.5時間後の初期濃度からの減少率は、無風時で50.0%、対流時で75.0%であった。また、試験開始から1時間後の初期濃度からの減少率は、無風時で70.0%、対流時で84.0%であった。また、試験開始から2時間後の初期濃度からの減少率は、無風時で86.0%、対流時で90.0%であった。試験開始から0.5時間後の結果では、対流時は無風時の約1.5倍の効果が確認され、試験開始から1時間後の結果では、対流時は無風時の約1.2倍の効果が確認された。 For formaldehyde, the rate of decrease from the initial concentration 0.5 hours after the start of the test was 50.0% in the absence of wind and 75.0% in the convection. In addition, the rate of decrease from the initial concentration 1 hour after the start of the test was 70.0% in the absence of wind and 84.0% in the convection. The rate of decrease from the initial concentration after 2 hours from the start of the test was 86.0% when no wind was present and 90.0% during convection. The result 0.5 hours after the start of the test confirms that the effect is about 1.5 times that of no wind at the time of convection, and the result of 1 hour after the start of the test is about 1.2 times that when there is no wind. The effect of was confirmed.
これらの結果から、複合体は、通風(対流)時においては、極めて短時間で消臭効果が向上することが確認された。この特性は実際の生活環境において、健康面や精神面での改善に大きく寄与できる。 From these results, it was confirmed that the deodorizing effect of the composite was improved in a very short time during ventilation (convection). This characteristic can greatly contribute to improvement in health and mental aspects in the actual living environment.
[特性評価3]
(PM2.5低減実験)
PM2.5は、粒子径2.5μm以下の大気中の微粒子で、大気汚染の原因であり、健康被害が問題となっている。このPM2.5は、粒子径が2.5μmと大きいため、直径2nm未満のマイクロ孔や直径2nm以上50nm未満のメソ孔が粒子を捕捉することは困難である。なお、建築物室内では、PM2.5の濃度上昇に寄与する粒径は0.1μm前後であるとされているが、それでもマイクロ孔やメソ孔よりも大きく、PM2.5を捕捉することは困難である。
[Characteristic evaluation 3]
(PM2.5 reduction experiment)
PM2.5 is a fine particle in the air having a particle diameter of 2.5 μm or less, causing air pollution, and health damage is a problem. Since PM2.5 has a large particle diameter of 2.5 μm, it is difficult for micropores having a diameter of less than 2 nm or mesopores having a diameter of 2 nm to less than 50 nm to capture the particles. In the building room, the particle size contributing to the increase in PM2.5 concentration is said to be around 0.1 μm, but it is still larger than the micropores and mesopores, and it is difficult to capture PM2.5. It is.
一方、マクロ孔は、直径50nm以上であるが、PM2.5粒子を捕捉するためには最低でも直径0.1μm以上が必要となる。本発明に係る複合体は、図2及びその説明欄からもわかるように、直径が4.6μm近辺にピークを持ち、0.1μm〜10μmに広く分布するマクロ孔を有しており、PM2.5粒子を容易に捕捉できる構造となっている。 On the other hand, the macropores have a diameter of 50 nm or more, but at least a diameter of 0.1 μm or more is required to capture PM2.5 particles. As can be seen from FIG. 2 and the explanation column, the composite according to the present invention has macropores having a peak around 4.6 μm in diameter and widely distributed in 0.1 μm to 10 μm. It has a structure that can easily capture five particles.
PM2.5低減実験として、アクリル樹脂製の密閉箱(内寸:幅300mm、縦190mm、深さ300mm)の内面を実施例1の複合体で覆ったものと、比較例3の機能性クロスで覆ったものの2箱用意した。処理面は両側面、背面、天面の4面とし、処理面積は2610cm2であった。箱内部の底面にレーザー光散乱方式のダストモニター(佐藤商事株式会社製、DC170)を設置し、箱内部でフィルター付きタバコを先端から5秒間自然燃焼させて副流煙を発生させた。ダストモニターで副流煙の粉塵量を計測し、経過時間による粉じん量の減少率を比較した。 As an experiment for reducing PM2.5, the inner surface of an acrylic resin sealed box (inner dimensions: width 300 mm, length 190 mm, depth 300 mm) was covered with the composite of Example 1 and the functional cloth of Comparative Example 3 Two boxes of covered ones were prepared. The treatment surfaces were four surfaces, both side surfaces, the back surface, and the top surface, and the treatment area was 2610 cm 2 . A laser light scattering dust monitor (DC170, manufactured by Sato Shoji Co., Ltd.) was installed on the bottom inside the box, and a cigarette with a filter was naturally burned from the tip for 5 seconds inside the box to generate sidestream smoke. The dust amount of sidestream smoke was measured with a dust monitor, and the reduction rate of the dust amount with the elapsed time was compared.
試験結果を図12に示した。符号aは実施例1の複合体の結果であり、符号bは比較例3の機能性クロスの結果である。図12に示すように、開始直後から実施例1の複合体の方の減少が大きくなり、120分後に10%以下となった。一方、比較例3の機能性クロスは150分後にようやく10%以下になった。120分後における両者の比較では、約20%の差が確認できた。この結果より、本発明に係る実施例1の複合体で処理した室内においては、タバコの副流煙の低減効果が確認され、健康面や精神面での改善に大きく寄与できることがわかった。 The test results are shown in FIG. The symbol a is the result of the composite of Example 1, and the symbol b is the result of the functional cross in Comparative Example 3. As shown in FIG. 12, the decrease in the composite of Example 1 was increased immediately after the start, and became 10% or less after 120 minutes. On the other hand, the functional cloth of Comparative Example 3 finally became 10% or less after 150 minutes. In comparison between the two after 120 minutes, a difference of about 20% was confirmed. From this result, in the room treated with the composite of Example 1 according to the present invention, the effect of reducing the sidestream smoke of tobacco was confirmed, and it was found that it can greatly contribute to the improvement in health and mind.
[特性評価4]
実施例1で使用した複合体組成物に他の骨材をさらに添加し、得られた複合体の消臭効果を測定した。添加した骨材として、モンモリロナイト、ゼオライト、珪藻土、活性炭を用いた。
[Characteristic evaluation 4]
Other aggregates were further added to the composite composition used in Example 1, and the deodorizing effect of the resulting composite was measured. Montmorillonite, zeolite, diatomaceous earth, and activated carbon were used as the added aggregate.
(実施例2)
実施例1で使用した複合体組成物を構成する水硬生石灰と花崗岩に、モンモリロナイトを加えて実施例2で使用する複合体組成物を調製した。モンモリロナイトの配合量は、そのモンモリロナイトの配合に起因した吸着効果が向上する程度の量とし、この例では、水硬生石灰:花崗岩:モンモリロナイトが1:1:1の割合となるように配合した。この複合体組成物を用いて、実施例1と同様にして複合体を作製した。なお、用いたモンモリロナイトは、酸処理を行うことで吸着性能を向上させたものであり、メソ孔を有し、極性物質、不飽和物質、芳香族物質の吸着性がある。
(Example 2)
Montmorillonite was added to the hydraulic lime and granite constituting the composite composition used in Example 1 to prepare a composite composition used in Example 2. The amount of montmorillonite blended was such that the adsorption effect resulting from the blending of montmorillonite was improved, and in this example, blended so that the ratio of hydraulic lime: granite: montmorillonite was 1: 1: 1. Using this composite composition, a composite was prepared in the same manner as in Example 1. The montmorillonite used has improved adsorption performance by acid treatment, has mesopores, and adsorbs polar substances, unsaturated substances, and aromatic substances.
(実施例3)
実施例1で使用した複合体組成物を構成する水硬生石灰と花崗岩に、ゼオライトを加えて実施例3で使用する複合体組成物を調製した。ゼオライトの配合量は、そのゼオライトの配合に起因した吸着効果が向上する程度の量とし、この例では、水硬生石灰:花崗岩:ゼオライトが1:1:1の割合となるように配合した。この複合体組成物を用いて、実施例1と同様にして複合体を作製した。なお、用いたゼオライトは、水分子を結晶水の形で構造中に主成分として含む、アルミニウムの含水珪酸塩鉱物であり、マイクロ孔を有し、このゼオライトの結晶水は、立体網目構造になっており、加熱処理すると空洞として残りスポンジ状の構造となり、この空洞にガスや水分を強力に吸着する特性がある。
Example 3
A composite composition used in Example 3 was prepared by adding zeolite to the hard lime and granite constituting the composite composition used in Example 1. The amount of zeolite blended was such an amount that the adsorption effect resulting from the blending of the zeolite was improved, and in this example, blended so that the ratio of hydraulic lime: granite: zeolite was 1: 1: 1. Using this composite composition, a composite was prepared in the same manner as in Example 1. The zeolite used is an aluminum hydrated silicate mineral containing water molecules as a main component in the structure in the form of crystal water, and has micropores. The crystal water of this zeolite has a three-dimensional network structure. When heated, it remains as a cavity and has a sponge-like structure, which has a characteristic of strongly adsorbing gas and moisture.
(実施例4)
実施例1で使用した複合体組成物を構成する水硬生石灰と花崗岩に、珪藻土を加えて実施例4で使用する複合体組成物を調製した。珪藻土の配合量は、その珪藻土の配合に起因した吸着効果が向上する程度の量とし、この例では、水硬生石灰:花崗岩:珪藻土が1:1:1の割合となるように配合した。この複合体組成物を用いて、実施例1と同様にして複合体を作製した。なお、用いた珪藻土は、多孔質性天然鉱物であり、メソ孔を有し、吸放出作用及び塩基性ガスの吸着に優れている。
Example 4
The composite composition used in Example 4 was prepared by adding diatomaceous earth to the hard lime and granite constituting the composite composition used in Example 1. The blending amount of diatomaceous earth was such an amount that the adsorption effect due to the blending of the diatomaceous earth was improved, and in this example, the blending was performed so that the ratio of hydraulic lime: granite: diatomaceous earth was 1: 1: 1. Using this composite composition, a composite was prepared in the same manner as in Example 1. In addition, the used diatomaceous earth is a porous natural mineral, has a mesopore, and is excellent in the absorption / release action and basic gas adsorption.
(実施例5)
実施例1で使用した複合体組成物を構成する水硬生石灰と花崗岩に、活性炭を加えて実施例5で使用する複合体組成物を調製した。活性炭の配合量は、その活性炭の配合に起因した吸着効果が向上する程度の量とし、この例では、水硬生石灰:花崗岩:活性炭が1:2:1の割合となるように配合した。この複合体組成物を用いて、実施例1と同様にして複合体を作製した。なお、用いた活性炭は、ファンデルワールス力による物理吸着で吸着速度は速く、可逆的(再放出)であり、メソ孔とマクロ孔を有している。
(Example 5)
Activated carbon was added to the hydraulic lime and granite constituting the composite composition used in Example 1 to prepare a composite composition used in Example 5. The blending amount of the activated carbon was such an amount that the adsorption effect due to the blending of the activated carbon was improved. In this example, blending was performed so that the ratio of hydraulic lime: granite: activated carbon was 1: 2: 1. Using this composite composition, a composite was prepared in the same manner as in Example 1. The used activated carbon is physically adsorbed by van der Waals force, has a high adsorption rate, is reversible (re-released), and has mesopores and macropores.
(消臭試験3)
消臭試験3をガス検知管法によって評価した。この消臭試験3は、上記した消臭試験2と同じである。結果を図13、図14、表6、表7に示す。なお、図13及び図14中、符号aは実施例2の複合体の結果であり、符号bは実施例3の複合体の結果であり、符号cは実施例4の複合体の結果であり、符号dは実施例5の複合体の結果であり、符号eは比較対象とした実施例1の複合体の結果である。
(Deodorization test 3)
Deodorization test 3 was evaluated by the gas detector tube method. The deodorization test 3 is the same as the deodorization test 2 described above. The results are shown in FIG. 13, FIG. 14, Table 6 and Table 7. In FIG. 13 and FIG. 14, the symbol a is the result of the complex of Example 2, the symbol b is the result of the complex of Example 3, and the symbol c is the result of the complex of Example 4. The symbol d is the result of the complex of Example 5, and the symbol e is the result of the complex of Example 1 as a comparison target.
これらの結果より、添加骨材を配合した実施例2〜5の複合体で実施例1の複合体に対して消臭効果の改善が確認された。アンモニアでは、特に実施例2〜4の複合体で短時間(0.5時間経過)での改善効果が大きかった。ホルムアルデヒドでは、特に実施例5の複合体で短時間(0.5時間経過)での改善効果が大きかった。 From these results, it was confirmed that the deodorizing effect was improved with respect to the composite of Example 1 in the composites of Examples 2 to 5 containing the added aggregate. In the case of ammonia, the effect of improvement in a short time (0.5 hours elapsed) was particularly large in the composites of Examples 2 to 4. In the case of formaldehyde, the effect of improvement in a short time (0.5 hour elapsed) was particularly large in the composite of Example 5.
有害化学物質ガスは、通常、マイクロ孔やメソ孔で吸着するが、実施例2〜5の複合体に添加した添加骨材は、いずれもマイクロ孔やメソ孔が多く、比表面積も大きいため、実施例2〜5の複合体は、ガス吸着能力が大きくなったものと考えられる。なお、どのような骨材を添加してもよいというものではなく、添加する骨材によってはマイクロ孔やメソ孔が埋まってしまい、本来の能力を発揮できないことがあるが、ここで用いたモンモリロナイト、ゼオライト、珪藻土、活性炭は、上記結果のように、添加骨材の性能を落とすことなく効果を改善できることがわかった。実施例2〜5の複合体は、マクロ孔の内壁に添加骨材が分布することにより、マクロ孔の効果(気体の導入効果・通風効果)にマイクロ孔とメソ孔の効果(吸着効果)が付加され、特性が改善されたものと考えられる。 Hazardous chemical gas is normally adsorbed in micropores and mesopores, but the additive aggregates added to the composites of Examples 2 to 5 have many micropores and mesopores and a large specific surface area. The composites of Examples 2 to 5 are considered to have increased gas adsorption capacity. In addition, it does not mean that any aggregate may be added. Depending on the aggregate to be added, micropores and mesopores may be buried, and the original ability may not be exhibited, but the montmorillonite used here It was found that zeolite, diatomaceous earth, and activated carbon can improve the effect without degrading the performance of the added aggregate as in the above results. In the composites of Examples 2 to 5, the added aggregate is distributed on the inner wall of the macropore, so that the effect of micropores and mesopores (adsorption effect) on the macropore effect (gas introduction effect / ventilation effect) It is thought that it was added and the characteristics were improved.
(吸放湿試験)
吸放出試験を、実施例1と実施例3の複合体を用いて行った。試験方法は、JIS A 1470−1(調湿建材の吸放湿性試験方法−湿度応答法)に準じ、恒温恒湿槽内で温度(23℃)を一定にし、相対湿度を50%〜75%の範囲で変化させた時の試験試料の質量変化を測定して吸放出性を評価した。湿度50%でサンプル質量が安定するまで22時間養生し、安定したら湿度75%に上げて12時間吸湿させた。その後、湿度50%に下げて12時間放出させた。
(Moisture absorption / release test)
The absorption / release test was conducted using the composites of Example 1 and Example 3. The test method is in accordance with JIS A 1470-1 (Hygroscopic building material moisture absorption / release test method-humidity response method), the temperature (23 ° C.) is kept constant in a constant temperature and humidity chamber, and the relative humidity is 50% to 75%. The absorption and release properties were evaluated by measuring the mass change of the test sample when changed in the range of. The sample was cured for 22 hours at a humidity of 50% until the mass of the sample was stabilized, and when stabilized, the humidity was increased to 75% and the sample was absorbed for 12 hours. Thereafter, the humidity was lowered to 50% and the mixture was released for 12 hours.
その結果、実施例1の複合体に比べ、実施例3の複合体は、相対値で2倍を超える吸湿量と放湿量を有することが確認できた。この実験例からも、添加骨材が有するマイクロ孔やメソ孔は、有害化学物質ガス吸着と同様に調湿機能も併せ持っているといえ、複合体にこうした骨材をさらに添加することにより、マクロ孔の内壁に添加骨材を分布させ、吸放湿特性を大幅に改善することができることがわかった。 As a result, it was confirmed that the composite of Example 3 had a moisture absorption amount and a moisture release amount that were more than twice as large as the composite of Example 1. From this experimental example, it can be said that the micropores and mesopores of the added aggregate also have a humidity control function in the same way as the adsorption of harmful chemical gas. By adding such aggregate to the composite, It was found that the added aggregate can be distributed on the inner wall of the hole and the moisture absorption / release characteristics can be greatly improved.
Claims (5)
化学物質と反応して該化学物質を前記マクロ孔内に吸着し吸収させる水硬性石灰と、花崗岩と、水系溶媒とを有する複合体組成物を準備し、該複合体組成物を対象物上に、塗り固め手段、流し込み手段、吹付手段、及びローラー手段から選ばれる1又は2以上の手段によって、前記細孔径分布測定で測定された細孔径分布において0.1μm〜10μmのマクロ孔分布内に該マクロ孔の分布ピークを持つ前記多孔性複合体を得る、ことを特徴とする複合体の製造方法。 A method for producing a porous composite having macropores having a pore size of 50 nm or more determined from a pore size distribution measurement by a mercury intrusion method,
A composite composition comprising hydraulic lime that reacts with a chemical substance to adsorb and absorb the chemical substance in the macropores, granite, and an aqueous solvent is prepared, and the composite composition is placed on an object. In the pore size distribution measured by the pore size distribution measurement by one or more means selected from a coating means, a pouring means, a spraying means, and a roller means , the macropore distribution is 0.1 μm to 10 μm. the obtained porous composite method of producing a composite body characterized by having a distribution peak of the macropores.
Adding aggregate having Ma Micro holes or mesopores method of producing a composite body according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015070948A JP6584115B2 (en) | 2014-04-11 | 2015-03-31 | Complex for adsorbing and absorbing chemical substances and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014081967 | 2014-04-11 | ||
JP2014081967 | 2014-04-11 | ||
JP2015070948A JP6584115B2 (en) | 2014-04-11 | 2015-03-31 | Complex for adsorbing and absorbing chemical substances and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015205267A JP2015205267A (en) | 2015-11-19 |
JP6584115B2 true JP6584115B2 (en) | 2019-10-02 |
Family
ID=54602587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015070948A Active JP6584115B2 (en) | 2014-04-11 | 2015-03-31 | Complex for adsorbing and absorbing chemical substances and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6584115B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7021770B2 (en) * | 2017-12-06 | 2022-02-17 | 株式会社シリカライム | Method for solidifying a complex containing calcium hydroxide |
JP7273483B2 (en) * | 2018-11-07 | 2023-05-15 | 川崎重工業株式会社 | Acid gas absorbent and method for producing the same |
KR102570342B1 (en) * | 2022-01-27 | 2023-08-25 | (주)이앤켐솔루션 | Catalyst for hydrogen sulfide removal using oxidation/reduction reaction |
-
2015
- 2015-03-31 JP JP2015070948A patent/JP6584115B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015205267A (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6419705B2 (en) | Antibacterial porous ceramic tile and manufacturing method thereof | |
KR101139301B1 (en) | Mat-shaped foam material for cleaning and/or filtering air | |
JP6584115B2 (en) | Complex for adsorbing and absorbing chemical substances and method for producing the same | |
Shim et al. | Study of construction convergence technology for performance improvement in functional building materials | |
JP2009023864A (en) | Functional building material | |
CN104185659A (en) | Eco-friendly water-soluble paint composition for interior finishing material of building | |
JP2008038365A (en) | Interior finishing wall of building, and finishing coating material therefor | |
Liu et al. | Bioinspired ant-nest-like hierarchical porous material using CaCl2 as additive for smart indoor humidity control | |
JP2010174172A (en) | Coating agent | |
KR101082012B1 (en) | Furniture having antimicrobial and air-puritying functions panel | |
JP4009619B2 (en) | Building material and method of manufacturing building material | |
KR100831846B1 (en) | A mortar compositions for building finishing materials of purifying indoor air | |
JP3653523B2 (en) | Carbonated cured body | |
JP3848605B2 (en) | Building material having environmental improvement function and method for manufacturing the same | |
JP5051985B2 (en) | Manufacturing method of building material having adsorption function and photocatalytic function | |
JP5061396B2 (en) | Method of painting with diatomaceous earth interior coating material and diatomaceous earth interior coating material used in the painting method | |
JP4684241B2 (en) | Building material composition | |
KR100545530B1 (en) | Mortar for construction | |
KR101577527B1 (en) | Environmental friendly jade paint and finishing materials using natural binder and manufacturing method thereof | |
JP7021770B2 (en) | Method for solidifying a complex containing calcium hydroxide | |
JP2009002145A (en) | Plate-like ventilation and lamination material | |
JP6653382B2 (en) | Use of composite materials in building materials, building materials and methods of air purification | |
JP6912872B2 (en) | Manufacturing method of humidity control building materials | |
JP2004285716A (en) | Functional building material | |
KR101577526B1 (en) | Environmental friendly pine needle paint and finishing materials using natural binder and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190205 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190605 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6584115 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |