JP2009021099A - 燃料電池スタック - Google Patents

燃料電池スタック Download PDF

Info

Publication number
JP2009021099A
JP2009021099A JP2007182924A JP2007182924A JP2009021099A JP 2009021099 A JP2009021099 A JP 2009021099A JP 2007182924 A JP2007182924 A JP 2007182924A JP 2007182924 A JP2007182924 A JP 2007182924A JP 2009021099 A JP2009021099 A JP 2009021099A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
cell stack
electrode electrolyte
electrolyte assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007182924A
Other languages
English (en)
Other versions
JP5167708B2 (ja
Inventor
Hiroshi Tatsui
洋 龍井
Hiroki Kusakabe
弘樹 日下部
Yoshiteru Nagao
善輝 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007182924A priority Critical patent/JP5167708B2/ja
Publication of JP2009021099A publication Critical patent/JP2009021099A/ja
Application granted granted Critical
Publication of JP5167708B2 publication Critical patent/JP5167708B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】セル電圧測定端子の金属端子が微少に漏洩した反応ガスや循環水によって腐食、酸化しセル電圧が正確に測定できなくなるのを防ぐ。
【解決手段】セパレータ107の反応ガス供給手段(ガス流路106a,106c)と外部とをシールする第1のシール部材(MEAガスケット110a,110c)の外側に、セル電圧測定端子9が接触する付近を取り囲み、セル電圧測定端子9が接触する部分の近傍と単セル内の他の部分との間をシールする第2のシール部材(端子部シール部材11)を設けた構成により、漏洩した反応ガスや循環水が、セル電圧測定端子に付着するのを抑制する。
【選択図】図1

Description

本発明は、ポータブル電源、電気自動車用電源、定置型コージェネレーションシステム等に使用される燃料電池を構成する燃料電池スタックに関するものである。
固体高分子型燃料電池は、水素などの燃料ガスと空気などの酸化ガスをガス拡散電極によって電気化学的に反応させるもので、電気と熱とを同時に発生させるものである。このような固体高分子型燃料電池の基本的な単セルの構成を図7に示した。
なお、水素などの燃料ガスの関与する側をアノードと呼び、図では符号の後にaを付し、空気などの酸化ガスの関与する側をカソードと呼び、図では符号の後にcを付した。
図7に於いて、水素イオンを選択的に輸送する高分子電解質膜201の両面には、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒反応層を密着して配置する。さらに触媒反応層の外面には、ガス通気性と導電性を兼ね備えた一対の拡散層をこれに密着して配置する。この拡散層と触媒反応層により電極204a,204cを構成する。
電極電解質接合体(以降、MEAと称す)205は、電極204a,204cと高分子電解質膜201とで形成されている。MEA205の外側には、MEA205を機械的に固定するとともに、隣接するMEA同士を互いに電気的に直列に接続し、さらに電極204a,204cに水蒸気を含む反応ガスを供給し、かつ反応により発生したガスや余剰のガスを運び去るためのガス流路206a,206cをMEA205に接する面に形成した導電性セパレータ207a,207cを配置する。
導電性セパレータ207aの、MEA205とは反対の面には、隣の単セルの導電性セパレータ207cが接する。隣り合う単セルのセパレータ207a,207cが接する側には循環水通路208が備えられ、ここに循環水が流れる。
この循環水はセパレータ207a,207cを介してMEA205の温度を調整するように熱を移動させる。MEA205と導電性セパレータ207a,207cとの間には反応ガスが所定のガス流路206a,206cの外に漏れ出すのを封止するMEAガスケット210a,210cが備えられ、隣接する単セルの導電性セパレータ207a,207cの間には循環水を封止するセパレータガスケット211が備えられている。
次に、基本動作を説明する。
ガス流路206cに加湿した空気などの酸化ガスを流し、ガス流路206aに加湿した水素などの燃料ガスを流す。燃料ガス中の水素は拡散層を拡散し、触媒反応層に達する。触媒反応層で水素は水素イオンと電子に分けられる。電子は外部回路を通じてカソード側に移動される。
水素イオンは高分子電解質膜201を透過しカソード側に移動し反応触媒層に達する。空気などの酸化ガス中の酸素は拡散層を拡散し、反応触媒層に達する。触媒反応層では酸素が電子と反応し酸素イオンとなり、さらに酸素イオンは水素イオンと反応し水が生成される。
つまりMEA205の周囲で酸化ガスと燃料ガスが反応し水が生成され、電子が流れる。さらに反応時に熱が生成し、MEA205の温度が上昇する。そのため循環水経路208に水などを流すことにより反応で発生した熱を水で外部に運び出す。つまり、熱と電流(電気)が発生する。
単セルを複数積層して電気的に直列に接続し、燃料電池スタックが構成されるが、各単セルが正常な状態であるかを検知する手段として、各単セルの電圧測定が行われる。そしてセル電圧を測定する具体的な構成についてセパレータにセル電圧測定端子を接触させる方法が考案されている(例えば特許文献1参照)。
図8は単セルの電圧を測定する手段の一例の電圧測定部を示す斜視図である。一対のアノード側セパレータ207aとカソード側セパレータ207cとからなるセパレータ207には、重ね合わせ部に凹部を形成することにより外部と連通するスリット212が単セルの側面に形成される。
そしてスリット212内面を形成するセパレータ207と接触するように導電面213a,213cを互いに外側に向け、両導電面213a,213cの間に絶縁体214を設けたセル電圧測定端子215を、スリット212に挿入してセル電圧を測定するものである。
特開2004−288426号公報
しかしながら、上記従来の燃料電池スタックでは、以下のような課題があることを本発明の発明者は見出した。
すなわち、MEAガスケットにおいては、反応ガスが所定の領域(拡散層を覆う範囲で、ガス流路が設けられた領域)から漏れ出さないように、十分考慮して設けられるが、全ての反応ガスを封止するには、ガスケットを挟持する部材の締結圧を大きくする必要があり、材料強度や締結構造の大型化を招くといった点から全ての反応ガスの封止は現実的には非常に困難であり、極少量の反応ガスの漏れは発生している。
この反応ガスの漏れは、MEAガスケットを乗り越え、あるいはセパレータを形成する材料の内部に潜り込んで、所定の領域から漏れ出し、一部がセル電圧測定端子に接触して、長期の暴露によってセル電圧測定端子の導電面を腐食もしくは酸化させる。導電面が酸化もしくは腐食すると、セパレータとの接触抵抗が増加し、セル電圧が正確に測定できなくなるという課題があった。
本発明の燃料電池用セパレータおよび燃料電池スタックは、前記従来の課題を解決するものであり、長期間セル電圧を安定して確実に測定することができる燃料電池スタックを提供することを目的とする。
上記課題を解決するために、本発明の燃料電池スタックは、電極電解質接合体と、前記電極電解質接合体を挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記セパレータに、前記セル電圧測定端子が接触する付近を取り囲む第2のシール部材を設けたものである。
これにより、比較的簡単な構成でセル電圧測定端子周辺のシール性を向上させ、燃料電池スタックから漏れ出すわずかな反応ガスによるセル電圧測定端子の腐食を抑制することができる。
本発明の固体高分子型燃料電池を構成する燃料電池スタックは、セパレータに、セル電圧測定端子が接触する付近を取り囲む第2のシール部材を設けることにより、シール性を向上させるために材料強度や締結構造の大型化、複雑化によってシール性を向上させた結果として発生する重量やコストを増大させること無く、長期間セル電圧を安定して確実に測定することができる燃料電池スタックを提供することができる。
請求項1に記載の発明は、電極電解質接合体と、前記電極電解質接合体を挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記セパレータに、前記セル電圧測定端子が接触する付近を取り囲む第2のシール部材を設けたものである。
これにより、セル電圧測定端子周辺のシール性を向上させ、燃料電池スタックから漏れ出すわずかな反応ガスによるセル電圧測定端子の腐食を抑制することができるため、長期間安定してセル電圧を確実に測定することができる燃料電池スタックを提供することができる。
請求項2に記載の発明は、電極電解質接合体と、前記電極電解質接合体を挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記セパレータに、前記セル電圧測定端子が接触する第1の端面と前記第1のシールとの間に第2のシール部材を設けたことにより、セル電圧測定端子周辺のシール性を向上させることができる。
更には、第2のシール部材が第1の端面に沿って、第1の端面と接する2つの端面(第2の端面および第3の端面)に伸びているため、第1のシール部材から漏れ出た反応ガスは、第2のシール部材に到着すると、第2のシール部材を越えるよりも抵抗の少ない、第2の端面および第3の端面に向かって移動し、第2の端面および第3の端面から燃料電池スタック外に漏れ出るために、燃料電池スタック外に漏れ出た反応ガスが再びセル電圧測定端子に戻って、セル電圧測定端子の腐食することを抑制することができ、長期間安定してセル電圧を確実に測定することができる燃料電池スタックを提供することができる。
請求項3に記載の発明は、電極電解質接合体と、前記電極電解質接合体の外周を保持して前記電極電解質接合体と一体化した枠体と、前記電極電解質接合体を前記枠体ごと挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記枠体に、前記セル電圧測定端子が前記セパレータに接触する付近を取り囲む第2のシール部材を設けたものである。
この構成により、セル電圧測定端子周辺のシール性を向上させ、燃料電池スタックから漏れ出すわずかな反応ガスによるセル電圧測定端子の腐食を抑制することができるため、長期間安定してセル電圧を確実に測定することができる燃料電池スタックを提供することができる。
請求項4に記載の発明は、電極電解質接合体と、前記電極電解質接合体の外周を保持して前記電極電解質接合体と一体化した枠体と、前記電極電解質接合体を前記枠体ごと挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記枠体に、前記セル電圧測定端子が前記セパレータに接触する第1の端面と前記第1のシールとの間に第2のシール部材を設けたものである。
この構成により、セル電圧測定端子周辺のシール性を向上させ、燃料電池スタックから漏れ出すわずかな反応ガスによるセル電圧測定端子の腐食を抑制することができるため、長期間安定してセル電圧を確実に測定することができる燃料電池スタックを提供することができる。
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の燃料電池スタックにおいて、前記セパレータには、前記セル電圧測定端子が嵌合する窪み部を設けたことにより、セル電圧測定端子の装着による燃料電池スタックの外形の大型化を抑制することができる。
請求項6に記載の発明は、請求項1または2のいずれか一項に記載の燃料電池スタックであり、前記第2のシールを、前記セパレータと一体に形成さしたことにより、比較的簡単な構成で請求項1または2に記載の燃料電池スタックを実現することができる。
以下、本発明の実施の形態について、図面を参照しながら説明するが、この実施の形態によって本発明が限定されるものではない。なお、従来例と同一の部分については、同一符号を付してその説明を省略する。
(実施の形態1)
図1は本発明による実施の形態1における燃料電池スタックを構成する単セルの分解図である。
図1に示すように、本発明の実施の形態1の単セルは、一対の電極104で高分子電解質膜101を挟んで構成したMEA105と、MEA105の外周を保持し、MEA105と一体化された電気的絶縁物である樹脂から形成された枠体1を、一対のアノード側セパレータ107aとカソード側セパレータ107cとからなるカーボン製のセパレータで挟み込んで構成されている。
アノード側セパレータ107aおよびカソード側セパレータ107cには、外部から水素を含む燃料ガスを導入するための燃料ガス入口マニホールド2と、発電に使用されなかった燃料ガスを外部に排出するための燃料ガス出口マニホールド3と、酸素を含む酸化剤ガスを外部から導入するための酸化剤ガス入口マニホールド4と、発電に使用されなかった酸化剤ガスを外部に排出するための酸化剤ガス出口マニホールド5とが各セパレータ107a,107cの外周近傍に貫通して設けられている。
また、アノード側セパレータ107aのMEA105と接する面には、燃料ガス入口マニホールド2と燃料ガス出口マニホールド3とを結び、電極104に燃料ガスを供給するためのガス流路106aが設けられている。同様にカソード側セパレータ107cのMEA105と接する面には、酸化剤ガス入口マニホールド4と酸化剤ガス出口マニホールド5とを結び、電極104に酸化剤ガスを供給するためのガス流路106cが設けられている。
ガス流路106a,106cは、電極104に対して可能な限り均一にガスを供給するために、複数本の流路を蛇行させて形成している。なお、単セルに供給する燃料ガスおよび酸化剤ガスは、高分子電解質膜101の水素イオン伝導性を発揮させるために加湿して常に高分子電解質膜101を湿潤状態に保つようにしているが、ガス中の水蒸気が凝縮して、あるいは発電に伴って生成した水がガス流路106a,106cにたまって流路を閉塞し、ガスの流れを阻害しないように上方から導入して下方から排出されるようにガス流路106a,106cを構成した。
また、アノード側セパレータ107aとカソード側セパレータ107cとには、発電とともに発生する熱を取り去るための循環水を、アノード側セパレータ107a及びカソード側セパレータ107cそれぞれのMEA105と接する面と反対の面に形成した循環水流路108に導入,排出するための循環水入口マニホールド6と循環水出口マニホールド7が、外周近傍に貫通して設けられている。
また、MEA105の枠体1には各マニホールド2〜7に対応する位置に穴が設けられている。
アノード側セパレータ107aのMEA105と接する側には、燃料ガスが燃料ガス入口マニホールド2と燃料ガス出口マニホールド3、およびガス流路106aで構成される燃料ガス供給手段の領域から外部に漏れず、かつ酸化剤ガスと循環水とがこの面に進入しないように考慮したシール部材であるMEAガスケット110aが設けられている。
同様に、カソード側セパレータ107cのMEA105と接する側には、酸化剤ガスが酸化剤ガス入口マニホールド4と酸化剤ガス出口マニホールド5とガス流路106cから外部に漏れず、かつ燃料ガスと循環水がこの面に浸入しないように考慮したMEAガスケット110c(図示せず)が設けられている。なお、このMEAガスケット110a,110cは導電性のアノード側セパレータ107aとカソード側セパレータ107cとが直接接触して短絡しないようにする絶縁の役割も果たしている。
更に、セパレータ107a,107cおよび枠体1が積層された燃料電池スタックの主面を形成する第1の端面8dには、セル電圧測定端子9が挿入される切り欠き10が設けられている。
更にセパレータ107a,107cには、切り欠き10の周辺に沿って端子部シール部材11がセパレータ107a,107cと一体になって形成されている。この端子部シール部材11は、セパレータ107a,107cの主面内で、切り欠き10周辺とその他の領域を空間的に遮断する役割を持つものである。
なお、端子部シール部材11をセパレータ107a,107cと一体とする方法としては、カーボン製のセパレータとシール部材を形成するフッ素ゴムやエラストマ等を一体成型しても良いし、セパレータの当該箇所に溝を設け、その溝に別体で成形したシール部材をはめ込む方法を採っても良い。
図2は図1に示す単セルを複数積層して構成した燃料電池スタックの構成を示す斜視図である。図2に示すように、燃料電池スタック30は単セルを複数枚積層し、両端に位置する単セルのセパレータ107a,107cと電気的に接続した集電板12を配置し、絶縁板13を介して一対のエンドプレート14で挟持したものである。
なお、単セルの積層は、単セルを構成するアノード側セパレータ107aと隣り合う単セルを構成するカソード側セパレータ107cとが電気的に接続され、かつ、カソード側セパレータ107cに形成した循環水流路108から水が外部に漏れないように、かつ燃料ガスと酸化剤ガスとが、循環水流路108が形成された面に侵入しないように考慮して形成したセパレータガスケット111が設けられている。
なお、カソード側セパレータ107cのセパレータガスケット111が設けられた面にも、端子部シール部材11が設けてある。ただし、本実施の形態ではカソード側セパレータに循環水経路とセパレータガスケット、そして端子部シール部材を設けたが、これらはアノード側セパレータに設けても、本発明の効果に影響は与えない。
陰極側エンドプレート14aおよび陽極側エンドプレート14cには、燃料電池スタック30の陽極側となるカソード側セパレータ107cと電気的に接続された集電板12と、絶縁板13とを介して接する陽極側エンドプレート14cと、燃料電池スタック30の陰極側となるアノード側セパレータ107aと電気的に接続された集電板12と、絶縁板13とを介して接する陰極側エンドプレート14aとがあり、陰極側エンドプレート14aには、燃料ガスを燃料電池スタック30に導入する燃料ガス入口15と、酸化剤ガスを燃料電池スタック30に導入する酸化剤ガス入口16と、冷却水を導入する循環水入口17が設けられ、それぞれ燃料ガス入口マニホールド2,酸化剤ガス入口マニホールド4,循環水入口マニホールド6と接続されている。
また、同様に、陽極側エンドプレート14cには、燃料ガスを燃料電池スタック30から排出する燃料ガス出口と、酸化剤ガスを燃料電池スタック30から排出する酸化剤ガス出口と、冷却水を排出する循環水出口とが設けられ、それぞれ燃料ガス出口マニホールド3,酸化剤ガス出口マニホールド5,循環水出口マニホールド7と接続されている。
集電板12には、MEA105の中央に対応する位置に電力取り出し端子18が絶縁板13と陰極側エンドプレート14aとを貫通し、陰極側エンドプレート14aと電気的に絶縁された状態で陰極側エンドプレート14aから突出して設けられ、外部回路に接続されている。
また、陰極側エンドプレート14aと陽極側エンドプレート14cとは、締結ロッド(図示せず)によって締結され、積層した単セルのMEAガスケット110および端子部シール部材11、セパレータガスケット111に均一な締め付け圧力を与えている。
セパレータ107a,107cに設けた切り欠き10は、単セルを積層することによって溝19を形成している。そして、この溝19にはセル電圧測定端子9が挿入され、セパレータ107a,107cと接触して各単セルの電圧が測定される。
図3にセル電圧測定30端子の斜視図を、図4に断面図を、図5にセル電圧測定端子を燃料電池スタック30に挿入した断面図を示す。
図3,4に示すように、金属端子20はリード線21が接続された状態で、絶縁性材料で形成されたホルダー22に、外力で変形させることによって外側にバネ性を持つような形状に拘束して固定され、積層した複数の単セルの電圧を測定するのに必要な数だけ一体に積層されている。
図5に示すように、セル電圧測定端子9が燃料電池スタック30の溝19に挿入されると、金属端子20がセパレータ107a,107cに接触し、MEA105を挟む二枚のセパレータ107a,107c間の電圧差を測定することによってセル電圧を測定することができる。
さらに、溝19すなわち切り欠き10は、セル電圧測定端子9の金属端子20が、挿入した際にバネ性で少し変形する(本実施の形態1では、図5中に示す金属端子20の形状を、二点鎖線から実線まで変形させた)程度の大きさに構成することによって、金属端子20とセパレータ107a,107cとの接触信頼性を向上させることが可能である。この構成によって、セル電圧測定端子9は燃料電池スタック30の外形内に収まり、燃料電池スタック30が大型化することを抑制できる。
なお、MEAを挟む二枚のセパレータ間を電気的に短絡させないように十分に配慮した金属端子20の幅の設計等が必要である。
以上のように構成した燃料電池スタックについて、以下その動作、作用について説明する。
燃料ガス入口15から燃料電池スタック30に供給された燃料ガスは燃料ガス入口マニホールド2を介して各単セルのアノード側セパレータ107aのガス流路106aを通って電極104を構成するアノード側電極に供給される。
一方、酸化剤ガス入口16から燃料電池スタック30に供給された酸化剤ガスは、酸化剤入口マニホールド4を介して、各単セルのカソード側セパレータ107cのガス流路106cを通って電極104を構成するカソード側電極に供給され、燃料ガス中の水素と酸化剤ガス中の酸素が電気化学反応を起こして電気と熱が発生する。
発電に伴って発生した熱は、循環水を循環水入口17から循環水入口マニホールド6を介してカソード側セパレータ107cの循環水流路108に供給し、循環水出口マニホールド7を介して循環水出口からスタックの外へ排出することにより、セパレータ107a,107cを介して搬出する。
MEAガスケット110、およびセパレータガスケット111は、締結ロッドによる締め付け圧力により、燃料ガスと酸化剤ガス、および循環水がそれぞれ所定の経路以外に漏れ出さないようにシール性能を発揮することができるが、完全に漏れ出るのを防ぐのは困難であり、極微量の漏洩が発生する。この漏洩は、燃料ガスと酸化剤ガス、あるいは循環水が、MEAガスケット110およびセパレータガスケット111のシール面を乗り越えて発生するものと、セパレータ107a,107cやMEA105の内部を浸透して発生するものとがあると考えられる。
そしてこの漏洩した燃料ガスや酸化剤ガス、あるいは循環水は、セル電圧測定端子9の金属端子20に付着すると、金属端子20を腐食あるいは酸化させ、導電性を低下させるが、本発明によれば、端子部シール部材11によって、MEAガスケット110およびセパレータガスケット111のシール面を乗り越えた燃料ガスや酸化剤ガス、あるいは循環水は、端子部シール部材11を乗り越えるよりも、端子部シール部材11の無い部分を通って燃料電池スタック外に排出されるほうが、抵抗が少なく済むため、端子部シール部材11を乗り越えてセル電圧測定端子9に付着することを抑制することができる。
また、セパレータ107a,107cおよびMEA105の内部に浸透して漏れ出す燃料ガスおよび酸化剤ガス、循環水については、MEAガスケット110およびセパレータガスケット111を潜り抜けた後、そのままセパレータ107a,107cおよびMEA105の枠体1端面まで進むよりも、MEAガスケット110およびセパレータガスケット111の外側で主面方向に漏れ出すほうが、移動距離が短く抵抗が小さい為に、ほとんどが、前述のMEAガスケット110およびセパレータガスケット111を乗り越えた燃料ガスおよび酸化剤ガスまたは循環水と同様に、端子部シール部材11でシールされてセル電圧測定端子9に達することは無い。
よって、本発明の実施の形態1の燃料電池スタックでは、長期間に亘ってセル電圧測定端子が腐食や酸化することが無く、安定してセル電圧を監視することが可能である。
なお、本実施の形態の燃料電池スタックでは、セパレータに第2のシール部材として端子部シール部材を設けたが、MEAの外周に設けた枠体に形成しても同様の効果を得られる。
(実施の形態2)
図6は本発明の実施の形態2における燃料電池スタックの単セルの分解図である。
図6に示すように、本実施の形態の燃料電池スタックは、実施の形態1で示した燃料電池スタックの単セルに対し、端子部シール部材の形状が異なる。すなわち、セル電圧測定端子9が取り付けられるセパレータ107a,107cの第1の端面23dに接続する第2の端面23eと第3の端面23fとを結び、第1の端面23dに沿って端子部シール部材24が設けられている。
これにより、MEAガスケット110およびセパレータガスケット111から漏れ出た燃料ガスおよび酸化剤ガス、または循環水は、図6中に二点鎖線矢印で示したように燃料電池スタックの外部にセル電圧測定端子9と離れた第2の端面23eおよび第3の端面23fから排出される為、燃料電池スタックの外部に取付けられたセル電圧測定端子9に付着して金属端子20を腐食または酸化させることを抑制することができる。
なお、本実施の形態の燃料電池スタックでは、セパレータに端子部シール部材である第2のシール部材を設けたが、MEAもしくはMEAの外周に設けた枠体に形成しても同様の効果を得られる。
以上のように、本発明にかかる燃料電池用セパレータおよび燃料電池スタックは、ポータブル電源、電気自動車用電源、定置型コージェネレーションシステム等の用途に使用される燃料電池に適用できる。
本発明の実施の形態1における燃料電池スタックを構成する単セルの分解斜視図 同実施の形態の燃料電池スタックの斜視図 同実施の形態のセル電圧測定端子の斜視図 同実施の形態のセル電圧測定端子の断面図 同実施の形態の燃料電池スタックにセル電圧測定端子を挿入した断面図 本発明の実施の形態2における燃料電池スタックを構成する単セルの分解斜視図 従来の燃料電池スタックを構成する単セルの断面図 従来のセル電圧測定部を示す斜視図
符号の説明
1 枠体
2 燃料ガス入口マニホールド
3 燃料ガス出口マニホールド
4 酸化剤ガス入口マニホールド
5 酸化剤ガス出口マニホールド
6 循環水入口マニホールド
7 循環水出口マニホールド
8d,23d 第1の端面
9 セル電圧測定端子
10 切り欠き
11,24 端子部シール部材
12 集電板
13 絶縁板
14a 陰極側エンドプレート
14c 陽極側エンドプレート
15 燃料ガス入口
16 酸化剤ガス入口
17 循環水入口
18 電力取り出し端子
19 溝
20 金属端子
21 リード線
22 ホルダー
101 高分子電解質膜
104 電極
105 電極電解質接合体(MEA)
106a,106c ガス流路
107a,107c セパレータ
108 循環水流路
110a,110c MEAガスケット
111 セパレータガスケット

Claims (6)

  1. 電極電解質接合体と、前記電極電解質接合体を挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記セパレータに、前記セル電圧測定端子が接触する付近を取り囲む第2のシール部材を設けた燃料電池スタック。
  2. 電極電解質接合体と、前記電極電解質接合体を挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記セパレータに、前記セル電圧測定端子が接触する第1の端面と前記第1のシールとの間に第2のシール部材を設けた燃料電池スタック。
  3. 電極電解質接合体と、前記電極電解質接合体の外周を保持して前記電極電解質接合体と一体化した枠体と、前記電極電解質接合体を前記枠体ごと挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記枠体に、前記セル電圧測定端子が前記セパレータに接触する付近を取り囲む第2のシール部材を設けた燃料電池スタック。
  4. 電極電解質接合体と、前記電極電解質接合体の外周を保持して前記電極電解質接合体と一体化した枠体と、前記電極電解質接合体を前記枠体ごと挟持し、前記電極電解質接合体に反応ガスを供給する供給手段を備えた一対のセパレータと、前記一対のセパレータに挟持され、前記供給手段と外部とをシールする第1のシール部材とから成る単セルを複数積層した燃料電池スタックであって、前記セパレータと接触する、前記単セルの電圧を測定するためのセル電圧測定端子を設けるとともに、前記枠体に、前記セル電圧測定端子が前記セパレータに接触する第1の端面と前記第1のシールとの間に第2のシール部材を設けた燃料電池スタック。
  5. 前記セパレータには、前記セル電圧測定端子が嵌合する窪み部が形成されている請求項1〜4のいずれか一項に記載の燃料電池スタック。
  6. 前記第2のシールが、前記セパレータと一体に形成されたことを特徴とする請求項1または2に記載の燃料電池スタック。
JP2007182924A 2007-07-12 2007-07-12 燃料電池スタック Expired - Fee Related JP5167708B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182924A JP5167708B2 (ja) 2007-07-12 2007-07-12 燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182924A JP5167708B2 (ja) 2007-07-12 2007-07-12 燃料電池スタック

Publications (2)

Publication Number Publication Date
JP2009021099A true JP2009021099A (ja) 2009-01-29
JP5167708B2 JP5167708B2 (ja) 2013-03-21

Family

ID=40360580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182924A Expired - Fee Related JP5167708B2 (ja) 2007-07-12 2007-07-12 燃料電池スタック

Country Status (1)

Country Link
JP (1) JP5167708B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079654A (ja) * 2017-10-23 2019-05-23 トヨタ自動車株式会社 燃料電池セルと該燃料電池セルの電圧検知のためのセルコネクタとの組み合わせ体
JP2020113464A (ja) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 燃料電池セルユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190571A (ja) * 1990-11-22 1992-07-08 Toshiba Corp 燃料電池
JP2007018750A (ja) * 2005-07-05 2007-01-25 Honda Motor Co Ltd 燃料電池セル電圧検出構造
JP2007087858A (ja) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 積層型燃料電池の端子ユニット
JP2008293766A (ja) * 2007-05-24 2008-12-04 Panasonic Corp 燃料電池スタック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190571A (ja) * 1990-11-22 1992-07-08 Toshiba Corp 燃料電池
JP2007018750A (ja) * 2005-07-05 2007-01-25 Honda Motor Co Ltd 燃料電池セル電圧検出構造
JP2007087858A (ja) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 積層型燃料電池の端子ユニット
JP2008293766A (ja) * 2007-05-24 2008-12-04 Panasonic Corp 燃料電池スタック

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079654A (ja) * 2017-10-23 2019-05-23 トヨタ自動車株式会社 燃料電池セルと該燃料電池セルの電圧検知のためのセルコネクタとの組み合わせ体
JP2020113464A (ja) * 2019-01-15 2020-07-27 トヨタ自動車株式会社 燃料電池セルユニット
JP7070444B2 (ja) 2019-01-15 2022-05-18 トヨタ自動車株式会社 燃料電池セルユニット

Also Published As

Publication number Publication date
JP5167708B2 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5114899B2 (ja) 固体高分子型燃料電池
JP4077509B2 (ja) 固体高分子型燃料電池
US9034536B2 (en) Fuel cell having voltage monitor terminal with exposed portion
US8278002B2 (en) Fuel-cell and fuel cell system including the same
US8735014B2 (en) Fuel cell and fuel cell stack including the same
CN111403770A (zh) 燃料电池堆
JP6117745B2 (ja) 燃料電池スタック
JP2007128857A (ja) 燃料電池セパレータ
JP2008293766A (ja) 燃料電池スタック
JP2012248444A (ja) 燃料電池セル及び燃料電池セルスタック
JP5167708B2 (ja) 燃料電池スタック
JP5206147B2 (ja) 固体高分子型燃料電池
JP4585767B2 (ja) 燃料電池の監視装置
JP2016103390A (ja) 電解質膜−電極−枠接合体
JP5179093B2 (ja) 燃料電池スタック
CN111837275B (zh) 燃料电池和包括该燃料电池的燃料电池堆
JP4776788B2 (ja) 燃料電池
US20160093899A1 (en) Fuel cell
JP2005174875A (ja) 燃料電池及びその製造方法
JP4551746B2 (ja) 燃料電池スタック
JP5245232B2 (ja) 固体高分子型燃料電池
JP2009021100A (ja) 燃料電池スタック
JP2009187777A (ja) 高分子電解質型燃料電池
JP2008251309A (ja) 燃料電池装置
JP2004349015A (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees